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Abstract

Graph summarisation has received much attention lately, with various works tack-
ling the challenge of defining pooling operators on data regions with arbitrary
structures. These contrast the grid-like ones encountered in image inputs, where
techniques such as max-pooling have been enough to show empirical success. In
this work1, we merge the Mapper algorithm with the expressive power of graph
neural networks to produce topologically-grounded graph summaries. We demon-
strate the suitability of Mapper as a topological framework for graph pooling by
proving that Mapper is a generalisation of pooling methods based on soft cluster
assignments. Building upon this, we show how easy it is to design novel pooling
algorithms that obtain competitive results with other state-of-the-art methods.

Figure 1: An illustration of the Deep Graph Mapper (DGM) algorithm where, for simplicity, a graph
neural network (GNN) approximates a ‘height’ function over the nodes in the plane of the diagram.
The input graph (a) is passed through the GNN, which maps the vertices of the graph to a real number
(the height) (b–c). Given a cover U of the image of the GNN (c), the refined pull back cover Ū is
computed (d–e). The 1-skeleton of the nerve of the pull back cover provides the visual summary of
the graph (f). The diagram is inspired by Hajij et al. [2018].

1 Introduction

We introduce Deep Graph Mapper (DGM), a synthesis of Mapper [Singh et al., 2007], an algo-
rithm from the field of Topological Data Analysis (TDA) [Chazal and Michel, 2017], and graph
neural networks (GNNs) [Scarselli et al., 2008, Battaglia et al., 2018, Bronstein et al., 2017]. We
further demonstrate an important connection between Mapper visualisations and graph pooling
methods. Namely, we prove that Mapper is a generalisation of pooling methods based on soft
cluster assignments, which include state-of-the-art algorithms like minCUT [Bianchi et al., 2019] and
DiffPool [Ying et al., 2018]. Building upon this topological perspective of graph pooling, we propose

1Code to reproduce models and experimental results is available at https://github.com/crisbodnar/dgm.
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two algorithms based on Mapper. These leverage fully-differentiable and fixed PageRank-based lens
functions, respectively, achieving results competitive with other state-of-the-art pooling methods on
graph classification benchmarks.

2 Related work

Graph pooling algorithms have already been considerably explored within GNN frameworks for
graph classification. Luzhnica et al. [2019b] propose a topological approach to pooling, which
coarsens the graph by aggregating its maximal cliques into new clusters. However, cliques are local
topological features, whereas our methods leverage a global perspective of the graph during pooling.
Two paradigms distinguish themselves among learnable pooling layers: Top-k pooling based on a
learnable ranking [Gao and Ji, 2019], and learning the cluster assignment [Ying et al., 2018] with
additional entropy and link prediction losses for more stable training (DiffPool). Following these two
trends, several variants and incremental improvements have been proposed. The Top-k approach is
explored in conjunction with jumping-knowledge networks [Cangea et al., 2018], attention [Lee et al.,
2019, Huang et al., 2019] and self-attention for cluster assignment [Ranjan et al., 2019]. Similarly to
DiffPool, the method suggested by Bianchi et al. [2019] uses several loss terms to enforce clusters
with strongly connected nodes, similar sizes and orthogonal assignments. A different approach is
also proposed by Ma et al. [2019], who leverage spectral clustering.

3 Background

In this section, we briefly review Mapper [Singh et al., 2007], with a focus on graph domains [Hajij
et al., 2018].
Definition 3.1. Let X be a topological space, f : X → Rd, d ≥ 1 a continuous function, and
U = (Ui)i∈I a cover of Rd. Then, the pull back cover f∗(U) of X induced by (f,U) is the
collection of open sets f−1(Ui), i ∈ I , for some indexing set I . The cover of X formed by the
connected components of all preimages in the pull back cover f∗(U) is called the refined pull back
cover, which we denote by Ū = (Ūj)j∈J , where J is an indexing set.
Definition 3.2. Let X be a topological space with an open cover U = (Ui)i∈I . The 1-skeleton of
the nerve N (U) of U , which we denote by sk1(N (U)), is the graph with vertices given by (vi)i∈I ,
where two vertices vi, vj are connected if and only if Ui ∩ Uj 6= ∅.

Given a graphG = (V,E), a carefully chosen lens function f : V → Rd and cover U of Rd, Mapper
first computes the associated pull back cover f∗(U). Using a clustering algorithm of choice, it then
clusters each of the sets of vertices f−1(Ui) in f∗(U) to obtain the refined pull back cover. Finally,
Mapper produces a summarised graph visualisation by computing the 1-skeleton of the nerve of the
refined pull back cover, sk1(N (Ū)). Informally, the soft clusters formed by the refined pull back
become the nodes of this graph, with nodes corresponding to overlapping clusters being connected by
an edge.

4 Mapper for pooling

4.1 Mapper and soft cluster assignments

An early suggestion that Mapper could be suitable for graph pooling is given by the fact that it
constitutes a generalisation of binary spectral clustering, as observed by Hajij et al. [2018] (proof in
Appendix F). Here, we provide a much stronger result in that direction, showing that Mapper is a
generalisation of all pooling methods based on soft-cluster assignments.

LetG(V,E) be a graph with self-loops for each node and adjacency matrix A. Soft cluster assignment
pooling methods use a soft cluster assignment matrix S ∈ RN×K , where N is the number of nodes
in the graph and K is the number of clusters, and compute the new adjacency matrix of the graph
via A′ = STAS. Equivalently, two soft clusters become connected if and only if there is a common
edge between them.
Proposition 4.1. There exists a graph G′(V ′, E′) derived from G, a soft cluster assignment S′ of G′
based on S, and a cover U of the (K − 1)-dimensional unit simplex4K−1, such that the 1-skeleton
of the nerve of the pull back cover induced by (S′,U) is isomorphic with the graph defined by A′.
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A detailed proof and its diagrammatic version can be found in Appendix C. We hope that this result
will enable theoreticians to study pooling operators through the topological and statistical properties
of Mapper [Carriere et al., 2018, Carrière and Oudot, 2018, Dey et al., 2017]. At the same time,
we encourage practitioners to take advantage of it and design new pooling methods in terms of a
well-chosen lens function f and cover U for its image. To illustrate this idea and showcase the benefits
of this new perspective over graph pooling methods, we introduce two Mapper-based operators.

4.2 Differentiable Mapper pooling (DMP)

In traditional applications of Mapper, the lens function and pullback cover are fixed—here, we address
the challenge of learning both via backpropagating through the pull back computation. We start by
replacing the cover of n overlapping intervals over the real line, described in the previous section,
with a cover formed of overlapping RBF kernels φ(x, xi) = exp(−‖x−xi‖2

δ ), evaluated at n fixed
locations xi. The overlap between these kernels can be adjusted through the scale δ of the kernels.
The soft cluster assignment matrix S is given by the normalised kernel values:

Sij =
φ(σ(fθ(Xl))i, xj)∑n
j=1 φ(σ(fθ(Xl))i, xj)

, (1)

where the lens function fθ is a GNN layer, σ is a sigmoid function ensuring the outputs are in [0, 1],
and Xl are the node features at layer l. The more closely a node is mapped to a location xi, the more
it belongs to cluster i. By Proposition 4.1, we can compute the adjacency matrix of the pooled graph
as STAS; the features are given by STX. This method can be considered a version of DiffPool [Ying
et al., 2018], where the low-entropy constraint on the cluster assignment distribution is topologically
satisfied, since a point cannot be equally close to many other points on a line. Therefore, each node
will belong only to a few clusters if the scale δ is appropriately set. This is illustrated in Appendix G.

4.3 Mapper-based PageRank (MPR) pooling

To evaluate the effectiveness of the differentiable pooling operator, we also consider a fixed and
scalable non-differentiable lens function f : V → R that is given by the normalised PageRank
(PR) [Page et al., 1999] of the nodes. The PageRank function assigns an importance value to
each of the nodes based on their connectivity, according to the well-known recurrence relation
f(X)i

∆
= PRi =

∑
j∈N(i)

PRj

|N(i)| , where N(i) represents the set of neighbours of the i-th node in
the graph. The resulting scores are values in [0, 1] which reflect the probability of a random walk
through the graph to end in a given node. Using the previously described overlapping intervals cover
U , the pull back cover elements form a soft cluster assignment matrix S:

Sij =
Ii∈f−1(Uj)

|{Uk|i ∈ f−1(Uk)}|
(2)

where Un is the n-th overlapping interval in the cover U of [0, 1]. It can be observed that the resulting
clusters contain nodes with similar PageRank scores. Intuitively, this pooling method exploits the
power-law distributions typically encountered in social data scenarios—it merges the (usually few)
highly connected nodes in the graph, while at the same time clustering the (typically many) dangling
nodes that have a normalised PageRank score closer to zero. Therefore, this method favours the
information attached to the most ‘important’ nodes of the graph. The adjacency matrix of the pooled
graph and the features are computed in the same manner as for DMP.

4.4 Model

For the graph classification task, each example G is represented by a tuple (X,A), where X is the
node feature matrix and A is the adjacency matrix. Both our graph embedding and classification
networks consist of a sequence of graph convolutional layers [Kipf and Welling, 2016]; the l-th layer
operates on its input feature matrix as follows:

Xl+1 = σ(D̂−
1
2 ÂD̂−

1
2XlWl), (3)

where Â = A + I is the adjacency matrix with self-loops, D̂ is the normalised node degree matrix
and σ is the activation function. After E layers, the embedding network simply outputs node features
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Table 1: Results obtained on classification benchmarks. Accuracy measures with 95% confidence
intervals are reported. The highest result is bolded and the second highest is underlined. The first
four columns correspond to molecular graphs, while the others, to social graphs. Our models perform
competitively with other state-of-the-art methods.

Model D&D Mutag NCI1 Proteins Collab IMDB-B IMDB-M Reddit-B Reddit-5k

DMP (Ours) 77.3± 3.6 84.0± 8.6 70.4± 4.2 75.3± 3.3 81.4± 1.2 73.8± 4.5 50.9± 2.5 86.2± 6.8 51.9± 2.1
MPR (Ours) 78.2± 3.4 80.3± 6.0 69.8± 1.8 75.2± 2.2 81.5± 1.0 73.4± 2.7 50.6± 2.0 86.3± 4.8 52.3± 1.6
Top-k 75.1± 2.2 82.5± 6.8 67.9± 2.3 74.8± 3.0 75.0± 1.1 69.6± 3.8 45.0± 2.8 79.4± 7.4 48.5± 1.1
minCUT 77.6± 3.1 82.9± 6.0 68.8± 2.1 73.5± 2.9 79.9± 0.8 70.7± 3.5 50.6± 2.1 87.2± 5.0 52.9± 1.3
DiffPool 77.9± 2.4 94.7± 7.1 68.1± 2.1 74.2± 0.3 81.3± 0.1 72.4± 3.1 50.3± 1.8 79.0± 1.1 50.4± 1.7
WL 77.4± 2.6 74.5± 6.5 76.4± 2.7 74.7± 3.2 78.5± 1.1 72.1± 3.1 50.7± 2.9 66.7± 10.4 49.2± 1.4
Flat 69.9± 2.2 71.8± 4.3 65.5± 1.7 70.2± 2.6 80.9± 1.4 73.6± 4.2 48.5± 2.4 70.0± 10.8 49.5± 1.7
avg-MLP 63.7± 1.4 69.1± 5.8 55.7± 2.8 61.8± 1.7 74.8± 1.3 71.5± 2.9 49.5± 2.2 53.6± 6.2 45.9± 1.6

XLE
, which are subsequently processed by a pooling layer to coarsen the graph. The classification

network first takes as input node features of the Mapper-pooled graph2 XMG (as described in Figure 1)
and passes them through LC graph convolutional layers. Following this, the network computes a
graph summary given by the feature-wise node average and applies a final linear layer which predicts
the class, y = softmax

(
1
|MG|

∑|MG|
i=1 XLC

Wf + bf
)
.

5 Pooling experiments

Tasks and setup We illustrate the applicability of the Mapper-GNN synthesis within a pooling
framework by evaluating DMP and MPR in a variety of settings: social (IMDB-Binary, IMDB-Multi,
Reddit-Binary, Reddit-Multi-5k), citation networks (Collab) and chemical data (D&D, Mutag, NCI1,
Proteins) [Kersting et al., 2016]. We adopt a 10-fold cross-validation approach to evaluating the graph
classification performance of DMP, MPR and other competitive state-of-the-art methods. The random
seed was set to zero for all experiments (with respect to dataset splitting, shuffling and parameter
initialisation), in order to ensure a fair comparison across architectures. All models were trained on
a single Titan Xp GPU, using the Adam optimiser [Kingma and Ba, 2014] with early stopping on
the validation set, for a maximum of 30 epochs. We report the classification accuracy using 95%
confidence intervals calculated for a population size of 10 (the number of folds).

Baselines We compare the performance of DMP and MPR to two other pooling methods that we
identify mathematical connections with: minCUT [Bianchi et al., 2019] and DiffPool [Ying et al.,
2018]. Additionally, we include Graph U-Net [Gao and Ji, 2019] in our evaluation, as it has been
shown to yield competitive results while performing pooling from the perspective of a learnable
node ranking; we denote this approach by Top-k in the remainder of this section. The non-pooling
baselines evaluated are the WL kernel [Shervashidze et al., 2011], a ‘flat’ model (2 MP steps and
global average pooling) and an average-readout linear classifier. Full details of the model architectures
and hyperparameters can be found in Appendix G.

Results and discussion The graph classification performance obtained by these models is reported
in Table 1. We reveal that MPR ranks either first or second on all social datasets, or achieves
accuracy scores within 0.5% of the best-performing model. This result confirms that PageRank-based
pooling exploits the power-law distributions in this domain. The performance of DMP is similar on
social data and generally higher on molecular graphs. We attribute this to the fact that all nodes in
molecular graphs tend to have a similar PageRank score—MPR is therefore likely to assign all nodes
to one cluster, effectively performing a readout. In this domain, DMP performs particularly well on
Mutag, where it is second-best and improves by 3.7% over MPR, showing the benefits of having a
differentiable lens in challenging data settings. Overall, MPR achieves the best accuracy on 2 datasets
(D&D, Collab) and the next best result on 3 more (Proteins, Reddit-Binary and Reddit-Multi-5k).
DMP improves on MPR by less than 1% on NCI1, Proteins, IDMB-Binary and IMDB-Multi, showing
the perhaps surprising strength of the simple, fixed-lens pooling operator.

2Note that one or more {embedding→ pooling} operations may be sequentially performed in the pipeline.
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A Deep Graph Mapper

Here, we describe how to use DGM for visualisation, using the three main degrees of freedom of the
Mapper algorithm to guide our discussion: the lens function, the cover, and the clustering algorithm.

The lens is a function f : V → Rd over the vertices, which acts as a filter that emphasises certain
features of the graph. Typically, d is a small integer—in our case, d ∈ {1, 2}. The choice of f depends
on the graph properties that should be highlighted by the visualisation. In this work, we leverage
the recent progress in the field of graph representation learning and propose a parameterised lens
function based on graph neural networks (GNNs). We thus consider a function fθ(v) = gθ(V,E,X)v ,
where g is a GNN with parameters θ taking as input a graph G = (V,E) with n nodes and node
features X ∈ Rn×k. In practice, we often consider a function composition fθ(v) = (r ◦ gθ)v , where
r : Rn×d′ → Rn×d is a dimensionality reduction algorithm like t-SNE [van der Maaten and Hinton,
2008].

Non-Spammer

Spammer

0.0
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0.4

0.6

0.8
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Figure 2: DGM visualisation of a syn-
thetic spammer graph with 1k nodes and
50k edges, shown in full in the bottom
right corner using Graphviz [Gansner
and North, 2000]. The plot uses as the
lens function a GNN predicting the prob-
ability of each node to be a spammer—
indicated by the color-bar. DGM elimi-
nates the visual clutter of the full graph
and illustrates how spammers tend to
form a large cluster at the core of the
graph, while non-spammers form many
smaller communities.

Unlike the traditional graph theoretic lens functions pro-
posed by Hajij et al. [2018], GNNs can naturally learn
to integrate the features associated with the graph and
its topology, while also scaling computationally to large,
complex graphs. Additionally, visualisations can flexibly
be tuned for the task of interest by adjusting the lens gθ
through the associated loss function of the model.

The cover U determines the resolution of the visualisation.
Here, unless otherwise mentioned, we use the usual cover
choice for Mapper. When d = 1, we use a set of equally-
sized overlapping intervals over the real line. When d = 2,
this is generalised to a grid of overlapping cells in the
real plane. Using more cells will produce more detailed
visualisations, while higher overlaps between the cells
will increase the connectivity of the output graph. When
chosen suitably, these hyperparameters are a powerful
mechanism for obtaining multi-scale visualisations.

The clustering algorithm statistically computes the
(topological) connected components of the cover sets Ui.
Mapper does not require a particular type of clustering
algorithm. However, when the input topological space X
is a graph, a natural choice, also adopted by Hajij et al.
[2018], is to take the (graph) connected components of the
subgraphs induced by the vertices f−1(Ui), i ∈ I . This is
also the approach we follow in this work.

We refer to this instance of Mapper, with the choices de-
scribed above, as Deep Graph Mapper (DGM). The algorithm is further explained step-by-step on a
cartoon example in Figure 1. Pseudocode is also included in Appendix B.

We note once again that the edges of this graph reflect a semantic similarity between clusters. However,
when visualising graphs, we often wish to have a structure-oriented visualisation that allows us
to observe how different clusters that were formed by the refined pull back cover are connected.
This problem can be exacerbated when using GNNs, since they may completely ignore the structure,
if features are discriminative enough on their own [Luzhnica et al., 2019a]. To address this, in
Appendix D we introduce and evaluate a variant called Structural Deep Graph Mapper (SDGM). Due
to the limited space, we only include DGM visualisations in the main text.

A.1 Visualisations in Supervised Learning

The first application of DGM and SDGM is in a supervised learning context, where fθ is trained via
a cross entropy loss function to classify the nodes of the graph. When the classification is binary,
fθ : V → [0, 1] outputs the probability that a node belongs to the positive class. This probability acts
directly as the parameterisation of the graph nodes. An example is shown in Figure 2. For a multi-
label classification problem, we first perform a dimensionality reduction on the logits of the classifier,

7



which reduces them to points in R2. We then visualise each class individually, by colouring the nodes
based on the average predicted probability of the nodes in each cluster to belong to that class. An
example is given for the Neural Networks class of Cora [Sen et al., 2008] in the left plot of Figure 3.
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Figure 3: Visualisation coloured with the average
predicted probability for the ‘neural network’ class
in the Cora citation network (left) and the abso-
lute difference between the predicted probability
and the class occurrence frequency in each cluster
(right). The right plot clearly identifies systematic
mistakes of the GCN classifier (in lighter tones).

When labels are available, we also produce visu-
alisations augmented with ground-truth informa-
tion. These visualisations can provide a label-
driven understanding of the graph. For instance,
in Figure 4 we colour each node of the DGM
visualisation for the Cora ML citation network
according to the most frequent class in the cor-
responding cluster. This visualisation reveals
many interesting properties of the graph. Ge-
netic Algorithms seem to be the most isolated
subdomain, but a line of work merging them
with Reinforcement Learning and Neural Net-
works exists, as depicted in the top-left corner of
the figure. At the same time, Neural Networks
are interacting with many other ML subfields,
especially Probabilistic Methods and Reinforce-
ment Learning.

Theory

Reinforcement Learning

Genetic Algorithms

Neural Networks

Probabilistic Methods

Case Based

Rule Learning

Figure 4: Visualisation of the Cora ML citation net-
work, where the nodes are coloured based on the
most frequent class in the corresponding cluster.

These visualisations can additionally be used to
find connected clusters that contain systemati-
cally misclassified nodes and see how they re-
late to others. To that end, we colour the nodes
based on the absolute difference between the
average predicted probability for a class and the
normalised occurrence of that class within the
corresponding clusters. This can be seen on the
right side of Figure 3, where the lighter tones
indicate a higher discrepancy between these two
scalars.

All the examples in this section use a Graph Con-
volutional Network (GCN) [Kipf and Welling,
2016] with four layers trained to classify the
nodes of the graph. For the spammer graph, the
lens is given by the predicted spam probabil-
ity of each node and the cover consists of 10
intervals over [0, 1], with 30% overlap. For the
Cora graph, we use a 2D t-SNE projection of the
network logits and a cover formed of 64 equally-
sized cells, with 20% overlap across each dimen-
sion. We refer the reader to Appendix E for a
more extensive set of visualisations.

A.2 Visualisation in Unsupervised Learning

The second application corresponds to an unsupervised learning scenario, where the challenge is
obtaining a parameterisation of the graph in the absence of labels. This is the typical use case
for unsupervised graph representation learning models [Chami et al., 2020]. The approach we
follow is to train a model to learn node embeddings in Rd′ (in our experiments, d′ = 512), which
can be reduced, as before, to a low-dimensional space via a dimensionality reduction method r.
Unsupervised visualisations can be found in the qualitative evaluation in Section A.3; more can be
found in Appendix E.

8



Theory

Reinforcement Learning

Genetic Algorithms

Neural Networks

Probabilistic Methods

Case Based

Rule Learning

(a) DGM on Cora (b) Density on Cora (c) PageRank on Cora (d) Cora full
AI

ML

IR

DB

Agents

HCI

(e) DGM on CiteSeer (f) Density on CiteSeer (g) PageRank on CiteSeer (h) CiteSeer full

Figure 5: Qualitative comparison between DGM (a, e), Mapper with an RBF graph density func-
tion [Hajij et al., 2018] (b, f), and Mapper with a PageRank function [Hajij et al., 2018] (c, g). The
Graphviz visualisation of the graph cores (d, h) are added for reference. The first and second row show
plots for Cora and CiteSeer, respectively. The graphs are coloured based on the most frequent class in
each cluster to aid the comparison. DGM with unsupervised lens implicitly makes all dataset classes
appear in the visualisation clearly separated. This does not happen in the baseline visualisations,
which mainly focus on the class with the highest number of nodes from each graph.

A.3 Qualitative Evaluation

In this section, we qualitatively compare DGM against the two best-performing graph theoretic
lens functions proposed by Hajij et al. [2018], on the Cora and CiteSeer [Sen et al., 2008] citation
networks. Namely, we compare against a PageRank [Page et al., 1999] lens function and a graph
density function f(v) =

∑
u∈V exp(−D(u, v)/δ), where D is the distance matrix of the graph. For

DGM, we use a composition of an unsupervised Deep Graph Infomax (DGI) [Veličković et al., 2018]
model gθ : V → R512 and a dimensionality reduction function r : R512 → R2 based on t-SNE. To
aid the comparison, we mark the nodes with the colour of the most frequent class in the corresponding
cluster. Additionally, we include a Graphviz [Gansner and North, 2000] plot of the full graph. We
carefully fine-tuned the covers for each combination of model and graph; these hyperparameters
can be found in Appendix B. Appendix E extends this evaluation with additional graphs and an
ablation study considering alternative unsupervised models, dimensionality reduction algorithms and
alternative cover choices.

As depicted by Figure 5, DGM successfully summarises many of the properties of the graphs that are
also reflected by full graph visualisations. For instance, on Cora, Genetic Algorithms (in red) are
shown, as before, to be primarily isolated from other subdomains of the citation network. At the same
time, related classes that largely overlap in the full visualisation—Probabilistic Methods and Neural
Networks (NNs) on Cora or Information Retrieval (IR) and ML on CiteSeer—are connected in the
DGM plot. In contrast, the baselines do not have the same level of granularity and fail to capture
many such properties. Both PageRank and the graph density function tend to focus on the classes
with the highest number of nodes, such as the IR class on CiteSeer or the NNs class on Cora, while
largely de-emphasising other classes.

Naturally, the proposed visualisations also have certain limitations. In an unsupervised learning
setting, in the absence of any labels or attributes for colouring the graph, the nodes have to be coloured
based on a colormap associated with the abstract embedding space (shown in Appendix E), thus
affecting the interpretability of the visualisations. In contrast, even though the graph theoretic lens
functions produce lower quality visualisations, their semantics are clearly understood mathematically.
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This is, however, a drawback shared even by some of the most widely used data visualisation methods,
such as t-SNE or UMAP McInnes et al. [2018].

B DGM Model Details

In this section, we provide additional details about the DGM implementation and explain our cover
choice for the qualitative evaluation in Section A.2.

B.1 DGM pseudocode

In Algorithm 1 we include the pseudocode for DGM. For simplicity, we assume that the lens is a
neural network mapping vertices to numbers in [0, 1], similarly to the GNN predicting the probability
of a node to be spam from Section A.1. However, this can be easily extended to handle the other
types of lenses and covers discussed in this work.

Algorithm 1: Deep Graph Mapper
Input :Graph G = (V,E) with node features X

Lens function fθ : V → [0, 1] with fθ(v) = gθ(X, v, E)v , where gθ is a trained GNN
Cover U of [0, 1] formed of n overlapping intervals Ui.

Output :A graph M = (V ′, E′)
// compute the pull back cover

1 foreach node v ∈ V do
2 foreach i ∈ I do
3 if fθ(v) ∈ Ui then
4 Add v to the preimage f−1

θ (Ui)

// compute the refined pull back cover
5 Initialise empty graph M = (V ′, E′)
6 foreach i ∈ I do
7 Let Gi be the subgraph of G induced by the nodes in f−1

θ (Ui)
8 foreach connected component c of Gi do
9 Create a node u and add it to V ′

10 s←− 0
11 foreach node v ∈ c do

// save the set of nodes in G corresponding to node u ∈ V ′
12 Add v to u.nodes

// save the soft cluster that node v was assigned to
13 Add u to v.clusters
14 s←− s+ fθ(v)

15 u.colour ←− s
|u.nodes|

// compute the 1-skeleton of the nerve
16 foreach node v ∈ V do
17 foreach unordered pair of nodes (a, b) with a, b ∈ v.clusters do
18 if a 6= b then
19 Add the undirected edge e = (a, b) to E′ if not added already
20 e.weight←− e.weight+ 1

We note that the colour of the nodes can flexibly be set based on other aggregation schemes other than
the mean lens value as in line 15. For instance, when we visualise a single class in the multi-label
classification context, the colour is given by the average predicted probability of that class for all the
nodes in u.nodes for each node u ∈ V ′.
We note that the complexity of the algorithm is linear in the size of the input graph, assuming
the maximum number of overlapping intervals and the number of intervals are (small) constants.
Alternatively, the final step in lines 16–20 can also be computed in a vectorised form, with the help
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of a soft cluster assignment matrix S ∈ R|V |×|V ′|. Then, the adjacency matrix of the output graph is
given by STS.

B.2 Cover details for Section A.2

In this section, we detail our cover choices for the unsupervised experiments in Section A.2. For
the PageRank lens, we used n = 26 intervals with overlap 0.15 on Cora and n = 30 intervals on
CiteSeer with the same amount of overlap. For the RBF density lens, we used 20 intervals with 0.2
overlap both on Cora and CiteSeer. The scale of the RBF kernel was set to 3 and 4, respectively, for
the two graphs. For the DGM visualisation, we used a grid of 64 2D cells on Cora and 36 cells on
Citeseer, with an overlap of 0.2 in each direction of the 2D space on both graphs.

C Proof of Proposition 4.1

Throughout the proof we consider a graph G(V,E) with self loops for each of its N nodes. The
self-loop assumption is not necessary, but it elegantly handles a number of degenerate cases involving
nodes isolated from the other nodes in its cluster. We refer to the edges of a node which are not
a self-loop as external edges. Additionally, for simplicity we assume each of the soft clusters is
connected, and therefore the pull back cover is the same as the refined pull back cover. The proof can
easily be modified to take this extra case into account by either considering an instance of Mapper
where the clustering algorithm assigns all nodes to the same cluster (same as no clustering), or the
expanded graph G′ (introduced below) can be constructed with additional edges which make each
soft cluster connected.

Figure 6: An illustration of the proof for Proposition 4.2. Connecting the clusters connected by an
edge in the original graph (a) is equivalent to constructing an expanded graph with an expanded
cluster assignment (b), doing a 1-hop expansion of the expanded cluster assignment (c) and finally
taking the 1-skeleton of the nerve (d) of the cover obtained in (c).

Let s : V → 4K−1 be a soft cluster assignment function that maps the vertices to the (K − 1)-
dimensional unit simplex. We denote by sk(v) the probability that vertex v belongs to cluster k ≤ K
and

∑K
k sk(v) = 1. This function can be completely specified by a cluster assignment matrix

S ∈ RN×K with Sik = sk(i). This is the soft cluster assignment matrix computed by minCut and
Diff pool via a GCN.

Definition C.1. Let G(V,E) be a graph with self-loops for each node. The expanded graph
G′(V ′, E′) of G is the graph constructed as follows. For each node v ∈ V with at least one
external edge, there is a clique of nodes {v1, . . . , vdeg(v)} ⊆ V ′. For each external edge (v, u) ∈ E,
a pair of nodes from their corresponding cliques without any edges outside their clique are connected.
Additionally, isolated nodes become in the new graph two nodes connected by an edge.

Essentially, the connections between the nodes in the original graph are replaced by the connections
between the newly formed cliques such that every new node is connected to at most one node outside
its clique. An example of an expanded graph is shown in Figure 6 (b). The nodes in the newly formed
cliques are coloured similarly to node from the original graph they originate from.

Definition C.2. Let G(V,E) be a graph with self loops for each node, s a soft cluster assignment
function for it, and G′(V ′, E′) the expanded graph of G. Then the expanded soft cluster assignment
s∗ is a cluster assignment function for G′, where s∗k(vi) = sk(v) for all the nodes vi ∈ V ′ in the
corresponding clique of v ∈ V .
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In plain terms, all the nodes in the clique inherit through s∗ the cluster assignments of the correspond-
ing node from the original graph. This is also illustrated by the coloured contours of the expanded
graph in Figure 6 (b).
Definition C.3. Let S be a soft cluster assignment matrix for a graph G(V,E) with adjacency matrix
A. The 1-hop expansion of assignment S with respect to graph G is a new cluster assignment
function s′ : V →4K−1 induced by the row-normalised version of the cluster assignment matrix
S′ = AS.

As we shall now prove, the 1-hop expansion simply extends each soft cluster from S by adding its
1-hop neighbourhood as in Figure 6 (c).
Lemma C.1. An element of the soft cluster assignment matrix S′i,k 6= 0 if and only if node i is
connected to a node j (possibly i = j), which is part of the soft cluster k of the assignment induced
by S.

Proof. By definition S′ik =
∑N
j AijSjk = 0 if and only if AijSjk = 0, for all j. This can happen if

and only if Aij = 0 (nodes i and j are not connected by an edge) or Sjk = 0 (node j does not belong
to soft cluster k defined by S) for all j. Therefore, S′ik 6= 0 if and only if there exists a node j such
that i is connected to j and j belongs to soft cluster k defined by S.

Corollary C.1.1. Nodes that are part of a cluster k defined by S, are also part of k under the
assignment S′.

Proof. This immediately follows from Lemma C.1 and the fact that each node has a self-loop.

Lemma C.2. The adjacency matrix A′ = STAS defines a new graph where the clusters induced by
S are connected if and only if there is a common edge between them.

Proof. Let L = AS. Then, A′ij =
∑N
k S

T
ikLkj = 0 if and only if STik = 0 (node k does not belong

to cluster i) or Lkj = 0 (node k is not connected to any node belonging to cluster j by Lemma C.1),
for all k. Therefore, A′ij 6= 0 if and only if there exists a node k such that k belongs to cluster i and k
is connected to a node from cluster j.

This result shows that soft cluster assignment methods connect clusters that have at least one edge
between them. We will use this result to show that a Mapper construction obtains an identical graph.

Let s′ be the 1-hop expansion of the expanded soft cluster assignment of graph G′. Let the soft
clusters induced by s′ be A = {A1, A2, . . . , AK}. Additionally, let B = {B1, B2, . . . , BK} be an
open cover of4K−1 with Bk = {x ∈ 4K−1|xk > 0}. Then the pull back cover induced by (s′,B)
is A since s′(−1)(Bk) = Ak (i.e. all nodes with a non-zero probability of belonging to cluster k).
Lemma C.3. Two clusters Ax and Ay have a non-empty intersection in the expanded graph if and
only if their corresponding clusters Cx, Cy in the original graph have a common edge between them.

Proof. If direction: By Corollary C.1.1, the case of a self edge becomes trivial. Now, let v ∈ Cx and
u ∈ Cy be two nodes connected by an external edge in the original graph. Then in the expanded
graph G′(V ′, E′), there will be clique nodes vi, ui ∈ V ′ such that (vi, ui) ∈ E′. By taking the 1-hop
expansion of the extended cluster assignment, both vi and vj will belong to Ax, Ay by Lemma C.1,
since they are in each other’s 1-hop neighbourhood. Since we have chosen the clusters and the nodes
arbitrarily, this proves this direction.

Only if direction: Let C∗x and C∗y be the (expanded) clusters in the expanded graph corresponding
to the clusters Cx and Cy in the original graph. Let node vi be part of the non-empty intersection
between soft clusters Ax and Ay defined by S′ in the expanded graph G′. By Lemma C.1, vi belongs
to Ax if and only if there exists vj ∈ V ′ such that (vi, vj) ∈ E′ and vj ∈ C∗x . Similarly, there must
exist a node vk ∈ V ′ such that (vi, vk) ∈ E′ and vk ∈ C∗y . By the construction of G′, either both
vj , vk are part of the clique vi is part of, or one of them is in the clique, and the other is outside the
clique.

Suppose without loss of generality that vj is in the clique and vk is outside the clique. Then, vi ∈ C∗x
since they share the same cluster assignment. By the construction of G′ the edge between the
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corresponding nodes of vi and vk in the original graph G is an edge between Cx and Cy. Similarly,
if both vj and vk are part of the same clique with vi, then they all originate from the same node
v ∈ Cx, Cy in the original graph. The self-edge of v is an edge between Cx to Cy .

Proposition C.1. Let G(V,E) be a graph with self loops and adjacency matrix A. The graphs
defined by sk1(N (A)) and STAS are isomorphic.

Proof. Based on Lemma C.3, sk1(N (A)) connects two soft clusters in G defined by S if and only if
there is a common edge between them. By Lemma C.2, soft cluster assignment methods connect
the soft clusters identically through the adjacency matrix A′ = STAS. Therefore, the unweighted
graphs determined by sk1(N (A)) and A′ are isomorphic.

Note that our statement refers strictly to unweighted edges. However, an arbitrary weight function
w : V → R can easily be attached to the graph obtained though sk1(N (A)).

D Structural Deep Graph Mapper

The edges between the nodes in a DGM visualisation denote semantic similarities discovered by the
lens. However, it is sometimes desirable that the connectivity of the graph is explicitly accounted
for in the visualisations, being involved in more than simply computing the refined pull back cover.
Including structural aspects explicitly is particularly important when using GNNs as the lens function.
As shown by Luzhnica et al. [2019a], if the features are discriminative enough, GNNs can completely
exclude any structural information from the semantics of the embedding space.

Non-Spammer

Spammer
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Non-Spammer
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Figure 7: SDGM visualisation with colour indicating spam probability (left) and the labeled visuali-
sation indicating the proportion of spammers in each cluster (right). The thickness of the edges is
now proportional to the number of edges between clusters. We used a filtration value of ε = 0.01 and
g = 0 for the overlap. This visualisation also illustrates that the spammers are densely connected to
the other nodes in the graph, while non-spammers form smaller connected groups. However, unlike
the DGM visualisation, this graph also shows the (structural) edges between the spammers and the
non-spammers.

Therefore, with this motivation in mind, we also propose Structural DGM (SDGM), a version of
DGM that connects the elements of the refined pull back cover based on the number of edges between
the clusters, as opposed to the number of nodes as in DGM. To do so, we rely on the proof from
Appendix C, and essentially apply DGM in the expanded graph G′. SDGM uses the refined pull
back cover induced by the 1-hop expansion in the expanded graph (see Appendix C) to compute
the nerve. However, a downside of this approach is that the output graph may often be too dense to
visualise. Therefore, we use a weighting function w : E → [0, 1] to weight the edges of the resulting
graph and a filtration value ε ∈ [0, 1]. We then filter out all the edges e with w(e) < ε, where w(e) is
determined by the normalised weighted adjacency matrix STAS denoting the (soft) number of edges
between two clusters. For SDGM, the cover overlap parameter g effectively sets a trade-off between
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the number of structural and semantic connections in the SDGM graph. For g = 0, only structural
connections exist. At the same time, the filtration constant ε is an additional parameter that adjusts
the resolution of the visualisations. Higher values of ε result in sparser graphs, while lower values
increase the connectivity between the nodes. The pseudocode for SDGM is given in Algorithm 2.
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Rule Learning

(a) DGM on Cora (b) SDGM on Cora (c) Density on Cora (d) Cora full
AI

ML

IR

DB

Agents

HCI

(e) DGM on CiteSeer (f) SDGM on CiteSeer (g) Density on CiteSeer (h) CiteSeer full

Figure 8: Qualitative comparison of SDGM (second column) and the other Mapper lens functions
from Section A.2.

In Figure 7, we include an SDGM visualisation for the spammer graph using the same neural network
described in Section A.1 for the DGM visualisation of the same graph from Figure 2. Unlike the
DGM visualisation, the SDGM ones contains connections between spammers and non-spammer
communities, indicating that even though these nodes are semantically opposed, they are evidently
connected in the graph. At the same time, the visualisation indicates more clearly how the spammer
nodes form the core of the graph and how the non-spammers for smaller communities at the edge of
the graph.

Additionally, we extend the qualitative comparison from Section A.2 with the SDGM visualisations
in Figure 8. For the SDGM visualisation we use the same embeddings as for DGM, and set the
number of cells to 400, overlap to zero, and ε (the edge filtration value) to 0.05. Even though SDGM
reveals the same binary relations as DGM, the former is able to capture more interesting structures in
the graph, such as the loops formed at the core of the graph on Cora or the loop formed by the papers
on Information Retrieval and ML on CiteSeer.

E Additional Visualisations

In this section, we present additional visualisations and ablation studies.

E.1 Ablation study for dimensionality reduction

We study how the choice of the dimensionality reduction method for the unsupervised visualisations
affects the visualisation. To test this, we consider the following dimensionality reduction methods:
t-SNE [van der Maaten and Hinton, 2008], UMAP [McInnes et al., 2018], IsoMap [Tenenbaum
et al., 2000] and PCA. We use the same model as in Section A.2 and 81 2D cells for the cover of all
models. The overlap was set after fine-tuning to 0.2 for t-SNE and UMAP, and to 0.1 for the other
two models. Figure 9 displays the four visualisations. As expected, t-SNE and UMAP produce more
visually-pleasing outputs, due to their superior ability to capture variation in the GNN embedding
space. However, the features highlighted by all visualisations are largely similar, indicating the same
binary relations between clusters. This demonstrates that the GNN embedding space is robust to the
choice of the dimensionality reduction method.
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Algorithm 2: Structural Deep Graph Mapper
Input :Graph G = (V,E) with node features X

Lens function fθ : V → [0, 1] with fθ(v) = gθ(X, v, E)v , where gθ is a trained GNN
Cover U of [0, 1] formed of n overlapping intervals Ui

Output :A graph M = (V ′, E′)
// compute the pull back cover

1 foreach node v ∈ V do
2 foreach i ∈ I do
3 if fθ(v) ∈ Ui then
4 Add v to the preimage f−1

θ (Ui)

// compute the refined pull back cover
5 Initialise empty graph M = (V ′, E′)
6 foreach i ∈ I do
7 Let Gi be the subgraph of G induced by the nodes in f−1

θ (Ui)
8 foreach connected component c of Gi do
9 Create a node u and add it to V ′

// save the set of nodes in G corresponding to node u ∈ V ′
10 s←− 0
11 foreach node v ∈ c do
12 Add v to u.nodes
13 Add u to v.clusters
14 s←− s+ fθ(v)

15 u.color ←− s
|u.nodes|

// compute the 1-skeleton of the nerve
16 foreach edge (u, v) ∈ E do
17 foreach unordered mapper node pair (u′, v′) with u′ ∈ u.clusters, v′ ∈ v.clusters do
18 if u′ 6= v′ then
19 Add the undirected edge e = (u′, v′) to E′ if not added already
20 e.weight←− e.weight+ 1

E.2 Ablation for the unsupervised lens

To better understand the impact of GNNs on improving the quality of the Mapper visualisations, we
perform an ablation study on the type of unsupervised lens functions used within Mapper. The first
model we consider is simply the identity function taking as input only graph features. The second
model is a randomly initialised DGI model, as in Section A.2. Despite the apparent simplicity of a
randomly initialised model, it was shown that such a method produces reasonably good embeddings,
often outperforming other more sophisticated baselines [Veličković et al., 2018]. Ultimately, we use
our trained DGI model from Section A.2. For all these models, we perform a t-SNE reduction of
their embedding space to obtain a 2D output space and use 81 overlapping cells that cover this space.
An overlap of 0.2 is used across all models.

The three resulting visualisations are depicted in Figure 10. The identity model and the untrained
DGI model are only able to find a limited number of relations between clusters, mainly between the
light blue and dark blue classes. At the same time, the untrained DGI model clusters some of the
other classes slightly better and forms bigger connected components. However, none of these models
do particularly well. In contrast, the trained DGI model makes all the classes prominently show up in
the visualisation, together with their main interactions.

E.3 The PubMed graph

Our qualitative comparison involving unsupervised lens relied on the Cora and CiteSeer citation
networks. In this section we consider a much larger citation network, PubMed [Yang et al., 2016],
containing over 19717 nodes and 44338 edges. In contrast, Cora has 2708 nodes and 5278 edges,
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(a) t-SNE (b) PCA

(c) Isomap (d) UMAP

Figure 9: Ablation for dimensionality reduction methods. While t-SNE and UMAP produce slightly
better visualisations, the graph features displayed by the visualisations are roughly consistent across
all of the four dimensionality reduction techniques.

while CiteSeer has 3327 nodes and 4552 edges. Due to the large size of this dataset, we were forced
to use an approximation for the distance matrix of the graph, only relying on four levels of depth to
compute the RBF density lens from Section A.2. Similarly, this time we supply for reference only a
sample subgraph, taken from the largest connected component of the graph, since the entire graph is
too large to visualise.

For DGM and SDGM, we use the model from Section A.2 with 64 cells as the cover, and overlap
0.1 and 0.05, respectively. In both cases, we perform a dimensionality reduction using UMAP to
project the 512-dimensional DGI embeddings to a 2D space. For the RBF density lens, we use 20
intervals with overlap 0.2, while for the PageRank lens we use the same number of intervals, but 0.15
overlap. As shown in Figure 11, the graph theoretic lens proposed by Hajij et al. [2018] struggle
in this setting, since the three classes of the dataset (denoting publications about different types of
diabetes) become very mixed. In contrast, the DGM and SDGM visualisations capture the main
properties that can also be seen from the full depiction of the main connected component of the graph.
Namely, the light blue class (Diabetes Type 1) tends to be more isolated from the other two classes
and it is mostly connected with the brown-coloured class denoting Diabetes Type 2. At the same
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(a) Identity (b) Untrained DGI model (c) Trained DGI model

Figure 10: Ablation for different types of unsupervised lenses. The trained DGI model significantly
improves the quality of the visualisations.

time, the visualisation shows that the dark blue class (Diabetes, Experimental) is mainly connected
with the brown-coloured class.

Diabetes Mellitus, Experimental

Diabetes Mellitus Type 2

Diabetes Mellitus Type 1

(a) DGM (b) SDGM (c) Density

(d) PageRank (e) Graphviz Core

Figure 11: Qualitative comparison of different Mapper lens functions on the PubMed citation network.

E.4 Hierarchical visualisations

One of the most powerful features of Mapper is the ability to produce multi-resolution visualisations
through the flexibility offered by the cover hyperparameters. As described in Section A, having a
higher number of cells covering the output space results in more granular visualisations containing
more nodes, while a higher overlap between these cells results in increased connectivity. We highlight
these trade-offs in Figure 12, where we visualise the Cora citation network using 9 combinations
of cells and overlaps. These kinds of hierarchical visualisations can help one identify what are the
persistent features of the graph. For instance, when inspecting the plots that use n = 64 cells, it
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is visible that the connections between the light blue class and the yellow class persist for all 3
degrees of overlap, indicating that this is a persistent feature of the graph. In contrast, the connection
between the red and orange classes is relatively reduced (g = 0.25) or none (g = 0.1) for low values
of overlap, but it clearly appears at g = 0.35 in the top-right corner, suggesting that the semantic
similarity between the two classes is very scale-sensitive (that is, less persistent).

(a) n = 16, g = 0.1 (b) n = 64, g = 0.1 (c) n = 256, g = 0.1

(d) n = 16, g = 0.25 (e) n = 64, g = 0.25 (f) n = 256, g = 0.25

(g) n = 16, g = 0.35 (h) n = 64, g = 0.35 (i) n = 256, g = 0.35

Figure 12: Hierarchical visualisations of the Cora citation network using various number of cover
cells and degrees of overlap.

E.5 Abstract colormaps

As mentioned in Section A.2, in the absence of any labels or attributes to colour the graph with, we
fill in the nodes of the graph using an abstract colour space associated with the embedding space.
The resulting colourisation shows which area of the embedding space the cluster comes from. An
unsupervised visualisation of Cora (as in Section A.2, but this time using the abstract 2D color-space)
is shown in Figure 13.
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E.6 High-resolution supervised visualisations

In addition to the higher-resolution version of the Cora supervised visualisation from Section A.1, we
provide two other supervised visualisations of CiteSeer and PubMed. These can be found in Figures
15, 16 and 17. For all models, we use the same architecture as in Section A.1.

F Mapper and Spectral Clustering

Figure 13: Cora visualisation colored using the
abstract color-space associated with the embedding
space (show in the bottom left corner).

The relationship between Mapper for graphs and
spectral clustering has been observed by Hajij
et al. [2018]. This link is a strong indicator
that Mapper can compute ‘useful’ clusters for
pooling. We formally restate this observation
below and provide a short proof.

Proposition F.1. Let L be the Laplacian of a
graph G(V,E) and l2 the eigenvector corre-
sponding to the second lowest eigenvalue of
L, also known as the Fiedler vector [Fiedler,
1973]. Then, for a function f : V → R, f(v) =
l2(v), outputting the entry in the eigenvec-
tor l2 corresponding to node v and a cover
U = {(−∞, ε), (−ε,+∞)}, Mapper produces
a spectral bi-partition of the graph for a suffi-
ciently small positive ε.

Proof. It is well known that the Fiedler vector
can be used to obtain a ‘good’ bi-partition of
the graph based on the signature of the entries
of the vector (i.e. l2(v) > 0 and l2(v) < 0)
(please refer to Demmel [1995] for a proof).
Therefore, by setting ε to a sufficiently small
positive number ε < minv |l2(v)|, the obtained pull back cover is a spectral bi-partition of the
graph.

The result above indicates that Mapper is a generalisation of spectral clustering. As the latter is
strongly related to min-cuts [Leskovec, 2016], the proposition also links them to Mapper.

G Model Architecture and Hyperparameters

We optimise both DMP and MPR with respect to the cover cardinality n, the cover overlap (δ for DMP,
overlap percentage g for MPR), learning rate and hidden size. The Top-k architecture is evaluated
using the code provided in the official repository, where separate configurations are defined for each
of the benchmarks. The minCUT architecture is represented by the sequence of operations described
by Bianchi et al. [2019]: MP(32)-pooling-MP(32)-pooling-MP(32)-GlobalAvgPool, followed by a
linear softmax classifier. The MP(32) block represents a message-passing operation performed by
a graph convolutional layer with 32 hidden units X(t+1) = ReLU(ÃX(t)Wm + X(t)Ws), where
Ã = D−

1
2AD−

1
2 is the symmetrically-normalised adjacency matrix and Wm,Ws are learnable

weight matrices representing the message passing and skip-connection operations within the layer.
The DiffPool model follows the same sequence of steps.

The optimised models have the following configurations:

• DGM—learning rate 5e−4, hidden sizes {128, 128} and:

– D&D and Collab: cover sizes {20, 5}, interval overlap 10%, batch size 32;
– Proteins: cover sizes {8, 2}, interval overlap 25%, batch size 128;
– Reddit-Binary: cover sizes {20, 5}, interval overlap 25%, batch size 32;
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• Top-k—specific dataset configurations, as provided in the official GitHub repository3

(run_GUNet.sh);
• minCUT—learning rate 1e−3, same architecture as reported by the authors in the original

work [Bianchi et al., 2019];
• DiffPool—learning rate 1e−3, hidden size 32, two pooling steps, pooling ratio r = 0.1,

global average mean readout layer, with the exception of Collab and Reddit-Binary, where
the hidden size was 128.

We additionally performed a hyperparameter search for DiffPool on hidden sizes 32, 64, 128 and for
DGM, over the following sets of possible values:

• all datasets: cover sizes {[40, 10], [20, 5]}, interval overlap {10%, 25%};
• D&D: learning rate {5e−4, 1e−3};
• Proteins: learning rate {2e−4, 5e−4, 1e−3}, cover sizes {[24, 6], [16, 4], [12, 3], [8, 2]}, hid-

den sizes {64, 128}.
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Figure 14: Two covers of RBF kernels with different scales δ = 0.001 and δ = 0.01.

G.1 The RBF kernel cover

In Figure 14 we show two examples of RBF kernel covers for the output space. The scale of the
kernel, δ, determines the amount of overlap between the cover elements. At bigger scales, there is a
higher overlap between the clusters as depicted in the two plots. Because the line is one-dimensional,
a point on the unit interval can only be part of a small number of clusters (i.e. the kernels for which
the value is greater than zero), assuming the scale δ is not too large. Therefore, DMP can be seen as a
DiffPool variant where the low-entropy constraint on the cluster assignment is satisfied topologically,
rather than by a loss function enforcing it.

3github.com/HongyangGao/Graph-U-Nets
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Figure 15: Cora using a GCN classifier as the lens.
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Figure 16: Citeseer using a GCN classifier as the lens.
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Figure 17: PubMed using a GCN classifier as the lens.
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