
A General Framework for Sequential Decision-Making under Adaptivity
Constraints

Nuoya Xiong 1 Zhaoran Wang 2 Zhuoran Yang 3

Abstract
We take the first step in studying general sequen-
tial decision-making under two adaptivity con-
straints: rare policy switch and batch learning.
First, we provide a general class called the Eluder
Condition class, which includes a wide range of
reinforcement learning classes. Then, for the rare
policy switch constraint, we provide a generic
algorithm to achieve a Õ(logK) switching cost
with a Õ(

√
K) regret on the EC class. For the

batch learning constraint, we provide an algo-
rithm that provides a Õ(

√
K +K/B) regret with

the number of batches B. This paper is the first
work considering rare policy switch and batch
learning under general function classes, which
covers nearly all the models studied in the previ-
ous works such as tabular MDP (Bai et al., 2019;
Zhang et al., 2020), linear MDP (Wang et al.,
2021; Gao et al., 2021), low eluder dimension
MDP (Kong et al., 2021; Velegkas et al., 2022),
generalized linear function approximation (Qiao
et al., 2023), and also some new classes such as
the low D∆-type Bellman eluder dimension prob-
lem, linear mixture MDP, kernelized nonlinear
regulator and undercomplete partially observed
Markov decision process (POMDP).

1 Introduction
Reinforcement Learning (RL) provides a systematic frame-
work for solving large-scale sequential decision-making
problems and has demonstrated striking empirical successes
across various domains (Li, 2017), including games (Silver

*Equal contribution 1IIIS, Tsinghua University, China
2Department of Industrial Engineering and Management Sci-
ences, Northwestern University, USA 3Department of Statis-
tics and Data Science, Yale University, USA. Correspon-
dence to: Nuoya Xiong <nuoyaxiong@gmail.com>, Zhuo-
ran Yang <zhuoran.yang@yale.edu>, Zhaoran Wang <zhaoran-
wang@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2016; Vinyals et al., 2019), robotic control (Akkaya
et al., 2019), healthcare (Yu et al., 2021), hardware device
placement (Mirhoseini et al., 2017), recommender systems
(Zou et al., 2020), and so on.

In the online setting, an RL algorithm iteratively finds the
optimal policy of the sequential decision-making problem
by (i) deploying the current policy to gather data and (ii)
using the collected data to learn an improved policy. Most
of provably sample efficient algorithms in the existing lit-
erature consider an ideal setting where policy updates can
be fully adaptive, i.e., the policy can be updated after each
episode, using the data sampled from this newly finished
episode. From a practical perspective, however, updating
the policy after each episode can be unrealistic, especially
when computation resources are limited, or the cost of pol-
icy switching is prohibitively high, or the data is not fully
serial. For example, in recommender systems, it is unrealis-
tic to change the policy after each instantaneous data such
as a click of one of the customers. Moreover, the customers
might not come in a serial manner – it is possible that multi-
ple customers arrive at the same time and we need to make
simultaneous decisions. Similarly, when the RL algorithms
are deployed on the large-scale hardwares, changing a pol-
icy may need recompiling the code or changing the physical
placement for devices, incurring considerable switching
costs. Thus, when it comes to designing RL algorithms in
these scenarios, in addition to achieving sample efficiency,
we also aim to reduce or limit the number of policy switches.

Such an additional restriction is known as the adaptivity
constraints (Wang et al., 2021). There are two common
types of adaptivity constraints: the rare policy switch con-
straint (Perchet et al., 2016; Gu et al., 2021) and the batch
learning constraint (Abbasi-Yadkori et al., 2011). With the
rare policy switch constraint, the agent adaptively decides
when to update the policy during the course of the online
reinforcement learning, and the goal is to achieve the sample
efficiency that is comparable to the fully adaptive setting,
while minimizing the number of policy switches. With the
batch learning constraint, the total number of batches B is
pre-determined, and the agent has to follow the same policy
within each batch. In other words, the number of policy
switches is limited by the number of batches. In addition
to designing the policies used in each batch, the agent addi-

1

A General Framework for Sequential Decision-Making under Adaptivity Constraints

tionally needs to decide how to split the total K episodes in
to B batches before interacting with the environment.

Moreover, in many real applications of RL such as recom-
mender systems, the state space can be extremely large or
even infinite (Chen et al., 2019). Function approximation
is an effective tool for handling such a challenge and has
been extensively studied in the literature under the fully
adaptive setting (Jiang et al., 2017; Sun et al., 2019; Foster
et al., 2021; Jin et al., 2021; Zhong et al., 2022; Chen et al.,
2022). Accordingly, a few previous works provide provably
sample-efficient RL algorithms under adaptivity constraints
for MDPs with linear and generalized linear structures (Gao
et al., 2021; Wang et al., 2021; Qiao et al., 2023) and low-
eluder-dimension MDPs (Kong et al., 2021; Velegkas et al.,
2022). However, it remains open when considering more
general classes such as Bellman Eluder dimension (Jin et al.,
2021; Qiao et al., 2023). This motivates us to consider the
following question:

Can we design sample-efficient RLs algorithm under
adaptivity constraints in the context of general function

approximation?

In this work, we establish the first algorithmic framework
under adaptivity constraints for a general function class
named Eluder-Condition (EC) class. Our framework applies
to both single-agent MDP and one player in a zero-sum
Markov game. Besides, the EC class contains many popular
MDP and Markov game models studied in the previous
literature. Some examples contained in our framework and
the comparison of previous works are shown in Table 1. We
also provide some additional examples in §E.

For the rare policy switch problem, motivated by the op-
timistic algorithms such as GOLF (Jin et al., 2021) and
OPERA (Chen et al., 2022), our algorithm constructs an
optimal confidence set and computes the optimal policy via
optimistic planning based on the confidence set. Rather
than updating the confidence set at each episode, we use
a more delicate strategy to reduce the number of policy
switches. As we employ optimistic planning, switching a
policy essentially means that we update the confidence set
that contains the true hypothesis. To reduce the number of
policy switches, we update the confidence set only when the
update provide considerable improvement in terms of the es-
timation. In particular, in each episode, we first estimate the
improvement provided by the new confidence set, and then
only decide to update the confidence set and optimal policy
when the estimated improvement exceeds a certain thresh-
old. Our lazy switching strategy can reduce the number of
policy switches from O(K) to O(poly(logK)), leading to
an exponential improvement in terms of policy switches. We
also refer to the number of policy switches as the switching
cost. Meanwhile, for the batch learning problem, we use a

fixed uniform grid that divides K episodes into B batches.
While the uniform grid is an intuitive and common choice
(Wang et al., 2021; Han et al., 2020), analyzing the regret of
this approach under general function classes requires new
techniques. Our work takes the first step in studying the rare
policy switch problem and the batch learning problem with
general function approximation.

In summary, we make the following contributions:

• We provide a general function classes called the ℓ2-Eluder
Condition (EC) class and the ℓ1-EC class, and then show
that the EC class contains a wide range of previous RL mod-
els with general function approximation, such as low D∆-
type Bellman eluder dimension model, linear mixture MDP,
KNR and Generalized Linear Bellman Complete MDP.

• We develop a generic algorithm ℓ2-EC-Rare Switch (RS)
for the ℓ2-type EC class. The algorithm uses optimistic
estimation to achieve a Õ(H

√
dK) regret, updates the con-

fidence set, and changes the policy by a delicate strategy
to achieve a Õ(dH logK) switching cost, where d is the
parameter in the EC class and Õ contains the logarithmic
term except for logK. In Appendix F, we also provide
ℓ1-EC-RS algorithm for the ℓ1-type EC class. We apply our
results to some specific examples, showing that our method
is sample-efficient with a low switching cost.

• For batch learning problems, we also develop an intu-
itive and generic algorithm ℓ2-EC-Batch that achieves a
Õ(

√
dHK + dHK/B) regret, where B is the number of

batches. Our regret is comparable to the existing works for
batch learning in the linear MDP (Wang et al., 2021) and
also matches their lower bound.

Related Works. Our paper is closely related to the prior
research on RL with general function approximation and
RL with adaptivity constraints. A comprehensive summary
of the related literature can be found in §A.

2 Preliminaries

Episodic MDP A finite-horizon, episodic Markov
decision process (MDP) is represented by a tuple
(S,A, H,P, r), where S and A denote the state space
and action space; H is the length of each episode, P =
{Ph}h∈[H] is the transition kernel, where Ph(sh+1 | sh, ah)
represents the probability to arrive state sh+1 when taking
action ah on state sh at step h; r = {rh(s, a)}h∈[H] denotes
the deterministic reward function after taking action a at
state s and step h. We assume

∑H
h=1 rh(sh, ah) ∈ [0, 1]

for all possible sequences {sh, ah}Hh=1. A deterministic
Markov policy π = {πh}h∈[H] is a set of H functions,
where πh : S → ∆A is a mapping from state to an action.
For any policy π, its action value function Qπ

h(s, a) and

2

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Table 1: Comparison of previous representative work for adaptivity constraints and our works. For function classes with low
eluder dimension, (Kong et al., 2021) needs a strong value-closeness assumption, while we do not need that assumption.

(Wang et al., 2021) (Kong et al., 2021) (Qiao et al., 2023) Ours
Tabular MDP ! ! ! !

Linear MDP
(Jin et al., 2020) ! ! ! !

Low Eluder Dimension
(Russo and Van Roy, 2013) % ! % !

Low Inherent Bellman Error
(Zanette et al., 2020) % % ! %

Low D∆-type BE Dimension
(Jin et al., 2021) % % % !

Linear Mixture MDP
(Ayoub et al., 2020) % % % !

Kernelized Nonlinear Regulator
(Kakade et al., 2020) % % % !

SAIL Condition
(Liu et al., 2022b) % % % !

Undercomplete POMDP
(Liu et al., 2022a) % % % !

Zero-Sum Markov Games with
Low Minimax BE Dimension

(Huang et al., 2021)
% % % !

state value function V π
h (s) are defined as

Qπ
h(s, a) = Eπ

[
H∑

h′=h

rh′(sh′ , πh′(sh′))

∣∣∣∣∣sh = s, ah = a

]
,

V π
h (s) = Eπ

[
H∑

h′=h

rh′(sh′ , πh′(sh′))

∣∣∣∣∣sh = s

]
.

To simplify the presentation, without loss of generality,
we assume the initial state is fixed at s1. The opti-
mal policy π∗ maximizes the value function, i.e., π∗ =
argmaxπ∈Π V

π
1 (s1). We also denote V ∗ = V π∗

and
Q∗ = Qπ∗

. Note that the function Q∗ is the unique so-
lution to the Bellman equations Q∗

h(s, a) = ThQ∗
h+1(s, a),

where the Bellman operator T is defined by

(ThQh+1)(s, a) = rh(s, a) + Es′∼Ph(s′|s,a) max
a∈A

Qh+1(s, a).

(2.1)

We also study the low switching-cost problems under zero-
sum Markov Games, and we put the definitions, learning
objective, algorithm and results into §D.

Covering Number We provide the definition of ρ-
covering number. In this work, we mainly consider the
covering number with respect to the distance ℓ∞ norm.
Definition 2.1 (ρ-Covering Number). The ρ-covering num-
ber of a function class F is the minimum integer t that
satisfies the following property: There exists F ′ ⊆ F with
|F ′| = t, and for any f1 ∈ F we can find f2 ∈ F ′ such that
∥f1 − f2∥∞ ≤ ρ.

Function Approximation Generally speaking, under the
function approximation setting, we can access to a hypoth-

esis class F which captures the key feature of the value
functions (in the model-free setting) or the transition ker-
nels and the reward functions (in the model-based setting)
of the RL problem. In specific, let M denote the MDP
instance, which is clear from the context. We assume that
we have access to a hypothesis class F = F1 × · · · × FH ,
where a hypothesis function f = {f1, . . . , fH} ∈ F either
represents an action-value function Qf = {Qh,f}h∈[H]

in the model-free setting, or the environment model of
MDP Mf = {Ph,f , rh,f}h∈[H] in the model-based setting.
Moreover, for any f ∈ F , let πf denote the optimal pol-
icy corresponding to the hypothesis f . That is, under the
model-free setting, πf is the greedy policy with respect
to Qf , i.e., πh,f (s) = argmaxa∈AQh,f (s, a). Moreover,
given Qf and πf , we define state-value function Vf by let-
ting Vh,f (s) = Ea∼πh,f (s)[Qh,f (s, a)] in the MDP. Further-
more, under the model-based setting, let Mf = (Pf , rf) be
the transition kernel and reward function associated with the
hypothesis f . For the function approximation for zero-sum
Markov Games, we put the definition in §D.

Similar to the previous works (Chen et al., 2022), we impose
the following realizability assumption to make sure the true
MDP or MG model M is captured by the hypothesis class
F .

Assumption 2.2 (Realizability). A hypothesis class F sat-
isfies the realizability condition if there exists a hypothesis
function f∗ ∈ F such that Qh,f∗ = Q∗

h, Vh,f∗ = V ∗
h for all

h ∈ [H].

Learning Goal In this paper, we aim to design online re-
inforcement learning algorithms for the rare policy switches
problem and the batched learning problem. Assume the

3

A General Framework for Sequential Decision-Making under Adaptivity Constraints

agent executes the policy πk in the k-th episode for all
k ∈ [K], the regret of the agent is defined as

R(K) =

K∑
t=1

(V ∗
1 (s1)− V πk

1 (s1)). (2.2)

Moreover, for zero-sum MGs, we aim to design online
reinforcement learning algorithms for the player P1 (max-
player). In other words, we only control P1 and let P2 play
arbitrarily. The goal is to design an RL algorithm such
that P1’s expected total return is close to the value of the
game, namely V ∗

1 (s1). For any k ∈ [K], in the k-th episode,
players P1 and P2 executes policy pair πk = (νk, µk) and
P1’s expected total return is given by V πk

1 (s1). The regret
of P1 is also given by (2.3).

R(K) =

K∑
t=1

(V ∗
1 (s1)− V πk

1 (s1))

=

K∑
t=1

(V ∗
1 (s1)− V υk,µk

1 (s1)). (2.3)

The switching cost is the number of policy switches during
the interactive process. For the single-agent setting, assume
the agent uses the policy πt in t-th episode, the switch cost
at T -th episodes is:

Nswitch(K) =

K∑
k=1

I{πk ̸= πk+1}.

For MGs with the decoupled setting, since we can only
control the player P1, the switching cost is only defined on
the action of player P1 υ, i.e.

Nswitch(K) =

K∑
k=1

I{υk ̸= υk+1}.

In this paper, for the rare policy switch problem, we aim to
achieve a logarithmic switching cost and maintain a Õ(

√
K)

regret. In other words, we aim to design an algorithm such
that R(K) = Õ(

√
K) while Nswitch(K) = poly log(K),

where we ignore problem dependent quantities and Õ(·)
omits logarithmic terms.

For the batch learning problem, let B ∈ [K] be a fixed
integer. The agent of the MDP or the max-player in the
zero-sum MG pre-determines a grid 1 = k1 < k2 < · · · <
kB+1 = K + 1 with B + 1 points that split the K episodes
into B batches {k1, . . . , k2 − 1}, . . . , {k2, . . . , k3 −
1}, . . . , {kB−1, . . . kB − 1}, {kB , . . . ,K}. In an MDP, the
agent can only execute the same policy within a batch and
change the policy only at the end of a batch. In a zero-
sum MG, batch learning requires that the max-player can

only change her policies at the end of each batch. Mean-
while, the min-player is free to change the policy after each
episode. Similarly, the agent (max-player) aims to minimize
the regret in (2.2) by (a) selecting the batching grid at the
beginning of the algorithm and (b) designing the B policies
that are executed in each batch. Furthermore, in the case
of B = K, the problem is reduced to a standard online
reinforcement learning problem.

The difference between the rare policy switch setting and
batch learning setting is that, in the former case, the al-
gorithm can adaptively decide when to switch the policy
based on the data, whereas in the latter case, the episodes
where the agent adopts a new policy are deterministically
decided before the first episode. In other words, in reinforce-
ment learning with rare policy switches, we are confident
to achieve a sublinear Õ(

√
K) regret, e.g., using an online

reinforcement learning algorithm that switches the policy
after each episode. The goal is to attain the desired regret
with a small number of policy switches. In contrast, in the
batch learning setting, with B fixed, we aim to minimize
the regret, under the restriction that the number of policy
switches is no more than B.

3 Eluder-Condition Class
To handle the RL problems with adaptivity constraints, we
propose a general class called Eluder-Condition (EC) class,
which has a stronger eluder assumption and thus helps us
to control the adaptivity constraints. There are two types of
EC class: ℓ2-EC class and ℓ1-EC class. We mainly discuss
the ℓ2-EC class in the main text, and introduce the ℓ1-EC
class in §F. Before introducing the concepts of ℓ2-EC class,
we first consider the function class with low D∆-type BE
dimension (Jin et al., 2021) as a primary example to show
our stronger eluder assumption. Define the Bellman residual
Eh(f)(sh, ah) = (fh − T (fh+1))(sh, ah) for all h ∈ [H].
In the eluder argument (Lemma 17) of (Jin et al., 2021), it is
proven that for any sequence {fk}Kk=1, if the Bellman error
of fk and historical data {sih, aih}

k−1
i=1 satisfy

k−1∑
i=1

(
E(fkh)(sih, aih)

)2 ≤ β,

then the sum of discrepancy over all episodes can be
bounded by Õ(

√
K), i.e.

k∑
i=1

∣∣E(f ih)(sih, aih)∣∣ ≤ O(
√
dβk), ∀k ∈ [K]. (3.1)

However, (3.1) is not enough to control the adaptivity con-
straints such as the switching cost. Instead, we find that a
slightly stronger assumption in (3.2) below helps us reduce

4

A General Framework for Sequential Decision-Making under Adaptivity Constraints

the switching cost.

k∑
i=1

(
E(f ih)(sih, aih)

)2 ≤ O(dβ log k), ∀k ∈ [K]. (3.2)

It is easy to show that (3.2) is slightly stronger than (3.1) by
Cauchy’s inequality. However, this stronger assumption en-
ables help us to achieve a low switching cost through some
additional analyses. Moreover, in Section E, we show that
(3.2) also holds for a wide range of tractable RL problems
studied in the previous work such as linear mixture MDP,
D∆-type BE dimension and KNR.

Now we provide the formal definition of the ℓ2-EC class. To
provide a unified treatment for both MDP and MG, we let
{ζh, ηh}h∈[H] be subsets of the trajectory. In particular, we
let ηh = {sh, ah} and ζh = {sh+1} in a single-agent MDP,
and let ηh = {sh, ah, bh} and ζh = {sh+1} in a two-player
zero-sum MG.

Definition 3.1 (ℓ2-type EC Class). Given a MDP or MG
instance M , let F and G be two hypothesis function classes
satisfying the realizability Assumption 2.2 with F ⊂ G. For
any h ∈ [H] and f ′ ∈ F , let ℓh,f ′(ζh, ηh, f, g) be a vector-
valued and bounded loss function which serves as a proxy
of the Bellman error at step h, where f, f ′ ∈ F , g ∈ G, and
ζh, ηh are subsets of trajectory defined above. Moreover,
we assume that ∥ℓh,f ′(ζh, ηh, f, g)∥2 is upper bounded by a
constant R for all h, (f ′, f, g), and (ζh, ηh). For parameters
d and κ, we say that (M,F ,G, ℓ, d, κ) is a ℓ2-type EC class
if the following two conditions hold for any β ≥ R2 and
h ∈ [H]:

(i). (ℓ2-type Eluder Condition) For any K hypotheses
f1, . . . , fK ∈ F , if

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤ β (3.3)

holds for any k ∈ [K], then we have

k∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
≤ O(dβ log k) (3.4)

for all k ∈ [K], where we consider R as a constant and
ignore it in O(·).

(ii). (κ-Dominance) There exists a parameter κ such that,
for any k ∈ [K], with probability at least 1− δ,

k∑
i=1

(
V1,fi(s1)− V πi(s1)

)
≤ κ ·

(
H∑

h=1

k∑
i=1

Eηh∼πi

[∥∥∥Eζh [ℓh,fi(ζh, ηh, f
i, f i)]

∥∥∥
2

])
.

(3.5)

In this definition, the κ-dominance property (3.5) shows
that the final regret is upper bounded by the cumu-
lative expectation of in-sample loss, which is stan-
dard in many previous works (Du et al., 2021; Chen
et al., 2022). The ℓ2-type eluder condition is a gen-
eralized version of (3.2). Indeed, when we choose
ζh = {sh+1}, ηh = {sh, ah}, and ℓh,f ′(ζh, ηh, f, g) =
Qh,g(sh, ah) − r(sh, ah) − Vh+1,f (sh+1), the ℓ2-type
condition in (3.4) can be regarded as the condition in-
volving the Bellman error, as shown in (3.1). Intu-
itively, the term

∑k−1
i=1 ∥Eζh [ℓh,fi(ζh, η

i
h, f

k, fk)]∥2 in
Eq.(3.3) represents the discrepancy between the function
fk and the previous data. This term can be regarded
as the estimation error after k − 1 episodes. The term∑k

i=1 ∥Eζh [ℓh,fi(ζh, η
i
h, f

i, f i)]∥22 in Eq.(3.4) represents
the discrepancy between f i and the data of i-th episode,
which serves as an upper bound of the regret incurred in the
first k episodes due to the κ-dominance condition Eq.(3.5).
Hence EC class connects these two terms which has the
following implication: The regret of an optimistic algorithm
is small as long as it generates a sequence of functions
{fk}k∈[K] such that the estimation error of fk on the data
given by the previous k−1 episodes is small. The parameter
d quantifies the hardness of achieving low regret via a small
estimation error. From the previous discussion, it is easy
to show that our assumption is stricter than the previous
works, and this stricter assumption can help us to reduce the
switching cost by some additional original analyses. As we
will show later in Section E, it is satisfied by many previous
important models like D∆-type BE dimension (Jin et al.,
2021), which includes low eluder dimension (Kong et al.,
2021; Velegkas et al., 2022) and linear MDP (Gao et al.,
2021; Wang et al., 2021).

Moreover, in the ℓ2-type EC class, we consider the decom-
posable loss function (Chen et al., 2022). The decomposable
property generalizes one of the properties of Bellman error
and implies the completeness assumption in previous work
(Jin et al., 2021).

Definition 3.2 (Decomposable Loss Function (DLF) (Chen
et al., 2022)). The loss function ℓh,f ′(ζh, ηh, f, g) is de-
composable if there exists an operator T : F → G, such
that

ℓh,f ′(ζh, ηh, f, g)− Eζh

[
ℓh,f ′(ζh, ηh, f, g)

]
= ℓh,f ′(ζh, ηh, f, T (f)). (3.6)

Also, the operator T satisfies that T (f∗) = f∗.

The decomposable property claims that for any f ∈ F , g ∈
G, there exists a function T (f) ∈ G that is indepen-
dent of g satisfying (3.6), which can be regarded as a
generalized completeness assumption. For example, in
the function classes with low D∆-type BE dimension

5

A General Framework for Sequential Decision-Making under Adaptivity Constraints

for single-agent MDP, the operator T is selected as the
Bellman operator for single-agent MDP, which is given
in (2.1). In this case, we can choose when we choose
ζh = {sh+1}, ηh = {sh, ah}, and ℓh,f ′(ζh, ηh, f, g) =
Qh,g(sh, ah)− r(sh, ah)− Vh+1,f (sh+1), then we have

ℓh,f ′(ζh, ηh, f, g)− Eζh

[
ℓh,f ′(ζh, ηh, f, g)

]
= (ThVh+1(sh, ah)− r(sh, ah)− Vh+1,f (sh+1))

= ℓh,f ′(ζh, ηh, f, T (f)), (3.7)

where T is the Bellman operator. The following
lemma shows that D∆-type Bellman eluder dimension
model belongs to ℓ2-type EC class with parameter d =
dBE(F , D∆, 1/

√
T). The proof is provided in §I.5.

Lemma 3.3 (Low D∆-type Bellman Eluder Dimension ⊂
ℓ2−type EC class). Suppose the function class F with
a low D∆-type Bellman eluder dimension with auxil-
iary function class G (Jin et al., 2021), then for any
MDP model M , choose ζh = {sh+1}, ηh = {sh, ah}
and (M,F ,G,), κ = 1, and DLF ℓ as in 3.7, then
(M,F ,G, ℓ, dBE(F , D∆, 1/

√
T), κ) is a ℓ2-type EC class

by ℓ2 condition: If
∑k−1

i=1 [E(fk, sih, aih)2] ≤ β holds for
any k ∈ [K] and β ≥ 9, then for any k ∈ [K] we have

k∑
i=1

[E(f i, sih, aih)2] ≤ O(dβ logK), (3.8)

where d = dBE(F , D∆, 1/
√
T) and we choose the upper

bound of the Bellman residual E as R = 3. The dominance
can be derived by Lemma 1 in (Jiang et al., 2017).

For some other particular examples like linear mixture MDP
and KNR, the operator T is chosen as the optimal operator
T (f) = f∗. The detailed definition and theoretical results
are provided in §E.

In recent years, the ℓ1-eluder argument is proposed in (Liu
et al., 2022a) and followed by (Liu et al., 2022b) to provide
another way for the sample-efficient algorithm of POMDP.
In §F, we also provide a similar EC class named ℓ1-type EC
class. Compared to the ℓ2-EC class, ℓ1-EC class replaces
the square sum in the ℓ2-type EC property (Eq. (3.4)) by a
standard sum. By considering a particular model-based loss
function, the ℓ1-type EC class can reduce to the assumption
in (Liu et al., 2022b). We provide a sample-efficient algo-
rithm for ℓ1-EC class with low switching cost in §F.2 and a
batch learning algorithm in Appendix H.3.

4 Rare Policy Switch Problem
In this section, we propose an algorithm for the ℓ2-type EC
class that achieves a low switching cost. Our algorithm ex-
tends the optimistic-based exploration algorithm (Jin et al.,
2021; Chen et al., 2022) with a lazy policy switches strat-
egy. The optimistic-based exploration algorithm calculates a

Algorithm 1 ℓ2-EC-RS

1: Initialize: D1, D2, · · · , DH = ∅,B1 = F .
2: for k = 1, 2, · · · ,K do
3: (MDP): Compute the greedy policy πk = πfk , where

fk = argmaxf∈Bk−1 V
πf

f (s1).
4: (Zero-Sum MG): Compute υk = υfk , where fk =

argmaxf∈Bk−1
V

υf ,µf

f (s1). The adversary chooses
strategy µk, then we let πk = (υk, µk).

5: Execute policy πk to collect the trajectory, update
Dh = Dh ∪ {ζkh , ηkh},∀h ∈ [H].

6: if L1:k
h (D1:k

h , fk, fk) − infg∈G L
1:k
h (D1:k

h , fk, g) ≥
5β for some h ∈ [H] then

7: Update Bk =
{
f ∈ F : L1:k

h (D1:k
h , f, f) −

infg∈G L
1:k
h (D1:k

h , f, g) ≤ β,∀h ∈ [H]
}
.

8: else
9: Bk = Bk−1.

10: end if
11: end for

confidence set using historical data and performs optimistic
planning within this set to determine the optimal model fk

and policy πk at each episode k. Unlike the previous algo-
rithm, we choose to update the confidence set only when a
specific condition holds. This modification helps reduce the
frequency of policy switches and lowers the associated cost.

Optimistic Exploration with Low-Switching Cost. At
episode k, the agent first computes the optimal policy πk =
πfk , where fk is the optimal model in confidence set Bk

and πf is the greedy policy with respect to Qf . Then it
executes the policy πk (or υk for zero-sum MG) and collects
the data Dh for each step h ∈ [H]. Line 6 - 10 compute
the optimistic confidence set Bk+1 for next episode k + 1.
Define the loss function

La:b
h (Da:b

h , f, g) =

b∑
i=a

∥ℓh,fi(ζih, η
i
h, f, g)∥22,

and calculate the confidence sets in Line 7 based on history
data. Unlike the previous algorithm, our algorithm provides
a novel policy switching condition in Line 6, which is the
following inequality:

L1:k
h (D1:k

h , fk, fk)− inf
g∈G

L1:k
h (D1:k

h , fk, g) ≥ 5β (4.1)

for some h ∈ [H], where β is a logarithmic confidence
parameter. In fact, the left-hand side of (4.1) represents the
in-sample discrepancy between fk and the historical data
D1:k

h at step h after the first k episodes. When (4.1) does
not hold, then we have

L1:k
h (D1:k

h , fk, fk)− inf
g∈G

L1:k
h (D1:k

h , fk, g) ≤ 5β (4.2)

6

A General Framework for Sequential Decision-Making under Adaptivity Constraints

for all h ∈ [H]. Moreover, for any k ∈ [K], we have fk ⊆
Bk−1. Moreover, let tk−1 be the index of the episode after
which Bk−1 is constructed. That is, tk−1 is the smallest
t such that Bt = Bk−1. Then by the construction of the
confidence set Bk−1, the discrepancy between fk and the
historical data D1:tk−1

h satisfies

L
1:tk−1

h (D
1:tk−1

h , fk, fk)− inf
g∈G

L
1:tk−1

h (D
1:tk−1

h , fk, g) ≤ β.

(4.3)

Comparing (4.2) and (4.3), we observe that, when adding
the new data from (tk−1 + 1)-th to the k-th episode, the
discrepancy between the collected data and fk remains rela-
tively small for all steps h ∈ [H]. In this case, the improve-
ment brought from adding new data limited, and thus we
choose not to update the policy to save computation. Instead,
when (4.1) holds, this means that the discrepancy between
fk and the offline data D1:k

h is significant. In light of (4.3),
the newly added data from (tk−1+1)-th to the k-th episode
brings considerable new information from newly collected
data, and thus we update the confidence set and hence up-
date the policy. Furthermore, in the following theorem, we
prove that such a lazy policy switching scheme achieves
both sample efficiency while incurring a small switching
cost, assuming the underlying model belongs to the ℓ2-type
EC class. The detailed proof of the theorem is provided in
§G.1.

Theorem 4.1. Given an EC class (M,F ,G, ℓ, d, κ) with
two hypothesis classes F ,G and a decomposable loss
function ℓ satisfying Eq. (3.4), Eq. (3.5) and Definition
3.2. Set β = c(R2ι + R) for a large constant c with
ι = log(HK2NL(1/K)/δ), in which NL(1/K) is the
1/K-covering number for DLF class L = {ℓh,f ′(·, ·, f, g) :
(h, f ′, f, g) ∈ [H]×F×F×G} with norm ∥ ·∥∞ (Defined
in §B). With probability at least 1− δ, Algorithm 1 achieves
a sublinear regret

R(K) ≤ Õ(κH
√
dβK · poly(logK)),

Also, Algorithm 1 has a logarithmic switching cost

Nswitch(K) ≤ O(dH · logK). (4.4)

The theorem above gives us an upper bound for both
a Õ(

√
K) regret and a logarithmic switching cost.

When applying to the specific examples such as func-
tion class with low D∆-type BE dimension d =
dBE(F , D∆, 1/

√
K), Combining Lemma 3.3 and Theo-

rem 4.1, Algorithm 1 achieves a Õ(H
√
dβK log(K)) =

Õ(H
√
d log(NL(1/K)/δ)K · poly(logK)) regret and a

O(dH · logK) switching cost. Some additional examples
of ℓ2-type EC classes such as linear mixture MDP and KNR,
and the corresponding theoretical results are provided in
Section E.

Comparison with Previous Algorithms The natural idea
to solve low switching-cost problems is to measure the in-
formation gain and change the policy only when the gained
information is large enough. However, the previous tech-
niques to represent the gained information cannot apply to
more general RL problems. For the tabular MDP and lin-
ear MDP (Gao et al., 2021; Wang et al., 2021), the gain of
new information can be explicitly formulated as the deter-
minant of the Hessian matrix of the least-squares loss func-
tion. For the function classes with low eluder dimension
(Kong et al., 2021), their algorithm requires the construction
of the bonus function and a sensitivity-based subsampling
approach, which cannot be extended beyond their setting.
Moreover, they require a value closeness assumption: For
each function V : S → [0, H], they assume the function
class F satisfies that r(s, a) +

∑
s′ P(s′ | s, a)V (s′) ∈ F

for all (s, a). This assumption is very stringent and is not
satisfied by many general classes such as linear mixture
MDP and KNR. All of these approaches cannot be applied
to our EC class. The primary difficulty for the low switching
cost problems under general function approximation is to
quantify the information gain for general nonlinear models.
We quantify the information by the discrepancy between the
estimated model and the historical data, and find a delicate
condition for policy switches. Compared to (Kong et al.,
2021), we can derive a

√
K regret and logarithmic switching

cost without a restrictive value-closeness assumption.

The computational complexity mainly depends on the Line 3
or 4 in Algorithm 1. Previous works often assume there
exists an oracle that approximately solves Line 3, e.g., (Jin
et al., 2021; Chen et al., 2022). Such an oracle is queried
in each episode to update the policy. Thus, these works
incur an O(K) oracle complexity. In contrast, with the lazy
update scheme specified in Lines 7–9, the oracle complexity
of Algorithm 1 is O(logK), which leads to an exponential
improvement in terms of the computational cost.

To be more specific, checking the switching condition
is always easier than implementing the oracle, since
it only needs to calculate a term L1:k

h (D1:k
h , fk, fk) −

infg∈G L
1:k
h (D1:k

h , fk, g), which is also required for con-
structing the constrained set Bk needed for the oracle. How-
ever, implementing the oracle requires solving an additional
optimization problem fk = argmaxf∈Bk−1 V

πf

f (s1) with
constraint set Bk−1, which is much harder.

In the experiment, the execution time of our algorithm is 20
times faster than the algorithm without lazy policy switches,
while maintaining a similar performance.

5 Batch Learning Problem
In this section, we provide an algorithm for the batch learn-
ing problem. Recall that in the batch learning problem,

7

A General Framework for Sequential Decision-Making under Adaptivity Constraints

the agent selects the batch before the algorithm starts, then
she uses the same policy within each batch. Denote the
number of batches as B, Algorithm 2 try to divide each
batch equally and choose the batch as [ki, ki+1), where
ki = i · ⌊K/B⌋+1. This selection is intuitive and common
in many previous works of batch learning (Han et al., 2020;
Wang et al., 2021; Gu et al., 2021). After setting the batches,
the agent adopts optimistic planning for policy updates, and
only updates the policies in episodes {ki, i ∈ [B− 1]}. The
details of the algorithm is presented in Algorithm 2.

In the following theorem, we provide a regret upper bound
for Algorithm 2. The detailed proof is in §H.1.

Theorem 5.1. Given an EC class (M,F ,G, ℓ, d, κ) with
two hypothesis classes F ,G and a decomposable loss func-
tion ℓ satisfying 3.4 and 3.5. Set β = c(R2ι + R) for
a large constant c with ι = log(HK2NL(1/K)/δ), in
which NL(1/K) is the 1/K-covering number for DLF class
L = {ℓh,f ′(·, ·, f, g) : (h, f ′, f, g) ∈ [H]×F×F×G} with
norm ∥ · ∥∞. With probability at least 1− δ the Algorithm 2
will achieve a sublinear regret

R(T) ≤ Õ
(
κH
√
dβK logK + κ · dHK

B
· (logK)2

)
.

Hence if we choose B = Ω(
√
K/d), we can get a sublinear

regret Õ(H
√
dβK). In particular, for the linear MDP with

dimension dlin, we have d = Õ(dlin) and β = Õ(dlin ·
poly(logK)), Theorem 5.1 achieves a Õ(Hdlin

√
K +

dlinHK/B) regret upper bound. Note that (Wang et al.,
2021) provide a regret lower bound Ω(d

√
HK + dHK/B)

after rescaling the reward to
∑H

h=1 rh(sh, ah) ∈ [0, 1].
Thus, the first term of our result has an additional

√
H

term, and our result matches the lower bound in terms of
d,B, and K.

For function classes with low D∆-type Eluder dimension,

Algorithm 2 provides a Õ(H
√
dBE(F , D∆, 1/

√
T)βK

logK + dBE(F , D∆, 1/
√
T)HK(logK)2/B) regret up-

per bound. More specific examples and the corresponding
results are provided in Section E. We also provide the batch
learning results of ℓ1-EC class in §F.2.

Now we provide the proof sketch. First, for a batch
j, we consider the maximum in-sample error brought
by this batch: maxk∈[kj ,kj+1−1] L

kj :k
h (D

kj :k
h , fkj , fkj) −

L
kj :k
h (D

kj :k
h , fkj , T (fkj)) ≜ cjβ. Indeed, this term rep-

resents the maximum fitting error for the data within the
data of this batch and the model fkj . Then for all batches
[kj , kj+1 − 1] with a small in-sample error, namely, cj =
O(1), we can still deploy the optimism mechanism and
control the regret, thus the final regret can vary in magni-
tude by at most a constant. Moreover, for these batches
with cj ≤ 5, we call them the “Good” batches, meaning

Figure 1: The average accumulative reward for optimal
policy, random policy, OPERA algorithm (Chen et al., 2022)
and EC-RS (Algorithm 1)

that the regret caused by these batches can still be upper
bounded by O(

√
K). For batch j with cj > 5, we called

them the “Bad” batches. Then we can show a fact that the
number of “Bad” batches is at most O((logK)2). In fact,
we can divide all the cj ∈ [5,K] into O(logK) intervals
[5 · 2i, 5 · 2i+1)i≥0, and use the ℓ2-type eluder condition
to bound that |{j | C/2 ≤ cj ≤ C}| ≤ O(logK) for any
constant C.

Once the fact is proven, the regret can be derived by adding
“Good” batches and “Bad” batches. All “Good” batches will
lead to at most a O(

√
K) regret, and all “Bad” batches will

lead to at most O((K/B) · (logK)2) regret. Combining
two types of batches, we can get Theorem 5.1.

Moreover, we consider another batch learning setting called
“the adaptive batch setting” that was studied in (Gao et al.,
2019). In this setting, the agent can select the batch size
adaptively during the algorithm. At the end of each batch,
the agent observes the reward feedback of this batch, and
she can select the next batch size according to the historical
information and change the policy. We show that in this
setting, O(poly(logK)) batches are sufficient for a O(

√
K)

regret. The proof employs an extra doubling trick performed
on the low switching cost Algorithm 1 and we discuss it in
§H.2.

6 Experiment

6.1 Linear Mixture MDP

We experimented in the linear mixture MDP with the same
setting as Appendix H in (Chen et al., 2022). We choose
T = 2000 and β = 0.3 log T in the experiment. We com-
pare our ℓ2-EC-RS algorithm with OPERA (Chen et al.,

8

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Table 2: The number of policy switches for MEX MF (Liu et al., 2024) and our MEX MF low switch algorithm on different
Mujoco tasks.

HalfCheetah-v2 Hopper-v3 Walker2d-v3
MEX MF (Liu et al., 2024) 100000 100000 100000

MEX MF low switch (Ours) 10052 29930 10742

2022), optimal policy and the random policy. The cumu-
lative reward curves show that our algorithm converges to
the optimal value slightly slower than OPERA. However,
the average number of strategy transitions and calls to the
optimization tool decreases from 2000 to 92.8 times over
10 simulations, decreasing the average execution time from
321.6 seconds to 15.9 seconds.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

500

0

500

1000

Re
tu

rn

HalfCheetah-v2
MEX_MF
MEX_MF_low_switch

(a) HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0

100

200

300

400

500

Re
tu

rn

Hopper-v3
MEX_MF
MEX_MF_low_switch

(b) Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0

100

200

300

400

500

600

Re
tu

rn

Walker2d-v3
MEX_MF
MEX_MF_low_switch

(c) Walker2d-v3

Figure 2: Model-Free Mujoco Problems

6.2 Model-Free Mujoco Problem

To show the potential insight of our theoretic discovery, we
also implement a rare policy switch “MEX MF low switch”

algorithm on Mujoco problems based on our theoretical
insight, which changes the policy only when the discrepancy
between previous data and the current estimate is large
enough. Based on the model-free algorithm “MEX MF” in
Section 7 of (Liu et al., 2024), we modify it by changing
the policy only when the loss (Equation (7.1) in (Liu et al.,
2024)) is large enough.

We execute two algorithms on three different tasks “Hopper-
v3”, “HalfCheetah-v2” and “Walker2d-v3” for 100000
episodes, and the setting is the same as Section 7 of (Liu
et al., 2024). The comparisons of the rewards and the num-
ber of policy switches are shown in Figure 2 and Table
2. The results show that the rare policy switch algorithm
maintains a similar performance compared to the original
algorithm MEX MF. However, there is a huge reduction in
the number of policy switches. Also, the rare policy switch
algorithm performs even better under some settings than
the previous one. This is likely due to the implementation
of a conservative policy-switching algorithm, which pre-
vents premature and potentially detrimental changes. Conse-
quently, it enhances the stability of the MEX MF algorithm.

7 Conclusion
In this paper, we study the general sequential decision-
making problem under general function approximation with
two adaptivity constraints: the rare policy switch constraint
and the batch learning constraint. Motivated by the eluder
argument, we first introduce a general class named EC class
that includes various previous RL models, and then provide
algorithms for both two adaptivity constraints. For the rare
policy switch problem, we propose a lazy policy switch
strategy to achieve a logarithmic switching cost while main-
taining a sublinear regret on the EC class. For the batch
learning problem, we analyze the regret when the batch is
a uniform grid on EC class. The result matches the lower
bound under the linear MDP (Wang et al., 2021) in terms of
d,B and T . To the best of our knowledge, this paper is the
first work to systematically investigate these two adaptivity
constraints under a general framework that contains a wide
range of RL problems.

9

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Impact Statement
The goal of this paper is to advance the field of theoretical re-
inforcement learning under general function approximation
with adaptivity constraints. None of the potential impact
must be specifically highlighted here.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Im-

proved algorithms for linear stochastic bandits. Advances
in neural information processing systems, 24.

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and
Schapire, R. (2014). Taming the monster: A fast and sim-
ple algorithm for contextual bandits. In International Con-
ference on Machine Learning, pages 1638–1646. PMLR.

Agarwal, A. and Zhang, T. (2022). Model-based rl with
optimistic posterior sampling: Structural conditions and
sample complexity. arXiv preprint arXiv:2206.07659.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. (2019). Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Machine
learning, 47:235–256.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang,
L. (2020). Model-based reinforcement learning with
value-targeted regression. In International Conference on
Machine Learning, pages 463–474. PMLR.

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. (2019). Provably
efficient q-learning with low switching cost. Advances in
Neural Information Processing Systems, 32.

Bradtke, S. (1992). Reinforcement learning applied to linear
quadratic regulation. Advances in neural information
processing systems, 5.

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F.,
and Chi, E. H. (2019). Top-k off-policy correction for
a reinforce recommender system. In Proceedings of the
Twelfth ACM International Conference on Web Search
and Data Mining, pages 456–464.

Chen, Z., Li, C. J., Yuan, A., Gu, Q., and Jordan, M. I.
(2022). A general framework for sample-efficient func-
tion approximation in reinforcement learning. arXiv
preprint arXiv:2209.15634.

Cui, Q., Zhang, K., and Du, S. S. (2023). Breaking the curse
of multiagents in a large state space: Rl in markov games
with independent linear function approximation. arXiv
preprint arXiv:2302.03673.

Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochastic
linear optimization under bandit feedback.

Ding, D., Wei, C.-Y., Zhang, K., and Jovanovic, M. (2022).
Independent policy gradient for large-scale markov po-
tential games: Sharper rates, function approximation, and
game-agnostic convergence. In International Conference
on Machine Learning, pages 5166–5220. PMLR.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun,
W., and Wang, R. (2021). Bilinear classes: A struc-
tural framework for provable generalization in rl. In
International Conference on Machine Learning, pages
2826–2836. PMLR.

Foster, D. J., Foster, D. P., Golowich, N., and Rakhlin,
A. (2023). On the complexity of multi-agent decision
making: From learning in games to partial monitoring.
arXiv preprint arXiv:2305.00684.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A. (2021).
The statistical complexity of interactive decision making.
arXiv preprint arXiv:2112.13487.

Gao, M., Xie, T., Du, S. S., and Yang, L. F. (2021).
A provably efficient algorithm for linear markov deci-
sion process with low switching cost. arXiv preprint
arXiv:2101.00494.

Gao, Z., Han, Y., Ren, Z., and Zhou, Z. (2019). Batched
multi-armed bandits problem. Advances in Neural Infor-
mation Processing Systems, 32.

Gu, Q., Karbasi, A., Khosravi, K., Mirrokni, V., and Zhou,
D. (2021). Batched neural bandits. arXiv preprint
arXiv:2102.13028.

Han, Y., Zhou, Z., Zhou, Z., Blanchet, J., Glynn, P. W.,
and Ye, Y. (2020). Sequential batch learning in
finite-action linear contextual bandits. arXiv preprint
arXiv:2004.06321.

Huang, B., Lee, J. D., Wang, Z., and Yang, Z. (2021).
Towards general function approximation in zero-sum
markov games. arXiv preprint arXiv:2107.14702.

Ishfaq, H., Cui, Q., Nguyen, V., Ayoub, A., Yang, Z., Wang,
Z., Precup, D., and Yang, L. (2021). Randomized ex-
ploration in reinforcement learning with general value
function approximation. In International Conference on
Machine Learning, pages 4607–4616. PMLR.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. (2017). Contextual decision processes
with low Bellman rank are PAC-learnable. In Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1704–1713. PMLR.

10

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Jin, C., Liu, Q., and Miryoosefi, S. (2021). Bellman eluder
dimension: New rich classes of rl problems, and sample-
efficient algorithms. Advances in Neural Information
Processing Systems, 34.

Jin, C., Liu, Q., and Yu, T. (2022). The power of exploiter:
Provable multi-agent rl in large state spaces. In Interna-
tional Conference on Machine Learning, pages 10251–
10279. PMLR.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020). Prov-
ably efficient reinforcement learning with linear function
approximation. In Conference on Learning Theory, pages
2137–2143. PMLR.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M.,
and Sun, W. (2020). Information theoretic regret bounds
for online nonlinear control. Advances in Neural Infor-
mation Processing Systems, 33:15312–15325.

Kong, D., Salakhutdinov, R., Wang, R., and Yang, L. F.
(2021). Online sub-sampling for reinforcement learn-
ing with general function approximation. arXiv preprint
arXiv:2106.07203.

Li, Y. (2017). Deep reinforcement learning: An overview.
arXiv preprint arXiv:1701.07274.

Liu, Q., Chung, A., Szepesvári, C., and Jin, C. (2022a).
When is partially observable reinforcement learning not
scary? arXiv preprint arXiv:2204.08967.

Liu, Q., Netrapalli, P., Szepesvari, C., and Jin, C. (2022b).
Optimistic mle–a generic model-based algorithm for par-
tially observable sequential decision making. arXiv
preprint arXiv:2209.14997.

Liu, Z., Lu, M., Xiong, W., Zhong, H., Hu, H., Zhang, S.,
Zheng, S., Yang, Z., and Wang, Z. (2023). One objec-
tive to rule them all: A maximization objective fusing
estimation and planning for exploration.

Liu, Z., Lu, M., Xiong, W., Zhong, H., Hu, H., Zhang, S.,
Zheng, S., Yang, Z., and Wang, Z. (2024). Maximize to
explore: One objective function fusing estimation, plan-
ning, and exploration. Advances in Neural Information
Processing Systems, 36.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen,
R., Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and
Dean, J. (2017). Device placement optimization with
reinforcement learning. In International Conference on
Machine Learning, pages 2430–2439. PMLR.

Perchet, V., Rigollet, P., Chassang, S., and Snowberg, E.
(2016). Batched bandit problems. The Annals of Statistics,
pages 660–681.

Qiao, D., Yin, M., Min, M., and Wang, Y.-X. (2022).
Sample-efficient reinforcement learning with loglog (t)
switching cost. In International Conference on Machine
Learning, pages 18031–18061. PMLR.

Qiao, D., Yin, M., and Wang, Y.-X. (2023). Logarithmic
switching cost in reinforcement learning beyond linear
mdps. arXiv preprint arXiv:2302.12456.

Qiu, S., Ye, J., Wang, Z., and Yang, Z. (2021). On reward-
free rl with kernel and neural function approximations:
Single-agent mdp and markov game. In International
Conference on Machine Learning, pages 8737–8747.
PMLR.

Russo, D. and Van Roy, B. (2013). Eluder dimension and the
sample complexity of optimistic exploration. Advances
in Neural Information Processing Systems, 26.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search.
nature, 529(7587):484–489.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., and
Langford, J. (2019). Model-based rl in contextual de-
cision processes: Pac bounds and exponential improve-
ments over model-free approaches. In Conference on
learning theory, pages 2898–2933. PMLR.

Velegkas, G., Yang, Z., and Karbasi, A. (2022). Rein-
forcement learning with logarithmic regret and policy
switches. Advances in Neural Information Processing
Systems, 35:36040–36053.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. (2019). Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354.

Wang, R., Salakhutdinov, R. R., and Yang, L. (2020). Rein-
forcement learning with general value function approxi-
mation: Provably efficient approach via bounded eluder
dimension. Advances in Neural Information Processing
Systems, 33:6123–6135.

Wang, T., Zhou, D., and Gu, Q. (2021). Provably efficient
reinforcement learning with linear function approxima-
tion under adaptivity constraints. Advances in Neural
Information Processing Systems, 34:13524–13536.

Wang, Y., Liu, Q., Bai, Y., and Jin, C. (2023). Breaking
the curse of multiagency: Provably efficient decentral-
ized multi-agent rl with function approximation. arXiv
preprint arXiv:2302.06606.

11

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Xie, Q., Chen, Y., Wang, Z., and Yang, Z. (2020). Learn-
ing zero-sum simultaneous-move markov games using
function approximation and correlated equilibrium. In
Conference on learning theory, pages 3674–3682. PMLR.

Yu, C., Liu, J., Nemati, S., and Yin, G. (2021). Reinforce-
ment learning in healthcare: A survey. ACM Computing
Surveys (CSUR), 55(1):1–36.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E.
(2020). Learning near optimal policies with low inherent
bellman error. In International Conference on Machine
Learning, pages 10978–10989. PMLR.

Zhan, W., Uehara, M., Sun, W., and Lee, J. D. (2022). Pac
reinforcement learning for predictive state representations.
arXiv preprint arXiv:2207.05738.

Zhang, Z., Jiang, Y., Zhou, Y., and Ji, X. (2022). Near-
optimal regret bounds for multi-batch reinforcement
learning. Advances in Neural Information Processing
Systems, 35:24586–24596.

Zhang, Z., Zhou, Y., and Ji, X. (2020). Almost op-
timal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Infor-
mation Processing Systems, 33:15198–15207.

Zhao, H., He, J., and Gu, Q. (2023). A nearly optimal
and low-switching algorithm for reinforcement learning
with general function approximation. arXiv preprint
arXiv:2311.15238.

Zhao, Y., Tian, Y., Lee, J., and Du, S. (2022). Provably effi-
cient policy optimization for two-player zero-sum markov
games. In International Conference on Artificial Intelli-
gence and Statistics, pages 2736–2761. PMLR.

Zhong, H., Xiong, W., Zheng, S., Wang, L., Wang, Z., Yang,
Z., and Zhang, T. (2022). A posterior sampling frame-
work for interactive decision making. arXiv preprint
arXiv:2211.01962.

Zhong, H., Yang, Z., Wang, Z., and Jordan, M. I. (2021).
Can reinforcement learning find stackelberg-nash equilib-
ria in general-sum markov games with myopic followers?
arXiv preprint arXiv:2112.13521.

Zou, L., Xia, L., Du, P., Zhang, Z., Bai, T., Liu, W., Nie, J.-
Y., and Yin, D. (2020). Pseudo dyna-q: A reinforcement
learning framework for interactive recommendation. In
Proceedings of the 13th International Conference on Web
Search and Data Mining, pages 816–824.

12

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Appendix

A Related Work
RL with General Function Approximation To solve the large-state RL problems, many works consider capturing the
special structures of the MDP models. (Jiang et al., 2017) consider the RL problems with low Bellman rank; (Jin et al., 2020)
consider a particular linear structure of MDP models named linear MDP; (Wang et al., 2020) consider RL problems with
bounded Eluder dimension using sensitivity sampling, and (Ishfaq et al., 2021) use a simpler optimistic reward sampling to
combine the optimism principle and Thompson sampling. (Jin et al., 2021) capture an extension of Eluder dimension called
Bellman Eluder dimension; (Du et al., 2021) consider a particular model named bilinear model; Very recently, (Chen et al.,
2022) consider a more extensive class ABC that contains many previous models. (Foster et al., 2021; Agarwal and Zhang,
2022; Zhong et al., 2022) provide the posterior-sampling style algorithm for sequential decision-making. Previous works
also consider the Markov Games with multiple players under the function approximation setting. (Xie et al., 2020; Huang
et al., 2021; Qiu et al., 2021; Jin et al., 2022; Zhao et al., 2022; Liu et al., 2023) study the two-player zero-sum Markov
Games with linear or general function approximations. (Zhong et al., 2021; Ding et al., 2022; Cui et al., 2023; Wang et al.,
2023; Foster et al., 2023) further consider the general-sum Markov Games with function approximations. Among these
works, our paper is particularly related to the works that use the eluder dimension to capture the complexity of a function
class (Jin et al., 2021; Chen et al., 2022; Liu et al., 2022a;b). Compared to them, our EC class requires a property that is
slightly stricter than the normal eluder argument, which can help us to deal with the additional adaptivity constraints. More
details are provided in Section 3.

RL with Adaptivity Constraints The rare policy switch problem and the batch learning problem are the two main
adaptivity constraints considered in the previous works.

(Abbasi-Yadkori et al., 2011; Auer et al., 2002) give algorithms to achieve a Õ(
√
K) regret and a Õ(log logK) switching

cost in the bandit problem. (Bai et al., 2019) study the rare policy switch problem for tabular MDP and (Zhang et al., 2020)
improve their results. (Qiao et al., 2022; Zhang et al., 2022) provide Õ(log log T) switching cost algorithms for tabular MDP.
(Wang et al., 2021; Gao et al., 2021) provide low-switching cost algorithms for linear MDP. (Kong et al., 2021) considers
this problem for the function classes with low eluder dimension, and (Velegkas et al., 2022) extends their results to be
gap-dependent. (Qiao et al., 2023) gives an algorithm to achieve logarithmic switching cost in the linear complete MDP with
low inherent Bellman error and generalized linear function approximation. They leave the low switching cost problem for the
function classes with low BE dimension as an open problem, where our paper solves a part of this open problem (D∆-type
BE dimension). Concurrently, (Zhao et al., 2023) considers the rare policy switch algorithms under the function classes with
low general eluder dimension. However, the connection between the general eluder dimension and the Bellman-Eluder
dimension or linear mixture MDP is still unclear, while our result is more general to solve the rare policy switch problem
under these function classes. Also, they need a stricter completeness assumption. Es′∼Ph(·|s,a)[rh(s, a) + V (s′)] ∈ F and
Es′∼Ph(·|s,a)[(rh(s, a) + V (s′))2] ∈ F for any function V : S 7→ [0, 1] (Assumption 2.2 in (Zhao et al., 2023)).

For the batch learning problem, (Perchet et al., 2016) considers this problem in 2-armed bandits, and (Gao et al., 2019)
further considers this problem in the multi-armed bandit with both fixed batch size and adaptive batch size. (Han et al.,
2020) study batch learning problem in the linear contextual bandits. (Gu et al., 2021) also study this problem in the neural
bandit setting. (Wang et al., 2021) considers this problem in the linear MDP, and gives a lower bound of the regret.

B Definition of Bracketing Number
In the Theorem 4.1, Theorem 5.1, Theorem F.4 and Theorem F.5, the regret results contain the logarithmic term of the
1/K-covering number of the function classes NF (1/K) or the 1/K-bracketing number BF (1/K). Both of them can be
regarded as a surrogate cardinality of the function class F . The definition of the covering number is provided in 2.1. In this
subsection, we provide the definition of the bracketing number, which is commonly used in the previous model-based RL
works (Zhan et al., 2022; Zhong et al., 2022).

Definition B.1 (ρ-Bracket Number). A ρ-bracket with size N contains 2N functions {f i1, f i2}Ni=1 that maps a policy π and a
trajectory τ to a real value such that ∥f i1(π, ·)− f i2(π, ·)∥1 ≤ ρ. Moreover, for any f ∈ F , there exists i ∈ [N] such that
f i1(π, τ) ≤ Pπ

f (τ) ≤ f i2(π, τ). The ρ-bracket number of a function class F , denoted as BF (1/K), is the minimum size N
of a ρ-bracket.

13

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Algorithm 2 ℓ2-EC-Batch

1: Input D1, D2, · · · , DH = ∅,B1 = F .
2: for k = 1, 2, · · · ,K do
3: (MDP): Compute πk = πfk , where fk = argmaxf∈Bk−1 V

πf

f (s1).
4: (Zero-Sum MG): Compute υk = υfk , where fk = argmaxf∈Bk−1

V
υf ,µf

f (s1). The adversary chooses strategy µk,
then we let πk = (υk, µk).

5: Execute policy πk to collect the trajectory, update Dh = Dh ∪ {ζkh , ηkh},∀h ∈ [H].
6: if k = i · ⌊K/B⌋+ 1 for some i ≥ 0 then
7: Update

Bk =

{
f ∈ F : L1:k

h (D1:k
h , f, f)− inf

g∈G
L1:k
h (D1:k

h , f, g) ≤ β,∀h ∈ [H]

}
.

8: else
9: Bk = Bk−1.

10: end if
11: end for

As shown in (Zhan et al., 2022), the logarithm of the 1/K-bracket number log(BF (1/K)) usually scales polynomially with
respect to the parameters of the problem.

C Pseudo-Code of Algorithm for Batch Learning
In this subsection, we provide the pseudo-code of our algorithm ℓ2-EC-batch for batch learning, which divides the entire
episode into a uniform grid. The pseudo-code of the algorithm is provided in Algorithm 2.

D Switching-Cost for Zero-Sum Markov Games

D.1 Definition

Markov Games A zero-sum Markov Game (MG) consists of two players, while max-player P1 wants to maximize the
reward and min-player P2 wants to minimize it. The model is represented by a tuple (S,A,B, H,P(· | s, a, b), r(s, a, b)),
where A and B denote the action space of player P1 and P2 respectively. Similar to the episode MDP, we also as-
sume

∑H
h=1 rh(sh, ah, bh) ∈ [0, 1] for all possible sequences {sh, ah, bh}Hh=1 in this paper. The policy pair (υ, µ) =

{υh, µh}h∈[H] consists of 2H functions υh : S → ∆A, µh : S → ∆B. For any policy (υ, µ), the action value function and
state value function can be represented by

Qυ,µ
h (s, a, b) := Eυ,µ

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh = s, ah = a, bh = b

]
,

V υ,µ
h (s) := Eυ,µ

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh = s

]
,

Given the policy of P1 υ, the best response policy of P2 is µ∗
υ = argminµ V

υ,µ
1 (s1). Similarly, the best response of P1

given µ is υ∗µ = argmaxυ V
υ,µ
1 (s1). The Nash Equilibrium (NE) of an MG is a policy pair (υ∗, µ∗) such that

V
υ∗,µ∗

υ∗
1 (s1) = V υ∗,µ∗

1 (s1) = V
υ∗
µ∗ ,µ

∗

1 (s1).

We denote V υ∗,µ∗

h and Qυ∗,µ∗

h by V ∗
h and Q∗

h respectively in the sequel. In addition, to simplify the notation, we let
π = (υ, µ) denote the joint policy of the two players. Then we write V π

h (s1) = V υ,µ
h (s1). Similar to the MDP, we can

define the Bellman operator T for a MG by letting

(ThQh+1)(sh, ah, bh) = rh(sh, ah, bh) + Esh+1

[
max
υ

min
µ
Qh+1(sh+1, υ, µ)

]
, (D.1)

14

A General Framework for Sequential Decision-Making under Adaptivity Constraints

where we denote Qh+1(s, υ, µ) = Ea∼υ,b∼µ[Qh+1(s, a, b)]. By definition, Q∗ = {Q∗
h}h∈[H] is the unique fixed point of

T , i.e., Q∗
h = ThQ∗

h+1 for all h ∈ [H].

Function Approximation of Zero-Sum Markov Games In specific, let M denote the MG instance, which is clear from
the context. We assume that we have access to a hypothesis class F = F1 × · · · × FH , where a hypothesis function
f = {f1, . . . , fH} ∈ F either represents an action-value function Qf = {Qh,f}h∈[H] in the model-free setting, or
the environment model of zero-sum MG Mf = {Ph,f , rh,f}h∈[H] in the model-based setting. Similar to the function
approximation of the single-agent MDP, under model-free zero-sum MG setting, we denote πf = (υf , µf), where (υf , µf)
is a NE policy pair with respect to Qf (s, ·, ·). Moreover, given Qf and πf , we define state-value function Vf by letting
Vh,f (s) = Ea∼πh,f (s)[Qh,f (s, a)] in the MDP and Vh,f (s) = Ea,b∼πh,f (s)[Qh,f (s, a, b)] in the MG.

D.2 Learning Goal of Zero-Sum Markov Games

For zero-sum MGs, we aim to design online reinforcement learning algorithms for the player P1 (max-player). In other
words, we only control P1 and let P2 play arbitrarily. The goal is to design an RL algorithm such that P1’s expected total
return is close to the value of the game, namely V ∗

1 (s1). For any k ∈ [K], in the k-th episode, players P1 and P2 executes
policy pair πk = (νk, µk) and P1’s expected total return is given by V πk

1 (s1). The regret of P1 is also given by (2.2).

For MGs with the decoupled setting, since we can only control the player P1, the switching cost is only defined on the action
of player P1 υ, i.e.

Nswitch(K) =

K∑
k=1

I{υk ̸= υk+1}.

E Concrete Examples and Theoretical Results of EC Class
Now we provide a large amount of RL problems that are contained in the EC class with a decomposable loss function and
provide corresponding theoretical results for them.

E.1 Linear Mixture MDP

Example E.1 (Linear Mixture MDP). The transition kernel of the Linear Mixture MDP (Ayoub et al., 2020) is a linear com-
bination of several basis kernels. In this model, the transition kernel can be represented by Ph(s

′ | s, a) = ⟨ϕ(s, a, s′), θh⟩,
where the feature ϕ(s, a, s′) ∈ Rd is known and the weight θh ∈ Rd is unknown. We assume ∥θh∥2 ≤ 1 and
∥ϕ(s, a, s′)∥2 ≤ 1. The reward function can be written as rh = ⟨ψ(s, a), θh⟩ with mapping ψ(s, a) : S × A 7→ Rd.
The following lemma shows that ℓ2-type EC class contains the linear mixture MDP as a special case. The proof is provided
in I.6.

Lemma E.2 (Linear Mixture MDP ⊂ ℓ2-type EC Class). The linear mixture model belongs to ℓ2-type EC class. Indeed, if
we choose the model-based function approximation F = G = {θh}Hh=1, ζh = {sh+1}, ηh = {sh, ah}, κ = 1, and

ℓh,f ′(ζh, ηh, f, g) = θTh,g

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
− rh − Vh+1,f ′(sh+1),

then we have

Eζh

[
ℓh,f ′(ζh, ηh, f, g)

]
= (θh,g − θ∗h)

T

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
, (E.1)

and the loss function satisfies the dominance, decomposable property with T (f) = f∗ and ℓ2-type condition. Hence
(M,F ,G, ℓ, d, κ) is a ℓ2-type EC class.

Combining Theorem 4.1, Theorem 5.1 and Lemma E.2, Algorithm 1 provides a Õ(H
√
dβ logK) regret and a Õ(dH logK)

switching cost. Also, Algorithm 2 satisfies a Õ(H
√
dβK logK + dHK(logK)2/B) regret upper bound, where B is the

number of batches.

15

A General Framework for Sequential Decision-Making under Adaptivity Constraints

E.2 Kernelized Nonlinear Regulator

Kernelized Nonlinear Regulator (Kakade et al., 2020) (KNR) models a nonlinear control system as an unknown function in
a RKHS. When we consider the finite dimension RKHS, the model represents the dynamic as sh+1 = U∗

hϕ(sh, ah) + εh+1,
where ϕ(sh, ah) : S ×A → Rdϕ is a mapping from a state-action pair to a feature with dimension dϕ and ∥ϕ(·, ·)∥2 ≤ 1.
U∗
h ∈ Rds ×Rdϕ is a linear mapping such that ∥U∗

h∥2 ≤ R and εh+1 ∼ N (0, σ2I) is a normal distribution noise. Following
(Chen et al., 2022), we choose Fh = Gh = {U ∈ Rds ×Rdϕ : ∥U∥2 ≤ R} and ℓh,f ′(ζh, ηh, f, g) = Uh,gϕ(sh, ah)−sh+1

1

is a DLF and satisfies the ℓ2-type condition. Denote Eζh [ℓh,f ′(ζh, ηh, f, g)] = (Uh,g −U∗)ϕ(sh, ah). The following lemma
shows that ℓ2-type EC class contains the KNR.
Lemma E.3 (KNR ⊂ ℓ2-type EC class). If we choose F ,G, ℓ as defined above, (M,F ,G, ℓ, d, κ) is a ℓ2-type EC class,
where d = Õ(dϕ) is a parameter and κ = 2H/σ. Indeed, fix a parameter β ≥ R2, the KNR model belongs to ℓ2-type EC
class by:

k−1∑
i=1

∥(Uh,fk − U∗)ϕ(sih, a
i
h)∥22 ≤ β, ∀ k ∈ [K], (E.2)

⇒
k∑

i=1

∥(Uh,fi − U∗)ϕ(sih, a
i
h)∥22 ≤ O(dβ logK), ∀ k ∈ [K]. (E.3)

The proof of decomposable property and the dominance property with κ = 2H/σ are provided in Proposition 11 of (Chen
et al., 2022). If we choose Xh(f

k) = (Uh,fk − U∗) and Wh,fk(sh, ah) = ϕ(sh, ah), we can apply the similar argument in
Section I.6 to prove the ℓ2-type condition Eq.(E.3).

The detailed proof is provided in I.8.
Example E.4 (Decoupled Zero-Sum Markov Games with Low Minimax BE Dimension). The ℓ2-type EC class can be
extended to the multi-agent setting. We consider the zero-sum MGs with the decoupled setting (Huang et al., 2021), which
means that the agent can only control the max-player P1, while an adversary can control the min-player P2. In this case, we
let ηh = {sh, ah, bh} and ζh = {sh+1}, choose the loss function as

ℓh,f ′(ζh, ηh, f, g) = Qh,g(sh, ah, bh)− rh(sh, ah, bh)− Vh+1,f (sh+1) (E.4)
= Qh,g(sh, ah, bh)− rh(sh, ah, bh)−max

υ
min
µ
Qh+1,f (sh+1, υ, µ)

≜ E(f, sh, ah, bh).

The Bellman operator for MGs is defined as

T ′
hf(sh, ah, bh) = rh(sh, ah, bh) + Esh+1

max
υ

min
µ
f(sh+1, υ, µ),

where we denote f(s, υ, µ) = Ea∼υ,b∼µ[f(s, a, b)]. We prove the decoupled MG belongs to the ℓ2-type EC class.
Lemma E.5 (Decoupled Zero-Sum MGs ⊆ ℓ2-type EC Class). If we choose F ,G such that ThF ⊆ G, then for any
two-player zero-sum MG M , (M,F ,G, ℓ, d, κ) is a ℓ2-type EC class, where ηh = {sh, ah, bh}, ζh = {sh+1}, ℓ is chosen
as in E.4, κ = 1, and the parameter d is the minimax BE dimension dME(F , 1/

√
T). The dominance and decomposable

property of the loss function (Eq. (E.4)) with the Bellman operator T for MGs are provided in (Huang et al., 2021). The
ℓ2-eluder condition holds by replacing aih in Lemma 3.3 to (aih, b

i
h): If

∑k−1
i=1 [E(fk, sih, aih, bih)2] ≤ β holds for any k ∈ [K]

and β ≥ R2, then for any k ∈ [K] we have

k∑
i=1

[
E(f i, sih, aih, bih)2

]
≤ O(dβ logK). (E.5)

The detailed proof is provided in I.7. Similarly, the previous theorems and Lemma E.5 give a Õ(H
√
dβ logK) regret and

Õ(dH logK) switching cost for the decoupled zero-sum MG, where d is the minimax BE dimension dME(F , 1/
√
T). Also

Algorithm 2 gives a Õ(H
√
dβK logK + dHK(logK)2/B) regret. We mainly consider the decoupled setting because it

can be naturally contained in our ℓ2-type EC class.

1Note that the loss function can be arbitrary large because of normal distribution noise ε, so it does not satisfy the bounded requirement.
However, we can regard it as a bounded loss function because it can be upper bounded by Õ(σ) with high probability (Chen et al., 2022).

16

A General Framework for Sequential Decision-Making under Adaptivity Constraints

E.3 Generalized Linear Bellman Complete

Generalized Linear Bellman Complete is introduced in (Du et al., 2021; Chen et al., 2022), which consists of a link function
σ : R → R+ with σ′(x) ∈ [L,U] for 0 < L < U , and a hypothesis class F = {Fh = σ(θTh ϕ(s, a)) : θh ∈ Hh} with
∥θh∥2 ≤ 1. Also, for any f ∈ F , the Bellman complete condition holds:

r(s, a) + Es′

[
max
a′∈A

σ(θTh+1,fϕ(s
′, a′))

]
∈ Fh.

Hence we know there is a mapping T : H → H such that

r(s, a) + Es′

[
max
a′∈A

σ(θTh+1,fϕ(s
′, a′))

]
= σ(T (θh+1,f)

Tϕ(s, a)).

If we let

ℓh,f ′(sh+1, {sh, ah}, f, g) = σ(θTh,gϕ(sh, ah))− rh(sh, ah)−max
a′∈A

θTh+1,fϕ(sh+1, a
′),

then the expectation can be written as

Esh+1

[
ℓh,f ′(sh+1, {sh, ah}, f, g)

]
= σ(θTh,gϕ(sh, ah))− σ(T (θh+1,f)

Tϕ(sh, ah)).

Thus we have

Esh+1

[
ℓh,f ′(sh+1, {sh, ah}, f, g)

]2
∈ [L2(θTh,g − θTh+1,f)ϕ(sh, ah))

2, U2(θTh,g − θTh+1,f)ϕ(sh, ah))
2].

Now following the similar analyses in Section I.6 with Xh(f
k) = θTh,f − θTh+1,f ,Wh,fk(sh, ah) = ϕ(sh, ah), we can show

that it is a DLF and satisfies the ℓ2-type condition and dominance property. The constant L and U will only influence the
final ℓ2-type condition by a constant and could be ignored in the O(·) notation.

E.4 Linear Q∗/V ∗

The Linear Q∗/V ∗ model is proposed in (Du et al., 2021). In this model, the optimal Q-value and V -value functions have a
linear structure: There are two known features ϕ(s, a) and ψ(s′) with unknown parameters ω∗, θ∗ such that

Q∗(s, a) = ⟨ϕ(s, a), ω∗
h⟩, V ∗(s) = ⟨ψ(s), θ∗h⟩.

Denote our hypothesis class as F = F1 × · · · × FH , where Fh is defined as

{f = (ω, θ) : max
a∈A

ωTϕ(s, a) = θTψ(s), ∀ s ∈ S}.

Then we denote the loss function as

ℓh,f ′(sh+1, {sh, ah}, f, g)
= Qh,g(sh, ah)− rh − Vh+1,f (sh+1) = ωT

h,gϕ(sh, ah)− rh − θTh+1,fψ(sh+1),

and we can calculate the expectation by

Esh+1

[
ℓh,f ′(sh+1, {sh, ah}, f, g)

]
= (ωh,g − ω∗, θh+1,f − θ∗)TEsh+1

[
ϕ(sh, ah), ψ(sh+1)

]
.

Note that the expectation has a bilinear structure that is similar to the linear mixture MDP (E.1), then if we choose
Xh(f

k) = (ωh,fk −ω∗, θh+1,fk −θ∗) and Wh,fk(sh, ah) = Esh+1
[ϕ(sh, ah), ψ(sh+1)], we can apply an argument similar

to Section I.6 to prove the ℓ2-type condition, dominance property and decomposable property.

17

A General Framework for Sequential Decision-Making under Adaptivity Constraints

E.5 Linear Quadratic Regulator

In the Linear Quadratic Regulator (LQR) model (Bradtke, 1992), we consider ds-dimensional state space S ⊆ Rds and
da-dimensional action space A ⊆ Rda , then a LQR model consists of unknown matrix A ∈ Rds×ds , B ∈ Rds×da and
P ∈ Rds×ds such that

sh+1 = Ash +Bah + εh, rh(sh, ah) = sThQsh + aTh ah + ε′h,

where εh, ε′h are zero-centered random noises with E[shsTh] = Σ and E[(ε′h)2] = σ2.

The LQR model has been extensively analyzed (Du et al., 2021; Chen et al., 2022). By Lemma A.3 in (Du et al., 2021), the
hypothesis class are F = {(Ch,Λh, Oh) : Ch ∈ Rda×ds ,Λh ∈ Rds×ds , Oh ∈ R}, and

πf (sh) = Ch,f (sh), Vh,f (sh) = sThΛh,fsh +Oh,f .

Let

ℓh,f ′(sh+1, {sh, ah}, f, g) = Qh,g(sh, ah)− rh − Vh+1,f (sh+1),

then the expectation

Esh+1

[
ℓh,f ′(sh+1, {sh, ah}, f, g)

]
=
〈

vec(Λh,f −Q− CT
h,fCh,f − (A+BCh,f)

TΛh+1,f (A+BCh,f)),

Oh,f −Oh+1,f − tr(Λh+1,fΣ))
T vec(shsTh , 1)

〉
has a bilinear structure that is similar to the linear mixture MDP (E.1), then if we choose

Xh(f
k) = vec(Λh,f −Q− CT

h,fCh,f − (A+BCh,f)
TΛh+1,f (A+BCh,f)), Oh,f −Oh+1,f − tr(Λh+1,fΣ))

and

Wh,fk(sh, ah) = vec(shsTh , 1)

in the analyses of Section I.6, we can apply an argument similar to Section I.6 to prove the ℓ2-type condition, dominance
property and decomposable property.

F ℓ1-type EC Class

F.1 Definition of ℓ1-type EC Class

In recent years, the ℓ1-eluder argument has been proposed in (Liu et al., 2022a) for the sample-efficient algorithm of POMDP,
and (Liu et al., 2022b) generalize it to the more general classes. Similar to ℓ2-type EC class, we provide the definition of the
ℓ1-type EC class based on (Liu et al., 2022b). The ℓ1-type class has two assumptions, which are similar to the ℓ2-type EC
class. To provide a consistent treatment of ℓ2-type EC class, we let {ζh, ηh}h∈[H] be subsets of the trajectory. In particular,
we let ηh = {TH} and ζh = ∅, and only consider the single-agent MDP in the ℓ1-type EC class.

Definition F.1. Given an MDP or POMDP instance (Example F.2) M , let F and G be two hypothesis function classes
satisfying the realizability Assumption 2.2 with F ⊆ G. For any h ∈ [H] and f ′ ∈ F , let ℓh,f ′(ζh, ηh, f, g) be a vector-
valued loss function at step h, where ζh, ηh are subsets of trajectory that defined above. For parameters d and κ, we say that
(M,F ,G, ℓ, d, κ) is a ℓ1-type EC class if the following two conditions hold for any β and h ∈ [H]:

(i). (ℓ1-type Condition) For any K hypotheses f1, · · · , fK ∈ F , if

k−1∑
i=1

Eηh∼πi,ζh

[
ℓh,fi(ζh, ηh, f

k, fk)
]
≤
√
βk (F.1)

18

A General Framework for Sequential Decision-Making under Adaptivity Constraints

holds for any k ∈ [K], then for any k ∈ [K], we have

k∑
i=1

Eηh∼πi,ζh

[
ℓh,fi(ζh, ηh, f

i, f i)
]
≤ Õ(poly log(k)(

√
dβk + d · poly(H))). (F.2)

When we choose β ≥ 1, the right side of Eq.(F.2) can be simplified as Õ
(√
dβk · poly log(k)

)
.

(ii). (κ-Dominance) For any fixed k ∈ [K], with probability at least 1− δ,

k∑
i=1

(V1,fi(s1)− V πi(s1)) ≤ κ ·

(
H∑

h=1

k∑
i=1

Eηh∼πi,ζh

[
ℓh,fi(ζh, ηh, f

i, f i)
])

. (F.3)

Moreover, in this work we only consider a particular loss function

ℓh,f ′(ζh, ηh, f, g) = ℓh,f ′(τH , f, g) = |Pf (τH)/Pf∗(τH)− 1| (F.4)

in the ℓ1-type EC class, where f∗ is the true model in realizability Assumption 2.2, and

Pf (τH) =

H∏
h=1

Pf (sh | τh−1)

is the product of transition probability in τH under the model f . Then

Eηh∼π,ζh [ℓh,f ′(ζh, ηh, f, g)]

= Eηh∼π,ζh

(∏H
h=1 Pf (sh | τh−1)∏H
h=1 Pf∗(sh | τh−1)

− 1

)

= EτH∼π

[∏H
h=1(Pf (sh | τh−1)π(ah | sh, τh−1))∏H
h=1(Pf∗(sh | τh−1)π(ah | sh, τh−1))

− 1

]

=
∑
τH

[
H∏

h=1

(Pf (sh | τh−1)π(ah | sh, τh−1))−
H∏

h=1

(Pf∗(sh | τh−1)π(ah | sh, τh−1))

]
s

= dTV(Pπ
f ,Pπ

f∗),

which is the total variation difference between the trajectory distribution under model f and the true model f∗ with policy π.
By this particular selection of loss function, the κ-Dominance property is satisfied by κ = 1/H and the following inequality:

k∑
i=1

(V1,fi(s1)− V πi(s1)) ≤
k∑

i=1

dTV(Pπi

fi ,Pπi

f∗).

Compared to the ℓ2-type condition, the primary difference is that the precondition of ℓ1-type condition (Eq.(F.1)) requires
the sum of ℓ1 norm of the loss function can be controlled by O(

√
k), while the precondition of ℓ2-type condition (Eq.(3.3))

requires the square sum of the loss function is controlled by O(β). Second, the selection of ζh and ηh are different to the
ℓ2-type EC class, and the left side of Eq.(F.2) contains an extra expectation on ηh = τH ∼ πi. Moreover, since we consider
a particular scalar loss function ℓh,f ′(ζh, ηh, f, g) = |Pf (τH)/Pf∗(τH)− 1|, we do not use the norm on the loss function
like ℓ2-type condition. With this selection of loss function, the ℓ1-type Condition Eq.(F.2) is similar to the generalized
eluder-type condition (Condition 3.1) in (Liu et al., 2022b). We provide two examples in the ℓ1-type EC class, which are
also introduced in the previous works (Liu et al., 2022a;b).

Example F.2 (Undercomplete POMDP (Liu et al., 2022a)). A partially observed Markov decision process (POMDP) is
represented by a tuple

(S,O,A, H, s1,T = {Th,a}(h,a)∈[H]×A,O = {Oh}h∈[H], r = {rh}h∈[H]),

19

A General Framework for Sequential Decision-Making under Adaptivity Constraints

where Th,a ∈ R|S|×|S| represents the transition matrix for latent state of the action a at step h, Oh : S × O 7→ R denotes
the probability of generating the observation o ∈ O conditioning on the latent state s ∈ S. rh : O 7→ R+ is the reward
function at step h with observation. We assume

∑H
h=1 rh(sh, ah) ∈ [0, 1] for all possible sequences {sh, ah}h∈[H]. During

the interactive process, at each step, the agent can only receive the observation and reward without information about the
latent state. In POMDP, we consider the general policy π = {πh}h∈[H], where πh : τh−1 ×S → ∆A, which can be history-
dependent. At step h, the agent can only see her observations oh with probability Oh(sh, oh), take her action ah with policy
π(τh−1 × sh), and receive the reward rh(sh, ah). Then the agent arrives to the next state s′ with probability Th,ah

(· | sh).
For POMDP, the transition kernel Pf consists of {Tf ,Of}, and the model is represented by Mf = {Tf ,Of , rf}.

Undercomplete POMDP (Liu et al., 2022a) is a special case of POMDP such that S = |S| ≤ |O| and there exists a constant
α > 0 with minh σS(Oh) ≥ α. This assumption implies that the observation contains enough information to distinguish
two states. In this paper, we only consider undercomplete POMDP because only in this setting we can have a sublinear
regret result.2 The undercomplete POMDP with the model classes F and minh σS(Oh) ≥ α belongs to the ℓ1-type EC
class by

k−1∑
i=1

dTV(Pπi

fk ,Pπi

f∗) ≤
√
βk, ∀ k ∈ [K],

⇒
k∑

i=1

dTV(Pπi

fk ,Pπi

f∗) ≤ Õ(poly log(k)(
√
dβk +

√
d)), ∀ k ∈ [K], (F.5)

where d = S4A2O2H6 · α−4. The proof is provided at step E.1, step E.2 and E.3 of Theorem 24 in (Liu et al., 2022a).
Example F.3 (Q-type SAIL condition (Liu et al., 2022b)). Q-type SAIL condition provided in (Liu et al., 2022b) is
satisfied by many RL models such as witness condition, factor MDPs and sparse linear bandits. A model class F satisfies
the Q-type (d, c, B)-SAIL condition if there exists two sets of mapping functions {ph,i : F → RdF }(h,i)×[H]×[m] and
{qh,i : F → RdF }(h,i)×[H]×[n] such that for f, f ′ ∈ F with optimal policy πf , πf ′

, we have

dTV(Pπf

f ′ ,Pπf

f∗) ≥ c−1
H∑

h=1

m∑
i=1

n∑
j=1

|⟨ph,i(f), qh,i(f ′)⟩|,

dTV(Pπf

f ,Pπf

f∗) ≤
H∑

h=1

m∑
i=1

n∑
j=1

|⟨ph,i(f), qh,i(f)⟩|,

(
m∑
i=1

∥ph,i(f)∥1

)
·

 n∑
j=1

∥qh,i(f ′)∥∞

 ≤ B.

From Lemma 6.3 in (Liu et al., 2022b), the Q-type SAIL condition also satisfies the Eq. (F.5) if we choose d = poly(H) ·
max{c2, B2} · d2F .

F.2 Rare Policy Switch Algorithm for ℓ1-type EC Class

In this subsection, we provide an algorithm for the ℓ1-type EC class with the particular loss function Eq.(F.4). We only
consider the MDP model for ℓ1-type EC class, and leave the zero-sum MG or multi-player general-sum MG as the future
work. Our algorithm achieves a logarithmic switching cost while still maintaining a Õ(

√
K) regret. The pseudo-code of the

algorithm is in Algorithm 3.

In Algorithm 3, the discrepancy function L is selected as the negative log-likelihood function

L1:k−1(D1:k−1, f) = −
k−1∑
i=1

logPf (τ
i
H),

then the Line 7 in Algorithm 3 is equivalent to the OMLE algorithm (Liu et al., 2022b). Unlike OMLE, we change the
policy only when the TV distance between fk and estimated optimal policy gk = infg∈F L

1:k(D1:k, g) is relatively large.

2In the previous works studying sample-efficient POMDP, they only provide sample complexity or ”pseudo-regret” (defined in (Liu
et al., 2022b), (Zhong et al., 2022)) for overcomplete POMDP.

20

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Intuitively, this distance measures the possible improvement based on the historical data. Only when we can get enough new
information from the data, we recompute the confidence set and switch the policy.

Algorithm 3 Modified ℓ1 ABC-Rare switch

1: Input D = ∅,B1 = F , constant c in Lemma G.4.
2: for k = 1, 2, · · · ,K do
3: Compute πk = πfk , where fk = argmaxf∈Bk−1 V

πf

f (s1).
4: Execute policy πk to collect τk, update D = D ∪ {τH}.
5: Calculate gk = infg∈F L

1:k(D1:k, g).
6: if

∑k
i=1 dTV(Pπi

fk ,Pπi

gk) ≤ 5c
√
βk then

7: Update

Bk =
{
f ∈ F : L1:k(D1:k, f)− L1:k(D1:k, gkh) ≤ β

}
.

8: else
9: Bk = Bk−1.

10: end if
11: end for

Now we state our results for ℓ1-type EC class under both the rare policy switch problem and the batch learning problem.
The proof of them is provided in G.2 and H.3.
Theorem F.4. Given the hypothesis class F , we choose ηh = τH , ζh = ∅ and the loss function ℓh,f ′(ζh, ηh, f, g) =
ℓh,f ′(τH , f, g) = |Pf (τH)/Pf∗(τH)− 1|. Denote BF (ρ) as the ρ-bracketing number for hypothesis class F that defined in
§B. By setting β = c log(TBF (1/K)/δ) ≥ 1, in which with probability at least 1− δ the Algorithm 1 will achieve sublinear
regret

R(K) = Õ(Hκ
√
dβK · poly log(K))

with switch cost

Nswitch(K) = O
(√

d · poly log(K)
)
.

Theorem F.5. Under the same condition as F.4, if we choose the position of batches as [kj , kj+1) with kj = j · ⌊K/B⌋+ 1,
then with probability at least 1− δ we can get the following regret

R(K) = Õ
(
poly log(K)

(√
d · K

B
+
√
dβK

))
.

By applying Theorem F.4 and Theorem F.5 to the examples in Section F, we can get a Õ(
√
K) regret and a logarithmic

switching cost in the rare policy switch problem, and about Õ(
√
dK/B +

√
dK) regret in the batch learning problem for

the examples of ℓ1-type EC class such as undercomplete POMDP and SAIL condition, where d is the parameter that is
specific to the concrete examples.

G Proof of the Rare Policy Switch Problem

G.1 Proof of Theorem 4.1

First, by choosing β the same as Theorem 4.1, we provide the following lemma, which shows that L1:k
h (D1:k

h , f, T (f)) is
close to the optimal value infg∈G L

1:k
h (D1:k

h , f, g). The proof is provided in I.1.
Lemma G.1. For any f ∈ F , let ℓh,fi(ζh, η

i
h, f, g) be a DLF, then with probability at least 1− δ, we have

0 ≥ inf
g∈G

La:b
h (Da:b

h , f, g)− La:b
h (Da:b

h , f, T (f)) ≥ −β (G.1)

for all 1 ≤ a ≤ b ≤ K. Moreover, by choosing f = f∗ in Eq.(G.1), we can get f∗ ∈ Bk for all k ∈ [K].

21

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Now we provide two lemmas to show that L1:k−1
h (D1:k−1

h , fk, fk)− L1:k−1
h (D1:k−1

h , fk, T (fk)) is an estimate of

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
.

The proof of them are provided in I.2 and I.3.
Lemma G.2. If

L1:k−1
h (D1:k−1

h , fk, fk)− L1:k−1
h (D1:k−1

h , fk, T (fk)) ≤ Cβ (G.2)

for some constant 100 ≥ C ≥ 1, then with probability at least 1− 2δ,

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤ (C + 1)β. (G.3)

Moreover, we have

k−1∑
i=1

Eηh∼πi

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

k, fk)
]∥∥∥2

2
≤ (C + 1)β. (G.4)

Also, if all constant C ≥ 2, we have

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤ (2C)β, (G.5)

and
k−1∑
i=1

Eηh∼πi

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

k, fk)
]∥∥∥2

2
≤ (2C)β. (G.6)

Lemma G.3. If we have

L1:k−1
h (D1:k−1

h , fk, fk)− L1:k−1
h (D1:k−1

h , fk, T (fk)) ≥ Cβ

for some constant 100 ≥ C ≥ 2, then with probability at least 1− 2δ

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≥ (C − 1)β. (G.7)

Moreover, we have

k−1∑
i=1

Eηh∼πi

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

k, fk)
]∥∥∥2

2
≥ (C − 1)β. (G.8)

Also, if all constant C ≥ 2, we have

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≥ (C/2)β, (G.9)

and
k−1∑
i=1

Eηh∼πi

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

k, fk)
]∥∥∥2

2
≥ (C/2)β. (G.10)

Combining Lemma G.2 and Lemma G.3, we can claim that the term L1:k−1
h (D1:k−1

h , fk, fk)−L1:k−1
h (D1:k−1

h , fk, T (fk))
for h ∈ [H] in Algorithm 3 is a good estimate for the expectation of loss function.

22

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Proof of Regret First, we claim that for each episode k ∈ [K],

L1:k−1
h (D1:k−1

h , fk, fk)− L1:k−1
h (D1:k−1

h , fk, T (fk)) ≤ 6β. (G.11)

If the policy changes at episode k − 1, L1:k−1
h (D1:k−1

h , fk, fk)− infg∈G L
1:k−1
h (D1:k−1

h , fk, g) ≤ β for the construction
of confidence set. Combining with Eq. (G.1) we can get Eq. (G.11). If the policy has not been changed and fk−1 = fk,
L1:k−1
h (D1:k−1

h , fk−1, fk−1)− infg∈G L
1:k−1
h (D1:k−1

h , fk−1, g) ≤ 5β. Combining with Eq. (G.1), we can get

L1:k−1
h (D1:k−1

h , fk−1, fk−1)− L1:k−1
h (D1:k−1

h , fk−1, T (fk−1)) ≤ 6β.

Then Eq. (G.11) can be derived by the fact fk−1 = fk. Now based on Lemma G.2 and Eq. (G.11), we have

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤ 7β. (G.12)

Now by the ℓ2-type eluder condition and Cauchy’s inequality, we have

k∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥

2
≤ O(

√
dβk · log k). (G.13)

Also, by the dominance property,

k∑
i=1

(V1,f∗(s1)− V πi(s1)) ≤
k∑

i=1

(V1,fi(s1)− V πi(s1))

≤ κ

H∑
h=1

k∑
i=1

Eηh

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

i, f i)
]∥∥∥

2

= κ ·
H∑

h=1

(
k∑

i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥

2
+ Õ

(√
K logK

))
(G.14)

= Õ(κH
√
dβK · logK),

where the first inequality is derived from Lemma G.1 and T (f∗) = f∗, which implies f∗ ∈ Bk for all k ∈ [K] by
L1:k
h (D1:k

h , f∗, f∗)− infg∈G L
1:k
h (D1:k

h , f∗, g) ≤ β. Eq. (G.14) is derived from the Azuma-Hoeffding’s inequality and the
boundness property of the loss function ℓ.

Proof of Switch Cost Fixed a step h ∈ [H], assume the policy changes at episode bh1 , b
h
2 , · · · , bhl because the in-sample

error at step h is larger than the threshold,

L1:k
h (D1:k

h , fk, fk)− inf
g∈G

L1:k
h (D1:k

h , fk, g) ≥ 5β,

where l is the number of the policy switch because the error at step h is larger than the threshold 5β. Then by Lemma G.1,
we have

L1:k
h (D1:k

h , fk, fk)− L1:k
h (D1:k

h , fk, T (fk)) ≥ 4β (G.15)

for all k = bhi , 1 ≤ i ≤ l. Define bh0 = 0 for simplicity. Fixed an 1 ≤ j ≤ l and consider the latest time b′ that changes the
policy before episode bhj , we will get b′ ≥ bhj−1 and

L1:b′

h (D1:b′

h , f b
′+1, f b

′+1)− inf
g∈G

L1:b′

h (D1:b′

h , f b
′+1, g) ≤ β,

L1:b′

h (D1:b′

h , f b
′+1, f b

′+1)− L1:b′

h (D1:b′

h , f b
′+1, T (f b

′+1)) ≤ β. (G.16)

23

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Since at episode b′ + 1, · · · , bhj − 1 the confidence set is not changed, we have Bb′ = Bb′+1 = · · · = Bbhj −1 and

f b
′+1 = f b

′+2 = · · · = f b
h
j . Then combining Eq. (G.15) and Eq. (G.16), we can get

L
b′+1:bhj
h (D

b′+1:bhj
h , f b

′+1, f b
′+1)− L

b′+1:bhj
h (D

b′+1:bhj
h , f b

′+1, T (f b
′+1)) ≥ 3β.

By Lemma G.3, with probability at least 1− δ,
∑bhj

i=b′+1 ∥Eζh [ℓh,fi(ζh, η
i
h, f

i, f i)]∥22 ≥ 2β. By b′ ≥ bhj−1, we can see that

bhj∑
i=bhj−1+1

∥Eζh [ℓh,fi(ζh, η
i
h, f

i, f i)]∥22 ≥ 2β.

Now sum over all 1 ≤ i ≤ l, we can get

K∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
≥

l−1∑
j=1

bhj∑
i=bhj−1+1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
≥ 2(l − 1)β, (G.17)

where l is the number of switches corresponding to step h ∈ [H].

Now by Eq. (G.12) and ℓ2-type eluder condition,

K∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
≤ O(dβ logK).

Combining with Eq. (G.17), l = O(d logK) and the total switching cost can be bounded by O(dH logK).

G.2 Proof of Theorem F.4

Since L1:k−1(D1:k−1, g) = −
∑k−1

i=1 logPg(τ
i
H), we first show that gk = arg infg L

1:k−1(D1:k−1, g) is closed to f∗ with
respect to TV distance. Since we choose β ≥ 1, we simplify the right side of Eq.(F.2) as Õ(

√
dβk · (log k)2).

Lemma G.4. For all k ∈ [K], let gk = argmaxg L
1:k(D1:k, g), then with probability at least 1− δ,

k∑
i=1

dTV(Pπi

f∗ ,Pπi

gk) ≤ c
√
βk.

Proof. By proposition 14 in (Liu et al., 2022a), there is a constant c > 0 such that

k∑
i=1

d2TV(Pπi

f∗ ,Pπi

gk) ≤ c2β

with probability at least 1− δ for all k ∈ [K]. Then by Cauchy’s inequality, we have

k∑
i=1

dTV(Pπi

f∗ ,Pπi

gk) ≤ c
√
βk

for all k ∈ [K].

We then prove that

k−1∑
i=1

dTV(Pπi

fk ,Pπi

f∗) ≤ 6c
√
βk. (G.18)

24

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Case 1: If at episode k − 1 the confidence set are not changed, it implies that

k−1∑
i=1

dTV(Pπi

fk−1 ,Pπi

gk−1) ≤ 5c
√
β(k − 1).

Thus since fk−1 = fk,

k−1∑
i=1

dTV(Pπi

fk ,Pπi

gk−1) ≤ 5c
√
βk.

Combining with Lemma G.4, we can get Eq. (G.18)

Case 2: If the confidence set are changed at episode k − 1, then

k−1∑
i=1

dTV(Pπi

fk ,Pπi

gk−1) ≤ c
√
βk.

Combining with Lemma G.4, we can get Eq. (G.18).

Now since Eζh [ℓh,fi(ζh, η
i
h, f

i, f i)] = dTV(Pπi

fi ,Pπi

f∗), by ℓ1-type eluder condition with Eq. (G.18), there is a constant c′

such that

k∑
i=1

dTV(Pπi

fi ,Pπi

f∗) ≤ c′(
√
dβk · poly log(k)). (G.19)

Now since from Proposition 13 in (Liu et al., 2022a), by choosing β = O(log(KNF (1/K)/δ)) with a sufficiently large
constant, we know f∗ ∈ Bk. Then

R(K) =

K∑
i=1

(V π∗

1,f∗(s1)− V πi

1,f∗(s1))

≤
K∑
i=1

(V πi

1,fi(s1)− V πi

1,f∗(s1))

≤
K∑
i=1

H · dTV(Pπi

fi ,Pπi

f∗)

≤ c′H(
√
dβk · poly log(k)),

where the first inequality holds because f∗ ∈ Bk for all k ∈ [K], and fk is the optimal policy within the confidence set Bk.

Switch Cost Now assume the policy changed at time b1, · · · , bl and define b0 = 0, then

bj∑
i=1

dTV(Pπi

fbj
,Pπi

gbj
) ≥ 5c

√
βbj

for all 1 ≤ j ≤ l. By the triangle inequality, we can get

bj∑
i=1

dTV(Pπi

fbj
,Pπi

f∗) ≥
bj∑
i=1

(dTV(Pπi

fbj
,Pπi

gbj
)− dTV(Pπi

f∗ ,Pπi

gbj
)) ≥ 4c

√
βbj (G.20)

for all 1 ≤ j ≤ l. Now by the construction of confidence set Bk, we have f bj−1+1 = · · · = f bj and

bj−1∑
i=1

dTV(Pπi

fbj−1+1 ,Pπi

f∗) ≤ c
√
β(bj−1). (G.21)

25

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Thus combining with Eq. (G.20) and Eq. (G.21),

bj∑
i=bj−1+1

dTV(Pπi

fi ,Pπi

f∗) =

bj∑
i=bj−1+1

dTV(Pπi

fbj
,Pπi

f∗) ≥ 3c
√
βbj , (G.22)

and for all k ∈ [K],

k∑
i=1

dTV(Pπi

fi ,Pπi

f∗) ≥
∑
bj≤k

 bj∑
i=bj−1+1

dTV(Pπi

fi ,Pπi

f∗)

 ≥ 3c
∑
bj≤k

√
βbj .

The first inequality is because we divide the time interval [1, k] to some intervals [bj−1+1, bj] for all bj ≤ k, and the second
inequality is from Eq. (G.22). Now fixed a k ∈ [K], by Eq. (G.19), we have

3c
∑
bj≤k

√
βbj ≤ c′(

√
dβk · poly log(k)).

Denote the number of j such that bj ∈ (k/2, k] are sk, i.e. sk = |{j : bj ∈ (k/2, k]}|, then

3csk ·
√
βk/2 ≤ 3c

∑
bj≤k

√
βbj ≤ c′(

√
dβk · poly log(k)),

sk ≤ c′
√
2

3c
(
√
d · poly log(K)). (G.23)

Now we divide the interval [1,K] into (⌈K/2⌉,K], (⌈K/4⌉, ⌊K/2⌋], · · · , (⌈ K
2m ⌉, ⌊ K

2m−1 ⌋], [1] with ⌈K/2m⌉ = 1, and
m = O(logK). Then the number of bj in each interval is upper bounded by O(

√
d(logK)2) from Eq. (G.23), because

c′
√
2

3c does not depend on the selection of k. Then the total number of policy switch is upper bounded by O(
√
d·poly log(K)).

H Proof of the Batch Learning Problem

H.1 Proof of Theorem 5.1

Proof. We first fix an h ∈ [H] in the proof. Since we change our policy at time kj = j · ⌊K/B⌋+1 for j ≥ 0, we can know
that

L
1:kj−1
h (D

1:kj−1
h , fkj , fkj)− L

1:kj−1
h (D

1:kj−1
h , fkj , T (fkj))

≤ L
1:kj−1
h (D

1:kj−1
h , fkj , fkj)− inf

g∈G
L
1:kj−1
h (D

1:kj−1
h , fkj , g)

≤ β.

We denote

cj := max
k∈[kj :kj+1−1]

(
L
kj :k
h (D

kj :k
h , fkj , fkj)− L

kj :k
h (D

kj :k
h , fkj , T (fkj))

)
/β.

The parameter cj represents the maximum fitting error for data of this batch and the model fkj determined by previous
batches. If the error is small, the regret can be easily bounded. Thus we only need to prove that the number of batches with
large in-sample error is small. Denote S = {j ≥ 0 | cj > 5} are all ”Bad” batches with relatively large in-sample error,
then we prove that |S| ≤ Õ(d(logK)2).

We will prove the following lemma to upper bound |S|.

Lemma H.1. For a fixed C ≥ 10, with probability at least 1− δ, we will have∣∣∣∣∣
{
j ∈ S

∣∣∣∣∣ C2 ≤ cj ≤ C

}∣∣∣∣∣ ≤ Õ(d logK).

26

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Proof. Denote
{
j ∈ S | C

2 ≤ cj ≤ C
}
= {i1, · · · , iM} with M =

∣∣{j ∈ S | C
2 ≤ cj ≤ C

}∣∣ and i1 ≤ i2 ≤ · · · ≤ iM .
Then for m ∈ [M] and k ∈ [kim , kim+1 − 1], we have

L1:k−1
h (D1:k−1

h , fk, fk)− L1:k−1
h (D1:k−1

h , fk, T (fk)) ≤ (1 + cim)β ≤ (1 + C)β.

Then by Lemma G.2, we can get

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤ Õ((2 + 2C)β)

for any m ∈ [M] and k ∈ [kim , kim+1 − 1]. Then we will have∑
1≤i≤k−1

i∈[kim ,kim+1−1],m∈[M]

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤

∑
1≤i≤k−1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2

≤ Õ(2 + 2C)β.

By using the ℓ2-type eluder condition for all such i ∈ [kim , kim+1 − 1], we can have∑
1≤i≤k

i∈[kim ,kim+1−1],m∈[M]

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
≤ Õ(d(2 + 2C)β logK). (H.1)

Also, by Lemma G.3 and the fact that cim ≥ C/2, with probability at least 1− δ, for any m ∈ [M],

kim+1−1∑
i=kim

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
(H.2)

=

kim+1−1∑
i=kim

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

kim , fkim)
]∥∥∥2

2
(H.3)

= max
k∈[kim ,kim+1−1]

k∑
i=kim

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

kim , fkim)
]∥∥∥2

2
(H.4)

≥ max
k∈[kim ,kim+1

−1]

(
L
kim :k
h (D

kim :k
h , fkim , fkim)

− L
kim :k
h (D

kim :k
h , fkim , T (fkim))− β

)
(H.5)

≥ (C/4)β. (H.6)

Hence from (H.1), (H.2) and C ≥ 10, we can see that

M = Õ(d logK).

Now by Lemma H.1, we can divide S = {j ≥ 0 | cj > 5} as S(1), S(2), · · · that S(i) = {j ≥ 0 | 5 · 2i−1 ≤ cj ≤ 5 · 2i}.
Then for each i, |S(i)| ≤ Õ(d logK). Since we have a trivial upper bound ci ≤ (K/B) for all 0 ≤ i < B, we know the
number of sets S(i) is at most log2(K/B), then |S| ≤ Õ(d(logK)2).

Now, since for any j /∈ S and k ∈ [kj , kj+1 − 1], we have

L1:k−1
h (D1:k−1

h , fk, fk)− L1:k−1
h (D1:k−1

h , fk, T (fk))

= (L
1:kj−1
h (D

1:kj−1
h , fkj , fkj) + L

kj :k−1
h (D1:k−1

h , fk, fk))

− (L
1:kj−1
h (D

1:kj−1
h , fkj , T (fkj) + L

kj :k−1
h (D1:k−1

h , fk, T (fk)))

27

A General Framework for Sequential Decision-Making under Adaptivity Constraints

≤ (1 + cj)β

≤ 6β.

By Lemma G.2, we can get∑
1≤i≤k−1

i∈[kj ,kj+1−1],j /∈S

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤

∑
1≤i≤k−1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
≤ 7β.

By the ℓ2-type eluder condition, the regret caused by ”Good” batches can be upper bounded by∑
1≤i≤k

i∈[kj ,kj+1−1],j /∈S

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥2

2
≤ Õ(dβ logK). (H.7)

Then by the dominance property and Azuma-Hoeffding’s inequality, we have

K∑
i=1

(V1,fi(s1)− V πi
1 (s1))

≤ κ

(
H∑

h=1

k∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥

2
+ Õ(

√
HK logK)

)
(H.8)

≤ κ

H∑
h=1

 ∑
1≤i≤k

i∈[kj ,kj+1−1],j /∈S

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥

2

+
∑

1≤i≤k
i∈[kj ,kj+1−1],j∈S

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

i, f i)
]∥∥∥

2

+ κÕ(
√
HK logK)

= κ

H∑
h=1

(
Õ(
√
dβK logK) +R · ⌊K/B⌋Õ(d(logK)2)

)
+ κÕ(

√
HK logK) (H.9)

= Õ
(
κH
√
dβK logK +

dHK

B
(logK)2

)
.

The inequality Eq.(H.8) is derived by the dominance property and Azuma-Hoeffding’s inequality, and the first equality
Eq.(H.9) holds by Cauchy’s inequality, Eq.(H.7), |S| ≤ Õ(d(logK)2) and Eζh [ℓh,fi(ζh, η

i
h, f

i, f i)]∥2 ≤ R.

H.2 Discussion about Adaptive Batch Setting

For the adaptive batch setting, to achieve a O(
√
K) regret, we want to let every step have a small in-sample error. That is,

L1:k
h (D1:k

h , f, f) − infg∈G L
1:k
h (D1:k

h , f, g) ≤ O(β) for all episode k. Then the regret can be easily bounded by O(
√
K)

using previous analyses in Theorem 4.1.

To guarantee this, we modify the rare policy switch Algorithm 1. Note that the Algorithm 1 guarantees that each step
has O(β) in-sample error by the updating rule. However, in the adaptive batch setting, we cannot receive the feedback
of the current batch. To solve this problem, we can use a simple double trick: We observe the feedback when the length
of the batch doubles, and check whether the in-sample error L1:k

h (D1:k
h , f, f)− infg∈G L

1:k
h (D1:k

h , f, g) is greater than 5β.
Whenever we observe this error is greater than 5β, we change our policy and begin to choose a batch with length 1. The
entire algorithm is presented in Algorithm 4.

We show that for MDP, with this double trick, we can still maintain

L1:k
h (D1:k

h , f, f)− inf
g∈G

L1:k
h (D1:k

h , f, g) ≤ O(β)

28

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Algorithm 4 ℓ2-EC-Adaptive Batch

1: Input D1, D2, · · · , DH = ∅,B1 = F , length = 1.
2: for k = 1, 2, · · · ,K do
3: (MDP): Compute πk = πfk , where fk = argmaxf∈Bk−1 V

πf

f (s1).
4: Execute policy πk.
5: if length = 2i for some i ≥ 0 then
6: Observe the feedback and update D1:k

h = {ζ1:kh , η1:kh }.
7: if L1:k

h (D1:k
h , fk, fk)− infg∈G L

1:k
h (D1:k

h , fk, g) ≥ 5β for some h ∈ [H] then
8: Update

Bk =

{
f ∈ F : L1:k

h (D1:k
h , f, f)− inf

g∈G
L1:k
h (D1:k

h , f, g) ≤ β,∀h ∈ [H]

}
.

9: length = 1.
10: else
11: Bk = Bk−1.
12: length = length+ 1.
13: end if
14: end if
15: end for

for each round k ∈ [K], thus achieve the O(
√
K) regret.

Lemma H.2. In Algorithm 4, for any k ∈ [K], we have L1:k
h (D1:k

h , f, f)− infg∈G L
1:k
h (D1:k

h , f, g) ≤ O(β).

The proof is provided in I.4. It is worth noting that in Algorithm 4 we choose not to consider the zero-sum MG in the
adaptive batch setting. The primary reason is that the policy πi = (υi, µi) can change within a batch, which makes the
double trick fail to work. Indeed, this nature introduces technical difficulties when proving the Lemma H.2.

Now given that each step has a low in-sample error, we can show Algorithm 4 have O(
√
K) regret, and the number of

batches is at most O((logK)2). The square term arises from the extra division of batches for a double trick.

Theorem H.3. Under the adaptive batch setting and the same condition as Theorem 4.1, with high probability at least
1− δ the Algorithm 4 will achieve a sublinear regret

R(K) ≤ Õ(κH
√
dβK · poly(logK)).

Moreover, the number of batches is at most O(dH · poly(logK)).

Proof. By Lemma H.2, at each episode k ∈ [K], we have a small O(β) error of the previous data. Then applying the proof
of Theorem 4.1, the upper bound of regret is Õ(κH

√
dβK · poly(logK)).

Now consider the number of batches. Since we change the policy only when the error is larger than 5β, the policy will be
changed at most O(dH · poly(logK)) times by Theorem 4.1. In addition, suppose the agent changes the policy at k1 and k2
while keeps the change unchanged at episode k1 ≤ k < k2, the number of batches between k1 and k2 is at most O(logK).
Hence the total number of batches can be upper bounded by O(dH · poly(logK)) · logK = O(dH · poly(logK)).

H.3 Proof of Theorem F.5

Proof. The proof for the batch learning problem under ℓ1-EC class is straightforward. We fix a h ∈ [H] in the proof. Since
we change our policy at time kj = j · ⌊K/B⌋+ 1 for j ≥ 0, we can get

kj−1∑
i=1

dTV(Pπi

fkj
,Pπi

gk−1) ≤ c
√
βkj .

29

A General Framework for Sequential Decision-Making under Adaptivity Constraints

Then by Eq.(G.18) in §G.2, for all j ≥ 0, we have

kj−1∑
i=1

dTV(Pπi

fkj
,Pπi

f∗) ≤ 6c
√
βkj . (H.10)

By our batch learning algorithm, for kj ≤ k < kj+1, πk is the same policy. Thus, we can transform Eq.(H.10) to

j−1∑
i=0

dTV(Pπki

fkj
,Pπki

f∗) ≤ 6c
√
βkj ·

B

K
≤ 12c

√
βB

K
j. (H.11)

Then by the ℓ1-type eluder condition, we can get

j−1∑
i=0

dTV(Pπki

fki
,Pπki

f∗) ≤ Õ

(
poly log(K) ·

(√
dβB

K
j +

√
d

))
. (H.12)

Then we have

R(K) =

K∑
i=1

(V π∗

1,f∗(s1)− V πi

1,f∗(s1)) ≤
K∑
i=1

(V πi

1,fi(s1)− V πi

1,f∗(s1))

≤
K∑
i=1

H · dTV(Pπi

fi ,Pπi

f∗) ≤ H ·
⌊
K

B

⌋
·
⌈K/B⌉∑
i=0

dTV(Pπki

fki
,Pπki

f∗),

where the first inequality is because f∗ ∈ Bk for all k ∈ [K] and f i is the optimal policy within the confidence set Bi. The
second inequality holds because of the definition of TV distance, and the last inequality holds because the f j and πj are the
same within the same batch j ∈ [ki, ki+1).

Then by the Eq.(H.12), we can get

R(K) ≤ H ·
⌊
K

B

⌋
·
⌈K/B⌉∑
i=0

dTV(Pπki

fki
,Pπki

f∗)

≤ Õ

(
H ·

⌊
K

B

⌋
· poly log(K)

(√
dβB

K
B +

√
d

))

= Õ

(
H ·

⌊
K

B

⌋
· poly log(K)

(
B

√
dβ

K
+

√
d

))

≤ Õ
(
H · poly log(K)

(√
d · K

B
+
√
dβK

))
.

We complete the proof of Theorem F.5.

I Proof of Lemmas

I.1 Proof of Lemma G.1

Proof. First note that we choose ζh = sh+1 , ηh = {sh, ah} for MDP and ηh = {sh, ah, bh} for zero-sum Markov
Games. Define the auxillary variable Xi,f ′(h, f, g) = ∥ℓh,f ′(sih+1, η

i
h, f, g)∥22 − ∥ℓh,f ′(sih+1, η

i
h, f, T (f))∥22, then we

know |Xi,f ′(h, f, g)| ≤ 2R2 for all 1 ≤ i ≤ k, where R = sup ∥ℓh,f ′(ζh, ηh, f, g)∥2. Now we can have

Esh+1

[
Xi,f ′(h, f, g)

]
= Esh+1

[
⟨ℓh,f ′(sh+1, η

i
h, f, g)− ℓh,f ′(sh+1, η

i
h, f, T (f)),

ℓh,f ′(sh+1, η
i
h, f, g) + ℓh,fi(ζh, η

i
h, f, T (f))⟩

]
30

A General Framework for Sequential Decision-Making under Adaptivity Constraints

= Esh+1

[
⟨Esh+1

[ℓh,f ′(sh+1, η
i
h, f, g)], ℓh,f ′(sh+1, η

i
h, f, g)⟩

]
(I.1)

=
∥∥∥Esh+1

[
ℓh,f ′(sh+1, η

i
h, f, g)

]∥∥∥2
2
. (I.2)

The Eq.(I.1) holds from the decomposable property of ℓ. Then we have

Esh+1

[
(Xi,f ′(h, f, g))2

]
= Esh+1

[
∥ℓh,f ′(sh+1, η

i
h, f, g)− ℓh,fi(ζh, η

i
h, f, T (f))∥22

· ∥ℓh,f ′(sh+1, η
i
h, f, g) + ℓh,f ′(sh+1, η

i
h, f, T (f))∥22

]
≤ 4R2Esh+1

[
∥ℓh,f ′(sh+1, η

i
h, f, g)− ℓh,f ′(sh+1, η

i
h, f, T (f))∥22

]
(I.3)

= 4R2Esh+1

[
∥Esh+1

[ℓh,f ′(sh+1, η
i
h, f, g)]∥22

]
(I.4)

= 4R2
∥∥∥Esh+1

[
ℓh,fi(ζh, η

i
h, f, g)

]∥∥∥2
2

= 4R2Esh+1

[
Xi,f ′(h, f, g)

]
, (I.5)

where the inequality (I.3) is because ∥ℓh,f ′(sh+1, η
i
h, f, g)∥2 ≤ R for any h, (f ′, f, g) and sh+1,ηi

h
. The Eq.(I.4) holds from

the decomposable property, and the Eq.(I.5) holds from the Eq.(I.2). Thus by Freedman’s inequality (Agarwal et al., 2014;
Jin et al., 2021; Chen et al., 2022), with probability at least 1− δ,∣∣∣∣∣

b∑
i=a

Xi,f ′(h, f, g)−
b∑

i=a

Eζh [Xi,f ′(h, f, g)]

∣∣∣∣∣
≤ O

R
√√√√log(1/δ)

b∑
i=a

Eζh

[
Xi,f ′(h, f, g)

]
+ 2R2 log(1/δ)

 .

Now we consider a ρ-cover Lh,ρ = (F̃ρ, F̃ρ, G̃ρ) for (F ,G): For any f, f ′ ∈ F , g ∈ G, there exists a pair of function
(f̃ ′, f̃ , g̃) ∈ (F̃ρ, F̃ρ, G̃ρ) such that ∥ℓh,f̃ ′(·, f̃ , g̃)− ℓh,f ′(·, f, g)∥∞ ≤ ρ. By taking a union bound over Lh,ρ, a ∈ [K], b ∈
[K], h ∈ [H], we can have ∣∣∣∣∣

b∑
i=a

Xi,f̃ ′(h, f̃ , g̃)−
b∑

i=a

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]∣∣∣∣∣
≤ O

R
√√√√ι

b∑
i=a

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
+ 2R2ι

 ,

where ι = log(HK2NL(1/K)/δ) and NL(1/K) = maxh |Lh,ρ| is the maximum ρ-covering number of (F ,F ,G) for loss
function ℓh,f ′(·, ·, f, g) for h ∈ [H].

Since Eζh [Xi,f ′(h, f̃ , g̃)] ≥ 0 and

−
b∑

i=a

Xi,f̃ ′(h, f̃ , g̃) ≤ O(R2ι), ∀ (f̃ , g̃) ∈ Lh,ρ,

−
b∑

i=a

Xi,f ′(h, f, g) ≤ O(R2ι+R) ≤ β, ∀ f ∈ F , g ∈ G.

where β = c(R2ι+R) for some large enough constant c.

31

A General Framework for Sequential Decision-Making under Adaptivity Constraints

I.2 Proof of Lemma G.2

Proof. The proof is similar to Lemma G.1. Apply the same covering argument and concentration inequality, for any
(f̃ ′, f̃ , g̃) ∈ Lh,ρ, we have ∣∣∣∣∣

k−1∑
i=1

Xi,f̃ ′(h, f̃ , g̃)−
k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]∣∣∣∣∣
≤ O

R
√√√√ι

k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
+ 2R2ι

 , (I.6)

where ι = log(HK2NL(1.T)/δ) and NL(ρ) = maxh |Lh,ρ| is the maximum ρ-covering number of (F ,F ,G) for loss
function ℓh,f ′(·, ·, f, g) for h ∈ [H]. Now note that

k−1∑
i=1

Xi,fi(h, fk, fk)

=

k−1∑
i=1

(∥ℓh,fi(ζih, η
i
h, f

k, fk)∥22 − ∥ℓh,fi(ζih, η
i
h, f

k, T (fk))∥22)

≤ Cβ.

Then there is a pair (f̃ ′, f̃ , g̃) ∈ Lh,1/K such that∣∣∣∣∣
k−1∑
i=1

Xi,f̃ ′(h, f̃ , g̃)−
k−1∑
i=1

Xi,fi(h, fk, fk)

∣∣∣∣∣ ≤ O(R)

and
k−1∑
i=1

Xi,f̃ ′(h, f̃ , g̃) ≤ Cβ +O(R).

Combining with Eq. (I.6), when β = c(R2ι+R) for sufficiently large constant c, if C ≤ 100 is a small constant, we get

k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
≤
(
C +

1

2

)
β.

Since (f̃ ′, f̃ , g̃) is the ρ−approximation of (f i, fk, fk),

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
=

k−1∑
i=1

Eζh

[
Xi,fi(h, fk, fk)

]
≤ (C + 1)β. (I.7)

The first equality of Eq. (I.7) is derived from Eq. (I.2).

If C ≥ 100, similarly we can get

k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
≤ (2C − 1)β

and
k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
=

k−1∑
i=1

Eζh

[
Xi,fi(h, fk, fk)

]
≤ (2C)β. (I.8)

Similar to (Jin et al., 2021), to prove the second inequality Eq.(G.4) we can add the ηh to expectation by replacing the
Esh+1

[Xi,f ′(h, f, g)] to Esh,ah∼πiEsh+1
[Xi,f ′(h, f, g)].

32

A General Framework for Sequential Decision-Making under Adaptivity Constraints

I.3 Proof of Lemma G.3

Proof. The proof is similar to Lemma G.1. Now apply the same argument, for any (f̃ ′, f̃ , g̃) ∈ Lh,ρ, with probability at
least 1− δ, we have ∣∣∣∣∣

k−1∑
i=1

Xi,f̃ ′(h, f̃ , g̃)−
k−1∑
i=1

Eζh [Xi,f̃ ′(h, f̃ , g̃)]

∣∣∣∣∣
≤ O

R
√√√√ι

k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
+ 2R2ι

 , (I.9)

where ι = log(HK2NL(1/K)/δ) and NL(ρ) = maxh |Lh,ρ| is the maximum ρ-covering number of (F ,F ,G) for loss
function ℓh,f ′(·, ·, f, g) for h ∈ [H]. Now note that

k−1∑
i=1

Xi,f ′(h, fk, fk)

=

k−1∑
i=1

(∥ℓh,fi(ζih, η
i
h, f

k, fk)∥22 − ∥ℓh,fi(ζih, η
i
h, f

k, T (fk))∥22)

≥ Cβ.

Then there is a pair (f̃ ′, f̃ , g̃) ∈ Lh,1/K such that∣∣∣∣∣
k−1∑
i=1

Xi,f̃ ′(h, f̃ , g̃)−
k−1∑
i=1

Xi,f ′(h, fk, fk)

∣∣∣∣∣ ≤ O(R),

and
k−1∑
i=1

Xi,f̃ ′(h, f̃ , g̃) ≥ Cβ −O(R).

Combining with Eq. (I.9), when β = c(R2ι+R) for sufficiently large constant c, if C ≤ 100 we get

k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
≥
(
C − 1

2

)
β.

Since (f̃ ′, f̃ , g̃) is a ρ−approximation of (f i, fk, fk),

k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
=

k−1∑
i=1

Eζh

[
Xi,fi(h, fk, fk)

]
≥
(
C − 1

2

)
β −O(R)

≥ (C − 1)β. (I.10)

the first equality of Eq. (I.10) is derived from Eq. (I.2).

Similarly, if C ≥ 100, we can get

k−1∑
i=1

Eζh

[
Xi,f̃ ′(h, f̃ , g̃)

]
≥ (C/2 + 1)β

and
k−1∑
i=1

∥∥∥Eζh

[
ℓh,fi(ζh, η

i
h, f

k, fk)
]∥∥∥2

2
=

k−1∑
i=1

Eζh

[
Xi,fi(h, fk, fk)

]
33

A General Framework for Sequential Decision-Making under Adaptivity Constraints

≥ (C/2 + 1)β −O(R)

≥ (C/2)β. (I.11)

Similar to Lemma G.2, to prove the second inequality Eq.(G.8), we can add the ηh to expectation by replacing the
Esh+1

[Xi,f ′(h, f, g)] to Eηh∼πiEsh+1
[Xi,f ′(h, f, g)].

I.4 Proof of Lemma H.2

Assume that at episode k we have L1:k
h (D1:k

h , fk, fk) − infg∈G L
1:k
h (D1:k

h , fk, g) ≥ 24β, and it belongs to a batch with
length 2i. First by Lemma G.1,

L1:k
h (D1:k

h , fk, fk)− L1:k
h (D1:k

h , fk, T (fk)) ≥ 23β.

Suppose i = 0 and this batch starts at k′, thus at episode k′ we have

L1:k′

h (D1:k′

h , fk, fk)− L1:k′

h (D1:k
h , fk, T (fk)) ≤ L1:k′

h (D1:k′

h , fk, fk)− inf
g∈G

L1:k′

h (D1:k
h , fk, g)

≤ β,

where the second inequality is the property of optimistic confidence set. Then by these two inequalities,

Lk′+1:k
h (Dk′+1:k

h , fk, fk)− Lk′+1:k
h (Dk′+1:k

h , fk, T (fk)) ≥ 22β.

This is impossible because i = 0 and thus k = k′ + 2i = k′ + 1, and β ≥ 2R2 ≥ Lk′+1:k
h (Dk′+1:k

h , fk, fk) −
Lk′+1:k
h (Dk′+1:k

h , fk, T (fk)), where R is the upper bound of the norm of loss function ℓ.

Now suppose i ≥ 1, then

L1:k′

h (D1:k′

h , fk, fk)− L1:k′

h (D1:k
h , fk, T (fk)) ≤ L1:k′

h (D1:k′

h , fk, fk)− inf
g∈G

L1:k′

h (D1:k
h , fk, g)

≤ 5β,

where the second inequality is derived by the updating rule with i ̸= 0, and the fact that fk = fk
′
. Then we can also get

Lk′+1:k
h (Dk′+1:k

h , fk, fk)− Lk′+1:k
h (Dk′+1:k

h , fk, T (fk)) ≥ 24β − 5β = 19β.

Note that we only consider the MDP problem here, then πi, f i are the same for i ∈ [k′ + 1, k]. By combining this fact and
Lemma G.3, we can get

(k − k′ − 1) · Eηh∼πk

∥∥∥Eζh

[
ℓh,fk(ζh, ηh, f

k, fk)
]∥∥∥2

2
=

k∑
i=k′+1

Eηh∼πi

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

k, fk)
]∥∥∥2

2

≥ 19β − β

= 18β. (I.12)

However, since k ∈ [k′ + 2i, k′ + 2i+1) with i ≥ 1, we know for t ∈ [k′ + 2i−1, k′ + 2i), f t = fk because at episode
k′ + 2i−1, the agent does not change the policy by the definition of k′. Thus, denote k1 = k′ + 2i−1 + 1, k2 = k′ + 2i, we
have

Lk1:k2

h (Dk1:k2

h , fk2 , fk2)− Lk1:k2

h (Dk1:k2

h , fk2 , T (fk2)) ≤ 5β,

and

(k2 − k1) · Eηh∼πk

∥∥∥Eζh

[
ℓh,fk(ζh, ηh, f

k, fk)
]∥∥∥2

2
=

k2∑
i=k1

Eηh∼πi

∥∥∥Eζh

[
ℓh,fi(ζh, ηh, f

k2 , fk2)
]∥∥∥2

2

≤ 6β. (I.13)

Note that 3 · (k2 − k1) = 3 · (2i−1 − 1) > 2i ≥ k − k′ − 1, we know Eq.(I.12) and Eq.(I.13) cannot both hold. Hence we
have done the proof by contradiction.

34

A General Framework for Sequential Decision-Making under Adaptivity Constraints

I.5 Proof of Lemma 3.3

First, we introduce the definition of D∆-type Bellman eluder dimension.

Definition I.1 (Bellman eluder dimension). Given a function class F , the D∆ Bellman eluder dimension d(F , D∆, ε)
is the length n of longest sequence ((s1h, a

1
h), · · · , (snh, anh)) such that for some ε′ ≥ ε and any j ∈ [n], there exists a

f j ∈ F and
√∑j−1

i=1 Eh(f j , sih, aih)2 ≤ ε and Eh(f j , sjh, a
j
h) > ε. The term Eh(f, s, a) is the Bellman error Eh(f, s, a) =

(fh − T (fh+1))(s, a).

Proof. Now we begin to prove the Lemma 3.3. First, we restate the Proposition 43 in (Jin et al., 2021) with Π = D∆.

Proposition I.2 (Proposition 43 in (Jin et al., 2021) with Π = D∆). Given a function class Φ defined on X , suppose given
sequence {ϕi}1≤i≤K ⊂ Φ and sequences {(sih, aih)}i≤[K] such that for all k ∈ [K],

∑k
i=1(Eµi

[ϕk])
2 ≤ β, then for all

k ∈ [K],

k∑
i=1

I{|Eµi
[ϕi]| > ε} ≤

(
β

ε2
+ 1

)
dBE(Φ, D∆, ε).

Now, we first fixed a h ∈ [H], then choosing Π = D∆ , ϕi = Eh(fi, s, a) and µi = I{(s, a) = (sih, a
i
h)} in proposition 43,

based on since
∑k−1

i=1 Eh(fk, sih, aih) ≤ β for all h, k, we have

k∑
i=1

I{Eh(f i, sih, aih)2 > ε2} ≤
(
β

ε2
+ 1

)
dBE(F , D∆, ε).

Then by replacing ε2 to ε,

k∑
i=1

I{Eh(f i, sih, aih)2 > ε} ≤
(
β

ε
+ 1

)
dBE(F , D∆,

√
ε).

Now sort the sequence {Eh(f1, s1h, a1h)2, Eh(f2, s2h, a2h)2, · · · , Eh(fk, skh, akh)2} in a decreasing order and denote them by
{e1, · · · , ek}, for any ω we can have

k∑
i=1

ei =

k∑
i=1

eiI{ei ≤ ω}+
k∑

i=1

eiI{ei > ω} ≤ kω +

k∑
i=1

eiI{ei > ω}.

Assume et > ω and there exists a parameter α ∈ (ω, et), then

t ≤
k∑

i=1

I{et > α} ≤
(
β

α
+ 1

)
dBE(F , D∆,

√
α) ≤

(
β

α
+ 1

)
dBE(F , D∆,

√
ω).

Now denote d = dBE(F , D∆,
√
ω), we can get α ≤ dβ

t−d . Since α is arbitrarily chosen, we have et ≤ dβ
t−d . Also, recall that

et ≤ R2, we can get

k∑
i=1

eiI{ei > ω} ≤ min{d, k}R2 +

k∑
i=d+1

(
dβ

t− d

)
≤ min{d, k}R2 + 2dβ logK = O(dβ logK),

where the last equality derived from the condition β ≥ R2. By choosing ω = 1/K, the equation Eq. (3.8) holds.

I.6 Proof of Lemma E.2

Proof. In this subsection, we prove that linear mixture MDP belongs to ℓ2-type EC class with T (f) = f∗ for any f ∈ F
and loss function

ℓh,f ′(sh+1, {sh, ah}, f, g)

35

A General Framework for Sequential Decision-Making under Adaptivity Constraints

= θTh,g

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
− rh − Vh+1,f ′(sh+1).

It is easy to show that the loss function above is bounded. The expectation of the loss function can be calculated by

Esh+1

[
ℓh,f ′(sh+1, {sh, ah}, f, g)

]
= (θh,g − θ∗h)

T

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
.

Now we prove the loss function satisfies the dominance, decomposable property and ℓ2-type condition.

1. Dominance

k∑
i=1

(V1,fi(s1)− Vπi(s1))

≤
H∑

h=1

k∑
i=1

Esh,ah∼πi [Qh,fi(sh, ah)− rh − Vh+1,fi(sh+1)]

=

H∑
h=1

k∑
i=1

Esh,ah∼πi

[
(θh,fi − θ∗h)

T
[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,fi(s′)

]]
=

H∑
h=1

k∑
i=1

Esh,ah∼πi,sh+1

[
ℓh,fi(sh+1, {sh, ah}, f i, f i)

]
.

2. Decomposable Property

ℓh,f ′(sh+1, {sh, ah}, f, g)− Esh+1

[
ℓh,f ′(sh+1, {sh, ah}, f, g)

]
= (θ∗h)

T

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1(s

′)

]
= ℓh,f ′(sh+1, {sh, ah}, f, f∗).

3. ℓ2-type Eluder Condition First, for any h and ηh = {sh, ah}, we have

k−1∑
i=1

∥∥∥Esh+1

[
ℓh,fi(sh+1, η

i
h, f

k, fk)
]∥∥∥2

2

=

k−1∑
i=1

(
(θh,fk − θ∗h)

T

[
ψ(sih, a

i
h) +

∑
s′

ϕ(sih, a
i
h, s

′)Vh+1,fi(s′)

])2

.

Denote ψ(sih, a
i
h) +

∑
s′ ϕ(s

i
h, a

i
h, s

′)Vh+1,fk(s′) =Wh,fi(sih, a
i
h), (θh,fi − θ∗h) = Xh(f

i) and

Σk = I +

k−1∑
i=1

Wh,fi(sih, a
i
h)Wh,fi(sih, a

i
h)

T ,

then

∥θh,fk − θ∗h∥2Σi
= ∥Xh(f

k)∥2Σi
=

k−1∑
i=1

∥∥∥Esh+1

[
ℓh,fi(sh+1, η

i
h, f

k, fk)
]∥∥∥2

2
+ 4

≤ β + 4,

36

A General Framework for Sequential Decision-Making under Adaptivity Constraints

where ∥θ∥2 ≤ 1. Now note that ∥ψ(s, a)∥2 ≤ 1 and ∥
∑

s′ ϕ(s, a, s
′)Vh+1,f (s

′)∥2 ≤ 1, we can get

k∑
i=1

∥∥∥Esh+1

[
ℓh,fi(sh+1, η

i
h, f

i, f i)
]∥∥∥2

2

=

k∑
i=1

(
(θh,fi − θ∗h)

T

[
ψ(sih, a

i
h) +

∑
s′

ϕ(sih, a
i
h, s

′)Vh+1,fi(s′)

])2

=

k∑
i=1

4 ∧

(
(θh,fi − θ∗h)

T

[
ψ(sih, a

i
h) +

∑
s′

ϕ(sih, a
i
h, s

′)Vh+1,fi(s′)

])2

≤
k∑

i=1

4 ∧ ∥Xh(f
i)∥2Σi

∥Wh,fi(sih, a
i
h)∥2Σ−1

i

≤
k∑

i=1

4 ∧ (β + 4)∥Wh,fi(sih, a
i
h)∥2Σ−1

i

≤ (β + 4)

k∑
i=1

(
1 ∧ ∥Wh,fi(sih, a

i
h)∥2Σ−1

i

)
.

By the Elliptical Potential Lemma (Dani et al., 2008; Abbasi-Yadkori et al., 2011),

k∑
i=1

(
1 ∧ ∥Wh,fi(sih, a

i
h)∥2Σ−1

i

)
≤

k∑
i=1

2 log(1 + ∥Wh,fi(sih, a
i
h)∥2Σ−1

i

)

≤ 2 log
det(Σk+1)

det(σ0)
.

Now note that det(Σk+1) ≤
(

tr(Σk+1)
d

)d
, then

2 log
detΣk+1

detΣ0
= 2 log det(Σk+1)− 2 log det(Σ0)

≤ 2d log

(
1 +

∑k
i=1 tr(Wh,fi(sih, a

i
h)Wh,fi(sih, a

i
h)

T)

d

)

≤ 2d log

(
1 +

∑k
i=1 ∥Wh,fi(sih, a

i
h)∥22

d

)

≤ 2d log

(
1 +

4k

d

)
.

So we can get

k∑
i=1

∥∥∥Esh+1

[
ℓh,fi(sh+1, η

i
h, f

i, f i)
]∥∥∥2

2
≤ 2d(β + 4) log

(
1 +

4k

d

)
= O(dβ log k),

where we ignore all the terms that are independent with k.

I.7 Proof of Lemma E.5

In this subsection, we prove that decoupled Markov Games belong to ℓ2-type EC class with ThQh+1(s, a, b) = rh(s, a, b) +
Es′|Ph(s′|s,a,b) maxυ minµQh(s

′, υ, µ).

1. Dominance With probability at least 1− δ,

k∑
i=1

(V1,fi(s1)− Vπi(s1))

37

A General Framework for Sequential Decision-Making under Adaptivity Constraints

=

H∑
h=1

k∑
i=1

Esh+1
Esh∼πi

[
Vh,fi(sh)− rh − Vh+1,fi(sh+1)

]
=

H∑
h=1

k∑
i=1

Esh+1
Eπi

[
min
µ

Pυi,µQh,fi(sh, υ
i, µ)− rh − Vh+1,fi(sh+1)

]
(I.14)

≤
H∑

h=1

k∑
i=1

Esh+1
Eπi

[
Pυi,µiQh,fi(sh, υ

i, µi)− rh − Vh+1,fi(sh+1)
]

=

H∑
h=1

k∑
i=1

Esh+1
Eπi

[
Q(sh, ah, bh)− rh − Vh+1,fi(sh+1)

]
(I.15)

=

H∑
h=1

k∑
i=1

Esh+1

[
Qh,fi(sih, a

i
h, b

i
h)− rh − Vh+1,fi(sh+1)

]
+O(

√
KH log(KH/δ)) (I.16)

=

H∑
h=1

k∑
i=1

Esh+1

[
ℓh,fi(sh+1, {sih, aih, bih}, f i, f i)

]
+O(

√
KH log(KH/δ)),

where the Eq.(I.14) holds because the greedy policy υi = υfi satisfies that

Vh,fi(sh) = min
µ

Pυi,µQh,fi(sh, υ
i, µ).

Eq.(I.15) holds because πi
h = (υi, µi), and Eq.(I.16) follows from Azuma-Hoeffding’s inequality.

2. Decomposable Property

ℓh,f ′(ζh, ηh, f, g)− Eζh

[
ℓh,f ′(ζh, ηh, f, g)

]
=
[
Qh,g(sh, ah, bh)− r(sh, ah, bh)− Vh+1,f (sh+1)

]
−
[
Qh,g(sh, ah, bh)− (ThVh+1,f)(sh, ah, bh)

]
=
[
(ThVh+1,f)(sh, ah, bh)− r(sh, ah, bh)− Vh+1,f (sh+1)

]
= ℓh,f ′(ζh, ηh, f, T (f)).

3. ℓ2-type eluder Condition Note that Eζh [ℓh,f ′(ζh, ηh, f, g)] = [fh − Thfh+1](s
i
h, a

i
h, b

i
h) is the Bellman residual

of Markov Games. The proof can be derived similarly to Lemma 3.3 by replacing {ah} and the Bellman operator for
single-agent MDP to {ah, bh} and the Bellman operator for the two-player zero-sum MG.

I.8 Proof of Lemma E.3

Proof. We proof this Lemma by the classical ℓ2 eluder argument. First, denote Uh,f,j with j ∈ [ds] as the j-th row of Uh,f ,
then

∥(Uh,f − U∗
h)ϕ(s, a)∥22 =

ds∑
j=1

∥(Uh,f,j − U∗
h,j)ϕ(s, a)∥22.

Then, denote Σk =
∑k−1

i=1 ϕ(s
i
h, a

i
h)ϕ(s

i
h, a

i
h)

T + λI , we can get

ds∑
j=1

∥Uh,fk,j − U∗
h,j∥2Σk

=

k−1∑
i=1

ds∑
j=1

((Uh,fk,j − U∗
h,j)ϕ(s

i
h, a

i
h))

2 + λ

ds∑
j=1

∥Uh,fk,j − U∗
h,j∥22

≤ β + λ · dsR2,

38

A General Framework for Sequential Decision-Making under Adaptivity Constraints

where ∥Uh,f,j∥22 ≤ ∥Uh,f∥22 ≤ R2 for any f ∈ F . Now, recall that ∥ϕ(s, a)∥2 ≤ 1, then ∥(Uh,fi − U∗
h)ϕ(s, a)∥22 ≤ 4R2.

Hence, choosing λ = 4
ds

,

k∑
i=1

∥(Uh,fi − U∗
h)ϕ(s

i
h, a

i
h)∥22 =

k∑
i=1

(
∥(Uh,fi − U∗

h)ϕ(s
i
h, a

i
h)∥22 ∧ 4R2

)
=

k∑
i=1

 ds∑
j=1

∥(Uh,fi,j − U∗
h,j)ϕ(s

i
h, a

i
h)∥22

 ∧ 4R2


≤

k∑
i=1

 ds∑
j=1

∥(Uh,fi,j − U∗
h,j)∥2Σi

∥ϕ(sih, aih)∥2Σ−1
i

 ∧ 4R2


≤

k∑
i=1

∥ϕ(sih, aih)∥2Σ−1
i

ds∑
j=1

∥Uh,fk,j − U∗
h,j∥2Σk

 ∧ 4R2


≤

k∑
i=1

((
∥ϕ(sih, aih)∥2Σ−1

i

(β + 4R2)
)
∧ 4R2

)
≤

k∑
i=1

(β + 4R2)
(
1 ∧ ∥ϕ(sih, aih)∥2Σ−1

i

)
.

By the Elliptical Potential Lemma (Dani et al., 2008; Abbasi-Yadkori et al., 2011), we have

k∑
i=1

(
1 ∧ ∥ϕ(sih, aih)∥2Σ−1

i

)
≤

k∑
i=1

2 log(1 + ∥ϕ(sih, aih)∥2Σ−1
i

)

≤ 2 log
detΣk+1

detΣ0
.

Now note that det(Σk+1) ≤
(

tr(Σk+1)
dϕ

)dϕ

, then

2 log
detΣk+1

detΣ0
= 2 log det(Σk+1)− 2 log det(Σ0)

≤ 2dϕ log

(
λ+

∑k
i=1 tr(ϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

T)

dϕ

)

≤ 2dϕ log

(
λ+

∑k
i=1 ∥ϕ(sih, aih)∥22

dϕ

)

≤ 2dϕ log

(
λ+

k

dϕ

)
.

Thus

k∑
i=1

∥(Uh,fi − U∗
h)ϕ(s

i
h, a

i
h)∥22 ≤ 2dϕ(β + 4R2) log

(
4

ds
+

k

dϕ

)
= O(dϕβ log k),

where we ignore all terms independent with k, and regard R as a constant.

39

