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Abstract
We present CACTI, a masked autoencoding ap-
proach for imputing tabular data that leverages
the structure in missingness patterns and contex-
tual information. Our approach employs a novel
median truncated copy masking training strategy
that encourages the model to learn from empirical
patterns of missingness while incorporating se-
mantic relationships between features – captured
by column names and text descriptions – to better
represent feature dependence. These dual sources
of inductive bias enable CACTI to outperform
state-of-the-art methods – an average R2 gain of
7.8% over the next best method (13.4%, 6.1%,
and 5.3% under missing not at random, at ran-
dom and completely at random, respectively) –
across a diverse range of datasets and missing-
ness conditions. Our results highlight the value
of leveraging dataset-specific contextual informa-
tion and missingness patterns to enhance imputa-
tion performance. Code is publicly available at
github.com/sriramlab/CACTI

1. Introduction
Missingness is a pervasive problem in real-world tabular
datasets with the potential to adversely affect downstream
inferential tasks (Rubin, 1987; Schafer & Graham, 2002).
While many techniques to estimate or impute missing en-
tries have been proposed (see Section 2.1), missing data
imputation remains a challenging problem.

A primary reason underlying this challenge is that missing-
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ness can arise due to a variety of mechanisms. Existing
methods either explicitly or implicitly make simplifying
assumptions about these mechanisms motivated by infer-
ential tractability (see Section 2.1 and Jarrett et al. (2022)).
These assumptions rarely hold in real-world settings and
practitioners often lack prior knowledge on the underlying
missingness mechanism. Consider a medical survey where
questions are hierarchically structured, with more specific
inquiries contingent upon affirmative responses to general
ones so that a patient is only asked about specific symptoms
if they report a broader health issue. In this example, entries
pertaining to more specific health issues will be missing
depending on the observed values or missingness status of
entries relevant to broader health status. We hypothesize
that the missingness patterns in the data could potentially
be leveraged to improve imputation accuracy.

Additionally, existing methods underutilize the rich con-
textual information in the data. While they allow for the
inclusion of fully observed covariates, they lack a straight-
forward mechanism to effectively incorporate unstructured
knowledge about the relatedness between or the context of
the features being imputed. In the medical surveys exam-
ple, the answer to the broader question can constrain the
answers to more specific questions. We hypothesize that
imputation models can use this prior information to inform
their imputation.

Contributions In this work, we present Context Aware
Copy masked Tabular Imputation (CACTI), a transformer-
based architecture that leverages inductive biases from ob-
served missingness patterns and textual information about
features to address existing gaps in tabular data imputation.
CACTI makes several novel contributions to tabular impu-
tation. First, we introduce median truncated copy mask-
ing (MT-CM), a novel training strategy that enables the
effective application of copy masking (An et al., 2023) to
transformer-based Masked Autoencoders (MAE) (He et al.,
2021). Unlike existing approaches which use complete data
or random masks (Du et al., 2024), MT-CM uses empirical
missingness patterns to guide the learning process. Our re-
sults demonstrate that a naive application of copy masking
to transformer-based MAE architectures leads to subopti-
mal performance while MT-CM addresses this gap. Second,

1

https://github.com/sriramlab/CACTI


CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

we provide theoretical motivation for MAE training with-
out fully observed data which motivates the need for copy
masking. Third, we leverage contextual information from
feature names and descriptions as a source of inductive bias.
This context-aware approach enhances learning efficiency
by minimizing reliance on learning features’ relationships
solely from limited observed data and provides a direct way
to incorporate unstructured information or prior knowledge.
Fourth, our comprehensive evaluation establishes CACTI as
a state-of-the-art tabular imputation approach across various
missingness settings. Finally, both MT-CM and context
awareness frameworks are simple and modular, allowing
them to be used in conjunction with any deep learning frame-
work beyond the tabular imputation domain.

2. Background
We begin by introducing the tabular imputation task adopt-
ing notation similar to previous works (Jarrett et al., 2022;
Ipsen et al., 2021; Yoon et al., 2018) to ensure consistency.
The complete data for a single sample with K features,
Xn := (xn1, · · · , xnK) ∈ X = X1 × · · · × XK with
k ∈ [K] features and n ∈ [N ] observations, is drawn i.i.d
from an arbitrary data generating process Xn ∼ DK .

We do not have access to the complete data but only the
incomplete, observed data: X̃n := (x̃n1, . . . , x̃nK), Equa-
tion (1). The incomplete data can be viewed as a corrupted
version of the complete data mediated by the missingness
mask Mn = (mn1, . . . ,mnK) ∈ {0, 1}K , where xnk is
observed if mnk = 1 and xnk is missing (denoted as ∗) if
mnk = 0:

x̃nk =

{
xnk, if mnk = 1

∗ , if mnk = 0
∈ X̃k := Xk ∪ {∗} (1)

Across N observations, this process results in an observed
data matrix X̃ = (X̃1; . . . ; X̃N ) and the associated mask
M = (M1; . . . ;MN ).

The imputation task can be formalized as a learning a func-
tion f : X̃ → X resulting in an uncorrupted version of the
incomplete data X̄n := (x̄n1, . . . , x̄nK) resulting in the fi-
nal imputed dataset (X̂n = (x̂n1, . . . , x̂nK), Equation (2)):

x̂nk =

{
xnk, if mnk = 1

x̄nk, if mnk = 0
(2)

Additionally, we might have access to additional informa-
tion that can be leveraged to aid imputation. Specifically,
we assume we have access to external information (shared
across all N samples) such as the semantic context and
relatedness between features which can be represented as
C := (C1, . . . ,CK) ∈ RC×K , a C-dimensional embed-
ding representation of context information for each feature.

Missingness Mechanisms Let us define a selector func-
tion sMn : X →

∏
k∈{k:mnk=1} Xk that selects all the

observed features in the complete data. Xo
n := sMn

(Xn)
defines the observed part and Xm

n := s1−Mn
(Xn) de-

fines the missing part. The framework laid out by Rubin
(1976) (also (Little & Rubin, 1987)) prescribes the follow-
ing underlying missingness mechanisms, from the most to
the least restrictive assumption: MCAR (p(Mn|Xn) =
p(Mn), i.e. Mn ⊥ Xn; missingness is independent of the
data), MAR (p(Mn|Xn) = p(Mn|Xn

o); missingness only
depends on the fully observed data), and MNAR when the
mechanism is neither MCAR nor MAR.

2.1. Related work

There are two main classes of tabular imputation methods:
iterative and generative. Iterative methods iteratively im-
pute the missing values in each feature by estimating the
conditional distribution given all other features’ observed
data (van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven
& Bühlmann, 2011; Jarrett et al., 2022). While estimat-
ing the conditional distribution is a simpler problem, these
approaches are limited by challenges in selecting optimal
conditional distributions and sometimes requiring complete
observations for model fitting. In contrast, generative ap-
proaches attempt to estimate a joint distribution of all the
features which is a considerably harder statistical task than
estimating univariate conditional probabilities (Yoon et al.,
2018; Dai et al., 2021; Yoon & Sull, 2020; Mattei & Frellsen,
2019; Ipsen et al., 2021; Nazabal et al., 2020; Zhang et al.,
2024a; Zheng & Charoenphakdee, 2023; Muzellec et al.,
2020). Many of these approaches require either complete
data or restrictive assumptions on the missingness mecha-
nisms (Nazabal et al., 2020; Richardson et al., 2020; Mattei
& Frellsen, 2019). Other classical imputation approaches
include: K-nearest neighbors, matrix completion and uncon-
ditional mean substitution (Hastie et al., 2014; Hawthorne
& Elliott, 2005).

Transformers Several recent works have proposed trans-
former (or self-attention) based architectures to model tab-
ular data (Huang et al., 2020; Arik & Pfister, 2020; Ma-
jmundar et al., 2022; Yoon et al., 2020; Hollmann et al.,
2025; Gardner et al., 2024). However, these approaches pri-
marily focus on self-supervised learning tasks by employing
a masked reconstruction task or target direct downstream
prediction and do not explicitly address the imputation prob-
lem. Recent works (Yin et al., 2020; Yang et al., 2024; Lin
et al., 2024; An et al., 2025) have also leveraged unstruc-
tured (natural language) contextual awareness to improve
representation learning, pre-training efficiency and the per-
formance of generative tabular models; however, these ap-
proaches have not yet been effectively leveraged in tabular
imputation.

2



CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

x11 x12 x13 x14 x15

x21 ∗ x23 ∗ ∗

∗ x32 ∗ x34 x35

x11 x12 x13 x14 x15

x21 ∗ x23 ∗ ∗

∗ x32 ∗ x34 x35

x11 x12 x13 x14 x15

x21 ∗ x23 ∗ ∗

∗ x32 ∗ x34 x35

x11 x13

x21 x23

x32 x34

∗

x : Masked Cell Values

: Missing Cell Values

Observed Data Masked Data

R
andom

 
M

asking
N

aive C
opy

 M
asking

M
edian Truncated 
C

opy M
asking

Median Observed (after masking) Count = 2
x : Observed Cell Values

Figure 1. Median Truncated Copy Masking overview. In con-
trast to random masking, where some subset of features are masked
uniformly at random, copy masking recycles missing value patterns
actually present in the dataset. This approach simulates realistic
missingness patterns that provide a source of useful inductive bias
during training. Median Truncated Copy Masking extends this
strategy for MAE training by truncating the number of features
available to the encoder, ensuring it has access to at most the me-
dian number of fully observed features in each batch.

ReMasker (Du et al., 2024), a transformer-based approach
for tabular imputation that builds on the MAE approach (He
et al., 2021), learns to reconstruct randomly masked values
based on the unmasked observed values (Figure 1). The
model is highly expressive but is trained under a (com-
pletely) random masking strategy during training.

Copy masking Recent work by An et al. (2023) proposed
using the missingness patterns in the observed data to create
masks to train an imputation model under a reconstruction
loss function. Given an observed missingness mask M,
copy maksing involves shuffling the matrix row-wise to
create a mask Mperm ∈ {0, 1}N×K where with probability
pcm (masking ratio) we either apply the Mperm mask for
a sample or leave it unchanged. We term the resulting
mask matrix as the naive copy mask Mcm (Figure 1; See
Algorithm 1 for details1). While Autocomplete (An et al.,
2023) implements naive copy masking in conjunction with
a shallow MLP to show strong downstream performance,
this approach is limited in its expressivity to learn complex
relational patterns between the features.

1Notice that this algorithm results in sampling M with replace-
ment when number of epochs is > 1.

3. CACTI
CACTI employs an encoder-decoder Transformer architec-
ture for tabular data imputation. This architecture needs
to be trained on a reconstruction task. However, since the
observed data is incomplete, a masking strategy that in-
troduces additional missingness on which the quality of
reconstruction can be assessed must be devised.

3.1. Median truncated copy masking

Previous works for tabular data imputation (Du et al., 2024)
adopt the same approach used in MAEs: applying a random
mask on the observed portions of the incomplete data dur-
ing training. Our first contribution is in replacing random
masking. We extend naive copy masking (An et al., 2023)
to develop median truncated copy masking (MT-CM) which
leverages the missingness structure in the observed data to
create masks that better reflect true missingness patterns. We
hypothesize that this approach provides a useful inductive
bias for the model that can be particularly effective in cases
where missingness is structured (Jackson et al., 2023), e.g.,
consider the missingness pattern p(mni = 0|mnj = 0) = 1
where feature i is missing any time j is missing. While it
is challenging to define a unified or well-defined generative
model for the mask, the empirical patterns of missingness
provide useful information to design such a mask.

Under MT-CM (and naive copy masking), we can segregate
features in each sample into three sets: the (observed but)
masked values Mcm

n = {k : (mnk = 1)∩ (mcm
nk = 0)}, the

unmasked values Ocmn = {k : (mnk = 1) ∩ (mcm
nk = 1)}

and the true missing values Vn = {k : mnk = 0}. Conse-
quently, we can define a training strategy by minimizing a
reconstruction loss over the value sets Mcm

n and Ocmn .

A naive application of copy masking (Figure 1) to
transformer-based MAE architectures, however, leads to
inefficient learning due to the large variance in missingness
proportions across samples (Mitra et al., 2023; Jackson et al.,
2023; An et al., 2023) while uniform feature sizes (or se-
quence lengths) within a batch are critical for efficient learn-
ing with a transformer-based encoder (Krell et al., 2022). A
possible approach to enforce uniformity when using naive
copy masking is to replace all missing or masked features
with a null token. This strategy, even at low copy mask-
ing rates, results in a significant proportion of null tokens
in each batch, which provides no meaningful information
for learning a robust latent representation. Furthermore,
increasing the copy masking rate proportionally increases
the fraction of null tokens that can further reduce learning
efficiency and overall model performance. Empirical results
confirm this trend, with higher rates of naive copy masking
leading to reduced model performance (see Appendix A).

To tackle this issue, we propose the Median Truncation Copy
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Figure 2. CACTI model overview. CACTI samples observed missingness patterns to generate masks via Median Truncated Copy
Masking (MT-CM) to guide the learning. Features’ context are also embedded with a language model. The MT-CM strategy masks out
some portion of the observed features from sample n using observed missingness patterns from other samples (j) in the same dataset.
This is followed by concatenating context information to the remaining (unmasked) features. A transformer encoder processes this data.
Then the model adds context information and [MASK] tokens for the missing/masked features before being processed by the decoding
transformer which reconstructs the values. CACTI optimizes reconstruction loss (LCACTI ) over observed and masked features to produce
the final imputation estimates.

Masking (MT-CM) training strategy (Figure 1). Let NB be
the number of samples in theB-th batch, and on = |Ocmn | be
the number of observed features in the n-th sample after the
application of naive copy masking in this batch. The median
number of observed values within the batch is defined as
omedianB = median(o1, . . . , oNB

).

The MT-CM strategy truncates the sequence length of ob-
served values for each sample to ensure it contains no more
than omedianB observed values. Formally, for each sample n
in the batch, the truncated sequence length otruncn is com-
puted as otruncn = min(on, o

median
B )2. This ensures that

the proportion of null tokens in any batch is upper bounded
by 50% regardless of the copy masking rate. Overall, MT-
CM results in the final set of observed and masked features:
On = {k : (mnk = 1) ∩ (mcm

nk = 1) ∩ (k ≤ otruncn )} and
Mn = Mcm

n ∪(Ocmn \On), respectively. During training, the
feature order of each sample in every batch is permuted to
ensure that the first otruncn features are retained as observed
features and is different every iteration. See Algorithm 2 for
extended MT-CM details. We also empirically show that,
unlike naive copy masking, our MT-CM strategy results in
overall performance increasing as the copy masking rate
increases (see Appendix A).

3.1.1. THEORETICAL MOTIVATION FOR COPY MASKING

In this section, we provide a brief theoretical motivation of
the need for copy masking.

Assume the complete data for a single sample is drawn from
an arbitrary data generating distribution X i.i.d∼ PX(x). This

2In Algorithm 1, every sample retains ≥ 1 feature; Mperm
i is

not applied if it results in 0 remaining observed features.

complete data vector undergoes a corruption process medi-
ated by a missingness mask which results in the partially
observed data: X̃ = X⊙M where the missingness mask
process M|X ∼ PM |X .

Under a masked autoecoding model, we aim to learn an
encoder-decoder (fψ and dθ respectively) that minimizes
the risk:

R(ψ, θ) =

EX,M

[
||X⊙ (1−M)− dθ(fψ(X⊙M))⊙ (1−M)||22

]
(3)

Here ⊙ denotes entrywise product.

The risk (or its finite-sample approximation) defined in
Equation 3 cannot be computed since we only observe X̃.
Instead, given the missing data X̃, we generate a mask
M′|X̃,M ∼ QM′|X̃,M and aim to minimize the alternate
risk:

RQ(ψ, θ) = EX,M

[
EM′|X̃,M [||X⊙M⊙ (1−M′)

−dθ(fψ(X⊙M⊙M′))⊙M⊙ (1−M′)||22
]]

(4)

Consider a sample that is completely observed so that M =
1 so that X̃ = X. On this sample, RQ becomes:

RQ(ψ, θ) = EX,M=1

[
EM′|X,M=1 [||X⊙ (1−M′)

−dθ(fψ(X⊙M′))⊙ (1−M′)||22
]]

(5)
Equation 5 motivates choosingQ to be the same distribution
as M|X so that RQ ≈ R. More broadly, this motivates
choosing a masking distribution Q that approximates the
true distribution of missing entries M|X. For example,
if the true missingness mechanism is MCAR where the
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probability of each feature being missing is independent and
identically distributed, a random masking strategy where
each entry masked independent of other features with a
constant probability is expected to provide an appropriate
inductive bias for the imputation model.

These observations drive the core rationale for copy mask-
ing. Copy masking tries to approximate the true masking
distribution and missingness structure by sampling from the
observed missingness mask. For example, in the MCAR
setting where each feature has a constant probability of be-
ing missing, copy masking will reduce to random masking.
On the other hand, when the missingness probability varies
across features, copy masking will lead to features being
masked with differential probabilities based on their empiri-
cal frequencies. The use of empirical masks can also capture
correlations among features in the missingness mechanism.
While copy masking is still a simplification and does not
fully model the missingness mechanism, our empirical re-
sults suggest that it enables the imputation model to attend
to realistic patterns of missingness.

3.2. Context Awareness

Our second key contribution is making the imputation back-
bone context aware by incorporating prior information about
the semantic information associated with each feature by
using language model embedding of feature description
into the value embedding vector in both the encoder and de-
coder stage. We use the semantic similarity between column
name and description information to make our imputation
backbone context-aware, providing useful inductive bias to
improve imputation performance.

Let X̃n := (X̃n1, . . . , X̃nK) be the observed data for a sin-
gle sample in X̃ . For the final model embedding dimension
E, we would like to achieve a context-aware embedding of
the data sample En = (En1, . . . ,EnK) ∈ RE×K (where
E = dim(Enk)). To achieve this, we can create a par-
titioned embedding for each feature, which has a value
component Unk and context component Cnk such that
Enk = (Unk;Ck)

3, where Unk ∈ RU ,Ck ∈ RC and
E = U + C. As a design choice, we set U = 0.75E and
C = 0.25E, prioritizing value information as the primary
object of relevance which warrants its overrepresentation
relative to context information. We define a linear projec-
tion4 l : X̃ → U that maps each scalar feature value to a
U -dimensional embedding vector representation, resulting
in Un = (Un1, . . . ,UnK) ∈ RU×K .

We propose using of language models to obtain representa-

3Ck has no index subscript n because we assume the feature
context information is shared and consistent across all samples.

4We set all the true missing values to any special protected
value for this step.

tions (embeddings) of each column’s semantic information.
For each of the K columns in the data X̃, we process the
column name and description (when available) through a
language model (using default tokenizer) to obtain embed-
dings Cci

k . Given a set of tokenized descriptions Tk, we
obtain the last layer hidden state for each token and ag-
gregate the information to obtain the column’s semantic
context Cci

k = 1
|Tk|

∑|Tk|
i=1 Embd(tki). Since language mod-

els (Devlin et al., 2019; Lee et al., 2025) typically have
hidden state dimensions in the range [768, 4096], we per-
form a linear projection re : Cci → C that maps each col-
umn information embedding to an C-dimensional context
embedding, resulting in C = (C1, . . . ,CK) ∈ RC×K .
Transformers also require fixed sin-cosine embeddings
P = (P1, . . . ,PK) ∈ RE×K to preserve positional in-
formation (Dufter et al., 2021). Thus final context-aware
embeddings are achieved by concatenation of the value and
context En = [Un||C] + P, with positional information
added.

Different base models can be used for generating context
embeddings. In this study, we use the GTE-en-MLM-large,
a new state-of-the-art text embedding model (Zhang et al.,
2024b) as the default based on our empirical results com-
paring the effectiveness of these models. We note that the
generation of column context embeddings has a one-time,
fixed cost. These embeddings can be pre-computed and
reused across multiple runs for the same dataset.

3.3. Transformer Backbone

Figure 2 provides a pictorial description of the CACTI au-
toencoder architecture backbone with a detailed descrip-
tion deferred to Appendix B. Briefly, the CACTI backbone
consists of an encoder and decoder, both utilizing trans-
former architectures with (residual) self-attention blocks.
The encoder processes context-aware embeddings (En) of
the observed data, dropping missing or masked features af-
ter applying the MT-CM strategy. The decoder combines
context information embeddings and a latent representation
of the MT-CM input features to estimate the uncorrupted
version (X̄n) of the incomplete data. The model is trained to
minimize the reconstruction loss between the imputed and
observed data, using a unified MSE loss over the masked
(Mn) and fully observed values (On). See Algorithm 3 and
Algorithm 4 for a sketch of the CACTI implementation.

4. Evaluation Results
We empirically evaluate CACTI’s performance against state-
of-the-art methods using 10 benchmarking datasets across
all three missingness scenarios. Next, we conduct a thor-
ough ablation analysis to quantify the contributions of our
proposed MT-CM and context awareness strategies. Finally,
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Table 1. Overall benchmark results. Average performance comparison of CACTI and CMAE (CACTI without context) against existing
imputation methods on the train/test splits (separated by |) over 10 datasets. Metrics (arrows indicate direction of better performance) are
evaluated under MAR, MCAR, and MNAR at 30% missingness. – indicates method which cannot perform out-of-samples (test split)
imputation. Best metric in bold and second best underlined. Extended table with standard errors in Appendix.

METHOD
R2 (↑) RMSE (↓) WD (↑)

MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

CACTI (OURS) 0.46|0.46 0.47|0.47 0.46|0.46 0.66|0.64 0.67|0.69 0.68|0.67 4.35|4.46 1.87|1.94 4.45|4.57
CMAE (OURS) 0.44|0.45 0.46|0.46 0.44|0.44 0.67|0.65 0.69|0.70 0.70|0.69 4.40|4.50 1.94|2.02 4.57|4.69
REMASKER 0.44|0.44 0.44|0.44 0.40|0.40 0.68|0.67 0.69|0.71 0.73|0.71 4.62|4.72 2.46|2.52 4.79|4.93
DIFFPUTER 0.40|0.42 0.39|0.43 0.36|0.37 0.73|0.70 0.77|0.75 0.79|0.77 4.53|4.56 2.55|2.38 4.79|4.90
HYPERIMPUTE 0.41|– 0.44|– 0.39|– 0.72|– 0.73|– 0.76|– 4.26|– 2.46|– 4.30|–
MISSFOREST 0.35|0.34 0.38|0.36 0.34|0.32 0.77|0.75 0.79|0.82 0.79|0.78 6.78|6.80 3.80|3.83 7.01|7.06
NOTMIWAE 0.35|0.35 0.35|0.35 0.29|0.30 0.75|0.74 0.80|0.82 0.82|0.80 5.56|5.60 2.38|2.39 6.26|6.20
SINKHORN 0.28|– 0.29|– 0.26|– 0.84|– 0.89|– 0.88|– 7.02|– 3.96|– 7.51|–
ICE 0.28|0.27 0.34|0.33 0.26|0.25 0.86|0.87 0.78|0.83 0.93|0.93 4.82|5.18 2.74|2.81 5.32|5.67
AUTOCOMPLETE 0.24|0.24 0.29|0.29 0.21|0.21 0.88|0.86 0.88|0.89 0.94|0.92 10.14|10.18 5.04|5.07 10.44|10.42
MICE 0.19|0.19 0.23|0.23 0.18|0.18 1.06|1.04 1.04|1.05 1.08|1.07 8.25|8.33 4.16|4.23 8.34|8.49
GAIN 0.19|0.21 0.18|0.22 0.17|0.18 0.91|0.86 0.95|0.93 1.01|0.96 7.73|7.34 4.44|4.10 9.53|9.14
SOFTIMPUTE 0.09|0.10 0.10|0.11 0.09|0.09 1.02|0.96 1.06|1.02 1.05|0.99 8.35|7.86 4.84|4.46 8.73|8.23
MIWAE 0.00|0.00 0.00|0.00 0.00|0.00 1.00|0.98 1.05|1.07 1.03|1.00 7.83|7.90 4.53|4.57 8.36|8.37
MEAN 0.00|0.00 0.00|0.00 0.00|0.00 0.95|0.93 1.00|1.02 0.98|0.95 11.96|12.00 6.35|6.38 12.25|12.26
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Figure 3. Top-5 methods benchmark. Violin plots display the
distribution of R2 metrics for each of the top five methods across
all missing percentages and conditions over all datasets.

we conduct a comprehensive sensitivity analysis to identify
key aspects and hyperparameter configurations that signifi-
cantly impact the performance and usability of our method.

Baseline methods We benchmark CACTI against 13
top methods from the field. Detailed descriptions of
the methods are defered to Appendix C.1. Briefly, we
compare against ReMasker (Du et al., 2024) as the pri-
mary masked transformer-based autoencoing method. Diff-
Puter (Zhang et al., 2024a) represents the recent state-of-the-
art in diffusion-based imputation. AutoComplete (An et al.,
2023) is a naive copy masking autoencoder model developed
for biomedical data. Hyperimpute (Jarrett et al., 2022) is
the current best iterative hybrid machine learning approach.
We also compared to leading iterative methods: Missfor-

est (Stekhoven & Bühlmann, 2011), ICE (Royston & White,
2011) and MICE (van Buuren & Groothuis-Oudshoorn,
2011). and generative approaches: Sinkhorn (Muzellec
et al., 2020), GAIN (Yoon et al., 2018), MIWAE (Mattei
& Frellsen, 2019) and notMIWAE (Ipsen et al., 2021) (an
extention of MIWAE for MNAR). Lastly, we also include
widely-used approaches such as Softimpute (Hastie et al.,
2014) and unconditional Mean (Hawthorne & Elliott, 2005).
For all baselines, we use default (or recommended if avail-
able) settings for all models and CACTI default settings are
outlined in Appendix C.2.

Datasets To allow for comparison with previous works
(Section 2.1), we use ten real-world datasets (Kelly et al.),
with details included in Appendix C.3. For each dataset, we
create an 80-20 train-test split to test both in-sample and out-
of-sample imputation. The data is fully observed, so we can
simulate missingness under each of three missingness condi-
tions: MCAR, MAR, and MNAR. For MCAR, each value is
masked according to a Bernoulli random variable with fixed
mean. In MAR, a random subset of features are fixed as fully
observed while entries in the remaining features are masked
based on a logistic model. For MNAR, we take the input
features of the MAR mechanism and further mask them
according to a Bernoulli random variable with fixed mean.
In accordance with prior work, the primary benchmarking
is performed under 30% simulated missingness proportion
while extended results are included for 10%, 50% and 70%
simulated missingness proportions. Simulations were per-
formed using the HyperImpute package (Jarrett et al., 2022).
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Evaluations metrics We evaluate imputation perfor-
mance along three metrics: Pearson’s R2, root mean square
error (RMSE) and Wasserstein distance (WD). We use R2

as a measure of imputation concordance due to its invariance
to mean or scale shifts and its direct applicability across con-
tinuous, binary, and ordinal features. For consistency with
previous works (Zhang et al., 2024a; Jarrett et al., 2022), we
report RMSE as an absolute measure of imputation accuracy
and WD as a measure of alignment between the imputed
and true values. Note that we perform evaluation on the
original scale of each feature as opposed to the min-max
transformed scale to reflect utility in real world applications.
The main tables and figures present the mean of the metrics
aggregated across the test split of the relevant datasets ex-
cept for Table 1, which reports metrics on both the train and
test splits. The Appendix contains figures reporting all the
per-dataset metrics with 95% confidence intervals on both
train and test splits.

Table 1 summarizes the average performance of each model
across the 10 datasets under 30% simulated missingness.
CACTI outperforms all existing baselines across all metrics
and missingness conditions. We observe an average relative
improvement over the next best method (with respect to R2)
of 13.4%, 6.1%, and 5.3% under MNAR, MAR, and MCAR,
respectively. Notably in Appendix D we also observe that
across the ten datasets under all three missingness mecha-
nisms, CACTI dominates all methods in at least one of the
three metrics and in a majority of the datasets outperform
all other methods on all metrics. In our experiments, we
also include median truncated Copy Masked Auto Encoder
(CMAE; CACTI without context) as an additional baseline
to demonstrate that CMAE alone consistently dominates
ReMasker across R2 and RMSE metrics.

These results underscore the versatility of our approach in
achieving effective imputation across diverse missingness
scenarios without strong assumptions about the source of
the missingness. The robust performance, particularly in the
most challenging MNAR settings, highlights the advantage
of leveraging inductive biases from observed data through
the use of the MT-CM training strategy. Additionally, the
improved accuracy of CACTI over ReMasker under MCAR,
where MT-CM and random masking should be approxi-
mately equivalent, highlights benefits of context awareness.

In Appendix D, we extend our benchmarking to 10%, 50%
and 70% simulated missingness proportions for all three
mechanisms. Figure 3 displays the results of the top five
methods for each dataset under each of the four missing-
ness percentages and three mechanisms. The results show
that, on average, CACTI is the most effective imputation
approach across all settings. Lastly, we verify in Table A14
that the resource requirements while training CACTI are
reasonable (< 5.8 seconds per epoch on the largest dataset

Table 2. Ablation analysis. Comparison of models with RM, MT-
CM, and/or CTX. ✓ indicates model has the feature and × if not.
Metrics presented represent the average model performance at 30%
missingness.

MODEL RM CTX MT-
CM

R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

RMAE ✓ × × 0.21 0.20 1.00 1.03
RMAE+

CTX ✓ ✓ × 0.26 0.26 0.96 0.86
CMAE × × ✓ 0.46 0.43 0.68 0.70
CACTI × ✓ ✓ 0.46 0.45 0.67 0.68

and requiring < 300MB of GPU memory both of which are
comparable to that of ReMasker).

4.1. Ablation Analysis

We aim to investigate the relative contributions of key as-
pects of CACTI via a series of ablation analyses.First, we
assess the relative contribution of MT-CM compared to ran-
dom masking (RM). Second, we evaluate the impact of
context awareness (CTX) when used in conjunction with
random masking alone. Third, we analyze the additional
gains achieved by incorporating context awareness on top
of our MT-CM training strategy. Finally, we explore the
value of each of the sources of inductive bias: the observed
missingness patterns or the features’ context information.
To do this, we construct three additional models: 1) Ran-
dom Masking Auto Encoder (RMAE), 2) Random Masking
Auto Encoder with ConTeXt awareness (RMAE+CTX) and
3) CMAE. The RMAE model uses the same transformer
backbone as CACTI while using the same random mask-
ing strategy as ReMasker, RMAE+CTX extends the RMAE
model with the same context aware (CTX) embeddings used
in CACTI, and CMAE is the CACTI model without the CTX
embeddings. We conduct the ablation analysis over four dif-
ferent datasets (see Appendix C.3) under MAR and MNAR
with masking ratio fixed at 90%.

The ablation results in Table 2 first indicate that both MT-
CM and context awareness are essential for achieving good
performance. Next, we observe that, under MNAR, MT-CM
provides a 115% gain in R2 over random masking while
context awareness provides a 30% gain when used with
random masking. We note since this is an internal ablation,
all hyperparameters were held constant. This resulted in the
performance of RMAE being lower than ReMasker due to
differences in their masking rates. In Table A15, we con-
ducted additional direct comparisons between CMAE and
ReMasker on all ten datasets that demonstrate that CMAE
(by replacing random masking with MT-CM) alone pro-
vides a statically significant improvement in performance
compared to ReMasker (t-test p<0.05).
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Table 3. Context Contributions. One sided paired T-test between
CACTI and CMAE imputation R2 to evaluate the statistical signif-
icance of contexts’ contribution and out performance (win rate).

MISS %

AVG. R2 GAIN
(P-VALUE ×10−2)

WIN RATE
%

MCAR MAR MNAR MCAR MAR MNAR

10
0.014
(1.96)

0.023
(0.79)

0.017
(0.23) 80 89 80

30
0.014
(0.35)

0.007
(9.24)

0.017
(0.09) 80 70 100

50
0.011
(0.65)

0.010
(3.66)

0.016
(0.13) 90 70 100

70
0.010
(2.01)

0.012
(0.72)

0.015
(0.05) 89 90 100

Table 2 also shows that using context awareness in conjunc-
tion with MT-CM leads to a nearly 5% improvement. To
quantify whether context provides a statistically significant
contribution, we extended our analysis to directly contrast
CACTI and CMAE (CACTI without context) under all miss-
ingness percentages, datasets and missingness settings (Ta-
ble 3 and Figure A9). CACTI outperforms CMAE (win
rate) in a majority of the datasets across all settings, with
respect to R2. We then performed one-sided paired t-tests
to demonstrate that context provides a statistically signifi-
cant improvement (p<0.05) in all settings except for MAR
at 30%. These results confirm that context can improve
imputation accuracy though its contribution can vary de-
pending on the dataset and the missingness setting. Overall,
while either one of our strategies could provide meaningful
improvements in imputation accuracy, the use of empiri-
cal missingness patterns through copy masking tends to be
more useful than the contextual information.

Lastly, we explored design choices involving the loss func-
tion (Table A16). Training with the loss over observed
values alone (LO) yields poor imputation performance. In
contrast, training on reconstruction of masked values (LM),
by forcing the model to learn relationships between the ob-
served and masked features, leads to significantly better
performance. As expected, the combined (observed and
masked value) reconstruction loss (LO + LM) consistently
achieves the best performance, due to the constraint of main-
taining a latent space that both preserves the relationship
between observed while inferring missing features.

4.2. Model Sensitivity Analysis

4.2.1. MODEL ARCHITECTURE

First, we investigate CACTI’s sensitivity to three core ar-
chitectural configuration choices: encoder depth (Ne), de-
coder depth (Nd) and overall embedding dimension size (E).
The aggregated results of this analysis over four different
datasets (see Appendix C.3) under MAR and MNAR, with

the masking ratio fixed at 90%, are summarized in Table 4.
These results indicate that the encoder and decoder depths
have a relatively minor impact (especially in the MNAR
setting) although our results tend to slightly favor a deeper
encoder (Ne = 10) and a shallower decoder (Nd = 4). In
contrast, we observe higher sensitivity of our model with
respect to the choice of embedding dimension size with
highest accuracy attained at E = 64. Notably, we see a
significant drop-off in performance at very large embedding
sizes (near 512) likely due to over-fitting.

4.2.2. MT-CM MASKING RATE

We next investigate the impact of the choice of MT-CM
masking ratio (pcm). This parameter can be interpreted
as controlling the strength of the inductive bias during the
learning process. A higher pcm encourages the model to
place greater emphasis on the observed missingness patterns
in the data, allowing the model to capture and extract addi-
tional information. Figure A12 summarizes the results of
this analysis over 4 different datasets (see Appendix C.3)
under MAR and MNAR. Our experiments indicate that, on
average, pcm ≥ 0.90 results in the most accurate results,
with slight differences based on the missingness mechanism
(pcm = 0.99 for MAR and pcm = 0.95 for MNAR). We
remark that this is a notable departure from existing random
masking approaches (Du et al., 2024) which report the opti-
mal choice of masking rate can differ significantly (> 10%)
based on the dataset.

4.2.3. CONTEXT EMBEDDING MODEL

Since our ablation analysis indicates that context awareness
does provide a meaningful improvement to performance,
we would like to understand the sensitivity with respect to
the choice of language model used to derive the contex-
tual embeddings. To this end, we assess six open-source
base models: BERT-base, BERT-large (Devlin et al., 2019),
DeBERTa-v3-base, DeBERTa-v3-large (He et al., 2023),
GTE-en-MLM-large (Zhang et al., 2024b) and NV-Embed-
v2 (Lee et al., 2025). These base models usually have a
dimension of 768 for their last layer while the large models
have a dimension of 1024 and NV-Embed-v2 has a dimen-
sion of 4096. Table 5 summarizes the results of this analysis
over four different datasets (see Appendix C.3) under MAR
and MNAR. These results indicate that there is marginal
sensitivity to the choice of embedding model with GTE-en-
MLM-large leading to the highest accuracy while DeBERTa-
v3-large obtains the lowest accuracy. There does not ap-
pear to be a clear relation between overall performance and
embedding size. This indicates that the semantic context
learned by each model is more important that the size of the
model. This is also supported by the fact that NV-Embed-v2
(7B parameters) consistently under performs BERT-base
(110M parameters). Overall GTE-en-MLM-large or BERT-
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Table 4. Model architecture sensitivity. Average performance effect of (a) encoder depth, (b) decoder depth, and (c) embedding size.
Metrics represent the average across four datasets at 30% missingness proportion.

(a) Encoder Depth

DEPTH
R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

4 0.46 0.44 0.68 0.69
6 0.46 0.44 0.68 0.69
8 0.45 0.44 0.68 0.69
10 0.47 0.44 0.67 0.69
12 0.46 0.44 0.68 0.69

(b) Decoder Depth

DEPTH
R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

4 0.47 0.44 0.67 0.69
6 0.46 0.44 0.67 0.69
8 0.47 0.44 0.67 0.69
10 0.44 0.44 0.69 0.69
12 0.43 0.43 0.70 0.71

(c) Embedding Size

SIZE
R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

32 0.46 0.42 0.67 0.70
64 0.46 0.44 0.67 0.69
128 0.40 0.43 0.73 0.70
256 0.41 0.39 0.72 0.73
512 0.38 0.35 0.85 0.97

large seems to be good default choices for generic English
language tabular data. Additionally, the ratio of context
dimension to total embedding dimension (CTX proportion
C
E ) directly influences the contirbution of context aware-
ness. Table A17 shows that CACTI is fairly insensitive
to the choice of CTX proportion with 50% or 25% of the
embeddings (E) containing context information as optimal.
Finally, context embeddings from domain-specific models
like BioClinicalBERT (Alsentzer et al., 2019) may help
improve imputation for specialized fields like biomedicine,
where features have unique contextual relations (e.g., dis-
ease classifications). Prior work by Lehman et al. (2023)
shows these models outperform general-purpose models on
domain-specific tasks. But we leave this line of inquiry for
future work.

Table 5. Embedding model sensitivity. Average performance
effect of embedding models (30% missingness proportion).

EMBEDDING MODEL
R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

BERT-BASE 0.47 0.45 0.67 0.69
BERT-LARGE 0.46 0.45 0.67 0.68
DEBERTA-V3-BASE 0.47 0.45 0.67 0.69
DEBERTA-V3-LARGE 0.45 0.43 0.68 0.70
GTE-EN-MLM-LARGE 0.47 0.45 0.67 0.68
NVEMBED-V2 0.46 0.44 0.68 0.69

4.2.4. TRAINING CONVERGENCE

We finally evaluate the training convergence behavior of our
model in the letter dataset. The results in Figure 4 indicate
that the convergence behavior differ based on the missing-
ness setting. Under the more difficult MNAR imputation
setting, increased training epochs results in a consistent in-
crease in imputation accuracy that does not fully saturate
even at 1500 epochs. In contrast, under the simpler MAR
setting, the model quickly converges to its optimal perfor-
mance around 300 epochs, with increased training causing
overfitting as indicated by a reduction in test set accuracy.
Given these results and assuming that we do not know the
missingness regime a priori, we recommend users start with

MAR MNAR
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Figure 4. CACTI Training profile. Evaluated across training
epochs under MAR and MNAR on the letter dataset with 30%
missingness. Points are mean ± 95% CI.

300-600 epochs and monitor overfitting on validation data.

5. Conclusion
This work introduces a conceptual framework for leveraging
information about context and the missingness patterns in
the data to improve tabular data imputation. We posit that
the observed missingness patterns and semantic informa-
tion associated with the features serve as both crucial and
valuable sources of inductive bias. These hypotheses led
us to develop CACTI which integrates these dual sources
of bias into a transformer-based imputation model. Our
extensive benchmarking and ablation analysis demonstrate
that information from each dataset’s unique missingness
patterns and column context significantly improves impu-
tation accuracy, allowing CACTI to reach state-of-the-art
performance. Our MT-CM masking strategy can be used
with any masked learning model, while context awareness
can be integrated into any deep learning-based imputation
framework, demonstrating the broad applicability of our
results. These results suggest that identifying additional
sources and structures of useful bias is a worthwhile avenue
for future tabular imputation research, particularly in fields
with smaller datasets with high MNAR missingness such a
biomedical data.
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Impact Statement
This paper presents CACTI whose goal is to advance the
classical machine learning field of imputation for tabular
data. There are many potential societal consequences of
our work, none of which we feel must be specifically high-
lighted here. This is general approach that is compatible
with any generic or field specific tabular dataset. CACTI
allows users to more effectively learn an imputation func-
tion by leveraging the structure of missingness unique to
each dataset and allows for straightforward integration of
the unstructured textual information about the features being
imputed.
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A. Copy Masking

Algorithm 1 Naive copy masking.
1: Input: Observed mask M ∈ {0, 1}N×K , masking ratio pcm ∈ (0, 1)
2: π : {1, . . . , N} → {1, . . . , N} {permute indices}

3: Pij =

{
1, if i = π(j)

0, otherwise
∈ {0, 1}N×N

4: Mperm = PM {Apply row-wise permutation}
5: Mcm = M {init copy mask}
6: for i← 1, ..., N do
7: u ∼ U(0, 1) {sample from uniform}
8: ctfeat = Mcm

i,: •M
perm
i,: {count features left via dot product}

9: if u < pcm and ctfeat ≥ 1 then
10: Mcm

i,: ←Mperm
i,: {use copy mask}

11: end if
12: end for
13: Output: Mcm

Copy Masking ablation analysis We compare the performance characteristics of naive copy masking (CM) and MT-CM
training strategy with respect to the masking rate (pcm). To perform this analysis, we construct a copy masking auto encoder
architecture (CMAE) which is our CACTI model without the context aware embeddings and use either the naive CM or
MT-CM training.This analysis is performed on bike and obesity datasets and the average results across these two datasets
under all three missingness scenarios are reported in Table A6. The first three rows of Table A6 demonstrate a consistent
decrease in performance across all three missingness settings as pcm is increased. The higher mask probability (pcm) leads
to more null tokens in each training batch which reduces training performance because the model must create meaningful
latent representation (for the decoder) from positions that contain no information for the encoding layers to work with. As a
result, a low pcm of about 10% producing the best performance. Strikingly, this trend is reversed by the MT-CM strategy
(as seen in the last 5 rows of Table A6) where increasing the pcm results in increased performance with best performance
attained at 90% masking. We also see that best performance (w.r.t R2) under MT-CM is 6.7%, 5.8% and 2.1% higher than
naive copy masking under MNAR, MAR and MCAR, respectively.

Table A6. Performance comparison of MT-CM vs naive CM and varying masking rate for CMAE. Metrics represent the average across
four datasets. Experiments were performed under three missingness scenarios at 30% missingness. Best in bold and second best
underlined.

MASKING
TYPE

MASKING
RATE

R2 (↑) RMSE (↓)

MCAR MAR MNAR MCAR MAR MNAR

NAIVE
COPY MASKING

10 0.378 0.396 0.358 0.644 0.620 0.643
30 0.355 0.397 0.339 0.658 0.626 0.663
50 0.348 0.384 0.324 0.667 0.638 0.673

MEDIAN TRUNCATED
COPY MASKING

(MT-CM)

10 0.366 0.346 0.341 0.651 0.654 0.656
30 0.378 0.399 0.362 0.643 0.623 0.645
50 0.375 0.408 0.371 0.647 0.617 0.637
90 0.386 0.416 0.382 0.638 0.615 0.635
95 0.386 0.420 0.376 0.641 0.622 0.640
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Algorithm 2 Median Truncated Copy Masking (MT-CM)
1: Input: Batch of embeddings E ∈ RNB×K×D, observed masks M ∈ {0, 1}NB×K , naive copy masks Mcm ∈
{0, 1}NB×K (from Algorithm 1)

{Step 1: Calculate observed feature counts after copy masking}
2: for n← 1, ..., NB do
3: on ←

∑K
k=1 M

cm
n,k

4: end for
{Step 2: Find median observed count}

5: omedianB ← median({o1, ..., oNB
})

{Step 3: Apply median truncation with permutation}
6: for n← 1, ..., NB do
7: otruncn ← min(on, o

median
B ) {Truncate to median at most}

8: πn : {1, ...,K} → {1, ...,K} {Random permutation of features}
9: On ← ∅, Mn ← ∅ {Initialize observed and masked sets}

10: E′
n ← [] {Initialize truncated embeddings}

11: count← 0
12: for k ← 1, ...,K do
13: if Mcm

n,πn(k)
= 1 and count < otruncn then

14: On ← On ∪ {πn(k)} {Add to observed set}
15: E′

n ← [E′
n||En,πn(k)] {Append embedding}

16: count← count + 1
17: else if Mn,πn(k) = 1 then
18: Mn ←Mn ∪ {πn(k)} {Add to masked set}
19: end if
20: end for
21: if otruncn < omedianB then
22: pz = omedianB − otruncn {Null token padding size}
23: NTn ← 0pz×D

24: E′
n ← [E′

n||NTn] {Concat null token padding when needed}
25: end if
26: end for
27: Output: [E′

1; ...;E
′
NB

], {O1, ...,ONB
}, {M1, ...,MNB

}
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B. CACTI method extended details
We now provide a detailed description on the transformer-based autonencoding backbone architecture of CACTI.

Encoder : The context-aware embeddings En are used for the subsequent steps in the transformer backbone. For the
embedding En of the incomplete data X̃n, we define a selector function seCP−MT that drops all missing or masked
features based on the missingness mask Mcm

n , median truncates each batch as previously described and any remaining
missing/masked cells are replaced with fixed null padding. This process results in E′

n = seCP−MT(En) where E′
n ∈

RE×K′
and K ′(= omedianB ) is the number of features after median truncation. This matrix E′

n is processed by the encoder
that consists of a series of Ne self-attention blocks with residual connections, where the output is Ln.

Decoder : We transform the context Cci information embedding into decoder context embeddings using a linear projection
rd : Cci → C′ where C′ ⊆ RC×K . The underlying rationale is that the encoder and decoder benefit from different kinds
of context information. Next, define selector function sdM that maps the latent representation L to match the shape and
order of the original input features. The missing/masked features are filled with a fixed mask vector which is then passed
through a linear projection to become decoder value information, resulting in Vn ∈ RU×K . The decoder context and value
information is concated (denoted by ||), with positional encoding, to get the context-aware decoder latent representational
Zn = [Vn||C′] +P. This latent representation is processed through Nd layers of self-attention with residual connections.
The final output is passed through a 2-layer MLP g : Z → X̄ to estimate the uncorrupted version of the incomplete data X̄n.

Optimization : The model is trained to minimize the reconstruction loss L(X̃n, X̄n) between the imputed and the
observed data. We optimize our model against a loss function which is a sum of the loss over the observed value (On) and
masked (i.e., observed but hidden) values (Mn). Note that we perform a min-max scaling of the input data before passing
the cell values to the model. This allows us to use a unified MSE loss for all features and constrains the models search space.
The model’s internal output X̄n is therefor logits. The final loss formulation is:

LOn
=

∑|On|
k=1(x̃nk − x̄nk)2

|On|

LMn
=

∑|Mn|
k=1 (x̃nk − x̄nk)2

|Mn|
L(X̃n, X̄n) = LOn

+ LMn

(6)

We train our model through stochastic gradient descent using the AdamW optimizer with learning rate (lr) 0.001, default
decay settings (0.90, 0.95) and Cosine Annealing with warmup lr scheduler. During inference, the model’s internal output is
transformed back to the original space for continuous features by inverting in the min-max scaling.
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Algorithm 3 CACTI Training Algorithm

1: Input: Training datasetD = {(X̃i,Mi)}Ni=1, Context information Cci, Masking ratio pcm, Training epochsEpochmax,
Batch size B

2: Parameters: Encoder weights ψ, Decoder weights θ, (encoder, decoder) Value embedding weights ϕe,d, (encoder,
decoder) Context embedding weights ωe,d, Fixed sin-cos positional embeddings P

3: for epoch← 1, . . . , Epochmax do
4: Mcm ← NaiveCopyMask([M1; ...;MN ], pcm) {Apply naive copy masking, Algorithm 1}
5: for each batch B = {(X̃n,Mn,M

cm
n )}Bn=1 sampled from D and Mcm do

6: {Process batch of samples}
7: for n← 1, ..., B do
8: Un ← lϕe(X̃n) {Project observed data to value embeddings}
9: Cn ← rωe(C

ci) {Project context info. to context embeddings}
10: En ← [Un||Cn] +P {Concat. value and context embeddings + add positional embeddings}
11: end for
12: E′,O,M← MT-CM([E1; ...;EB ], [M1; ...;MB ], [M

cm
1 ; ...;Mcm

B ]) {Median truncated copy masking;
Algorithm 2}

13: Lbatch ← 0
14: for n← 1, ..., B do
15: Ln ← Encodeψ(E′

n) {Apply encoder on remaining context aware embeddings}
16: Vn ← MaskReorderϕd

(Ln,On,Mn) {match original feat. order, set missing feats. to [MASK] and project}
17: C′ ← rωd

(Cci) {Project context info. to decoder context embeddings}
18: Zn ← [Vn||C′] +P {Concat. value and context embeddings and add positional embeddings}
19: X̄n ← Decodeθ(Zn) {Decode a.k.a do imputation}
20: Ln ← LOn(X̃n, X̄n) + LMn(X̃n, X̄n) {Calc. MSE loss over observed and masked values}
21: Lbatch ← Lbatch + Ln
22: end for
23: Lbatch ← Lbatch/B {Average loss over batch}
24: ψ, θ, ϕe,d, ωe,d ← UpdateWeights(∇Lbatch) {Gradient update}
25: end for
26: end for
27: Output: Trained parameters ψ, θ, ϕe,d, ωe,d

Algorithm 4 CACTI Inference Algorithm

1: Input: Observed data D = {(X̃i,Mi)}Ni=1, Context information Cci

2: Parameters: (From Algorithm 3) Trained encoder weights ψ, decoder weights θ, value embedding weights ϕe,d,
context embedding weights ωe,d, positional embeddings P

3: C← rωe
(Cci)

4: C′ ← rωd
(Cci)

5: for n← 1, . . . , N do
6: Un ← lϕe(X̃n)
7: En ← [Un||C] +P
8: E′

n ← TRUNC(En,Mn) {Drop all true missing feats.}
9: Ln ← Encodeψ(E′

n)
10: Vn ← Maskϕd

(Ln) {set missing feats. to [MASK] and project}
11: Zn ← [Vn||C′] +P
12: X̄n ← Decodeθ(Zn)
13: X̂n ← X̃n ⊙Mn + X̄n ⊙ (1−Mn) {set missing feats. to imputed values}
14: end for
15: Output: X̂n
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C. Experimental Details
C.1. Baseline methods overview

ReMasker (Du et al., 2024) applies the random masking (transformer) autoencoder framework to impute missing values.
DiffPuter (Zhang et al., 2024a) is a method that leverages the Expectation-Maximization algorithm along with a diffusion
model to iteratively learn the conditional probability of missing data. AutoComplete (An et al., 2023) is a naive copy masking
autoencoder based model which learns to reconstruct missing values. Hyperimpute (Jarrett et al., 2022) is an iterative
imputation framework that automatically selects and configures (classical machine learning) models for column-wise
imputation. Missforest (Stekhoven & Bühlmann, 2011) iteratively trains random forest models on observed data and applies
them to impute missing data. ICE (Royston & White, 2011) is a method which conditionally models and imputes missing
data iteratively until convergence. MICE (van Buuren & Groothuis-Oudshoorn, 2011) is variation of ICE which utilizes
Bayesian ridge regression. Softimpute (Hastie et al., 2014) uses iterative rank-restricted soft singular value decomposition to
complete a matrix with missing values. Sinkhorn (Muzellec et al., 2020) is a generative method utilizing optimal transport
distances as a loss criterion to impute missing values. GAIN (Yoon et al., 2018) is a generative-adversarial network with the
generator trained to impute missing values conditioned on observed values, and the discriminator trained to identify which
values were imputed. MIWAE (Mattei & Frellsen, 2019) is an (generative) approach which applies the importance weighted
autoencoder framework and imputes missing data by optimizing the variational lower bound on log likelihood on observed
data. notMIWAE (Ipsen et al., 2021) is an extension of MIWAE which incorporates prior information about the type of
missingness, allowing modeling of the conditional distribution of the missingness pattern given the data, to try to effectively
tackle the MNAR setting (particaully self-masking MNAR). Finally, Mean (Hawthorne & Elliott, 2005) imputes missing
values with the column-wise unconditional mean.

Table A7. Default hyperparameter settings used for baseline methods.

MODEL HYPERPARAMETERS

HYPERIMPUTE CLASS THRESHOLD = 2, BASELINE IMPUTER = 0, OPTIMIZER = ”SIMPLE”
GAIN BATCH SIZE = 256, N EPOCHS = 1000, HINT RATE = 0.9, LOSS ALPHA = 10
ICE MAX ITER = 500

MEAN NONE
MICE N IMPUTATIONS = 1, MAX ITER = 100, TOL = 0.001

MISSFOREST N ESTIMATORS = 10, MAX ITER = 500
MIWAE N EPOCHS = 500, BATCH SIZE = 256, LATENT SIZE = 1, N HIDDEN = 1, K = 20

SINKHORN EPS = 0.01, LR = 1E-3, OPT = TORCH.OPTIM.ADAM, N EPOCHS = 500,
BATCH SIZE = 256, N PAIRS = 1, NOISE = 1E-2, SCALING = 0.9

SOFTIMPUTE MAXIT = 1000, CONVERGENCE THRESHOLD = 1E-5, MAX RANK = 2,
SHRINK LAMBDA = 0, CV LEN = 3, RANDOM STATE = 0

REMASKER MAX EPOCHS = 300, BATCH SIZE = 64, MASK RATIO = 0.5, EMBED DIM = 32,
DEPTH = 6, DECODER DEPTH = 4, NUM HEADS = 4, MLP RATIO = 4,
ENCODER FUNC = ‘LINEAR’, WEIGHT DECAY = 0.05, BASE LR = 1E-3, MIN LR = 1E-5,
WARMUP EPOCHS = 40

DIFFPUTER MAX ITER = 10, RATIO = 30, HID DIM = 1024, NUM TRIALS = 10, NUM STEPS = 50
AUTOCOMPLETE LR = 0.001, BATCH SIZE = 1024, EPOCHS = 300, MOMENTUM = 0.9, ENCODING RATIO = 1,

DEPTH = 1, COPYMASK AMOUNT = 0.5, NUM TORCH THREADS = 8, SIMULATE MISSING = 0.01
NOTMIWAE N HIDDEN=128, N SAMPLES=20, BATCH SIZE=16,EMBEDDING SIZE=20,

MISSING PROCESS=SELFMASKING KNOWN
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C.2. CACTI hyperparameter configuration

Table A8. Default Parameters for CACTI

MODEL PARAMETER SETTING

GLOBAL

OPTIMIZER ADAMW
INITIAL LEARNING RATE 1E-3
LR SCHEDULER STEP WISE WARMUP COSINE ANNEALING
BETAS (GRAD MOMENTS DECAY) (0.90, 0.95)
WARMUP EPOCHS 50
GRADIENT CLIPPING THRESHOLD 5.0

TRAINING EPOCHS 300
BATCH SIZE 128
MASKING RATIO (pcm) 0.90

ENCODER
DEPTH (Ne) 10
EMBEDDING WIDTH (E) 64
NUMBER OF HEADS 8

DECODER
DEPTH (Nd) 4
EMBEDDING WIDTH (E) 64
NUMBER OF HEADS 8

CONTEXT
EMBEDDINGS

MODEL GTEV1.5-EN-MLM-LARGE-8192
EMBEDDING SIZE (dim(Cci

k )) 1024
CONTEXT EMBEDDING RATIO ( C

E
) 0.25

C.3. Datasets details

To evaluate the performance of CACTI across a diverse set of data types, we chose datasets that contain only continuous
features, as well as datasets that contain some combination of categorical, binary, and integer features, labeled as mixed.
Also, to demonstrate robustness across datasets of different feature counts and dataset sizes, we benchmark across datasets
ranging from 8 features to 57 features, as well as datasets ranging from 2,111 samples to 47,621 samples.

Baseline benchmarking studies are conducted on all 10 datasets which are fully observed. The ablation and sensitivity
analysis are conducted on the four following datasets: bike, default, spam and students.

Table A9. Dataset summary

NAME
FEATURE
COUNT

TRAIN SPLIT
SIZE

TEST SPLIT
SIZE

TOTAL
SIZE FEATURE TYPE FEAT. DESC.

California HOUSING 8 16,512 4,128 20,640 CONTINUOUS ONLY YES

Magic GAMMA TELESCOPE 10 15,216 3,804 19,020 CONTINUOUS ONLY YES

Spam BASE 57 3,680 921 4,601 CONTINUOUS ONLY NO

Letter RECOGNITION 16 16,000 4,000 20,000 CONTINUOUS ONLY YES

ESTIMATION OF Obesity LEVELS 16 1,688 423 2,111 MIXED YES

SEOUL Bike SHARING DEMAND 12 7,008 1,752 8,760 MIXED NO

Default OF CREDIT CARD CLIENTS 23 24,000 6,000 30,000 MIXED NO

ADULT Income 14 38,096 9,525 47,621 MIXED
YES

(SOMETIMES)
ONLINE Shoppers

PURCHASING INTENTION 17 9,864 2,466 12,330 MIXED NO
PREDICT Students’

DROPOUT AND ACADEMIC SUCCESS 36 3,539 885 4,424 MIXED YES
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D. Extended Benchmarking Results
This section provides additional results to demonstrate CACTI’s performance against the 13 baseline methods as measured
by R2, RMSE, and WD across 10 datasets, 3 missingness scenarios (MCAR, MAR, and MNAR), and 4 missingness ratios
(0.1,0.3,0.5,0.7). Furthermore, we show performance on both the train split and the test split, demonstrating performance in
both in sample and out of sample scenarios.

Here we point out that a method that is missing from the R2 plots (not to be confused with R2 ≈ 0) implies lack of
convergence due to the loss function taking on NaN values. Notably, at missingness rates ≥ 30% ReMasker, DiffPuter,
notMIWAE and AutoComplete show convergence difficulties for one or more datasets using their recommend parameter
settings. In particular, ReMasker failed in all MCAR and MNAR datasets at 70% simulated missingness and in shoppers in
MCAR and MNAR at 30%. DiffPuter also fails in shoppers at 30% simulated missingness under all 3 missingness settings.
notMIWAE fails on income at MCAR 30% and spam in almost all settings except for MCAR 70%. Finally, AutoComplete
fails on the income dataset under MNAR and MCAR at 70% simulated missingness. We made sure to re-run these failed
runs at least twice to rule out random chance or a hardware issue. We report these failed runs to ensure transparency and
did not adjust the recommend/default parameters to try to force these methods to not converge to NaN to ensure a fair
comparison with all other methods which successfully ran and converged on all datasets.
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Table A10. Average performance comparison with standard errors (in parenthesis) of 15 imputation methods on the train/test splits
(separated by |) over 10 datasets at 10% missingness. Metrics (arrows indicate direction of better performance) evaluated under the MAR,
MCAR, and MNAR conditions. – indicates method cannot perform out-of-samples imputation. Best in bold and second best underlined.M
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(0.003)|(0.003)

0.715|0.681
(0.006)|(0.005)

0.881|0.891
(0.011)|(0.019)

0.827|0.815
(0.006)|(0.021)

5.260|5.158
(0.039)|(0.055)

3.209|3.334
(0.045)|(0.056)

6.050|6.071
(0.060)|(0.063)

S
IN

K
H

O
R

N
0.299|–

(0.001)|–
0.302|–

(0.014)|–
0.297|–

(0.002)|–
0.904|–

(0.008)|–
0.961|–

(0.019)|–
0.938|–

(0.010)|–
6.065|–

(0.155)|–
3.405|–

(0.145)|–
6.188|–

(0.213)|–

IC
E

0.386|0.383
(0.002)|(0.003)

0.374|0.360
(0.013)|(0.016)

0.364|0.370
(0.003)|(0.004)

0.804|0.687
(0.010)|(0.006)

0.890|0.826
(0.019)|(0.019)

0.848|0.783
(0.011)|(0.021)

7.282|5.714
(0.159)|(0.043)

3.742|3.162
(0.137)|(0.068)

7.063|5.918
(0.214)|(0.045)

A
U

T
O

C
O

M
P

L
E

T
E

0.290|0.274
(0.004)|(0.007)

0.281|0.278
(0.013)|(0.016)

0.264|0.271
(0.005)|(0.006)

0.882|0.939
(0.004)|(0.067)

1.007|1.007
(0.018)|(0.020)

0.976|0.968
(0.006)|(0.021)

10.894|10.787
(0.046)|(0.051)

5.973|6.080
(0.081)|(0.108)

11.617|11.663
(0.064)|(0.067)

M
IC

E
0.247|0.251

(0.002)|(0.003)
0.240|0.237

(0.012)|(0.012)
0.242|0.246

(0.002)|(0.002)
1.026|1.059

(0.009)|(0.013)
1.163|1.364

(0.026)|(0.054)
1.066|1.176

(0.013)|(0.028)
8.762|10.348

(0.169)|(0.242)
4.708|6.020

(0.128)|(0.271)
8.581|11.224

(0.271)|(0.477)

G
A

IN
0.213|0.248

(0.003)|(0.004)
0.206|0.247

(0.010)|(0.014)
0.238|0.266

(0.003)|(0.002)
0.942|0.818

(0.011)|(0.008)
1.067|0.990

(0.019)|(0.019)
1.002|0.923

(0.013)|(0.020)
9.284|7.880

(0.170)|(0.104)
5.219|4.621

(0.122)|(0.122)
9.568|8.296

(0.189)|(0.095)

S
O

F
TIM

P
U

T
E

0.114|0.132
(0.001)|(0.003)

0.104|0.112
(0.007)|(0.007)

0.114|0.127
(0.002)|(0.002)

0.990|0.892
(0.009)|(0.006)

1.147|1.096
(0.019)|(0.020)

1.062|1.010
(0.008)|(0.021)

8.795|8.013
(0.149)|(0.063)

5.049|4.930
(0.123)|(0.109)

9.255|8.977
(0.168)|(0.088)

M
IW

A
E

0.042|0.042
(0.003)|(0.002)

0.037|0.042
(0.010)|(0.010)

0.036|0.039
(0.004)|(0.002)

1.158|1.126
(0.009)|(0.022)

1.319|1.328
(0.013)|(0.034)

1.226|1.201
(0.019)|(0.023)

8.282|8.278
(0.132)|(0.158)

4.955|5.087
(0.144)|(0.160)

8.767|8.914
(0.155)|(0.163)

M
E

A
N

0.000|0.002
(0.000)|(0.001)

0.000|0.000
(0.000)|(0.000)

0.000|0.003
(0.000)|(0.001)

0.991|0.948
(0.010)|(0.010)

1.122|1.120
(0.016)|(0.023)

1.060|1.044
(0.009)|(0.021)

12.619|12.458
(0.167)|(0.170)

6.930|7.046
(0.112)|(0.136)

13.109|13.135
(0.145)|(0.163)
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CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

Table A11. Average performance comparison with standard errors (in parenthesis) of 15 imputation methods on the train/test splits
(separated by |) over 10 datasets at 30% missingness. Metrics (arrows indicate direction of better performance) evaluated under the MAR,
MCAR, and MNAR conditions. – indicates method cannot perform out-of-samples imputation. Best in bold and second best underlined.M

E
T
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O

D
R

2
(↑)

R
M

S
E

(↓)
W

D
(↓)

M
C
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M
A
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M
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M
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R
M

A
R

M
N

A
R

M
C

A
R

M
A

R
M

N
A

R

C
A

C
T

I
0.456|0.461

(0.002)|(0.003)
0.468|0.470

(0.010)|(0.011)
0.461|0.456

(0.003)|(0.004)
0.662|0.641

(0.008)|(0.005)
0.670|0.686

(0.018)|(0.016)
0.680|0.666

(0.004)|(0.006)
4.346|4.459

(0.018)|(0.027)
1.870|1.942

(0.033)|(0.030)
4.449|4.568

(0.029)|(0.027)

C
M

A
E

0.441|0.447
(0.002)|(0.002)

0.459|0.460
(0.009)|(0.010)

0.440|0.439
(0.002)|(0.003)

0.673|0.653
(0.008)|(0.007)

0.685|0.696
(0.017)|(0.016)

0.699|0.691
(0.005)|(0.008)

4.399|4.500
(0.012)|(0.023)

1.941|2.017
(0.032)|(0.033)

4.568|4.688
(0.030)|(0.033)

R
EM

A
S

K
E

R
0.437|0.438

(0.002)|(0.002)
0.445|0.443

(0.010)|(0.010)
0.402|0.402

(0.003)|(0.004)
0.681|0.665

(0.008)|(0.006)
0.691|0.712

(0.017)|(0.014)
0.729|0.709

(0.005)|(0.006)
4.620|4.719

(0.028)|(0.031)
2.461|2.519

(0.064)|(0.059)
4.788|4.928

(0.063)|(0.066)

D
IFFP

U
T

E
R

0.400|0.415
(0.003)|(0.004)

0.386|0.430
(0.010)|(0.012)

0.363|0.372
(0.004)|(0.004)

0.731|0.704
(0.009)|(0.005)

0.770|0.752
(0.020)|(0.021)

0.794|0.767
(0.024)|(0.024)

4.528|4.559
(0.026)|(0.034)

2.552|2.385
(0.100)|(0.064)

4.785|4.900
(0.077)|(0.075)

H
Y

P
E

RIM
P

U
T

E
0.406|–

(0.003)|–
0.439|–

(0.010)|–
0.393|–

(0.005)|–
0.722|–

(0.007)|–
0.727|–

(0.017)|–
0.757|–

(0.006)|–
4.261|–

(0.083)|–
2.459|–

(0.092)|–
4.302|4.866

(0.075)|–

M
IS

SF
O

R
E

S
T

0.346|0.338
(0.003)|(0.002)

0.381|0.362
(0.009)|(0.010)

0.337|0.322
(0.003)|(0.003)

0.766|0.753
(0.009)|(0.006)

0.789|0.817
(0.014)|(0.012)

0.790|0.782
(0.004)|(0.006)

6.776|6.798
(0.011)|(0.029)

3.804|3.827
(0.039)|(0.050)

7.010|7.057
(0.024)|(0.040)

N
O

TM
IW

A
E

0.347|0.347
(0.005)|(0.005)

0.347|0.348
(0.010)|(0.011)

0.289|0.296
(0.008)|(0.008)

0.754|0.737
(0.011)|(0.006)

0.801|0.824
(0.029)|(0.026)

0.824|0.795
(0.010)|(0.010)

5.559|5.600
(0.060)|(0.057)

2.380|2.391
(0.071)|(0.068)

6.262|6.204
(0.167)|(0.151)

S
IN

K
H

O
R

N
0.275|–

(0.001)|–
0.287|–

(0.008)|–
0.259|–

(0.002)|–
0.844|–

(0.008)|–
0.888|–

(0.015)|–
0.877|–

(0.005)|–
7.016|–

(0.010)|–
3.958|–

(0.045)|–
7.508|–

(0.039)|–

IC
E

0.281|0.275
(0.002)|(0.002)

0.341|0.327
(0.009)|(0.009)

0.259|0.251
(0.004)|(0.003)

0.856|0.869
(0.007)|(0.009)

0.783|0.834
(0.016)|(0.014)

0.932|0.930
(0.021)|(0.018)

4.818|5.179
(0.024)|(0.076)

2.743|2.813
(0.041)|(0.059)

5.325|5.667
(0.085)|(0.114)

A
U

T
O

C
O

M
P

L
E

T
E

0.239|0.240
(0.003)|(0.002)

0.288|0.291
(0.009)|(0.009)

0.213|0.210
(0.004)|(0.002)

0.882|0.862
(0.008)|(0.006)

0.876|0.895
(0.017)|(0.013)

0.940|0.921
(0.011)|(0.013)

10.143|10.181
(0.044)|(0.063)

5.035|5.073
(0.057)|(0.060)

10.443|10.421
(0.051)|(0.043)

M
IC

E
0.188|0.190

(0.002)|(0.002)
0.229|0.232

(0.009)|(0.009)
0.182|0.178

(0.002)|(0.002)
1.057|1.044

(0.006)|(0.004)
1.044|1.051

(0.010)|(0.013)
1.085|1.074

(0.003)|(0.003)
8.248|8.333

(0.041)|(0.031)
4.161|4.229

(0.059)|(0.056)
8.344|8.494

(0.035)|(0.048)

G
A

IN
0.186|0.206

(0.003)|(0.002)
0.179|0.215

(0.007)|(0.007)
0.166|0.177

(0.002)|(0.003)
0.914|0.856

(0.004)|(0.007)
0.954|0.933

(0.011)|(0.011)
1.008|0.962

(0.006)|(0.009)
7.726|7.345

(0.064)|(0.091)
4.437|4.105

(0.061)|(0.063)
9.527|9.137

(0.107)|(0.135)

S
O

F
TIM

P
U

T
E

0.093|0.102
(0.000)|(0.001)

0.096|0.105
(0.006)|(0.006)

0.091|0.091
(0.002)|(0.002)

1.021|0.957
(0.009)|(0.006)

1.063|1.024
(0.021)|(0.013)

1.054|0.987
(0.008)|(0.007)

8.345|7.865
(0.150)|(0.026)

4.835|4.457
(0.100)|(0.038)

8.728|8.235
(0.078)|(0.057)

M
IW

A
E

0.001|0.002
(0.000)|(0.000)

0.000|0.003
(0.000)|(0.000)

0.000|0.002
(0.000)|(0.000)

0.998|0.979
(0.008)|(0.006)

1.054|1.073
(0.014)|(0.010)

1.026|1.003
(0.005)|(0.006)

7.825|7.899
(0.012)|(0.032)

4.531|4.565
(0.043)|(0.044)

8.358|8.374
(0.046)|(0.046)

M
E

A
N

0.000|0.000
(0.000)|(0.000)

0.000|0.000
(0.000)|(0.000)

0.000|0.000
(0.000)|(0.000)

0.949|0.930
(0.008)|(0.006)

1.005|1.023
(0.014)|(0.010)

0.977|0.954
(0.004)|(0.005)

11.956|12.000
(0.012)|(0.026)

6.351|6.380
(0.048)|(0.053)

12.248|12.257
(0.031)|(0.031)
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CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

Table A12. Average performance comparison with standard errors (in parenthesis) of 15 imputation methods on the train/test splits
(separated by |) over 10 datasets at 50% missingness. Metrics (arrows indicate direction of better performance) evaluated under the MAR,
MCAR, and MNAR conditions. – indicates method cannot perform out-of-samples imputation. Best in bold and second best underlined.M
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A
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M
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R

C
A

C
T

I
0.354|0.358

(0.001)|(0.002)
0.431|0.435

(0.008)|(0.008)
0.354|0.355

(0.002)|(0.003)
0.730|0.723

(0.002)|(0.005)
0.683|0.694

(0.015)|(0.023)
0.771|0.755

(0.003)|(0.009)
5.128|5.152

(0.042)|(0.051)
1.835|1.905

(0.043)|(0.042)
5.209|5.289

(0.029)|(0.040)

C
M

A
E

0.341|0.344
(0.002)|(0.002)

0.420|0.423
(0.007)|(0.007)

0.338|0.339
(0.002)|(0.003)

0.747|0.743
(0.007)|(0.008)

0.692|0.702
(0.016)|(0.022)

0.782|0.766
(0.003)|(0.008)

5.331|5.358
(0.056)|(0.059)

1.899|1.980
(0.044)|(0.046)

5.359|5.436
(0.032)|(0.032)

R
EM

A
S

K
E

R
0.307|0.311

(0.001)|(0.001)
0.397|0.398

(0.007)|(0.007)
0.263|0.265

(0.003)|(0.004)
0.761|0.754

(0.002)|(0.006)
0.694|0.710

(0.016)|(0.025)
0.838|0.821

(0.003)|(0.009)
5.605|5.610

(0.026)|(0.043)
2.770|2.853

(0.089)|(0.085)
6.071|6.124

(0.062)|(0.053)

D
IFFP

U
T

E
R

0.292|0.296
(0.003)|(0.003)

0.332|0.333
(0.007)|(0.007)

0.261|0.266
(0.002)|(0.003)

0.844|0.853
(0.015)|(0.014)

0.806|0.813
(0.012)|(0.022)

0.879|0.864
(0.005)|(0.008)

5.593|5.550
(0.055)|(0.059)

2.924|2.946
(0.068)|(0.063)

5.984|5.972
(0.034)|(0.038)

H
Y

P
E

RIM
P

U
T

E
0.290|–

(0.002)|–
0.397|–

(0.007)|–
0.270|–

(0.003)|–
0.908|–

(0.009)|–
0.792|–

(0.018)|–
0.935|–

(0.013)|–
5.618|–

(0.149)|–
3.033|–

(0.089)|–
5.644|–

(0.199)|–

M
IS

SF
O

R
E

S
T

0.261|0.249
(0.001)|(0.003)

0.330|0.318
(0.006)|(0.007)

0.247|0.239
(0.002)|(0.004)

0.873|0.812
(0.006)|(0.003)

0.836|0.805
(0.018)|(0.020)

0.904|0.850
(0.010)|(0.010)

7.715|6.176
(0.133)|(0.030)

4.143|3.611
(0.094)|(0.057)

7.656|6.417
(0.173)|(0.037)

N
O

TM
IW

A
E

0.251|0.253
(0.003)|(0.003)

0.302|0.300
(0.006)|(0.006)

0.226|0.229
(0.004)|(0.004)

0.809|0.806
(0.003)|(0.005)

0.795|0.810
(0.022)|(0.027)

0.876|0.864
(0.006)|(0.010)

6.252|6.242
(0.046)|(0.050)

3.055|3.076
(0.081)|(0.080)

6.449|6.445
(0.064)|(0.074)

S
IN

K
H

O
R

N
0.154|–

(0.001)|–
0.209|–

(0.005)|–
0.139|–

(0.001)|–
1.007|–

(0.015)|–
0.961|–

(0.035)|–
1.023|–

(0.013)|–
6.827|–

(0.141)|–
3.552|–

(0.100)|–
6.822|–

(0.182)|–

IC
E

0.232|0.229
(0.001)|(0.002)

0.288|0.279
(0.008)|(0.008)

0.207|0.206
(0.002)|(0.003)

0.931|0.870
(0.007)|(0.004)

0.863|0.833
(0.018)|(0.022)

0.975|0.923
(0.011)|(0.009)

6.535|4.858
(0.139)|(0.041)

3.522|2.927
(0.081)|(0.042)

6.391|5.046
(0.173)|(0.034)

A
U

T
O

C
O

M
P

L
E

T
E

0.193|0.195
(0.003)|(0.003)

0.261|0.259
(0.006)|(0.007)

0.173|0.177
(0.002)|(0.003)

0.891|0.890
(0.002)|(0.007)

0.847|0.873
(0.012)|(0.023)

0.942|0.930
(0.003)|(0.010)

10.552|10.550
(0.024)|(0.065)

4.865|4.941
(0.075)|(0.067)

10.733|10.781
(0.034)|(0.038)

M
IC

E
0.132|0.130

(0.001)|(0.002)
0.191|0.192

(0.007)|(0.008)
0.120|0.121

(0.001)|(0.003)
1.132|1.191

(0.009)|(0.012)
1.071|1.164

(0.018)|(0.029)
1.155|1.199

(0.012)|(0.028)
9.016|9.803

(0.141)|(0.176)
4.457|5.132

(0.099)|(0.145)
8.658|9.544

(0.200)|(0.405)

G
A

IN
0.125|0.133

(0.001)|(0.003)
0.136|0.170

(0.007)|(0.010)
0.071|0.065

(0.002)|(0.003)
1.147|1.073

(0.010)|(0.012)
1.013|0.961

(0.022)|(0.021)
1.386|1.376

(0.013)|(0.013)
12.572|10.876
(0.177)|(0.261)

4.998|4.579
(0.119)|(0.100)

16.199|16.287
(0.266)|(0.211)

S
O

F
TIM

P
U

T
E

0.076|0.076
(0.001)|(0.001)

0.079|0.088
(0.005)|(0.005)

0.063|0.061
(0.002)|(0.003)

1.070|1.017
(0.007)|(0.005)

1.037|0.996
(0.021)|(0.024)

1.116|1.053
(0.008)|(0.008)

8.413|7.772
(0.143)|(0.043)

4.703|4.520
(0.102)|(0.062)

8.398|7.947
(0.163)|(0.052)

M
IW

A
E

0.023|0.018
(0.000)|(0.001)

0.013|0.013
(0.003)|(0.003)

0.019|0.019
(0.002)|(0.001)

1.138|1.172
(0.010)|(0.027)

1.166|1.195
(0.030)|(0.040)

1.167|1.167
(0.017)|(0.020)

8.381|8.469
(0.142)|(0.183)

4.230|4.305
(0.111)|(0.110)

8.368|8.454
(0.153)|(0.136)

M
E

A
N

0.000|0.000
(0.000)|(0.000)

0.000|0.000
(0.000)|(0.000)

0.000|0.000
(0.000)|(0.000)

0.989|0.986
(0.006)|(0.009)

0.997|1.011
(0.018)|(0.024)

1.023|1.007
(0.009)|(0.014)

12.640|12.638
(0.116)|(0.122)

6.340|6.393
(0.110)|(0.108)

12.573|12.583
(0.156)|(0.154)
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CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

Table A13. Average performance comparison with standard errors (in parenthesis) of 15 imputation methods on the train/test splits
(separated by |) over 10 datasets at 70% missingness. Metrics (arrows indicate direction of better performance) evaluated under the MAR,
MCAR, and MNAR conditions. – indicates method cannot perform out-of-samples imputation and NA indicates method failed. Best in
bold and second best underlined. M
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(a) MCAR at 10% missingness
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(b) MAR at 10% missingness
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(c) MNAR at 10% missingness

Figure A5. Performance comparison of CACTI against 13 baseline methods. Experiments were performed on 10 datasets, under MCAR,
MAR, and MNAR, at 10% missingness. Results shown as mean ± 95% CI.
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(a) MCAR at 30% missingness
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(b) MAR at 30% missingness
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(c) MNAR at 30% missingness

Figure A6. Performance comparison of CACTI against 13 baseline methods. Experiments performed on 10 datasets, under MCAR, MAR,
and MNAR, at 30% missingness. Results shown as mean ± 95% CI.
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(a) MCAR at 50% missingness
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(b) MAR at 50% missingness
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(c) MNAR at 50% missingness

Figure A7. Performance comparison of CACTI against 13 baseline methods. Experiments were performed on 10 datasets under MCAR,
MAR, and MNAR at 50% missingness. Results shown as mean ± 95% CI.
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(a) MCAR at 70% missingness
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(b) MAR at 70% missingness

29



CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

bike california default income letter magic obesity shoppers spam students

0.0

0.1

0.2

0.3

0.4

R
2

0.0

0.5

1.0

1.5

2.0

2.5

R
M

S
E

test train test train test train test train test train test train test train test train test train test train

0

10

20

30

W
D

Method CACTI CMAE DiffPuter HyperImpute MissForest notMIWAE Sinkhorn ICE AutoComplete MICE GAIN SoftImpute MIWAE Mean

(c) MNAR at 70% missingness

Figure A8. Performance comparison of CACTI against 13 baseline methods. Experiments were performed on 10 datasets under MCAR,
MAR, and MNAR at 70% missingness. Results shown as mean ± 95% CI.

Table A14. Comparison of runtime and memory statistics of CACTI with ReMasker on 10 datasets. Experiments were performed under
MAR scenario at 30% missingness. The runtime is measured for the training and inference (on train/test split) stages in seconds (s) and
peak GPU memory consumed in gigabytes (GB).

METHOD DATA
PER EPOCH

(S)
INFER TRAIN SPLIT

(S)
INFER TEST SPLIT

(S)
PEAK GPU MEM

(GB)

CACTI

OBESITY 0.42 6.15 1.52 0.16
STUDENTS 0.64 15.53 3.84 0.18
SPAM 0.71 16.36 4.11 0.26
BIKE 1.24 25.82 6.38 0.16
SHOPPERS 1.68 34.85 8.67 0.16
MAGIC 2.39 55.37 13.70 0.16
LETTER 2.91 82.06 21.01 0.16
CALIFORNIA 2.95 59.93 14.92 0.08
DEFAULT 4.61 101.91 24.84 0.16
INCOME 5.76 165.59 42.17 0.16

REMASKER

OBESITY 0.28 4.28 1.07 0.14
STUDENTS 0.49 9.01 2.24 0.14
SPAM 0.58 9.30 2.34 0.15
BIKE 1.06 17.74 4.41 0.14
SHOPPERS 1.55 25.46 6.30 0.14
MAGIC 2.09 38.23 9.53 0.14
LETTER 2.10 40.67 10.09 0.15
CALIFORNIA 2.37 41.89 10.44 0.04
DEFAULT 3.18 61.21 15.18 0.15
INCOME 4.80 95.45 23.94 0.15
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E. Extended Ablation Analysis Results
In this section, we present additional ablation analysis results. First, Table A15 summarizes the results of a 3-way comparison
(over all 10 datasets) between CACTI, CMAE (CACTI without context) and ReMasker (the strongest MAE with random
masking) to quantify the magnitude and the statistical significances of the improvements driven by MT-CM, context
awareness and the combination of the two. A one-sided paired t-test is used to evaluate the statistical significance of
improvement of the target method over the baseline. Next, Figure A9 shows the per-dataset difference in R2 performance
between CACTI and CMAE across all datasets, missingness situations and simulated missingness percentages. We also
perform additional ablation comparing the effects of calculating the loss over observed only values, masked only values and
a combination of the two in Table A16.

These results are followed by the complete (per-dataset) results of all our ablation analysis, demonstrating the effects of
(a) MT-CM, RM, and/or CTX and (b) loss function on model performance. For this experiment we use 4 UCI datasets
(bike, default, spam, and students), each under three missingness scenarios (MCAR, MAR, and MNAR), with a simulated
missingness ratio of 0.3. We measure performance using R2, RMSE, and WD, on both the train and test split.

Table A15. Paired t-test to evaluate statistical significance of gain in performance between CACTI, CMAE (CACTI w/o context) and
ReMasker.

MISSINGNESS TARGET METHOD BASELINE METHOD AVG. R2 GAIN P-VALUE

ALL
CACTI REMASKER 0.034 4.4E-7

CACTI CMAE 0.013 1.1E-5

CMAE REMASKER 0.021 4.2E-5

MCAR
CACTI REMASKER 0.023 5.5E-4

CACTI CMAE 0.014 3.E-3

CMAE REMASKER 0.017 8.9E-3

MAR
CACTI REMASKER 0.025 2.3E-2

CACTI CMAE 0.007 9.4E-2

CMAE REMASKER 0.018 4.8E-2

MNAR
CACTI REMASKER 0.054 1.1E-4

CACTI CMAE 0.017 8.7E-4

CMAE REMASKER 0.037 4.6E-4

Table A16. Loss ablations. Effect of the loss function on accuracy. Metrics represent the average across four datasets (30% missingness).

LOSS TYPE
R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

LO + LM 0.46 0.46 0.68 0.67
LM 0.41 0.43 0.71 0.70
LO 0.03 0.04 2.67 2.93
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Figure A9. Difference in R2 between CACTI and CMAE across all 10 datasets, missingness conditions and simulated missingness
percentages. R2 change > 0 indicates CACTI is better than CMAE under the respective setting.
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Figure A10. Experiments performed across four datasets split into train/test, under MCAR, MAR, and MNAR, at 30% missingness.
Metrics (R2, RMSE, WD) are reported as mean ± 95% CI. Ablations demonstrate how model performance is affected by MT-CM, RM,
and/or CTX.
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Figure A11. Experiments performed across four datasets split into train/test, under MCAR, MAR, and MNAR, at 30% missingness.
Metrics (R2, RMSE, WD) are reported as mean ± 95% CI. Ablations demonstrate how model performance is affected by the loss
function.
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F. Extended sensitivity analysis results
In this section, we present the present the average sensitivity analysis results for context embedding proportion (Table A17)
and masking rate (Figure A12). All sensitivity analysis experiments are performed on 4 UCI datasets (bike, default, spams,
students), under 2 missingness scenarios (MAR and MNAR), and 0.3 missingness ratio, split into train and test splits.
Performance is measured using R2, RMSE, and WD.

These results are followed by the complete (per-dataset) results of all our sensitivity analysis. Figure A13, Figure A14,
Figure A15, Figure A16, Figure A17, and Figure A18 show the effects of independently varying MT-CM rate, encoder
depth, decoder depth, embedding size, context embedding model, and context embedding proportion respectively.

Table A17. Context embedding sensitivity. Average performance effect of context (CTX) proportions (30% missing).

CTX
PROPORTION

R2 (↑) RMSE (↓)

MAR MNAR MAR MNAR

0.25 0.47 0.46 0.66 0.67
0.50 0.48 0.46 0.66 0.68
0.75 0.46 0.46 0.67 0.68

0.40

0.44

0.48

R
2

Missingness Type MAR MNAR

3.00

4.00

5.00

6.00

7.00

10 30 50 80 90 95 99

Masking Rate

W
D

Figure A12. Masking rate sensitivity. Average performance metrics over a range of MT-CM masking rate choices. Evaluated under
MAR and MNAR with at 30% missingness.
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Figure A13. Experiments performed across four datasets split into train/test, under MAR and MNAR, at 30% missingness. Metrics (R2,
RMSE, WD) are reported as mean ± 95% CI and show model sensitivity to MT-CM.
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Figure A14. Experiments performed across four datasets split into train/test, under MAR and MNAR, at 30% missingness. Metrics (R2,
RMSE, WD) are reported as mean ± 95% CI and show model sensitivity to encoder depth.
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Figure A15. Experiments performed across four datasets split into train/test, under MAR and MNAR, at 30% missingness. Metrics (R2,
RMSE, WD) are reported as mean ± 95% CI and show model sensitivity to decoder depth.
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Figure A16. Experiments performed across four datasets split into train/test, under MAR and MNAR, at 30% missingness. Metrics (R2,
RMSE, WD) are reported as mean ± 95% CI and show model sensitivity to embedding size.
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Figure A17. Experiments performed across four datasets split into train/test, under MAR and MNAR, at 30% missingness. Metrics (R2,
RMSE, WD) are reported as mean ± 95% CI and show model sensitivity to context embedding model.
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Figure A18. Experiments performed across four datasets split into train/test, under MAR and MNAR, at 30% missingness. Metrics (R2,
RMSE, WD) are reported as mean ± 95% CI and show model sensitivity to context embedding proportion.

39


