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Abstract

Gene expression is an essential cellular process that is controlled by a complex and
orchestrated regulatory network of transcription factors and epigenetic modifica-
tions. The advancement in single-cell RNA sequencing enables the investigation of
gene expression control at an unprecedented fine resolution and large scale. Yet,
understanding the sequence determinants underlying distinct primary cell types
remains elusive and challenging. While deep neural networks have shown strong
performance in predicting gene expression, the lack of meaningful explanations of
predictions, especially in systematic understanding of the molecular mechanisms,
motivates the search for more transparent models. We present an automated model
that predicts gene expression from genetic sequences while providing both strong
performance and direct interpretations of predictions. Our model combines a pre-
trained genetic sequence class model and neural architecture search with symbolic
regression to distill explainable genomic equations. We applied our method to an in-
house human pituitary (a specialized gland in the brain that controls the endocrine
system) single-cell gene expression data. The distilled genomic equation prediction
accuracy (Pearson r=0.713) is comparable to other explainable models, without
artificially introducing strong inductive bias that may not hold for the complex
and potentially non-linear cellular system. The genomic equations shed light on
how sequence classes interact and regulate the cell type-specific, finely-controlled
transcriptomic program in the human endocrine system. To our knowledge, this
is the first attempt at distilling genomic equations from neural networks using
symbolic regression.

1 Introduction

The conversion of genetic information to instructions for synthesizing RNA resulting in proteins is
known as gene expression [1]. As a fundamental process conserved in all known lifeforms, gene
expression is controlled by a complex and orchestrated regulatory network of transcription factors
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and epigenetic modifications [2]. Collectively, a coordinated set of gene expression changes form a
cellular transcription program, that defines the identity and function of a cell. Within an organism,
despite all cells sharing the same genome encoded in DNA, the transcription program are diverse and
highly specific for cells of different types [3]. Understanding the finely-controlled gene transcription
program has been challenging – historically, experimental technologies are restricted to profile bulk
tissues with a mixture of different cell types, therefore losing the signals from individual cells and cell
types [4]. Recent single-cell and single-nuclei RNA sequencing (scRNA-seq/snRNA-seq) advances
have increased both the amount and granularity of available gene expression data. Unlike conventional
experiments conducted in bulk tissues, scRNA-seq profiles the relative gene expression levels in each
individual cell [5]. Typically, each scRNA-seq library measures approximately 3,000-4,000 genes per
cell across tens of thousands of cells [6]. The high-dimensional and data-rich scRNA-seq provides
suitable basis for machine learning to decipher the complex transcriptional control.

Many recent advances in predicting gene expression use deep neural networks [7–10] to improve
predictive performance while providing genomic insights on tasks such as variant effect prediction
and identification of functional elements in non-coding regions of genes. While these models are
increasingly powerful, it is also more difficult to explain the predictions of so-called black box models.
Black box models such as Enformer [10] may output highly correlated predictions for some genomic
variants, yet Sasse et al. [11] found that predictions for up to 43% of genes were anti-correlated with
the measured gene expression. While explainable artificial intelligence (XAI) methods can be applied
to interpret incorrect predictions of such black box models, the output from the XAI process is only
feature attributions [12]. Without more explicit relational explanations for predictions, it is difficult
for these empirical feature importance findings to be used to construct general theories or inform
scientific understanding. Despite empirical advances, the details of the relationship between genetic
sequence and gene expression are still a mystery.

To address this challenge, explainable symbolic models hold the promise of discovering systematic
knowledge on cellular transcription programs. A more explainable alternative exists in linear or
symbolic models, but these generally are outperformed by deep neural networks. In light of this,
[13, 14] have successfully distilled known and novel equations governing physical laws in the field
of astrophysics from deep neural networks using symbolic regression. However, to our knowledge,
there have not yet been any attempts to do the same in high-dimensional genomic sequences.

We propose a model that automatically produces genomic equations predicting gene expression from
sequences by distilling a neural network [13, 14] trained on genetic sequence classes generated from
a pre-trained model [15]. We use Neural Architecture Search (NAS) to tune and train a deep neural
network with a latent bottleneck. Two sets of symbolic regression are then performed, to explain the
mapping from input to latent space, and latent space to gene expression, which are joined together
to result in genomic equations that predict gene expression from sequence classes. Our method is
applied to human pituitary single-cell gene expression data, and aims to improve the understanding
of the interaction between sequence classes and genes actively expressed in the human endocrine
system.

2 Related Work

Predicting Gene Expression from Sequence. While gene expression prediction from sequence
data has been studied using conventional machine learning methods, including Bayesian networks
and Bayes classifiers [16, 17], deep learning approaches have increased in recent years [8, 9, 18].
Deep convolutional neural networks have been trained on increasingly long-range genetic sequences
to directly predict gene expression, allowing the model to take into account both the coding and
non-coding regions of input genes [7–9]. More recently, Transformer-based architectures [19] such
as Enformer [10] have improved over deep convolutional neural networks by further expanding input
sequence size and improving explainability of results with attention visualization. However, this
direct sequence to gene expression method has been shown to fail to generalize in certain cases [11],
motivating the search for other models that may generalize better.

Regulatory Sequence Models. In contrast to directly modeling primary DNA sequences for gene
expression prediction, an alternative strategy uses a two-stage approach: a deep neural network is
used to obtain epigenomic features such as chromatin profiles [18, 20, 21], which are then used to
train additional models such as linear models to predict gene expression. In comparison to neural
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networks trained directly on sequence data without a meaningful latent space, the representations
learned by regulatory sequence models can be used to identify changes in genetic sequence that may
exist, but not affect gene expression [18]. While not useful for predicting gene expression, this model
still offers insight into genome understanding. In particular, Chen et al. [15] introduce Sei, a deep
model that takes as input 4,096 nucleotide sequences and outputs 21,907 chromatin profiles, which
can be directly converted into 40 regulatory activities (sequence classes), identified by clustering the
chromatin profile predictions from 30 million sequence comprising the human genome. Compared
to existing regulatory sequence models [18, 20, 21], Sei has substantially improved the quality and
abstraction of learned representations from a perspective of global classification and quantification of
sequence activities.

Neural Architecture Search. Neural Architecture Search (NAS) is a method to automatically identify
high performing neural network model architectures, removing the need to manually adjust model
layers and continually train new models to find the best-performing configuration. Various searching
algorithms have been developed to efficiently search optimal architectures from a predefined model
space, including reinforcement learning-based (RL-based) [22], black-box optimizers of Bayesian
optimization and evolutionary algorithms [23], and differentiable methods [24]. Searchers that use a
RL-based controller are straightforward to generalize to composite reward functions [25, 26], while
other searchers (e.g. differentiable) are potentially restricted to using accuracy as a reward.

Symbolic Regression. By searching a space of variables, mathematical operators, functions, and
constants, symbolic regression aims to identify mathematical equations that explain the relationship
between inputs and outputs by generating and recombining equations. Models learned with symbolic
regression are more powerful and potentially generalize better than linear regression. There exist
many processes that do not have a direct linear relationship between their independent and dependant
variables. Since linear regression assumes a linear relationship between inputs and outputs, it can be
difficult to obtain strong models of non-linear processes using linear regression. In contrast, symbolic
regression does not make any model assumptions, and is more suitable for modeling non-linear
relationships. The search in symbolic regression may be conducted with Bayesian methods [27] or
neural networks [28], but is often performed using a genetic algorithm approach [29, 30]. When
fitting equations with symbolic regression, random sets of expressions are generated and evaluated in
an iterative fashion, such that the highest performing expressions are mutated until a pre-determined
condition is met. It should be noted that the search space grows exponentially with the number of
input variables, potentially drastically increasing the amount of time required for search to obtain
a strong model. In this work we distill genomic equations from a neural network using symbolic
regression.

3 Methods

Data collection and preprocessing. The data used to train our model was obtained from a collabora-
tor in the form of single-cell gene expression data. Gene expression was averaged over cell types
to produce the initial target gene expression values. Since many genes are not expressed for certain
cell types, including the one of focus in our study, we transform the target data so that many targets
are not effectively zero to improve training. We apply a log-transform then normalize the initial
target gene expression values to the range [-1, 1] to produce the actual targets used during training,
denoted by g, where g0 represents the initial target gene expression: g1 = log2(g0 + pseudocount),
g = g1−min(g1)

max(g1)−min(g1)
× 2− 1, where pseudocount = 0.001.

To obtain the genetic sequence data for each gene, the Matched Annotation from NCBI and EMBL-
EBI (MANE) [31] transcription start sites (TSSes) were identified for each gene using the GRCh38
reference genome assembly. A 4,096-nucleotide window centered on the TSS of each gene was then
extracted to be used as input to our model.

Feature construction and model space definition. To predict gene expression from sequence data,
we can construct a neural network that takes one-hot encoded nucleotides from gene sequences and
outputs gene expression predictions, as in [7–10]. However, since we aim to distill more explainable
genomic equations using symbolic regression, it is necessary to reduce the dimensionality of the
inputs due to the exponential complexity of symbolic regression with respect to number of input
variables. Following Zhou et al. [18] and [21], we choose to use a two-stage process to train a model
that predicts gene expression. Therefore, we use the pre-trained Sei [15] to obtain 40 sequence class
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embeddings of 4,096-nuclueotide genetic sequence data centered on gene transcription start sites.
These sequence classes are used to train a neural network with a latent bottleneck to predict gene
expression. The latent bottleneck reduces the dimension of the input from 40, decreasing the size
of the search space of a symbolic regression from the latent space to the gene expression (output)
space. In order to distill genomic equations from the neural network, symbolic regression is also
performed on the sequence class (input) data to predict the latent representations from the trained
neural network.

NAS to optimize gene expression prediction. We use NAS to train the neural network to optimize for
the latent space size, activation functions used in each layer, degree of dropout, and to prevent model
collapse in early stages of model tuning. The model space is comprised by a set of 3 fully connected
layers with ReLU, tanh, GeLU, or sigmoid activation followed by dropout, a fully connected layer
to a lower latent dimension with the aforementioned activation functions, followed by another set
of 3 fully connected layers identically defined as prior to the latent layer. For the NAS, the Adam
optimizer [32] was used with learning rate equal to 0.001, and the loss function was mean-squared
error (MSE). The reward optimized for during the NAS is the Pearson correlation of the network’s
predictions with the measured values, which is also used to evaluate our model. We implement NAS
in Python using AMBER [33] with PyTorch [34].

Genomic equation distillation. Symbolic regression is used to obtain equations that explicitly
relate the Sei sequence classes to gene expression. Specifically, two symbolic regressions are
performed sequentially, the first of which distills equations relating the sequence classes to the latent
representation of the neural network. The second symbolic regression maps from the predictions of
the first symbolic regression of the neural network, to the output gene expression space. While it is
feasible to perform the two symbolic regressions in parallel by training the latter regression on the
latent representations from the neural network, we decided against this. Since the distilled equations
from the first regression may not exactly match the network from which they were distilled, but will
be part of the final model, we choose to use the distilled predictions for the latent space to distill the
final equations from latent to output space. We implement both symbolic regressions using PySR
[30] with the following operators: addition, multiplication, subtraction, square, negation, exponential,
and inverse, and select the equations with lowest MSE loss. We limit the complexity of distilled
equations to 20, where one unit of complexity is defined as the instance of a single variable, operator,
or constant in an equation, the default in PySR [30].

Figure 1: Overview of the automated genomic equation distillation framework

Baselines and Experimental details. We evaluate our results using the Pearson correlation coefficient
between the predicted and measured gene expression values for each method. We first automatically
select the best performing neural network architecture with NAS, using the Pearson correlation of
the network directly as the reward for the NAS. Then, we distilled genomic equations from this
neural network using symbolic regression (SR(NAS | NN)). Additionally, we report the Pearson
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correlation coefficient for several baselines: ExPectoSC [21], a regularized linear regression (Ridge),
a hand-tuned neural network without NAS (NN), the NAS-trained neural network the genomic
equations are distilled from (NAS | NN), and genomic equations from a symbolic regression trained
on the 40 sequence classes to directly predict gene expression (SR).

4 Results

We apply our method to gene expression data from our in-house pituitary snRNA-seq data, which
consists of 76,929 cells with gene expression sparsely measured for 33,330 genes, such that most
genes are not expressed in each cell. Specifically, we use one of the most abundant cell types in
human pituitary, Gonadotropes, and took the average gene expression over Gonadotropes cells for
robust cell type expression quantification. After matching genes from our data to the MANE TSSes
[31], we obtain a total of 17,771 genes for which appropriate genetic sequences were available. A
random subset of 20% of genes are held out for final model evaluation, and the other 80% of genes
are randomly split for training (72%) and validation (8%).

Table 1: Performance Evaluation

Model Explainable Pearson Correlation (↑)

ExPectoSC [21] ✓ 0.718
Ridge Regression ✓ 0.717
SR ✓ 0.696
NN ✗ 0.717
NAS | SR ✗ 0.742
NAS | NN ✗ 0.751

SR(NAS | SR) ✓ 0.709
SR(NAS | NN) ✓ 0.713

4.1 NAS optimizes gene expression prediction

Automation via NAS makes it more feasible to explore a larger set of architectures from a model
space of n=170,859,375 combinations. We use NAS to search for the optimal number of parameters
in both the latent space and the fully connected layers, as well as to identify the highest performing
activation functions for each layer and the number of layers. Compared to a naive manually-selected
architecture, NAS improved neural network test Pearson correlation coefficient from 0.717 to 0.751,
as seen in Table 1.

Since a key motivation of our work is to generate genomic equations explaining neural network
predictions, we also include an ablation where the NAS is informed by distilled genomic equations
for each architecture explored in the model space. The NAS is performed with its reward being the
Pearson correlation from distilled genomic equations during the architecture search (NAS | SR). In
this way, the final architecture found by the NAS will have been selected based on the predictive
power of the genomic equations that could be distilled from it. However, in practice, this method of
performing symbolic regression to obtain reward during NAS has limited benefits. Since the search
space for symbolic regression is too expansive to quickly fit meaningful equations for the model
architectures explored during NAS, this is more computationally expensive than the other methods
and does not offer any clear benefits in terms of quality of distilled equations (SR(NAS | SR)).

4.2 Distilled symbolic regression is predictive

In the process of searching for the best equations using symbolic regression, many candidate models
are explored. At the end of the search, equations of several different complexities are available to
be selected. PySR [30] offers multiple suggested methods to select the best equations among the
different complexities. While we select the genomic equations that minimize the MSE loss (the
accuracy criterion), the PySR defined best criterion selects equations that have the highest score,
defined as the negated derivative of the log-loss with respect to complexity, among equations with a
loss at least 50% better than the model with highest accuracy [30].
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Table 2: Latent Equation Complexity Analysis and Test Performance

Complexity (per latent equation) Number of Sequence Classes Pearson Correlation (↑)

3 4 0.643
5 4 0.636
6 6 0.662
7 11 0.662
9 13 0.680
18 19 0.706

best 8 0.676
accuracy 17 0.713

Table 2 displays the complexity, number of input variables, and performance of the distilled equations
that model the neural network’s latent space from genetic sequence classes (SR(NAS | NN)). The
number of sequence classes and Pearson correlation are calculated on test data using the lowest
loss distilled equation that models gene expression given the network’s latent representations. The
accuracy or lowest loss selection criteria results in the strongest performance, and it is shown in Table
1 that less than half of the 40 sequence classes are necessary to reach comparable performance to
other explainable models.

The symbolic regression conducted directly on the sequence classes was the simplest and lowest
performing model, resulting in an equation that uses only 6/40 sequence classes, below.

ĝ = 0.193·(XTF4 − 1.16)
(
(XE10 − 0.725)

2
+XPC3 +XL6

)
+0.193XL4+0.193XHET6−0.0121

Notably, XE10 represents the enhancer sequence class in Brain; XTF4 represents a specific transcrip-
tion factor, OTX2, that is essential for the normal development of brain, eye [35] and pituitary gland
[36]. These terms are consistent with the biological origin of Gonadotropes cell type in the pituitary
gland. Future investigations will determine the specificity of these sequence classes. The labels for
each sequence class are in Appendix A, and the distilled genomic equations are in Appendix B.

The above equation is less complex than the equations distilled from the neural networks, but the best
performing distilled genomic equation is also a function of the six sequence classes above. However,
the model distilled from the symbolic regression informed neural network contains only 5/6 of the
sequence classes used in the direct symbolic regression, as its predictions do not depend on sequence
class L4. Noting that L4 represents a low signal class, indicating low enrichment in the histone
markers measured in [15], this difference in equation dependencies is understandable in context.
The inclusion of another low signal class L5 may explain the absence of L4 in the aforementioned
equation.

4.3 Relaxation of linear assumption improves modeling of highly-expressed genes

We hypothesize that more expressive genes will have higher nonlinear interactions with underlying
genetic sequence. Overall, highly-expressed genes are not well captured by either the linear or the
nonlinear model, likely due to the training data imbalance; we do not observe statistical differences
between the error residuals from ridge regression and our distilled genomic equation (Appendix
Fig. 3). To investigate this hypothesis, we instead design two subsets of genes for which either the
ridge regression (linear subset) or the genomic equation (nonlinear subset) has substantially higher
predictive power. These subsets were identified by selecting genes for which a model’s error was
lower than 75% of genes, while the other model’s error was higher than 50% of its predictions. The
gene names within each subset for each model are listed in Appendix D. With this, we hope to
identify genes where the relationship between sequence class and expression is either strongly linear
or nonlinear. A two-sample t-test indicates there is a statistically significant (p=0.030) difference in
the means of the two subsets, where the genes in the nonlinear subset have higher gene expression on
average. This finding is in-line with our hypothesis, and potentially consistent with current biological
understandings of synergistic gene expression regulation [37, 38].
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Figure 2: Boxplots of gene subset expression. Nonlinear subset has a significantly higher expression
level than linear subset (p=0.030, t-test).

4.4 Additional Data

In addition to the Gonadotropes cell type, we test our method on two other cell types from our
single-cell gene expression data: Somatotropes and Stem Cells. We find that our distilled equations
perform similarly to ridge regression, while ExPectoSC performs more strongly. As can be seen in
Appendix B, these genomic equations are also functions of the sequence classes that are related to
the Brain and Promoter, similar to those distilled for the Gonadotropes. We hope to identify further
commonalities between genomic equations across cell types in the future.

Table 3: Performance Evaluation: Additional Cell Types

Somatotropes Stem Cells

Model Explainable Pearson Correlation (↑)

ExPectoSC [21] ✓ 0.728 0.730
Ridge Regression ✓ 0.720 0.708
NN ✗ 0.720 0.714
NAS | NN ✗ 0.746 0.749

SR(NAS | NN) ✓ 0.709 0.702

5 Conclusion

In this work, we introduce an automated method of distilling genomic equations from a neural
network predicting gene expression from gene sequence classes. We evaluated the performance of
both the neural network and its genomic equations distilled via symbolic regression and found they
were comparable. Our results imply that symbolic regression may have further use in understanding
the relationship between genetic sequences and gene expression. The distilled genomic equations
help explain the neural network predictions, and may improve understanding of the importance of
different input sequence classes and their effect on gene expression. Furthermore, as the first work to
our knowledge that applies symbolic regression to distill genomic equations from a neural network,
we hope to introduce and motivate applications of similar methods to single-cell RNA sequencing
tasks.
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Appendix

A Sei Sequence Classes [15]

Sequence class label Sequence class name Rank by size Group
PC1 Polycomb / Heterochromatin 0 PC
L1 Low signal 1 L
TN1 Transcription 2 TN
TN2 Transcription 3 TN
L2 Low signal 4 L
E1 Stem cell 5 E
E2 Multi-tissue 6 E
E3 Brain / Melanocyte 7 E
L3 Low signal 8 L
E4 Multi-tissue 9 E
TF1 NANOG / FOXA1 10 TF
HET1 Heterochromatin 11 HET
E5 B-cell-like 12 E
E6 Weak epithelial 13 E
TF2 CEBPB 14 TF
PC2 Weak Polycomb 15 PC
E7 Monocyte / Macrophage 16 E
E8 Weak multi-tissue 17 E
L4 Low signal 18 L
TF3 FOXA1 / AR / ESR1 19 TF
PC3 Polycomb 20 PC
TN3 Transcription 21 TN
L5 Low signal 22 L
HET2 Heterochromatin 23 HET
L6 Low signal 24 L
P Promoter 25 P
E9 Liver / Intestine 26 E
CTCF CTCF-Cohesin 27 CTCF
TN4 Transcription 28 TN
HET3 Heterochromatin 29 HET
E10 Brain 30 E
TF4 OTX2 31 TF
HET4 Heterochromatin 32 HET
L7 Low signal 33 L
PC4 Polycomb / Bivalent stem cell Enh 34 PC
HET5 Centromere 35 HET
E11 T-cell 36 E
TF5 AR 37 TF
E12 Erythroblast-like 38 E
HET6 Centromere 39 HET
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B Highest Accuracy Distilled Genomic Equations

SR(NAS | NN)

x0 = 0.174 (XTN4 +XE10 −XPC4 +XHET5 −XE11 −XE12)− 0.174 (XP − 0.206)
2

x2 =
(
X4

PC3 +XTN1 −X2
E10

) (
1.42X2

L6 −X2
E10 + 1.12XE1

)
x4 = 0.114

(
XE10 −XTF4 −XE12 +XHET6 − eXL1−XP−XE10

)
+ 0.0819

x6 = 0.0753XL4 − 0.151XPC3 − 0.0753XHET2 − 0.0753
(
XE10 +XHET6 − eXE6

)2
ĝ = x0 + x6 + (−x4 − 0.450) (−1.43x0e

x0 + x2 + x6 + 0.0639)

SR(NAS | SR)

x0 = e−2.01(0.996XE10+e−XL1+XP )
2
(X2

TF2−XE7+eXP )
2

x2 = e
−0.360(0.882XE10+1)2

(
XHET4+eXE1+e−XL6

)2

x3 = e
−XL2+XE1−

(
−XHET5+(XL7−XL3+eXL5)

2
+0.618

)4

x7 =
(
XHET5 + 0.0632 + e−(−XE10+XL7+XE11+eXTF4−XL3)

2)2

x8 =
(
XHET5 −XE12 + eXE6−(XL5−0.905X2

L6+e−XTN1)
2)2

ĝ = −0.434x0 + 0.434x7 − 0.144ex
2
2−x3+x2

7−x8

SR(NAS | NN): Somatotropes

x3 = −XE6 −XPC3 − 0.517X2
E10 + 2XE10 + 0.517XHET4 + 0.248

x4 = XHET6 − e−XHET1−XPC2+XL7−e−XL5−XPC4−XE12+X2
E1+XL3

x6 = 0.212XL5 − 0.212XTN4 + 0.212
(
XPC3 + (XE10 − 0.928)

2
)2

− 0.212e
1

0.702

x7 = −XHET6 + (−XE10 +XTF4) (2.31XL4 +XE10 − 3.31XPC4 − 2.31XE12 − 0.305)

x9 =
(
−XTN4

(
−X2

HET2 + eXHET6
)
+ 1.47

)
(−XE6 +XP +XE10 +XPC4XHET6)

ĝ = 0.161x3 + 0.161x4 − 0.161x6 − 0.161x7 + 0.0711 (−x7 − 0.700x9)
2 − 0.292

SR(NAS | NN): Stem Cells

x2 = 9.82
(
0.603XHET5 − 0.603 (−XTN4 +XHET4) e

XHET6 − 0.603eXE12 + 1
)4 − 0.161

x3 =

(
XE10 +

(
−0.157XL1 −XE12 +XHET6 + e−4(−XTN4+XE11)

2
)2

)2

x6 = −1.44X4
HET3 +

(
XE6 +XPC3 −XE10 + (0.724−XE1)

2
)2

− 0.157

x8 =

(
XPC3 −XE1 +

1

1.59

)2 (
−X4

E10 +XE1 − eXL5
)2 − 0.164

ĝ = e−0.685x8−0.685e2x2x6(x2−0.927)−x3 − 0.816
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C Model Residual Plots

Figure 3: Examination of model residuals, bin width=0.2. No significant differences were identified
in residuals across all bins.

D Gene subsets

D.1 Nonlinear (Genomic Equation)

GBP1, HEPN1, ZNF793, ACSL1, PLCH2, UBE2F, SYCE1L, NUDT19, PIP, COTL1, CMTM1,
LIME1, ASB15, C2orf49, RNASEL, ZNF583, SDC4, MYH9, PRR15L, SUPV3L1, GCNT1, ERAP2,
ETV3, RSKR, GRAMD1C, CTXN2, OSBPL2, TKT, NLRP1

D.2 Linear (Ridge Regression)

CD164, NAA25, IL4R, FAM124B, CGB7, EBAG9, KCTD17, KLF10, LSMEM2, FCER1G, CARD6,
HINT1, POLM, RNASEH2B, ZNF418, ACADM, GPR155, ACTL8, TTYH1, MBNL3, HBM,
SRSF8, LEP, LACTBL1, FGF7, KLK4, CADM4, NBPF20, CWH43, SH2D3A, FLRT3, HOPX,
POLR1E, RETN, RHOG, ITK, TSPAN33, TGFB1, RAB14, F2RL3, ANGPTL7, ZNF555, PLD6,
SLC22A8, GP1BA, DDX19B, SLC16A14, AGAP2, FGF19
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