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Abstract

In real-world task-oriented dialogue (TOD) settings such as customer support for
trip booking, banking, and healthcare, agents are required to strictly adhere to com-
plex instructions while conducting multi-turn conversations with customers. These
instructions are typically presented in natural language format and include general
guidelines and step-by-step procedures with complex constraints. Existing TOD
benchmarks often oversimplify the complex nature of these instructions by reduc-
ing them to simple schemas composed of intents, slots, and API call configurations.
To address this gap and systematically benchmark LLMs’ instruction-following
capabilities, we propose TOD-ProcBench, a challenging benchmark featuring
complex process instructions with intricate, fine-grained constraints that evalu-
ates various LLMs’ abilities to understand and follow instructions in multi-turn
TODs. Our benchmark dataset comprises instruction documents derived from
the high-quality ABCD dataset with corresponding conversations under human
quality control. We formulate fine-grained constraints and action procedures
as multi-level condition-action instruction statements. We design three tasks to
comprehensively benchmark LLMs’ complex instruction-following capabilities in
multi-turn TODs. Task 1 evaluates how LLMs retrieve the most relevant statement
from a complex instruction and predict the corresponding next action. In Task
2, we synthesize instruction-violating responses by injecting inconsistencies and
manipulating the original instructions, and then we analyze how effectively LLMs
can identify instruction-violating responses. Task 3 investigates LLMs’ abilities
in conditional generation of instruction-following responses based on the original
complex instructions. Our benchmarking results reveal significant gaps in LLMs’
instruction-following capabilities in multi-turn conversations across all three tasks.
Additionally, we conduct studies on the impact of multilingual settings and different
instruction text formats on compliance performance. We release our benchmark
for the research community’s efforts in continuing to improve multi-turn TODs’
complex instruction-following capabilities.
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1 Introduction

Task-oriented dialogue systems (ToDs) take decisive steps and actions when interacting with users
with the primary goal of satisfying customer requests [Wei et al., 2018, Sekulic et al., 2024, Xu
et al., 2024]. In multi-turn interactions with users, they initially comprehend a user’s query and then
collect information needed to address the request while following the constraints defined by complex
instructions. Complex instructions comprise strict guidelines that dictate under what conditions the
actions and API calls must be executed [Rastogi et al., 2020, Raimondo et al., 2023, Chen et al.,
2021, Roy et al., 2024]. The complexity of these instructions varies based on the user’s intent and the
task domain.

A: hi, what can i help you with?
C: hi there. i wanted to check the status of my most recent order 
because i see an extra fee on the invoice, and i'm not sure why.
A: okay, can I have your name?
C: sure. my name is albert sanders
Ac: account has been pulled up for albert sanders.
A: can i have your account id and order id?
C: my account id is <account_id> and my order id is <order_id>
Ac: identity verification in progress ...
Ac: querying the system for an answer ...
A: what is your membership level?
C: i have a guest membership

pull-up-account

verify-identity

ask-the-oracle

membership

R1: i am sorry, this fee was not a mistake and i cannot remove it.   -- Compliance score: 0.85

R2: that's great, i will be able to remove the fee for you . -- Compliance score: 0.86
R3: i am sorry, this fee was a mistake and i will remove it. -- Compliance score: 0.88 

If customer inquires about an extra/mystery fee on their order:
    - Get customer's full name, account ID, and order ID to verify 
identity
    - Check system for reason behind the extra fee
    - If it was a company error:
        - Ask customer's membership level
        - If Gold or Silver member:
            - Ask amount of extra fee
            - Remove fee from order
        - If Bronze or Guest member:

- Explain fee cannot be removed
            - Optionally offer to escalate to manager for Bronze members
    - If not a company error (e.g. price surge, customer error):
        - Explain reason for fee
        - Do not remove fee unless Gold/Silver member as a courtesy

update-order

update-order

Figure 1: Workflow steps (orange boxes) from ABCD dataset show the the order of calling actions
for “status_mystery_fee” intent, an inadequate representation of all nuanced constraints in the
corresponding TOD-ProcBench instruction document excerpt on the right. The compliance scores
are computed with ComplianceScorer.

Existing datasets either fail to capture challenges due to multi-turn conversation or fail to capture
real-world instruction complexity, lacking fine-grained conditional instructions shown in Figure 1.
Real-world instructions typically use natural language IF (Condition) - THEN (Action) structures
which introduce ambiguity compared to symbolic formats but express more complex guidance. This
creates a need for public datasets featuring multi-turn conversations that comply with fine-grained
natural language conditional instructions. Figure 1 demonstrates how ComplianceScorer [Min et al.,
2023] incorrectly labels all responses as compliant when responses R2 and R3 actually violate fee
removal instructions, highlighting the need for fine-grained conditional instructions beyond basic
workflows. Natural language instructions offer the additional benefit of seamlessly sharing consistent
instructions between human agents and chatbots without conversion. For this purpose, we construct a
multilingual dataset called TOD-ProcBench which contains conversations and complex instructions
in the condition-action format. Our contributions are:

• We propose TOD-ProcBench, based on ABCD [Chen et al., 2021], as a collection of
benchmarks with complex condition-action natural language instructions and multilingual
multi-turn conversations.

• We publish benchmarks for three TOD tasks: (1) instruction and next action selection -
this task measures how well LLMs can identify applicable instructions during a multi-turn
conversation (2) instruction-following evaluation - this task measures how well LLMs can
detect violation of complex instruction (3) instruction-following response generation - this
task measures how well LLMs can respond under complex instructions written for an entire
conversational interaction.

• We propose an approach for generating a test benchmark of instruction-violating responses
in TOD-ProcBench by injecting different perturbations to instructions and prompting the
LLM to generate responses which are similar to the ground-truth yet adhere to manipulated
instructions.
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• We show that all LLMs considered in this study struggle to perform accurately on (1)
complex formatted instruction selection, (2) instruction-violation response evaluation, and
(3) instruction-following response generation tasks. In addition, we find that LLMs have
similar multilingual capability for those tasks with a subtle preference for English.

2 Related Work

In general, ToDs such as customer service chatbots, physical robots, virtual assistants [Cui et al., 2017,
Sengupta et al., 2019, Lewis and White, 2023] are strictly required to comply with the predefined
procedures when executing API calls and actions to resolve user issues. Datasets have been introduced
to incorporate constraints on TODs through schema-guided paradigms. The schema of the synthetic
SGD dataset [Rastogi et al., 2020] imposes constraints through the set of obligatory slots and the
order in which they must be filled for actions to be executed. As shown in Appendix A, SGD schema
for finding next flight intent includes slots (flight’s origin and destination, both airports, seating
class and etc.), their definitions and values, and required slots for each intent. Similar to SGD,
STAR [Mosig et al., 2020] and FLAP [Roy et al., 2024] present the schema concept in ToDs in
flowchart format. For these datasets, the schema with actions and slot values do not usually reflect
the nature of real-world instructions as the latter often has more complex step-by-step structure
and condition-action combination. The Action-Based Conversations Dataset (ABCD) [Chen et al.,
2021] which our study is based on incorporates guidelines that a human agent needs to execute in a
predefined order. We go a step further and present more realistic, natural language instructions in the
form of multi-level condition-action statements that provide precise information about the conditions
that are required to be true for actions to be executed. More recent datasets and studies benchmark
an LLM agent’s ability to follow SOPs [Nandi et al., 2025, Li et al., 2025]. Their focus is more on
the accuracy of tool selection alone, complementing our study of conversational capabilities in a
multi-turn dialogue setting.

3 TOD-ProcBench

3.1 Problem Overview

In our setting, to generate a response r for a given dialogue history u (for example, “user: i
need to return this jacket. it is the wrong size”) within a conversation in language l, a TOD
system D must follow a set of conditions c ⊆ C and execute a sequence of corresponding actions
a = ⟨a1, a2, . . . , an⟩ with ai ∈ A outlined in a given instruction n ∈ N . We present multilingual
TOD-ProcBench with two main dimensions having three and seven variations, respectively: (1) the
format dimension f of n ∈ N with English natural language (f1=“Nested If-Then”, f2=“Flattened
If-Then”, and f3=“Flattened JSON Mappings of Conditions and Actions”) and (2) the language
dimension l of the conversation (Arabic, Chinese, English, French, German, Hindi, Spanish).

3.2 Complex Instruction Components

3.2.1 Conditions

Specific states or attributes, such as customer attributes (e.g., membership level), item properties (e.g.,
purchase date), or conversation states (e.g., user intent) must be verified before executing a sequence
of corresponding actions.

3.2.2 Actions

The TOD must execute specific operations or responses when associated conditions are satisfied.
Actions are organized hierarchically with conditions. For example, when a user inquires about the
return policy (1st-level condition), the agent must first identify the user’s membership level (1st-level
action). If the user has a silver membership (2nd-level condition), then the agent provides specific
information like “only purchases in the last 6 months are returnable” (2nd-level action).
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3.2.3 Composition

Similar to prior works such as Wen et al. [2024] and Li et al. [2025], we use six composition
techniques to derive complete, complex instructions with the foundational condition and action
components: Single, And, Or, Chain, Selection, Nesting.

3.3 Instruction Document Construction

We derive TOD-ProcBench from the ABCD dataset [Chen et al., 2021], a collection of human-
written conversations created by annotators following predefined workflow actions. We aggregate all
human-human conversations with the same user intent from ABCD, which inherently contain similar
conversation trajectories. In Appendix B, we show examples and symbolic notations for each of the
three complex instruction formats, f1, f2, f3.

Format f1 We generated “Nested If-Then” complex instructions, with one distinct instruction
document for each of the 55 user intents in ABCD, using LLMs with 1-shot examples for natural
language condition-action instructions (averaging 146 conversations per intent). We quantify the
complexity of TOD-ProcBench with characterizations such as an average conditional branching
factor of 2.2 and up to 4 nested conditional levels. To answer the question “How does the format of
complex natural language instructions affect an LLM’s compliance capability?”, we use f1 to derive
two additional formats of the instructions which still present the fundamental conditions and actions
in English natural language text.

Format f2 “Flattened If-Then” effectively flattens the nested “If-Then” structure of f1 into a
sequence of single-level condition-action “If-Then” statements. We use this format to evaluate
whether LLMs have a strong preference for the Nesting and Chain composition techniques present
in f1 but not f2. The flattened structure of f2 reduces a Chain into a series of composite conditions
with And.

Format f3 “Flattened JSON Mappings of Conditions and Actions” transforms the natural language
“If-Then” statements in f2 into a structured JSON object containing a list of maps, each of which
denotes relevant conditions and actions to be considered.

3.4 Expanding to Multilingual Conversations

As a practical application of our work in constructing TOD-ProcBench and a first step to evaluate the
multilingual capabilities of LLMs in complex instruction-following, we seek to answer the question
“Are English instructions still effective to guide multi-turn conversations in another language?”. This
study will help justify whether there is a need to produce a high-quality construction of instructions in
other languages for production settings where English instructions may be used in global marketplaces.
We translate only the multi-turn conversations component of the original ABCD dataset to six other
diverse languages: Arabic, Chinese, French, German, Hindi, Spanish.

3.5 Quality Verification

We ask human annotators to assess the quality of TOD-ProcBench’s English conversation pair-
ings with the 55 generated documents in format f1 for the test conversations of ABCD dataset.
The annotators answer the following Yes/No questions shown in the user interface in Figure 3 in
Appendix A:

Accuracy: Does the generated instruction accurately reflect information in the conversation? If the
answer is no, the annotator should provide which part of the instruction is incorrect.

Missing: Is there any important information from the conversation that is missing from the model-
generated instruction? If the answer is yes, the annotator should specify which part from the
conversation is not in the instruction.

Three annotators evaluated each conversation-instruction pair (3,012 total annotations). Annota-
tor agreement was complete for 63% of conversations, with majority voting determining “accu-
racy” (82%) and “missing” (15%) assessments. The top-3 accurate annotations are for the re-
cover_password, recover_username and search_results intents which share similar conversation
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trajectories, while the bottom-3 belong to the shirt, timing and policy intents which can include a
broad range of queries. We only focus on the 769 high-quality pairs. Using English conversation
pairings with English instructions in format f1 as a base version of TOD-ProcBench, we expand the
dataset along the two dimensions of instruction format and conversation language. For the format
and multilingual expansion datasets, we leverage the LLM judge to evaluate the quality of both, with
100% correctness for the format changes and 98.3% to 99.8% for each language variation.

4 Tasks

For all experiments across three tasks, three instruction formats, and seven conversation languages,
we prompt the following six LLMs to conduct chain-of-thought (CoT) [Wu et al., 2023] by first
generating a step-by-step reasoning and then generate the respective output: Qwen3-14B [Yang
et al., 2025], Llama3.3-70B 4, Gemma3-27B-IT 5, Claude3.5-Sonnet-V1 6, Claude3.5-Sonnet-V2 7,
Claude3.7-Sonnet 8. Experimental results which are not presented in tables in the following sections
are presented in Appendix D for completeness.

4.1 Task 1: Instruction Retrieval and Next Action Prediction

Task 1 evaluates ToDs’ ability to retrieve relevant instructions and predict appropriate next actions
conditioned on conversation history. For all 30 actions (details in Appendix A, C) from the ABCD
dataset, we define trigger conditions that determine when each action should be executed. We also
introduce an empty action to handle scenarios in which the customer’s goal has already been met and
no further action is required from the agent.

4.1.1 Dataset

To evaluate model performance in Task 1 at different stages of the user-agent interaction, we create
input data by extracting all partial conversation transcripts that end with the customer’s turn in a
given conversation. For example, a conversation with four customer turns leads to a list of four
partial conversations, each ending with a customer turn. We then pair each partial conversation
with its corresponding instruction. Overall, 6953 partial conversations are extracted from 1004 test
conversations.

In order to examine the accuracy of models’ predictions for the agent’s next action, we process the list
of workflow steps from ABCD for each partial conversation history and identify actions that are most
relevant to the existing agent turns in the conversation history. The first action from the remaining
workflow steps is used as the ground-truth next agent action. Examples of input data for Task1 are
shown in Appendix A.

4.1.2 Results

We prompt six LLMs to generate the the next agent turn and top k = 1 or k = 2 most relevant
instruction given the conversation history, list of all instructions and possible agent actions with
the conditions for invoking each of these actions. In computing the top k = 2 accuracy, we check
whether any of the two relevant instructions retrieved by LLMs is the ground-truth instruction or not.
All models are executed in a few-shot in-context learning [Brown et al., 2020] paradigm where we
provide three demonstrations for LLMs.

Table 1 depicts the accuracy of the models in predicting the correct instruction and agent’s next
action. While the larger LLMs maintain a relatively more consistent performance for k = 1 and
k = 2, all LLMs recorded higher accuracy for the top-k = 2 scenario for both overall accuracy
and only instruction retrieval. Most LLMs demonstrate a preference for format f1 and all LLMs
demonstrate more difficulty in correctly predicting the agent’s next action, likely attributable to the
subtle distinctions between actions and the overlapping nature of their triggering conditions. We also

4https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
5https://huggingface.co/google/gemma-3-27b-it
6https://www.anthropic.com/news/claude-3-5-sonnet
7https://www.anthropic.com/news/3-5-models-and-computer-use
8https://www.anthropic.com/news/claude-3-7-sonnet
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Model Overall Instruction Retrieval Begin Middle End Best Format
Claude3.7-Sonnet 0.3948 / 0.4310 0.8267 / 0.8943 0.3878 / 0.4481 0.3834 / 0.4074 0.4161 / 0.4359 f2 / f1
Claude3.5-Sonnet-V2 0.3312 / 0.4182 0.7311 / 0.8765 0.3270 / 0.4214 0.3333 / 0.4126 0.3341 / 0.4204 f1 / f3
Claude3.5-Sonnet-V1 0.3187 / 0.3716 0.7057 / 0.8304 0.3185 / 0.3750 0.3342 / 0.3730 0.3018 / 0.3660 f3 / f3
Qwen3-14B 0.3122 / 0.3279 0.7792 / 0.8419 0.1645 / 0.1668 0.2828 / 0.2880 0.5289 / 0.5728 f1 / f1
Gemma3-27B-IT 0.2221 / 0.2559 0.6138 / 0.7559 0.0770 / 0.0755 0.2144 / 0.2392 0.4113 / 0.4990 f1 / f2
Llama3.3-70B 0.1447 / 0.2497 0.2503 / 0.6612 0.1463 / 0.2620 0.1477 / 0.2366 0.1393 / 0.2488 f2 / f1

Table 1: Task 1 accuracy and best performing instruction format for top k = 1 and k = 2 instruction
retrieval and next agent action prediction given English conversations. Each entry is given in the form
k = 1/k = 2. “Overall” denotes both instruction retrieval and next action prediction as opposed to
only “Instruction Retrieval”. “Begin”, “Middle”, and “End” denote the respective 1/3 segments of the
conversation. The best result per column is bolded.

Language Claude3.7-Sonnet Claude3.5-Sonnet-V2 Claude3.5-Sonnet-V1 Qwen3-14B Gemma3-27B-IT Llama3.3-70B
EN 0.3959/0.3932 0.3270/0.3312 0.3019/0.2963 0.1645/0.3122 0.0770/0.2221 0.1374/0.1358
FR 0.4141/0.4041 0.3615/0.3613 0.3522/0.3299 0.1540/0.2976 0.0441/0.1877 0.1188/0.1146
DE 0.3885/0.3896 0.3483/0.3524 0.3386/0.3283 0.1242/0.2786 0.0708/0.2088 0.1262/0.1126
ES 0.3955/0.4005 0.3518/0.3472 0.3282/0.3268 0.1521/0.2874 0.0658/0.1978 0.1327/0.1280
ZH 0.3808/0.3768 0.3212/0.3209 0.3185/0.3216 0.1521/0.2983 0.0550/0.1921 0.0851/0.0840
AR 0.3820/0.3778 0.3007/0.3036 0.3293/0.3206 0.1726/0.2934 0.0433/0.1585 0.0298/0.0299
HI 0.3785/0.3882 0.3317/0.3141 0.3386/0.3365 0.1718/0.3017 0.0701/0.1878 0.0252/0.0240

Table 2: Task 1 accuracy for predicting the correct next action and retrieving the correct top k = 1
instruction in the beginning 1/3 of the conversation (Begin) and for every agent response (Overall),
denoted by Begin/Overall entries in the table. Results are shown across models and conversation
languages (English (EN), French (FR), German (DE), Spanish (ES), Chinese (ZH), Arabic (AR),
Hindi (HI)). The best result per language is bolded and the best result per model is underlined.

compute accuracy of the models in predicting the correct instruction and action based on relative
position of the given agent response in the conversation, assigning turns to beginning, middle or end
based on whether they are located in the beginning, middle, or final third of the agent turns in the
conversation. According to Table 1, larger models perform consistently throughout the conversation.
Although smaller models perform better at instruction retrieval and action predictions as they get
more information from the conversation history, all LLMs still have more room for improvement.
As shown in Appendix D, larger models tend to outperform smaller models across the conversation
languages but performance of all LLMs is not severely impacted by language.

4.2 Task 2: Compliance Evaluation

The main goal of Task 2 is to benchmark LLMs’ capability on scoring the compliance of a given ToD’s
response with respect to the dialogue history and the instruction that the agent must follow. Such
capability is essential to be used as both a quality verifier during inference and a proxy for improving
the development process for instruction-following ToDs. We formulate a binary classification
task where the goal is to distinguish between instruction-following and instruction-violating agent
responses.

Dataset For the compliance evaluation task, we only focus on agent utterances that are directly
relevant to instructions. To isolate such responses from generic responses such as greeting / acknowl-
edging customer / pure empathy, we leverage a LLM to classify agent turns as relevant or irrelevant
in the 6953 partial conversations from Task 1 dataset.

Compliance Manipulation Pipeline To build our binary instruction-following / instruction-
violating dataset, we use human-written ABCD responses as instruction-following examples and
generate instruction-violating counterparts through a four-step pipeline (Figure 2): (1) extract relevant
instruction sections, (2) manipulate the extracted instructions, (3) generate instruction-violating re-
sponses based on the manipulated instructions, (4) verify whether the generated instruction-violating
response entails the original ground-truth response.

1) Instruction Section Extraction: We use dialogue history, instruction document, and the ground-
truth instruction-following agent response as input when prompting the LLM to select a section
(including its closest ‘if’ condition) of the instruction to which the ground-truth response is directly
related. If such a relevant part of the instruction is not present, we exclude this response sample.
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Figure 2: The proposed pipeline for generating instruction-violating responses for Task 2.

Model EN FR DE ES ZH AR HI
Claude3.7-Sonnet 0.7608/0.7298 0.7558/0.7233 0.7533/0.7260 0.7490/0.7283 0.7407/0.7170 0.7510/0.7205 0.7472/0.7152
Claude3.5-Sonnet-V2 0.7215/0.6874 0.7253/0.6776 0.7187/0.6763 0.7207/0.6887 0.7175/0.6640 0.7114/0.6582 0.7033/0.6524
Claude3.5-Sonnet-V1 0.6847/0.6854 0.6867/0.6811 0.6869/0.6784 0.6834/0.6796 0.6615/0.6604 0.6483/0.6551 0.6435/0.6496
Llama3.3-70B 0.7283/0.5636 0.7273/0.5346 0.7303/0.5388 0.7250/0.5356 0.6978/0.5545 0.6266/0.4970 0.6405/0.5129
Qwen3-14B 0.7046/0.6937 0.6968/0.6905 0.6958/0.6872 0.6965/0.6847 0.6965/0.6907 0.6920/0.6837 0.6895/0.6758
Gemma3-27B-IT 0.6968/0.5616 0.6890/0.5436 0.6773/0.5477 0.6935/0.5482 0.6890/0.5404 0.6791/0.5376 0.6804/0.5409

Table 3: Task 2 accuracy comparison between Approach 1/Approach 2 with instruction format f1
across conversation languages (English (EN), French (FR), German (DE), Spanish (ES), Chinese
(ZH), Arabic (AR), Hindi (HI)). The best result per language is bolded and the best result per model
is underlined.

2) Instruction Manipulation: We apply systematic manipulations to both the extracted instruction
section and the complete source instruction using an LLM to simulate the following categories of
violations:

• Fine-grained parameter mismatch: We substitute numerical values (e.g., number of days
for which a customer is eligible to return an item) in the extracted section of the instruction
with randomly generated numbers, simulating subtle compliance violations.

• Single-condition action replacement: For instructions containing one condition with
multiple actions, we randomly substitute an original action with either its negation or an
alternative action from the same instruction, capturing action-level instruction violations.

• Multi-condition action replacement: For instructions with a composition of multiple
conditions, we alter the logical condition-action relationships by randomly replacing a target
action with an action corresponding to other conditional branches within the same instruction.
For example, we could apply standard member return policies for a gold member, violating
the true dependence of actions on their corresponding conditions.

3) Response Generation: We provide the dialogue history, the manipulated and original instructions,
and the ground-truth response to the LLM and prompt it to minimally revise the ground-truth response
such that it covers the main difference between the original and manipulated instruction. We explain
in the prompt that the generated response must comply with the manipulated instruction. This
implicitly guarantees that the generated response is an instruction-violating response.

We used LLM to verify that generated instruction-violating responses do not entail ground-truth
responses. Of 2288 generated samples, 307 required additional manipulation cycles. Manual
verification confirmed 87% accuracy in instruction violations (1982 samples), resulting in a final
dataset of 3964 balanced examples (compliant and non-compliant) for Task 2.

Results We compare the six LLMs as binary classifiers for instruction violations in TOD-ProcBench
using two approaches:

• Approach 1: Given the conversation, next agent response, and relevant instruction section,
the LLM should classify the agent’s next response as compliant or instruction-violating.

• Approach 2: LLM first attributes the given agent response to the most relevant instruction
and then verifies whether the identified instruction and originally provided ground-truth
instruction are entailing each other. Entailment implies a compliant response.

We leverage accuracy as the evaluation metric for Task 2. As Table 3 indicates, most models perform
slightly better for English conversations in both approaches. Table 3 also highlights Approach 2’s
impact on the compliance evaluation performance as all models demonstrate inferior performance
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when relying on instruction-level comparisons. Approach 2 increases the complexity of the compli-
ance evaluation task by having the model first generate the relevant instruction based on the given
conversation and then verify compliance with the generated instruction. Table 32 in the Appendix
also demonstrates that the LLMs are unable to conduct the compliance evaluation task accurately and
have a subtle preference for format f1, calling for further studies.

4.3 Task 3: Compliant Response Generation

Inspired by real-world scenarios of conditional generations [Chen et al., 2019, Siddique et al., 2022,
Narayan et al., 2023], in Task 3, we investigate ToDs’ conditional generation abilities based on our
predefined instructions which require responses to follow the specified guidelines.

Dataset In Task 3, we only examine TODs’ abilities to generate follow-up responses given that
the previous conversation is already compliant with given instructions. We use the 3310 partial
conversations from the first step of the Task2 pipeline containing instruction-following responses,
dialogue histories, and corresponding instructions.

Results We instruct the six LLMs to continue the conversation while following the given instruction.
In the prompt, we decompose the problem to identify the steps the agent has followed, select the
next most relevant action based on the given instruction, and generate a response that matches
the instruction’s retrieved action. We employ Claude3.7-Sonnet (the top-performing Task 2 LLM)
as a judge to assess response quality and compliance without ground-truth knowledge. Using its
compliance classifications, we calculate compliance rates for Task 3, where higher scores indicate
better consistent adherence to instructions.

Model EN FR DE ES ZH AR HI
Claude3.7-Sonnet 0.9529 0.9553 0.9535 0.9628 0.9616 0.9680 0.9622
Claude3.5-Sonnet-V2 0.9532 0.9505 0.9432 0.9544 0.9529 0.9559 0.9505
Claude3.5-Sonnet-V1 0.9254 0.9353 0.9344 0.9378 0.9375 0.9429 0.9390
Gemma3-27B-IT 0.8952 0.3130 0.3121 0.3009 0.3205 0.3278 0.3323
Llama3.3-70B 0.1435 0.4773 0.5773 0.3565 0.5227 0.3931 0.3834
Qwen3-14B 0.2269 0.2281 0.2254 0.2142 0.2326 0.2369 0.2375

Table 4: Task 3 compliance rate across models and conversation languages (English (EN), French
(FR), German (DE), Spanish (ES), Chinese (ZH), Arabic (AR), Hindi (HI)) with instruction format
f1. The best result per language is bolded and the best result per model is underlined.

Table 4 compares the quality of the models’ generations using prior criteria from the given instruc-
tions. Larger LLMs tend to exhibit higher compliance in comparison to smaller models, across the
conversation language and instruction format dimensions. Some smaller models tend to not respond
in the specified response format, leading to many non-compliant responses and very low compliance
rates. The performance of all LLMs is not significantly impacted by the language. We observe that
the models usually generate longer utterances as it is hard for them to accurately identify one next
action from the instruction and to exclusively cover that action. Even though the instruction-following
generations may not be semantically close to ground-truth responses, Claude3.7-Sonnet still considers
them as compliant.

5 Conclusion

In this work, we apply complex condition-action formatted natural language instructions for ToDs to
closely model the complexity of real world complex instructions. With these instruction documents
and their application to multilingual conversations, we propose three related tasks: instruction retrieval
and next action prediction, instruction-following evaluation, and compliant response generation. We
publish benchmarks for each task in TOD-ProcBench and show that advanced LLMs still strive
to perform admirably in all of these tasks and with enhanced multilingual capabilities for more
challenging, fine-grained tasks. As future works, we plan to extend TOD-ProcBench to additional
dataset formats including codified structures across domain-specific instructions.
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SGD (Task: Flights_1)

description: Find your next flight

slots: [passengers, seating_class, origin_city, destination_city, origin_airport, ...]
slot: seating class

description: Seating class for the booking
is_categorical: true
possible_values: [Economy, Premium Economy, Business, First Class]

intents: [SearchOnewayFlight, SearchRoundtripFlights, ReserveOnewayFlight, ReserveRoundtripFlights]
intent: ReserveOnewayFlight

description: Reserve a one-way flight
is_transactional: True
required_slots: [origin_city, destination_city, airlines, departure_date]
optional_slots: [refundable, passengers, seating_class]

Table 5: Example of instructions in SGD.

STAR (Task: book_doctor_appointment)

graph: Hello → ask_name → ask_doctor_name → ask_day → ask_start_time → ask_symptoms →
query_check

available → inform_booking_available
unavailable → inform_booking_unavailable

yes → query_book
no → ask_doctor_name

query_book → doctor_inform_booking_successful → inform_booking_successful

Table 6: Example of instructions in STAR.

ABCD (Task: Policy and Return Due to Size)

search-faq → search-policy → select-faq
pull-up-account → validate-purchase → membership → enter-details → update-order

Table 7: Example of instructions in ABCD.
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TOD-ProcBench (Task: Policy and Return Due to Size)

If customer wants to know the return policy:
- Ask for customer’s membership level (gold, silver, bronze, guest)
- If gold:

- Allow unlimited returns
- If silver:

- Allow returns for purchases made in the last 6 months
- If bronze:

- Allow returns for purchases made in the last 90 days
- If guest:

- Allow returns for purchases made in the last 30 days
If customer wants to return an item due to wrong size:

- Ask for customer’s full name or account ID
- Ask for username, email address, and order ID to validate purchase
- Ask for membership level (guest, bronze, silver, gold)
- If membership is guest:

- If purchase was within last 30 days or customer has receipt/original packaging:
- Allow return

- Else:
- Deny return

- If membership is bronze:
- If purchase was within last 90 days or customer has receipt/original packaging:

- Allow return
- Else:

- Deny return
- If membership is silver:

- If purchase was within last 6 months or customer has receipt/original packaging:
- Allow return

- Else:
- Deny return

- If membership is gold:
- Allow unlimited returns

- If return is allowed:
- Ask for customer’s full address to generate shipping label
- Ask how customer wants to process return (by mail, in store, drop off center)
- Provide shipping label and return instructions

Table 8: Example of instructions in TOD-ProcBench.
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Figure 3: User interface for collecting human annotation on the quality of the generated instructions.
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ABCD Conversation

agent: hi. how can i help you?
customer: hello, i would like to check on the shipping status for my order as i have yet to receive it
agent: ok
agent: can you tell me your name, your account id, and the order id from the order?
customer: joseph banter, <account> , <order_id>
action: account has been pulled up for joseph banter.
action: identity verification in progress ...
agent: ok, what is your username and email address?
customer: <username> , <email>
action: purchase validation in progress ...
action: querying the system for an answer ...
agent: your order is still on track and on the way
customer: i have been waiting 9 days for it
customer: i think it might be lost, anyway i can get it resent?
agent: yes, it can be resent
agent: can you tell me your address
customer: <street_address> brighton, ny <zip_code>
action: order has been updated with <street_address> brighton, ny <zip_code>.
agent: ok, what is the brand and the type of product?
customer: michael kors jeans
action: a purchase of michael kors jeans was made.
agent: ok, the jeans have been resent
customer: thank you

ABCD workflow

pull-up-account, verify-identity, validate-purchase, ask-the-oracle, update-order, make-purchase

Examples of Task1 inputs

1. Partial Conversation:
agent: hi. how can i help you?
customer: hello, i would like to check on the shipping status for my order as i have yet to receive it
agent: ok
agent: can you tell me your name, your account id, and the order id from the order?
customer: joseph banter, <account> , <order_id>
agent: ok, what is your username and email address?
customer: <username> , <email>
1. Next Action: validate-purchase

2. Partial Conversation:
agent: hi. how can i help you?
customer: hello, i would like to check on the shipping status for my order as i have yet to receive it
agent: ok
agent: can you tell me your name, your account id, and the order id from the order?
customer: joseph banter, <account> , <order_id>
agent: ok, what is your username and email address?
customer: <username> , <email>
agent: your order is still on track and on the way
customer: i have been waiting 9 days for it
customer: i think it might be lost, anyway i can get it resent?
agent: yes, it can be resent
agent: can you tell me your address
customer: < street_address> brighton, ny <zip_code>
agent: ok, what is the brand and the type of product?
customer: michael kors jeans
2. Next Action: make-purchase

Table 9: Examples of Task 1 benchmark.
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Fine-Grained Parameter Mismatch
Conversation
“agent: hello. thanks for contacting the customer satisfaction team, how may i help you today?"
“customer: hi i never got my stuff i ordered. can you check it for me?"
“agent: it’d be my pleasure to look into that for you. may i start by getting your full name?"
“customer: sanya afzal"
Instructions
If customer has not received their order:

If it has been less than 7 days since order was placed:
- Inform customer that orders can take up to 7 days to arrive
- Advise customer to wait a few more days and contact again if order still has not arrived after 7 days

If it has been 7 days or more since order was placed:
- Apologize for the delay and Verify customer’s address and Place a new order to be shipped to the

customer
If order was placed a very long time ago (e.g. months), offer to expedite or overnight the new shipment

Compliant Response
“agent: okay sanya, what item were you expecting and when were you expecting it to be delivered?"
Instruction-Violating Response (fine-grained parameter mismatch)
“agent: Orders can sometimes take up to 11 business days to be delivered after being shipped. Let me know if
you still have not received your order after 11 days and I’d be happy to look into it further for you."

Table 10: Example of a instruction-violating response resulting from the proposed compliance
manipulation approach with fine-grained parameter mismatch.

Single-Condition Action Replacement
Conversation
“agent: hi! how can i help you today?"
“customer: hi! i need to return this jacket. it is the wrong size"
“agent: no problem. can i have your full name, username, email address, and order id, please?"
“customer: alessandro phoenix"
“customer: <username> <username>@email.c <email> <order_id>"
“agent: and what is your membership level?"
“customer: gold"
“customer: sanya afzal"
Instructions
If customer wants to return an item due to wrong size:

- Ask for customer’s full name or account ID
- Ask for username, email address, and order ID to validate purchase
- Ask for membership level (guest, bronze, silver, gold)
- If membership is gold:

- Allow unlimited returns
...
- If return is allowed:

- Ask for customer’s full address to generate shipping label
- Ask how customer wants to process return (by mail, in store, drop off center) and - Provide shipping

label
Compliant Response
agent: okay, great! what is your address? i’ll need it for the shipping label.
Instruction-Violating Response (single-condition action replacement)
I see your membership level is gold. Unfortunately, our policy does not allow unlimited returns for gold
members. Could you please provide more details on why you need to return this item? I will review the return
request based on the return policy.

Table 11: Example of a instruction-violating response resulting from the proposed compliance
manipulation approach with single-condition action replacement.
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Multi-Condition Action Replacement

Conversation
“agent: hello, thanks for contacting acmebrands. how can i help today?"
“customer: hi, this is albert sanders, gold member"
“customer: i have a premium subscription with acme brands, but i’m having a bit of trouble finding my account
details"
“agent: i see, are you needing help accessing your account?"
“customer: yes, well, really i just want to know when my annual fee is due. i can pay it today if there’s anything
outstanding"
“action: account has been pulled up for albert sanders."
Instructions
If customer wants to check subscription status:

- Ask for customer’s full name, account ID, and order ID
- Verify customer’s identity
- Check subscription status in the system
- If subscription is active:

- Provide due date and amount due
...

Compliant Response
“agent: do you have your account id and order id albert?"
Instruction-Violating Response (multi-condition action replacement)
“agent: According to our records, your annual subscription fee of $ 50 is due on March 1st. Let me check the
status of your subscription in our system to confirm the details."

Table 12: Example of a instruction-violating response resulting from the proposed compliance
manipulation approach with multi-condition action replacement.
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Conversation
“turn 0: agent: hello, thanks for contacting acmebrands. how can i help today?"
“turn 1: customer: hi, this is albert sanders, gold member"
“turn 2: customer: i have a premium subscription with acme brands, but i’m having a bit of trouble finding my
account details"
“turn 3: agent: i see, are you needing help accessing your account?"
“turn 4: customer: yes, well, really i just want to know when my annual fee is due. i can pay it today if there’s
anything outstanding"
“turn 5: action: account has been pulled up for albert sanders."

Instructions
If customer wants to check subscription status:

- Ask for customer’s full name, account ID, and order ID
- Verify customer’s identity
- Check subscription status in the system
- If subscription is active:

- Provide due date and amount due
- If amount is due today or past due:

- Offer to take payment with card on file or new card
- Process payment if customer wants to pay

- If subscription is inactive:
- Provide amount due and due date to reactivate
- Offer to take payment with card on file or new card
- Process payment if customer wants to reactivate

Ground-Truth Response
“turn 6: agent: do you have your account id and order id albert?"

Extracted Original Instruction Section
If customer wants to check subscription status:

- Ask for customer’s full name, account ID, and order ID
- Verify customer’s identity

Manipulated Instructions
If customer wants to check subscription status:

- Provide due date and amount due
- Check subscription status in the system

Instruction-Violating Response
“turn 6: agent: According to our records, your annual subscription fee of $50 is due on March 1st. Let me check
the status of your subscription in our system to confirm the details."

Table 13: Example 1 of conversations with manipulated instructions and instruction-violating agent
responses.
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Conversation

“turn 0: agent: hello, how may i help you?",
“turn 1: customer: i noticed my phone number was wrong and i need to fix it.",
“turn 2: agent: let me help you with that.",
“turn 3: agent: so you just want to change the phone number on your account is that correct?",
“turn 4: customer: that’s correct.",
“turn 5: agent: could i have your full name or account id?",
“turn 6: customer: albert sanders",
“turn 7: action: account has been pulled up for albert sanders"

Instructions
If customer wants to change their phone number:

- Get customer’s full name or account ID
- Pull up customer’s account
- Get current phone number listed on the account
- Verify customer’s identity by asking for 2-3 of the following:

- Zip code
- Pin number
- Username
- Password
- Email address
- Previous order ID

- If identity is verified:
- Get new phone number from customer
- Update account with new phone number

- If identity cannot be verified:
- Politely inform customer you cannot update account without proper verification
- Offer to try verifying again or suggest customer contact support another way

Ground-Truth Response
“turn 8: agent: could i have the current phone number on your account?"

Extracted Original Instruction Section
If customer wants to change their phone number:

- Get customer’s full name or account ID
- Pull up customer’s account
- Get current phone number listed on the account

Manipulated Instructions
If customer wants to change their phone number:

- Get customer’s full name or account ID
- Pull up customer’s account
- Do not get current phone number listed on the account

Instruction-Violating Response
“turn 6: agent: I’ve pulled up your account, Albert. What new phone number would you like me to update it with?"

Table 14: Example 2 of conversations with manipulated instructions and instruction-violating agent
responses.
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B Complex Instruction Formats in TOD-ProcBench

In this section, we present a symbolic and natural language example of each of the three complex
instruction formats, f1 (Figure 4), f2 (Figure 5), f3 (Figure 6), in TOD-ProcBench.

Let C be the set of all conditions and A be the set of all actions. For a nested structure with depth d,
each flattened condition-action pair is defined as:

(Cn,an) ∈ {(c1 ∧ ... ∧ ck, ⟨a1, ..., am⟩)|cj ∈ C, aℓ ∈ A}

where Cn = c1 ∧ ... ∧ ck represents a conjunction of composite conditions, and an = ⟨a1, ..., am⟩
represents a sequence of actions that must be executed when Cn is satisfied.

For example, the nested structure in f1 [escapeinside=(**)] If (*c1*): (*a1*) If (*c2*): (*a3*) (*a4*)
(*a2*) If (*c3*): (*a5*)

is flattened in f2 to:

{(c1, ⟨a1⟩), (c1 ∧ c2, ⟨a3, a4⟩), (c1, ⟨a2⟩), (c3, ⟨a5⟩)}

.

A flattened structure in f2 {(c1, ⟨a1, a2⟩)} is then transformed in f3 to {“conditions” :
[c1], “actions” : [a1, a2]}.

<What_to_do>
If customer received an email confirmation showing incorrect quantity
of items ordered:

- Identify customer by asking for full name or account ID
- Get order ID from customer
- Verify customer’s identity
- Check system records to confirm actual quantity ordered
- If email was incorrect:

- Inform customer of the correct quantity
ordered based on system records
- If order has already shipped:

- Check shipping status
- If delivered, start return process for extra item(s)
- If not delivered yet, inform customer to contact again after

receiving to initiate return
- Offer refund for extra item(s) charged

- If email was correct:
- Explain reason for extra item(s) if possible
- Start return process if applicable

</What_to_do>

Figure 4: Example of a TOD-ProcBench instruction document in format f1.
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<What_to_do>
If customer received an email confirmation showing incorrect quantity
of items ordered:

- Identify customer by asking for full name or account ID
- Get order ID from customer
- Verify customer’s identity
- Check system records to confirm actual quantity ordered

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect:

- Inform customer of the correct quantity ordered based on
system records

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect AND order has already shipped:

- Check shipping status

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect AND order has already shipped AND delivered:

- Start return process for extra item(s)

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect AND order has already shipped AND not delivered yet:

- Inform customer to contact again after receiving to initiate return

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect:

- Offer refund for extra item(s) charged

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was correct:

- Explain reason for extra item(s) if possible
- Start return process if applicable

</What_to_do>

Figure 5: Example of a TOD-ProcBench instruction document in format f2.
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<What_to_do>
[

{
"Conditions": [

"customer received an email confirmation showing incorrect quantity of
items ordered"

],
"Actions": [

"Identify customer by asking for full name or account ID",
"Get order ID from customer",
"Verify customer’s identity",
"Check system records to confirm actual quantity ordered"

]
},
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",

"email was incorrect"
],
"Actions": [

"Inform customer of the correct quantity ordered based on system records"
]

},
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",

"email was incorrect",
"order has already shipped"

],
"Actions": [

"Check shipping status"
]

},
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",

"email was incorrect",
"order has already shipped",
"delivered"

],
"Actions": [

"Start return process for extra item(s)"
]

},
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",

"email was incorrect",
"order has already shipped",
"not delivered yet"

],
"Actions": [

"Inform customer to contact again after receiving to initiate return"
]

},
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",

"email was incorrect"
],
"Actions": [

"Offer refund for extra item(s) charged"
]

},
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",

"email was correct"
],
"Actions": [

"Explain reason for extra item(s) if possible",
"Start return process if applicable"

]
}

]
</What_to_do>

Figure 6: Example of a TOD-ProcBench instruction document in format f3.
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C LLM Prompts

In this section, we present key prompts used for creating TOD-ProcBench and evaluating LLMs for
each task.

Instruction Generation LLM System Prompt (Part 1)

Conversation

You are given a set of conversations between a customer and an agent. In all of the conversations the customer
has a specific intent from the interaction with the agent. You are asked to read all the conversations in
<conversations> tags for the specified intent in <intent> tag and generate a policy that the agent has followed
to complete all the conversations in <conversations> tag.
hint: your generated policy should contain only one section in <what_to_do> tags and one <what_to_say> tags.

Here is a template for the policy that you are asked to generate. Each template has to have two sections:
1. What to do in <What_to_do> tags which shows some conditional statements and the steps to accomplish the
task. You can specify each condition with ’if’ and then have the condition and what needs to be done for that
condition. Try to provide all details as an example directly mention different membership levels and the return
dates for each level accordingly.
2. What to say in <What_to_say> tags which shows what are the important utterances that the agent has to say
to accomplish all the defined steps in the what to do part.
{continued in Table 16}

Table 15: LLM system prompt (Part 1) to generate an instruction document given the set of conversa-
tions with similar user intents.
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Instruction Generation LLM System Prompt (Part 2)

{continued from Table 15}
<example>

Here is an example of a policy for the following conversation in <example_conv> tag:
<example_conv>
“agent: hello, how are you today? how can i help you?",
“customer: i did a return but i don’t want to get my refund as a gift card.",
“agent: can i please get your full name and account id?",
“customer: my name is [name1] but i’m not sure about the account id",
“agent: you are looking to get check instead of gift card?",
“customer: yes",
“action: account has been pulled up for [name1]",
“agent: what is your membership level",
“customer: gold",
“action: membership level of has been noted.",
“agent: since your are a gold member we can refund you via the check. Do you want to use your existing

bank account?",
“customer: yes, thanks",
“action": changes have been entered.
“agent: no problem! is there anything else i can help you with, sanya?",
“customer: that will be all",
“agent: perfect. you have a nice day. goodbye!"
</example_conv>

Policy for this conversation is:
<What_to_do>
If customer wants to get check instead of gift card:
-If membership level is Gold or Silver:

- Allow the request
- Ask for the account info if you do not have
- Process the request

-If membership level is guest or bronze:
- if the refund has been initiated in 30 days:

- Allow the request and ask for the account info and process it
- if not:

- Inform customer request cannot be processed
</What_to_do>

<What_to_say>
- Ask for customer’s full name or account ID
- Check membership level
- Check refund initiated date based on membership level
- If the changing request is eligible:

-Ask customer’s bank account info if it does not exist.
-Ask if customer wants to use existing bank account it if exists.

-If the request is not eligible:
- Politely inform customer request cannot be processed and explain reasoning
- Apologize for inconvenience
- Offer to help with anything else

</What_to_say>
</example>

Table 16: LLM system prompt (Part 2) to generate an instruction document given the set of conversa-
tions with similar user intents.
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Instruction Generation LLM User Prompt

Conversation
Here is the intent and all the conversations. Read all of them carefully and generate the policy accordingly.

<intent> intent </intent>

<conversations>

convs

</conversations>

The best policy for the given conversations is:

Table 17: LLM user prompt to generate an instruction document given the set of conversations with
similar user intents.

Complex Instruction Format Conversion LLM Prompt

Convert nested conditional statements into two formats which should represent the same meaning in different
formats:
1. A flattened text format where each line starts with a condition and lists actions to take
2. A flattened JSON format with an array of objects, each containing "conditions" and "actions" arrays
GENERAL INSTRUCTIONS:
- Identify all decision points and actions in the nested structure
- The entries for conditions and actions in each format must use the same natural language from the original
input.
- Maintain all the original logic and relationships between conditions and actions
- Consecutive entries in the flattened formats should NOT have the exact same list for conditions. This effectively
means that all condition-action pairs that are neighbors must have different lists for conditions. If the same list is
used (same entries in the list or same empty list which specifically denotes in all cases) for conditions in pairs
that are consecutive, then combine all such consecutive pairs to only have one unique list of conditions and all
corresponding actions in the same original sequence.
- The expectation is that a user of these flattened instructions will read them in order from top-down, first to
last, evaluating each condition and if true executing the associated action(s). As such, your flattening must be
recursive and preserve the same order of actions executed if the user were to follow the original SOP.
- Process each section separately if multiple sections are provided
INSTRUCTIONS for flattened text format:
- Each line should start with "If [condition]:" followed by indented actions
- When a condition depends on previous conditions, use "AND" to combine them (e.g., "If condition1 AND
condition2:")
- For actions that apply in all cases, use "In all cases:" as the condition
INSTRUCTIONS for flattened json format:
- Represent each condition-action pair as "conditions": [...], "actions": [...]
- For actions that apply in all cases, use an empty list [] as the condition
You might find it easier to generate the flattened text format first and then generate the equivalent flattened json
format. The motivation here is to flatten the nested hierarchy of conditional statements so that one can simply go
down the list from the first line in a flattened format to the last line in a flattened format and only execute actions
corresponding to conditional statements that are true.
Please convert this into both flattened formats and provide your output.
Input:
json_data
Provide a single dictionary so that json.loads() can parse your perfectly formatted response. Your final response
should be a json with the following keys (note that the first 3 keys are the same as original input and the values
should be preserved as well):
"intent" "what_to_do", "what_to_say", "flattened_text_what_to_do", "flattened_text_what_to_say",
"json_what_to_do", "json_what_to_say",

Table 18: LLM prompt to convert complex instruction format from f1 to f2 and f3.
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Multilingual Conversation Translation LLM Prompt

Translate this conversation from english to target_language. For both the agent and customer, use the native
conversation style. However, the tone and formality should match the tone and formality for each role respectively
in the original English conversation. This means, for the agent, the tone should be professional and the formality
should be formal, even if the customer seems to be speaking informally. respect the masculine and feminine
assignments of vocabulary in the target language. The output format should be the same as the input conversation:
A string with turns separated by \n exactly as done in the input transcript of the conversation, representing either
the "agent" or "customer" speaking, with the actual dialogue text in the target language. Avoid using English
except for the role names as explained below or placeholders indicated in the conversation. The roles in the
conversation list should still be represented as "agent" or "customer". Only respond with this conversation
transcript string and nothing else.
Original english conversation transcript: conversation
Translated conversation transcript:

Table 19: LLM prompt to translate conversations in TOD-ProcBench.

Multilingual Conversation Translations LLM Judge Prompt

Evaluate the translation quality of the translated language conversation with respect to the original English
conversation and answer three questions with Yes or No:
English conversation: english_conversation
Translated conversation: translated_conversation
Please only provide your answers as three comma-separated Yes/No responses to the following questions and do
not provide anything else in your answer:
1. Overall, did the translated conversation preserve the same meaning in each agent/customer turn as the original
English conversation?
2. Overall, did the sentiment, tone, and formality of each agent/customer turn in the translated conversation
match the respective agent/customer turn in the original English conversation?
3. Except for placeholder text or technical terms which do not have proper translations to the target language, is
there any use of English in the translated text?

Table 20: LLM-as-a-Judge prompt to evaluate the quality of translated conversations in TOD-
ProcBench.
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LLM System Prompt for Task 1

You are given a part of conversation between a customer and an agent in <conversation> tag. In addition,
you are given a set of policies in <policies> tag including “what_to_do" and “what_to_say" that are instructed
to an agent to follow in its interaction with the customer to solve customer’s provided issue.
You are also given a list of actions in <actions> that shows agent’s next action to conduct in each point of the
conversation.
Each line in <actions> shows one possible agent’s action and the conditions necessary to select that action.
The conditions are based on what customer has asked and looked for in the last turns of the conversation. In
order to select the agent’s next action you need to pay attention to the last agent’s and customer’s turns from the
conversation in <conversation> tags.

Your task is as following:
get the two most relevant policies:

1) read all the policies carefully
2) for the given conversation select the two most matching and relevant policies based on the customer’s

intent from the interaction. Your selected policies should meet both of the following conditions.
a) policies state has user’s provided intent or problem as an “if" condition.
b) policies include the steps that agent has followed in its interaction in the conversation to solve the

problem.
get agent’s next action:

1)read all the list of actions in <actions> and the conditions necessary to select each action.
2)read only the last agent and customer turns from <conversation>
3)find the most similar action from <actions> tag by comparing customer’s last turn from conversation and

each action’s condiditon from <actions>.
Look into following examples for identifying next agent’s action.
<examples>
<example>
<conversation>
“agent: hi! how can i help you?",
“customer: i’d like to know why i was charged twice for my subscription.",
“agent: sure, sorry about that, let me take a look",
“agent: may i have your name please?",
“customer: joseph banter",
“agent: thanks, and your account id and order id please?",
“customer: account id: <account_id>",
“customer: order id: <order_id>",
“agent: thanks! do you know your membership level?",
“customer: guest",
<conversation>
<reason> To get the agent’s next action we pay attention to the last agent’s and customer’s turns in the
<conversation> which is “thanks! do you know your membership level?" and “guest" where the agent has
asked customer about her membership status and customer has provided it. It is exactly similar to what triggers
“membership" action in <actions> tag that is “agent has asked customer about her membership status and
customer has provided her membership level". Therefore the agent’s next action is “membership".
<reason>
<example>
...
</examples>

Start your generation first by providing a reasoning of why you have selected the agent’s next action (similar
to provided examples) and the two most relevant policies in <reason> tags. Then return one <output> tag that
includes THREE piece of information: the most relevant next action from <actions> and two most relevant
policies from <policies> all separated by ’,’. The format of the output should be your provided reason in
<reason> tags and then <output>a,n,m</output> without any nextline character where a is the most relevant
next action from <actions> tag that agent should do given the last agent and customer turns in the conversation,
n and m are the most relevant policies to the conversation.

Table 21: LLM system prompt for Task1.
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List of policies: <policies> policies </policies>
List of next actions:
<actions>
search-policy: in the last customer turn from given <conversation> customer has asked policy related questions
but agent has not searched the policy and provided info yet.
make-password: in the last customer turn from given <conversation> customer has forgotten her password
and customer answered to the agent’s security questions to make new password but agent has not made the
password yet.
enter-details: in the last customer turn from given <conversation> customer has provided personal information
such as pin, address, email, order id and etc that agent has asked. Agent next will enter those details or agent
directly mentions that is going to note those details.
membership: in the last customer turn from given <conversation> customer has provided her membership
status since the agent has asked about.
notify-team: in the last turn from given <conversation> agent has collected customer’s issue and promised
customer that is going to notify someone regarding that issue.
make-purchase: in the last customer turn from given <conversation> customer has requested agent to create a
new order.
search-pricing: in the last customer turn from given <conversation> customer has requested to know about
price of something and agent has not provided the price yet.
record-reason: in the last customer turn from given <conversation> customer has complained about some
issue and mentioned the reason of that issue.
search-shirt: in the last customer turn from given <conversation> customer had question relevant to shirt and
agent has not searched about shirt yet.
search-jacket: in the last customer turn from given <conversation> customer had question relevant to jacket
and agent has not searched about jacket yet.
search-jeans: in the last customer turn from given <conversation> customer had question relevant to jeans and
agent has not searched about jeans yet.
search-boots: in the last customer turn from given <conversation> customer had question relevant to boots and
agent has not searched about boots yet.
search-timing: in the last customer turn from given <conversation> customer had question relevant to timing
such as hours, due date and questions with ’when’ and agent has not searched it to get answer yet.
promo-code: in the last customer turn from given <conversation> customer wanted to get a new promo code or
agent has suggested to create promo-code to keep the customer happy and customer agreed. This action in only
regarding creating new promo-code not other promo-code related requests.
log-out-in: in the last customer turn from given <conversation> customer has told about some issue and agent
still has not provided logging-in and out as a solution.
shipping-status: in the last customer turn from given <conversation> customer has provided shipping status of
the order to the agent.
offer-refund: in the last customer turn from given <conversation> customer has provided information such as
the item brand, its cost to get a refund from agent since agent has suggested to give refund to the customer.
validate-purchase: in the last customer turn from given <conversation> customer has provided some order
relevant information such as order id, account id to retrieve and validate whether there was such an order.
instructions: in the last customer turn from given <conversation> customer has talked about some issue but
agent has not yet looked for some instruction and solutions such as how clearing cookies on browser.

{continued in Table 23}

Table 22: LLM user prompt (Part 1) for Task1.
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{continued from Table 22}
search-membership: in the last customer turn from given <conversation> customer has asked questions
regarding different memberships and agent has not explained those search and has not provided information
about membership levels.
select-faq: in the last customer turn from given <conversation> customer has asked questions and agent has not
done the search yet and also has not selected faq pages yet to answer those questions.
try-again: in the last customer turn from given <conversation> customer has talked about some issue and agent
has suggested to recheck and redo some actions to make sure the issue still persists.
pull-up-account: in the last customer turn from given <conversation> customer has provided her personal
information such as name, and agent has not used it yet to pull up customer’s account.
subscription-status: in the last customer turn from given <conversation> customer has provided her account
but agent has not looked for the customer’s subscription status yet.
search-faq: in the last customer turn from given <conversation> customer has asked a question and the agent
has not searched and has not looked into faq to answer the question.
send-link: in the last customer turn from given <conversation> customer has provided her email such that
agent can send a link to provide further information or as a receipt but agent has not sent the link yet.
update-account: in the last customer turn from given <conversation> customer has asked for changing some
information such as credit card, subscription status, ... and agent has not updated them yet or agent has not
applied some changes such as extension yet.
update-order: in the last customer turn from given <conversation> customer has provided new information
regarding the order and agent has not used them to change and update item, its address and etc yet.
ask-the-oracle: in the last customer turn from given <conversation> customer has provided some claim and
agent needs to check the system and look into the validity of customer’s provided claim and order/return/refund
details. ask-the-oracle usually happens when customer has already provided all her personal information and
agent completely knows about the customer and her situation.
verify-identity: in the last customer turn from given <conversation> customer has provided her identity by
telling the account id, email, phone and etc. Right after providing identity information agent should conduct
verify-identity action.
empty: in the last customer turn from given <conversation> customer has no further requests or the agent’s
next action does not match with any of the previous actions or the customer has already achieved her goal
meaning that agent does not have next action.
</actions>
<conversation> conv </conversation>

Table 23: LLM user prompt (Part 2) for Task1.
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LLM System Prompt for Task 2 Approach 1

You are given a part of conversation between a customer and an agent in <conversation> tags, where customer interacts with the agent for a specific intent. In
addition, you are given the policy in <policy> tags that agent needs to follow in order to help the customer meet her intent alongside the agent’s next utterance in
<response> tag.
Your task is to identify whether the agent’s next response has followed the policy or not in other word whether the agent’s next response is compliant with the policy or
not. In order to assess the compliance of the agent’s next response, you need to specify according to the given conversation which part of the policy is the conversation
right now and according to the policy what is the next best action to choose from. The agent’s next response should be compliant with that action from the policy and
provides next steps in a correct order following the policy. If the next action provided in the agent’s next response is not exactly the next step coming from the policy
label that response as not compliant.
Look into following examples:
Examples
Example 1

<conversation>
turn 0: agent: hi! thanks for contacting acme support. how can i help you today?
turn 1: customer: starting to wonder if my package might not be lost
turn 2: agent: sorry to hear that.
turn 3: customer: been 5 days since i’ve ordered and haven’t gotten it
turn 4: agent: let’s see what we can find out.
turn 5: agent: may i have your full name?
turn 6: customer: joseph banter
turn 7: customer: the order in question were calvin klein boots <order_id>
turn 8: agent: one moment mr. banter.
turn 9: agent: okay, can i get your username and email address?
turn 10: customer: <username>
turn 11: customer: <email>
turn 12: agent: got it, thanks.
turn 13: agent: hmm, and you say you’ve been waiting 5 days for your item?
turn 14: customer: that’s right
turn 15: customer: dunno if it’s time to consider it lost or what
</conversation>

<response>
turn 16: agent: typically, we wait three weeks until we take that type of action.
</response>

<policy>
- Ask for customer’s full name, username, email address, and order ID to validate the purchase
- Check how many days the customer has been waiting for the order
- If less than 7 days, explain that orders can sometimes take up to 7 days and ask for patience
- If 7 days or more, apologize for the delay and let them know you will resend the order

- Ask for their current mailing address to send the new order
- Confirm the brand, product type, and any other details about the missing item
- Let them know a replacement order has been placed and provide an estimate on when it will arrive

- Offer further assistance or ask if there is anything else needed
- Thank the customer for their patience and understanding
</policy>

<reason>
since the <response> response has provided three weeks as a deadline to wait to receive the order
while in the policy it is 7 days therefore the response is not compliant with the policy.
</reason>

<compliant>
no
</compliant>

Instructions
First provide reasoning of how did you assess the compliance of the agent’s next response to the policy in <reason> tag and then generate the output in <compliant>
tag. Generate “yes” as the output if the next agent’s response is compliant with policy and “no” otherwise.

Table 24: LLM system prompt for Task 2 Approach 1.
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LLM System Prompt for Task 2 Approach 2

You are given a part of conversation between a customer and an agent in <conversation> tags, where customer interacts with the agent for a specific intent. In
addition, you are given the policy in <policy> tags that agent needs to follow in order to help the customer meet her intent alongside the agent’s next utterance in
<response> tag.
Your task is to identify whether the agent’s next response has followed the policy or not in other word whether the agent’s next response is compliant with the policy or
not. In order to assess the compliance of the agent’s next response, you need to first generate the most relevant policy to the given conversation + response and then
compare whether the generated policy is some part of the overall given policy or not.
Look into following examples: Example 1

<conversation>
turn 0: agent: hi! thanks for contacting acme support. how can i help you today?
turn 1: customer: starting to wonder if my package might not be lost
turn 2: agent: sorry to hear that.
turn 3: customer: been 5 days since i’ve ordered and haven’t gotten it
turn 4: agent: let’s see what we can find out.
turn 5: agent: may i have your full name?
turn 6: customer: joseph banter
turn 7: customer: the order in question were calvin klein boots <order_id>
turn 8: agent: one moment mr. banter.
turn 9: agent: okay, can i get your username and email address?
turn 10: customer: <username>
turn 11: customer: <email>
turn 12: agent: got it, thanks.
turn 13: agent: hmm, and you say you’ve been waiting 5 days for your item?
turn 14: customer: that’s right
turn 15: customer: dunno if it’s time to consider it lost or what
</conversation>

<response>
turn 16: agent: typically, we wait three weeks until we take that type of action.
</response>

<policy>
- Ask for customer’s full name, username, email address, and order ID to validate the purchase
- Check how many days the customer has been waiting for the order
- If less than 7 days, explain that orders can sometimes take up to 7 days and ask for patience
- If 7 days or more, apologize for the delay and let them know you will resend the order

- Ask for their current mailing address to send the new order
- Confirm the brand, product type, and any other details about the missing item
- Let them know a replacement order has been placed and provide an estimate on when it will arrive

- Offer further assistance or ask if there is anything else needed
- Thank the customer for their patience and understanding
</policy>

<reason>
First I generate the following policy given the conversation and the response:
<gen_policy>
- Check how many days the customer has been waiting for the order
- If less than three weeks, explain that orders can sometimes take up to three weeks and ask for patience
</gen_policy>
Since the generated policy does not exist in the given policy
therefore I specify the response as "no" complining with the policy.
</reason>

<compliant>
no
</compliant>

Instructions:
First provide reasoning of how did you assess the compliance of the agent’s next response to the policy in <reason> tag. In <reason> tag you should generate the
policy given the conversation and response in <gen_policy> tags and then generate the output in <compliant> tag. Generate “yes” as the output if the <gen_policy>
is part of <policy> and “no” otherwise.

Table 25: LLM system prompt for Task 2 Approach 2.

LLM User Prompt for Task 2

<conversation> conversation </conversation>
<response> ground_truth_response </response>
<policy> policy </policy>

Table 26: LLM user prompt for Task 2.
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LLM System Prompt for Task 3

You are given a part of conversation between a customer and an agent in <conversation> tags, where customer
interacts with the agent for a specific intent. In addition, you are given the policy in <policy> tags that agent
needs to follow in order to help the customer meet her intent.
Your task is to identify the steps that the agent has followed up to the current point from the policy and according
to the next step in the policy generate an answer which is compliant with the policy.
To generate the agent’s next response do the following steps:
1. read the whole conversation in <conversation> tag.
2. read the whole policy in <policy> tag.
3. based on the conversation, identify all the steps that agent has followed from the policy and get the next action
from the policy to conduct.
4. generate the agent’s next response, using the same language as the conversation transcript, based on the
retrieved next step from the policy such that:
a) all the provided information should be covered in the policy’s next step.
b) do NOT hallucinate and do NOT generate detailed information that do not exist in the provided policy’s next
step.
c) generate short responses that directly address the next best action coming from the policy.
First provide reasoning of how did you generate the next response in <reason> tag and then generate the next
agent’s response, using the same language as the conversation transcript, in <response> tags for the given
conversation that matches with one next step in the provided policy. The generated response has to be short (less
than three sentences).

Table 27: LLM system prompt for Task 3.

LLM User Prompt for Task 3

<conversation> conversation </conversation>
<policy> policy </policy>

Table 28: LLM user prompt for Task 3.
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D Results

In this section, we present the results tables for experiments which were not presented in tables within
the main text due to space constraints.

Model Language Overall Instruction Retrieval Begin Middle End
Claude3.7-Sonnet FR 0.4041 0.8286 0.4141 0.3908 0.4065
Claude3.7-Sonnet ES 0.4005 0.8329 0.3955 0.4100 0.3963
Claude3.7-Sonnet EN 0.3932 0.8205 0.3959 0.3895 0.3939
Claude3.7-Sonnet DE 0.3896 0.8195 0.3885 0.3926 0.3877
Claude3.7-Sonnet HI 0.3882 0.8137 0.3785 0.4004 0.3867
Claude3.7-Sonnet AR 0.3778 0.8053 0.3820 0.3734 0.3775
Claude3.7-Sonnet ZH 0.3768 0.8096 0.3808 0.3730 0.3761
Claude3.5-Sonnet-V2 FR 0.3613 0.7372 0.3615 0.3695 0.3520
Claude3.5-Sonnet-V2 DE 0.3524 0.7276 0.3483 0.3582 0.3510
Claude3.5-Sonnet-V2 ES 0.3472 0.7227 0.3518 0.3521 0.3361
Claude3.5-Sonnet-V1 HI 0.3365 0.7260 0.3386 0.3399 0.3303
Claude3.5-Sonnet-V2 EN 0.3312 0.7311 0.3270 0.3333 0.3341
Claude3.5-Sonnet-V1 FR 0.3299 0.7112 0.3522 0.3190 0.3144
Claude3.5-Sonnet-V1 DE 0.3283 0.7088 0.3386 0.3181 0.3269
Claude3.5-Sonnet-V1 ES 0.3268 0.7073 0.3282 0.3316 0.3197
Claude3.5-Sonnet-V1 ZH 0.3216 0.7103 0.3185 0.3359 0.3095
Claude3.5-Sonnet-V2 ZH 0.3209 0.6977 0.3212 0.3129 0.3293
Claude3.5-Sonnet-V1 AR 0.3206 0.7063 0.3293 0.3146 0.3163
Claude3.5-Sonnet-V2 HI 0.3141 0.6842 0.3317 0.3102 0.2965
Qwen3-14B EN 0.3122 0.7792 0.1645 0.2828 0.5289
Qwen3-14B HI 0.3017 0.7582 0.1718 0.2693 0.4995
Qwen3-14B ZH 0.2983 0.7392 0.1521 0.2654 0.5169
Qwen3-14B FR 0.2976 0.7444 0.1540 0.2688 0.5082
Claude3.5-Sonnet-V2 AR 0.3036 0.6764 0.3007 0.3102 0.2999
Claude3.5-Sonnet-V1 EN 0.2963 0.6491 0.3019 0.2911 0.2951
Qwen3-14B AR 0.2934 0.7135 0.1726 0.2505 0.4913
Qwen3-14B ES 0.2874 0.7479 0.1521 0.2519 0.4952
Qwen3-14B DE 0.2786 0.7430 0.1242 0.2558 0.4961
Gemma3-27B-IT EN 0.2221 0.6138 0.0770 0.2144 0.4113
Gemma3-27B-IT DE 0.2088 0.5655 0.0708 0.2044 0.3857
Gemma3-27B-IT ES 0.1978 0.5646 0.0658 0.1834 0.3780
Gemma3-27B-IT ZH 0.1921 0.5324 0.0550 0.1891 0.3664
Gemma3-27B-IT HI 0.1878 0.5355 0.0701 0.1786 0.3447
Gemma3-27B-IT FR 0.1877 0.5175 0.0441 0.1861 0.3684
Gemma3-27B-IT AR 0.1585 0.4615 0.0433 0.1464 0.3153
Llama3.3-70B EN 0.1358 0.2042 0.1374 0.1338 0.1360
Llama3.3-70B ES 0.1280 0.1976 0.1327 0.1298 0.1201
Llama3.3-70B FR 0.1146 0.1770 0.1188 0.1181 0.1056
Llama3.3-70B DE 0.1126 0.1729 0.1262 0.1089 0.0998
Llama3.3-70B ZH 0.0840 0.1688 0.0851 0.0780 0.0892
Llama3.3-70B AR 0.0299 0.0653 0.0298 0.0270 0.0333
Llama3.3-70B HI 0.0240 0.0631 0.0252 0.0227 0.0241

Table 29: Task 1 accuracy of top k = 1 instruction retrieval and next agent action prediction (only
format f1). Results are shown across different models and conversation languages (Arabic (AR),
Chinese (ZH), English (EN), French (FR), German (DE), Hindi (HI), Spanish (ES)).
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Model Language Overall Instruction Retrieval Begin Middle End
Claude3.7-Sonnet EN 0.4310 0.8943 0.4481 0.4074 0.4359
Claude3.7-Sonnet FR 0.4287 0.9022 0.4346 0.4283 0.4219
Claude3.7-Sonnet ES 0.4246 0.9055 0.4272 0.4179 0.4286
Claude3.5-Sonnet-V2 DE 0.4237 0.8802 0.4276 0.4222 0.4204
Claude3.7-Sonnet AR 0.4234 0.8998 0.4149 0.4314 0.4253
Claude3.7-Sonnet DE 0.4205 0.8992 0.4327 0.4126 0.4142
Claude3.7-Sonnet HI 0.4198 0.9003 0.4129 0.4227 0.4253
Claude3.5-Sonnet-V2 FR 0.4194 0.8838 0.4319 0.4200 0.4031
Claude3.7-Sonnet ZH 0.4146 0.8954 0.4122 0.4070 0.4262
Claude3.5-Sonnet-V2 ES 0.4146 0.8825 0.4187 0.4109 0.4137
Claude3.5-Sonnet-V2 HI 0.4040 0.8819 0.3913 0.4131 0.4098
Claude3.5-Sonnet-V2 EN 0.3941 0.8721 0.4036 0.3904 0.3862
Claude3.5-Sonnet-V2 AR 0.3929 0.8753 0.3924 0.4048 0.3804
Claude3.5-Sonnet-V2 ZH 0.3922 0.8750 0.3901 0.3983 0.3881
Claude3.5-Sonnet-V1 FR 0.3745 0.8159 0.3808 0.3721 0.3693
Claude3.5-Sonnet-V1 DE 0.3744 0.8207 0.3750 0.3725 0.3756
Claude3.5-Sonnet-V1 HI 0.3706 0.8179 0.3769 0.3625 0.3717
Claude3.5-Sonnet-V1 ES 0.3689 0.8202 0.3731 0.3756 0.3563
Claude3.5-Sonnet-V1 AR 0.3532 0.8130 0.3595 0.3503 0.3486
Claude3.5-Sonnet-V1 ZH 0.3491 0.8066 0.3518 0.3521 0.3423
Claude3.5-Sonnet-V1 EN 0.3485 0.7830 0.3533 0.3490 0.3419
Qwen3-14B ES 0.3340 0.8552 0.1788 0.2998 0.5651
Qwen3-14B AR 0.3286 0.8557 0.1753 0.2824 0.5709
Qwen3-14B EN 0.3279 0.8419 0.1668 0.2880 0.5728
Qwen3-14B DE 0.3273 0.8441 0.1548 0.3041 0.5680
Qwen3-14B HI 0.3207 0.8376 0.1560 0.3015 0.5473
Qwen3-14B ZH 0.3151 0.8260 0.1513 0.2932 0.5434
Qwen3-14B FR 0.3122 0.8199 0.1389 0.2906 0.5521
Gemma3-27B-IT HI 0.2540 0.7230 0.0786 0.2558 0.4706
Gemma3-27B-IT EN 0.2528 0.7283 0.0809 0.2414 0.4797
Llama3.3-70B EN 0.2497 0.6612 0.2620 0.2366 0.2488
Gemma3-27B-IT FR 0.2444 0.6970 0.0592 0.2227 0.4990
Gemma3-27B-IT DE 0.2408 0.6961 0.0728 0.2248 0.4677
Gemma3-27B-IT AR 0.2364 0.7102 0.0813 0.2209 0.4470
Llama3.3-70B FR 0.2353 0.6872 0.2512 0.2248 0.2271
Gemma3-27B-IT ES 0.2349 0.6885 0.0677 0.2044 0.4769
Llama3.3-70B DE 0.2307 0.6578 0.2194 0.2423 0.2319
Llama3.3-70B ES 0.2305 0.6859 0.2357 0.2322 0.2223
Gemma3-27B-IT ZH 0.2262 0.6837 0.0565 0.2266 0.4373
Llama3.3-70B ZH 0.1293 0.4207 0.1277 0.1216 0.1398
Llama3.3-70B AR 0.0511 0.1906 0.0534 0.0449 0.0550
Llama3.3-70B HI 0.0390 0.1769 0.0430 0.0375 0.0357

Table 30: Task 1 accuracy of top k = 2 instructions retrieval and next agent action prediction (only
format f1). Results are shown across different models and conversation languages (Arabic (AR),
Chinese (ZH), English (EN), French (FR), German (DE), Hindi (HI), Spanish (ES)).
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Model k Data Format Overall Instruction Retrieval Begin Middle End
Claude3.7-Sonnet 2 f1 0.4310 0.8943 0.4481 0.4074 0.4359
Claude3.7-Sonnet 2 f2 0.4215 0.9071 0.4122 0.4366 0.4166
Claude3.7-Sonnet 2 f3 0.4205 0.8880 0.4191 0.4179 0.4253
Claude3.5-Sonnet-V2 2 f3 0.4182 0.8765 0.4214 0.4126 0.4204
Claude3.7-Sonnet 1 f2 0.3948 0.8267 0.3878 0.3834 0.4161
Claude3.5-Sonnet-V2 2 f1 0.3941 0.8721 0.4036 0.3904 0.3862
Claude3.5-Sonnet-V2 2 f2 0.3939 0.8631 0.4005 0.3956 0.3838
Claude3.7-Sonnet 1 f1 0.3932 0.8205 0.3959 0.3895 0.3939
Claude3.7-Sonnet 1 f3 0.3869 0.8163 0.3932 0.3821 0.3843
Claude3.5-Sonnet-V1 2 f3 0.3716 0.8304 0.3750 0.3730 0.3660
Claude3.5-Sonnet-V1 2 f1 0.3485 0.7830 0.3533 0.3490 0.3419
Claude3.5-Sonnet-V1 2 f2 0.3383 0.7910 0.3437 0.3259 0.3452
Claude3.5-Sonnet-V2 1 f1 0.3312 0.7311 0.3270 0.3333 0.3341
Qwen3-14B 2 f1 0.3279 0.8419 0.1668 0.2880 0.5728
Claude3.5-Sonnet-V1 1 f3 0.3187 0.7057 0.3185 0.3342 0.3018
Qwen3-14B 1 f1 0.3122 0.7792 0.1645 0.2828 0.5289
Claude3.5-Sonnet-V1 1 f1 0.2963 0.6491 0.3019 0.2911 0.2951
Qwen3-14B 2 f2 0.2961 0.8418 0.1250 0.2623 0.5468
Qwen3-14B 1 f2 0.2845 0.7713 0.1142 0.2584 0.5256
Qwen3-14B 2 f3 0.2712 0.7879 0.1130 0.2248 0.5198
Gemma3-27B-IT 2 f2 0.2559 0.7559 0.0755 0.2392 0.4990
Claude3.5-Sonnet-V2 1 f3 0.2543 0.5152 0.2604 0.2606 0.2396
Gemma3-27B-IT 2 f1 0.2528 0.7283 0.0809 0.2414 0.4797
Llama3.3-70B 2 f1 0.2497 0.6612 0.2620 0.2366 0.2488
Gemma3-27B-IT 2 f3 0.2362 0.6717 0.07314 0.2209 0.4561
Llama3.3-70B 2 f2 0.2362 0.5924 0.2318 0.2327 0.2454
Gemma3-27B-IT 1 f1 0.2221 0.6138 0.0770 0.2144 0.4113
Qwen3-14B 1 f3 0.2110 0.6368 0.0681 0.1887 0.4137
Claude3.5-Sonnet-V2 1 f2 0.2084 0.4654 0.2105 0.2044 0.2102
Llama3.3-70B 2 f3 0.2065 0.5376 0.2020 0.2013 0.2179
Claude3.5-Sonnet-V1 1 f2 0.2048 0.5038 0.2051 0.2026 0.2068
Gemma3-27B-IT 1 f2 0.1847 0.5225 0.0557 0.1699 0.3616
Gemma3-27B-IT 1 f3 0.1740 0.4960 0.0526 0.1695 0.3303
Llama3.3-70B 1 f2 0.1447 0.2503 0.1463 0.1477 0.1393
Llama3.3-70B 1 f1 0.1358 0.2042 0.1374 0.1338 0.1360
Llama3.3-70B 1 f3 0.1299 0.2444 0.1413 0.1268 0.1191

Table 31: Task 1 accuracy of top k = 1 and k = 2 instructions retrieval and next agent action
prediction (only English conversations). Results are shown across different models and the three
complex instruction formats (f1, f2, f3).

Model Approach 1 Approach 2
f1 f2 f3 f1 f2 f3

Claude3.7-Sonnet 0.7608 0.7525 0.7528 0.7298 0.7346 0.7298
Claude3.5-Sonnet-V2 0.7215 0.7147 0.7238 0.6874 0.6826 0.6847
Claude3.5-Sonnet-V1 0.6847 0.6930 0.6945 0.6854 0.6771 0.6748
Llama3.3-70B 0.7283 0.7283 0.7159 0.5636 0.5747 0.5368
Qwen3-14B 0.7046 0.6975 0.6948 0.6937 0.6910 0.6811
Gemma3-27B-IT 0.6968 0.6857 0.6688 0.5616 0.5454 0.5396

Table 32: Task 2 accuracy for English conversations across approaches and complex instruction
formats. The best result per column is bolded and the best result per model-approach pair is
underlined.

Model f1 f2 f3
Claude3.7-Sonnet 0.9529 0.9574 0.9565
Claude3.5-Sonnet-V2 0.9532 0.9498 0.9471
Claude3.5-Sonnet-V1 0.9254 0.9356 0.9251
Gemma3-27B-IT 0.8952 0.8734 0.8695
Qwen3-14B 0.2269 0.2208 0.2178
Llama3.3-70B 0.1435 0.1610 0.1511

Table 33: Task 3 compliance rate across models and complex instruction formats (only English
conversations). The best result per complex instruction format is bolded and the best result per model
is underlined.
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