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Abstract
As previous representations for reinforcement
learning cannot effectively incorporate a human-
intuitive understanding of the 3D environment,
they usually suffer from sub-optimal perfor-
mances. In this paper, we present Semantic-aware
Neural Radiance Fields for Reinforcement Learn-
ing (SNeRL), which jointly optimizes semantic-
aware neural radiance fields (NeRF) with a convo-
lutional encoder to learn 3D-aware neural implicit
representation from multi-view images. We in-
troduce 3D semantic and distilled feature fields
in parallel to the RGB radiance fields in NeRF
to learn semantic and object-centric representa-
tion for reinforcement learning. SNeRL outper-
forms not only previous pixel-based representa-
tions but also recent 3D-aware representations
both in model-free and model-based reinforce-
ment learning.

1. Introduction
Developing agents that can achieve complex control tasks
directly from image inputs has been a long-standing prob-
lem in reinforcement learning (RL). Previous works over
the past few years have made notable progress in the data
efficiency of learning visual control problems. The most
challenging part of solving visual control tasks is obtain-
ing the low-dimensional latent representations from high-
dimensional observations. To this end, they pre-train the
encoder in various ways such as unsupervised representa-
tion learning via image reconstruction using offline datasets
(Finn et al., 2016; Kulkarni et al., 2019; Islam et al., 2022),
contrastive learning (Zhan et al., 2022), reconstructing task
information (Yang & Nachum, 2021; Yamada et al., 2022),
and training multi-view consistency (Dwibedi et al., 2018).
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Figure 1. Semantic-aware NeRF for reinforcement learning.
We present SNeRL, a reinforcement learning framework that
learns 3D-aware representation with a convolutional encoder and
semantic-aware NeRF decoder. The latent vectors from the en-
coder are propagated to the policy network to generate an action
for RL agents.

Other approaches utilize joint learning of auxiliary unsuper-
vised tasks (Laskin et al., 2020b; Schwarzer et al., 2020),
and data-augmented reinforcement learning (Laskin et al.,
2020a; Yarats et al., 2021).

While a number of works have been proposed to improve
the data efficiency in visual control problems, the majority
of the encoders trained from those methods have limited
capability in obtaining 3D structural information and lack
equivariance to 3D transformations. Such limitations come
from ignoring 3D structural information and learning visual
representation from a single-view observation.

Recently, there have been attempts to consider 3D informa-
tion of the environment in robot control and manipulation
(Li et al., 2022; Driess et al., 2022) by learning implicit
spatial representation via neural radiance fields (NeRF)
(Mildenhall et al., 2020). They map pixel-level multi-view
observations of a scene to a latent vector through an autoen-
coder structure, where the NeRF decoder provides 3D struc-
tured neural scene representation via RGB self-supervision
for each view.

Even though the aforementioned pioneers achieved better
performance compared to the previous RL algorithms with
a single-view observation, they still did not take full advan-
tage of 3D-aware representation learning. It is because those
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methods only exploit RGB supervision to train NeRF, which
makes it difficult for the encoder to learn object-centric
or semantic representation for RL downstream tasks. Al-
though NeRF-RL (Driess et al., 2022) proposes composi-
tional NeRF to mitigate such limitations, the RL agents in
NeRF-RL require object-individual masks during training
and deployment to utilize semantic representations, which
is quite unrealistic.

In this work, we propose Semantic-aware Neural Radiance
Fields for Reinforcement Learning (SNeRL) which learns
both 3D-aware semantic and geometric representation for
RL agents in a 3-dimensional environment. First of all,
our proposed method learns 3D-aware semantic represen-
tation by predicting 3D semantic fields with ground truth
labels. As a result, SNeRL enables downstream visual con-
trol tasks without object-individual masks and addresses
the limitation of the prior work (Driess et al., 2022). Also,
to capture further fine-grained features that could not be
fully expressed in semantic fields and to take advantage of
data-driven approaches, we employ an off-the-shelf feature
descriptor (Caron et al., 2021) as a teacher network and
learn to predict feature fields via a distillation method such
as Kobayashi et al. (2022).

We also introduce a multi-view adaptation of recent self-
predictive representation learning (Chen & He, 2021) as an
auxiliary task which further improves the performance of
SNeRL. In the proposed auxiliary task, SNeRL computes
the target representation by utilizing the observations from
different camera views in the same timestep to learn spatially
consistent representation.

Our proposed SNeRL outperforms not only the previ-
ous single-view representation learning algorithms for RL
(Laskin et al., 2020b; Yarats et al., 2021) but also the state-of-
the-art method with multi-view observations (Driess et al.,
2022) in four different visual control tasks.

To sum up, our contribution can be summarized as follows:

• We present SNeRL, a framework that utilizes NeRF
with semantic and distilled feature fields to learn 3D-
aware semantic representation for reinforcement learn-
ing.

• We validate the effectiveness of SNeRL both with
model-free and model-based methods. To the best of
our knowledge, SNeRL is the first work that leverages
semantic-aware representations without object masks
in RL downstream tasks. Also, this is the first study to
utilize 3D-aware representations to model-based RL.

• The proposed SNeRL outperforms the previous single
and multi-view image-based RL algorithms in four dif-
ferent 3D environments from Meta-world. In addition,
auxiliary self-predictive representation learning with

multi-view observations proposed for spatially consis-
tent representation can enable further improvements.

2. Related Work
2.1. 3D Scene Representation Learning

To learn 3D-aware representation from a single view image,
the previous methods exploit standard convolutional autoen-
coder architecture conditioned by the camera poses, which
generates scenes from arbitrary views with either determinis-
tic (Tatarchenko et al., 2016; Worrall et al., 2017) or stochas-
tic (Eslami et al., 2018) latent vectors. Recently, neural radi-
ance fields (NeRF) have achieved an exceptional progress in
understanding 3D scenes and synthesizing novel views. Fol-
lowing, some approaches propose latent-conditioned NeRF
(Martin-Brualla et al., 2021; Yu et al., 2021; Wang et al.,
2021), but the major objective of the aforementioned meth-
ods is improving the quality of synthesized images rather
than extracting time-variant latent vectors with 3D dynamic
scene understanding from multi-view inputs. In this paper,
we leverage the autoencoder with convolutional encoder and
NeRF-style decoder (Li et al., 2022; Driess et al., 2022) so
that the encoder can extract 3D-aware representation from
multi-view inputs for RL downstream tasks.

2.2. Representation Learning for RL

The RL frameworks with image inputs typically have an
encoder, which maps high-dimensional observations to a
low-dimensional latent vector. RL agent is trained over
the latent state space to maximize its objective functions,
e.g., the total discounted reward for each episode. While
a number of works have made significant advancements, it
still remains a challenging open problem.

To address the sample inefficiency of image-based RL, prior
works adopt various data-augmentation techniques (Laskin
et al., 2020a; Yarats et al., 2021), contrastive learning with
data augmentation (Laskin et al., 2020b; Schwarzer et al.,
2020; Stooke et al., 2021; Liu & Abbeel, 2021; Zhan et al.,
2022), representation learning from image reconstruction
(Islam et al., 2022; Kulkarni et al., 2019), or task informa-
tion reconstruction (Yang & Nachum, 2021; Yamada et al.,
2022). Other approaches propose to capture the relations
between multi-view data (Dwibedi et al., 2018; Kinose et al.,
2022; Sermanet et al., 2018) or keypoints (Manuelli et al.,
2020). There are also some approaches leveraging transi-
tion sequence data (Hansen et al., 2020; You et al., 2022),
or pre-training with offline image-based RL (Wang et al.,
2022). Unfortunately, these works have limited capability in
learning 3D-structural information and could not obtain an
intuitive understanding of the 3D environments that humans
have because of the 2D bias that 2D convolutional neural
networks have.
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In recent, there have been attempts to learn the 3D struc-
ture of the real world (Li et al., 2022; Driess et al., 2022).
Li et al. (2022) firstly proposes autoencoder with convolu-
tional encoder and NeRF (Mildenhall et al., 2020) decoder
to control the visuomotor with learned dynamics model
and model-predictive control (MPC). Following, NeRF-RL
(Driess et al., 2022) extends the prior study and firstly in-
troduces NeRF-based architecture to the general model-free
RL framework. However, they could not learn semantic
features due to the limited RGB supervision with naı̈ve
NeRF. To learn object-centric representation only with RGB
supervision, NeRF-RL presents compositional NeRF with
object-individual masks, but requiring masks during the
deployment of RL agents seems to be a strong assumption.

In this paper, we propose SNeRL which learns both geo-
metric and semantic information with RGB, semantic, and
distilled feature supervision for RL downstream tasks with-
out any object masks during the inference phase.

3. Preliminaries
3.1. Neural Radiance Fields

The concept of neural radiance fields (NeRF) (Mildenhall
et al., 2020) is to represent the 3D scene with learnable
and continuous volumetric fields fθ. Specifically, at any
3D world coordinate x ∈ R3 and unit viewing direction
d ∈ R3, fθ estimates the differntiable volume density σ
and RGB color c: fθ(x,d) = (σ, c). Let the camera ray of
the pixel in the camera coordinate be r = o+ td, where o
indicates the camera origin. The corresponding pixel value
from an arbitrary view can be rendered through volumetric
radiance fields as:

C(r) =

∫ tf

tn

T (t)σ(t)c(t)dt (1)

where T (t) = exp(−
∫ t
tn
σ(s)ds) and tn and tf indicate

pre-defined lower and upper bound of the depth respectively.

Then, fθ, which is usually formulated with MLP, is opti-
mized through pixel-wise RGB supervision from multiple
views as:

L =
∑
i,j

||Ĉ(ri,j)− C(ri,j)||22, (2)

where ri,j indicates ray j from images of ith view. Ĉ and
C represents the rendered volumetric fields into 2D image
and ground truth pixel value respectively.

3.2. Reinforcement Learning

We consider a finite-horizon Markov Decision Process
(MDP)M = (O,A, T ,R, γ), where O denotes the high-
dimensional observation space (image pixels), A the action

space, T (o′|o, a) the transition dynamics (o, o′ ∈ O, a ∈
A), R : O × A → R the reward function, and γ ∈ [0, 1)
the discount factor. Following the general idea of learn-
ing RL downstream tasks with pre-trained scene repre-
sentations, we consider an encoder Ω : O → Z that
maps and high-dimensional observation o ∈ O to a low-
dimensional latent state z ∈ Z on which an RL agent
operates. To learn how to succeed in downstream tasks,
the RL policy πθ(a ∈ A|z = Ω(o)) maximizes the total
discounted reward

∑H−1
t=0 = γtR(ot, at) of trajectories

τi = (z0, o0, ..., zH , oH)i.

4. Method
In this section, we demonstrate the details of SNeRL which
consists of a multi-view convolutional image encoder and
a latent-conditioned NeRF decoder to learn the 3D-aware
representation. Compared to the previous method (Driess
et al., 2022) which also proposes NeRF supervision for RL,
SNeRL is capable of extracting object-centric or semantic
representation without any object-individual masks during
deployment. The pre-trained image encoder is exploited as a
feature extractor for downstream RL tasks, and the overview
of SNeRL framework is depicted in Figure 2.

4.1. Multi-view Encoder

Similar to Li et al. (2022), we adopt the multi-view en-
coder Ω which fuses the observations from multiple cam-
era views together to learn a single latent vector z for
RL tasks. The encoder takes the pixel-level observations
oi ∈ RH×W×3, and the corresponding camera projection
matricesKi ∈ R3×4 captured from V different camera view
as inputs, i.e., i = 1 · · ·V . To generate z ∈ Z from the in-
puts, a convolutional networkECNN first extracts viewpoint-
invariant features from each image. The features from dif-
ferent camera views are channel-wise concatenated with
their corresponding (flattened) camera projection matrices
to reflect the viewpoint information to the following feature
vectors. Then, the concatenated vectors are passed through
MLP layers, gMLP, to produce mid-level viewpoint-aware
encodings. Lastly, the feature encodings from different cam-
era views are averaged to generate a single encoding, and
the averaged feature encoding is projected to the latent space
Z with the latent encoder hMLP as follows:

z =Ω(o1:V ,K1:V )

=hMLP(
1

V

V∑
i=1

gMLP(ECNN(o
i),Ki))

(3)

4.2. Semantic-aware NeRF Decoder

To inject 3D structural information into the latent vector
z, we leverage a latent-conditioned NeRF architecture (Yu
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Figure 2. SNeRL Overview. SNeRL consists of two stages, which are pre-training NeRF-based autoencoder and fine-tuning to the
downstream RL tasks, respectively. With observations from three different camera views, an encoder produces a single latent vector z, and
a decoder with neural rendering function fθ takes the position x, viewing direction d in the 3D coordinates and z as inputs to synthesize
three different fields in the arbitrary views. An auxiliary multi-view self-prediction loss is applied to enable view-invariant representation.
Then, the encoder and the decoder are jointly optimized in a supervised manner with an offline dataset. The pre-trained encoder is utilized
as a feature extractor to train the policy with off-the-shelf RL algorithms.

et al., 2021; Martin-Brualla et al., 2021; Wang et al., 2021)
for the decoder. The difference between previous latent-
conditioned NeRF and our proposed SNeRL is that the
neural rendering function fθ from SNeRL not only synthe-
sizes novel views with RGB pixel value c but also with the
semantic label s (Zhi et al., 2021; Fu et al., 2022; Kundu
et al., 2022) and high-dimensional distilled features f from
the large-scale teacher network (Kobayashi et al., 2022) as
follows:

c = fθ(z,x,d), s, f = fθ(z,x) (4)

By estimating three different radiance fields (semantic, fea-
ture, and RGB), the latent vector z is jointly optimized to
learn the geometric and semantic representations of the 3D
environment. Unlike RGB value c which is dependent on
both the position x and the viewing direction d, we formu-
late the semantic label and distilled feature to be invariant
to the viewing direction d because the inherent properties
of the scene or the object do not change according to the
direction of the camera ray.

As SNeRL predicts three different fields, RGB, semantic,
and distilled feature, by adding field-wise branches, they
share the neural rendering function fθ until estimating the
density σ. It indicates that three radiance fields have the
same accumulated transmittance T (t) at depth t ∈ [tn, tf ]
along the ray r = o+ td as

T (t) = exp(−
∫ t

tn

σ(r(s))ds). (5)

For rendering the RGB field, we follow the same training
framework as general latent-conditioned NeRF (Yu et al.,
2021; Martin-Brualla et al., 2021; Wang et al., 2021), which
optimizes the neural rendering function fθ via pixel-wise
RGB supervision. RGB supervision enables the encoder
to extract geometric features from the observed environ-
ment by learning the RGB and density distribution in the
3-dimensional space. The rendered pixel value Ĉ(r) can be
calculated as

Ĉ(r) =

∫ tf

tn

T (t)σ(r)c(r,d)dt, (6)

and the loss function for RGB field, LRGB, can be formu-
lated with simple L2 loss between the rendered Ĉ(r) and
the ground truth pixel colors C(r),

LRGB =
∑
i,j

||Ĉ(ri,j)− C(ri,j)||22, (7)

where ri,j indicates the camera ray j from the observation
i, oi.

Unfortunately, optimizing the encoder only with only an
RGB reconstruction is difficult to capture the semantic or
object-centric properties of the 3D scene, which are crucial
for downstream RL tasks. Therefore, we extend NeRF-
based decoder by appending additional branches before
injecting the viewing direction d into the rendering function,
fθ for semantic segmentation. The rendered semantic labels
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Ŝ(r) can be calculated as

Ŝ(r) =

∫ tf

tn

T (t)σ(r)s(r)dt (8)

and the loss function for semantic field, Lseg , can be formu-
lated with the standard cross entropy loss,

Lsem = −
∑
i,j

L∑
l=1

Sl(ri,j)log Ŝ
l(ri,j), (9)

where Ŝl and Sl denote the probability of the ray j in ob-
servation i belonging to the class l and its corresponding
ground-truth semantic labels, respectively.

To capture further fine-grained features that could not be
fully expressed in semantic fields, SNeRL also synthesizes
distilled feature fields (Kobayashi et al. (2022)) that predict
the output of a pre-trained feature descriptor in a knowledge-
distillation manner (Hinton et al.). It is well known from
prior literature (Caron et al., 2021) that Vision Transformer
(ViT) (Dosovitskiy et al., 2020) trained in a self-supervised
manner, e.g. DINO (Caron et al., 2021), can work as an
excellent feature descriptor which explicitly represents the
scene layouts such as object boundaries. Since the output
of the ViT feature descriptor contains high-dimensional
information with different values in all pixels depending
on the geometric relationship or semantic meaning, the pre-
trained ViT becomes a good feature descriptor with another
advantage from the semantic label.

Therefore, we take advantage of such benefits to the NeRF-
based decoder so that the latent vector z learns high-level
information by distilling the knowledge from ViT teacher
network which cannot be learned via ground-truth semantic
supervision. The distilled feature fields can be rendered as

F̂ (r) =

∫ tf

tn

T (t)σ(r)f(r)dt. (10)

The loss function for distilled feature field, Lfeat, is for-
mulated by penalizing the difference between the rendered
features F̂ (r) and the outputs of ViT feature descriptor
F (o, r) as

Lfeat =
∑
i,j

||F̂ (ri,j)− F (oi, ri,j)||1. (11)

Finally, the total loss function L for jointly optimizing the
multi-view encoder and NeRF-based decoder can be for-
mulated as the linear combination of aforementioned losses
as:

L = LRGB + λsemLsem + λfeatLfeat (12)

where λsem and λfeat are set to 0.004 and 0.04, respectively,
to balance the losses (Zhi et al., 2021; Kobayashi et al.,
2022). After training, the multi-view encoder Ω is exploited
as a 3D structural and semantic feature extractor for any
off-the-shelf downstream RL algorithms.

4.3. Multi-view Self Predictive Representation

We additionally enforce the multi-view self-predictive loss
to the latent vector z to ensure that the encoder learns the
viewpoint-invariant representation with observations from
the same scene. The randomly sampled observations from
two different camera pose, o1 and o2, are processed by
the convolutional feature extractor, ECNN, and the weights
of the feature extractor are shared between two inputs. A
feature from one view, z1, is mapped with a prediction
network, hpred, to match it to the feature from the other
view, z2. We formulate the self-predictive loss function D
with negative cosine similarity as follows:

D(p1, z2) = −
p1
||p1||2

· z2
||z2||2

, (13)

where p1 and z2 indicate two output vectors, p1 ≜
hpred(ECNN(o

1)) and z2 ≜ ECNN(o
2), respectively. We

assume that z2 is constant and the encoder ECNN only re-
ceives the gradient from p1 following Chen & He (2021).

The symmetrized auxiliary representation loss function can
be formulated as follows:

Laux =
1

2
D(p1, z2) +

1

2
D(p2, z1). (14)

5. Experiments
In this section, we demonstrate several experiments on the
3-dimensional environments to explore the effectiveness
of SNeRL compared to existing state-of-the-art RL algo-
rithms both in model-free and model-based settings. We
fix the downstream RL algorithms and adopt Soft Actor-
Critic (Haarnoja et al., 2018) in the model-free setting and
Dreamer (Hafner et al., 2019) in the model-based setting for
SNeRL and all the baselines for a fair evaluation.

Environments. We evaluate SNeRL on four visual control
environments based on the MuJoCo (Todorov et al., 2012),
including some complex control tasks that require clever use
of interactions between the objects to obtain high rewards.
All the tasks are performed by a simulated Sawyer robot
which has a single arm and gripper in hand (4-DoF). The
action space of the Sawyer robot consists of the position
(x,y,z) of the end-effector and gripper control (open/close).
The agent takes 128x128 images from three different camera
views as pixel-level inputs and receives dense rewards from
the environment provided by Meta-world (Yu et al., 2020).

• Window-open-v2 : This environment involves the
Sawyer robot opening a sliding window with a handle.
The initial state of the robotic hand is [0, 0.4, 0.2] and
the robot receives rewards for pushing the handle and
opening a window located in [-0.1, 0.785, 0.16].
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Figure 3. Episode returns of the evaluation results. Shading indicates a standard deviation across 4 seeds. The curves are not visible in
the Hammer-v2 environment as they overlap each other. Note that SNeRL in this figure is obtained without auxiliary loss in section 4.3
(multi-view self-predictive presentation), which could enable further improvements in some environments.

• Hammer-v2 : The Sawyer robot is supposed to grasp
the handle of the hammer, which is generated in a
random position, and hit the head of the nail to drive
it. The initial state of the robotic hand is generated
randomly in {(x, y, z)| − 0.5 ≤ x ≤ 0.5, 0.4 ≤ y ≤
1, 0.05 ≤ z ≤ 0.5}. The robot receives rewards for
picking up the hammer and inserting the nail into a
piece of wood.

• Drawer-open-v2 : The Sawyer robot is supposed to
open a drawer by holding the handle of the drawer and
pulling it. The initial state of the robotic hand is the
same as Hammer-v2. The robot receives rewards for
opening a drawer.

• Soccer-v2 : In this task, the Sawyer robot tries to score
by pushing a soccer ball that is generated in a random
position. The initial state of the robotic hand is the
same as Hammer-v2. The robot receives rewards for
touching the soccer ball and putting it into the net.

We refer to Meta-world (Yu et al., 2020) for more details
including the reward function and the range of the random
positions.

Baselines. We compare SNeRL to several state-of-the-art
visual RL methods and a 3D-aware RL method, which are

briefly described below. DrQ-v2 (Yarats et al., 2021) is an
improved version of DrQ (Yarats et al., 2020), which solves
visual control tasks with data augmentation and scheduled
exploration noise. CURL (Laskin et al., 2020b) trains RL
agents with an auxiliary contrastive loss which ensures that
the embeddings for data-augmented versions of observa-
tions match. CURL-multiview is a multi-view adaptation
of CURL, which utilize 3 different camera views and has
a CNN encoder with the same structure as that of SNeRL.
CNN-AE uses a standard CNN autoencoder (instead of
NeRF decoder) to pre-train an encoder using the reconstruc-
tion loss proposed in Finn et al. (2016). NeRF-RL (Driess
et al., 2022) pre-trains an autoencoder with convolutional
encoder and naı̈ve NeRF-style decoder, without semantic
and feature supervision.

We note that learning downstream RL tasks in CNN-AE and
NeRF-RL shares the identical method as SNeRL, and they
use the same offline dataset collected by random actions and
the policies provided by Meta-world (half-and-half mixed).
We refer the reader to Appendix B.2 for the experiments on
other datasets. Also, all the multi-view methods (CURL-
multiview, CNN-AE, NeRF-RL, SNeRL) receive the same
observations and do not receive per-object masks from the
environment. For the rest of the baselines which operate
on a single view, we choose a single camera position from
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(A) Semantic and Distilled Feature Fields (B) Multi-view Self Predictive Representation (C) SNeRL for Model-based RL
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Figure 4. Ablation study. (a): SNeRL with both semantic and feature supervision shows higher performance than the case where only one
of the two is applied. Also, in relatively simple environments, using only one of the two could be enough to improve the performance
of the prior work. (b): Additional multi-view self-predictive loss can further improve SNeRL in some environments. (c): Learned
representations via SNeRL can also be adopted in model-based RL.

which the states of each object can be observed clearly.

5.1. Experiment Result

Figure 3 shows the episode returns of SNeRL and baselines
in 4 different visual control tasks. Thanks to the learned
object-centric representation via semantic and distilled fea-
ture supervision, SNeRL consistently outperforms state-
of-the-art visual RL methods and the prior 3D-aware RL
method (NeRF-RL) in terms of data efficiency and perfor-
mance.

Specifically, the contrastive baselines (CURL, CURL-
multiview) and DrQ-v2 could not achieve high returns in
the difficult environments (soccer and hammer) even though
some of them succeed in the relatively easy environment
(window). The results also show that pre-training CNN via
naı̈ve reconstruction loss (CNN-AE) with offline data could
not succeed in the environments at all. These imply that
extracting not only the 3D-aware geometric but also the
object-centric and semantic information from multi-view
observations is critical for RL performances.

Interestingly, we observe that pre-training a NeRF-based
autoencoder only with RGB supervision (NeRF-RL) is not
sufficient to learn the features for RL downstream tasks,
and it can not outperform multi-view adaptation of the vi-

sual RL method with contrastive loss (CURL-multiview).
These are contrary to the results reported in the prior work
(Driess et al., 2022), which we analyze as follows: the en-
vironments we adopted in this work are more challenging
compared to those of Driess et al. (2022), which consist of
simple-shaped objects with primary colors. Therefore, it
is relatively difficult to obtain semantic information simply
using RGB supervision. Thus, leveraging a semantic-aware
NeRF decoder is required to extract the features for better
performances in RL downstream tasks in the practical use
of 3D-aware RL, which is consistent with our analysis.

5.2. Ablation Study

Semantic and Distilled Feature Fields. To validate how
each semantic-aware radiance field leveraged in SNeRL (se-
mantic and distilled feature fields) contributes to the down-
stream RL performances, we evaluate its two ablated vari-
ants without semantic and feature supervision, respectively.
As shown in Figure 4(a), SNeRL, which takes advantage
of both semantic and feature supervision from ground-truth
labels and a ViT-based feature descriptor, achieves the best
performance compared to all the ablated models. We ob-
serve that the performance gap between SNeRL and the
ablated models depends on the environment, as semantic
labels are sufficient to learn semantic information in a rel-
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Figure 5. Qualitative results on the image reconstruction in 3 different camera views via neural rendering. The synthesized images from
SNeRL achieve better fidelity compared to NeRF-RL in several environments.

atively simple environment (window), but it requires both
supervision in a complex environment (soccer).

Multi-view Representation Learning. We also introduce
auxiliary representation learning which is suitable for multi-
view observations with self-predictive loss. To demonstrate
its effectiveness on downstream RL tasks, we evaluate two
different models, which are SNeRL with and without multi-
view self-predictive representation learning. By enforcing
the latent vector to be invariant to the viewpoint of the obser-
vation, we report that the proposed representation learning
improves the RL agent’s performance in some environments
as shown in Figure 4(b).

5.3. Image Reconstruction via Neural Rendering

Even though we only leverage the convolutional encoder
for downstream RL tasks, we compare the image render-
ing performance of NeRF-based decoders from SNeRL and
NeRF-RL to explore the relationship between the synthe-
sized image quality and RL performances. As NeRF origi-
nally aims to synthesize images of arbitrary camera views
from a static scene, NeRF-RL, which also trains the volu-
metric field with a sole RGB supervision, cannot reconstruct
dynamic objects, e.g. the robot arm, in input images without
semantic information. On the other hand, SNeRL, which
utilizes semantic labels and feature outputs from the ViT
teacher network as additional supervision signals, not only
achieves better RL performance but also well represents the
dynamic scene and produces high-fidelity rendering outputs
as shown in Figure 5.

5.4. SNeRL for Model-based RL

In this section, we evaluate whether the learned representa-
tion via SNeRL can also be adopted in off-the-shelf model-
based reinforcement learning algorithms, which train a
world model to characterize the environment and conduct
planning over the learned model. We adopt Dreamer (Hafner

et al., 2019) as a downstream model-based RL agent and
replace the encoder of the representation model with our
pre-trained encoder. Refer to Appendix A for additional
implementation details and an architectural overview.

Our results are shown in Figure 4(c). We observe that learn-
ing model-based RL with the pre-trained encoder of SNeRL
outperforms the pre-trained weights of the prior 3D-aware
RL method (NeRF-RL) and naı̈ve CNN autoencoder. This
empirical evidence is consistent with the case of model-free
RL in section 5.1, indicating that the proposed method al-
lows the encoder to learn representations that are important
for general off-the-shelf RL agents.

6. Conclusion
In this paper, we present SNeRL, a semantic-aware radi-
ance field for RL, that outperforms existing representation
learning methods for RL algorithms across four different
3-dimensional environments. SNeRL leverages semantic
and distilled feature supervision with latent condition NeRF
autoencoders as well as RGB supervision to enable image
encoders to express 3D-aware geometric and semantic rep-
resentation on downstream RL tasks. We also propose a
multi-view self-predictive loss as an auxiliary representation
learning to force latent vectors to be viewpoint invariant. Fi-
nally, we verify that SNeRL is effective in both model-free
and model-based RL algorithms.

Limitations. Despite these improvements, SNeRL inher-
its the limitations of the prior 3D-aware RL method. First of
all, SNeRL requires multi-view offline data, and collecting
an offline dataset covering the state space in some complex
control tasks might be challenging. Also, our method uses a
NeRF decoder that consumes more computational budget
than CNN, so there might be limitations in extending our
method to an online setup which trains the encoder concur-
rently with RL agents.

8



SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning

7. Acknowledgement
This research was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) [NO.2021-
0-01343, Artificial Intelligence Graduate School Program
(Seoul National University)]. Also, this research was
supported by Unmanned Vehicles Core Technology Re-
search and Development Program through the National
Research Foundation of Korea(NRF) and Unmanned Ve-
hicle Advanced Research Center(UVARC) funded by the
Ministry of Science and ICT, the Republic of Korea(NRF-
2020M3C1C1A01086411). Seungjae Lee would like to
acknowledge financial support from Hyundai Motor Chung
Mong-Koo Foundation.

References
Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,

Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 9650–9660, 2021.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
15750–15758, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Driess, D., Schubert, I., Florence, P., Li, Y., and Toussaint,
M. Reinforcement learning with neural radiance fields.
arXiv preprint arXiv:2206.01634, 2022.

Dwibedi, D., Tompson, J., Lynch, C., and Sermanet, P.
Learning actionable representations from visual obser-
vations. In 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pp. 1577–1584.
IEEE, 2018.

Eslami, S. A., Jimenez Rezende, D., Besse, F., Viola, F.,
Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A.,
Danihelka, I., Gregor, K., et al. Neural scene represen-
tation and rendering. Science, 360(6394):1204–1210,
2018.

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., and
Abbeel, P. Deep spatial autoencoders for visuomotor
learning. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 512–519. IEEE,
2016.

Fu, X., Zhang, S., Chen, T., Lu, Y., Zhu, L., Zhou, X.,
Geiger, A., and Liao, Y. Panoptic nerf: 3d-to-2d label
transfer for panoptic urban scene segmentation. arXiv
preprint arXiv:2203.15224, 2022.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hansen, N., Jangir, R., Sun, Y., Alenyà, G., Abbeel, P.,
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A. Algorithms
A.1. Model-free RL : Soft Actor-Critic

In this project, we adopt Soft Actor-Critic algorithm (Haarnoja et al., 2018) (SAC) in all the experiments of the model-free
downstream RL. SAC optimizes stochastic policies to maximize both the expected trajectory returns and the expected
entropy of the actions. Although SAC shows promising performances on a range of control tasks over continuous action
spaces including many benchmark tasks, it fails or suffers from data inefficiency in some visual control tasks. To train actor
network πϕ and critic networks Qθ1 , Qθ2 SAC algorithm minimizes the following objective functions

Jπ(ϕ) = Est∼D
[
Eat∼πϕ

[α log(πϕ(at|st))− min
i=1,2

Qθi(st, at)]
]

(15)

JQ(θi) = Est,at,st+1,r∼D,at+1∼πϕ(st+1)

[
1

2
(Qθi(st, at)− (r + γT ))2

]
, (16)

where D denotes the replay buffer, α the temperature hyperparameter, and γ the discount factor. The target value T in Eq.
16 is

T = min
i=1,2

Qθ̂i(st+1, at+1)− α log πϕ(at+1|st+1). (17)

SAC also utilizes target networks Qθ̂1 , Qθ̂2 which are obtained as an Exponentially Moving Average (EMA) of the Q
networks (Qθ1 , Qθ2 ) for better learning stability, and gradient-based temperature tuning to determine the relative importance
of the entropy,

J(α) = Eat∼πϕ(st)[−α log πϕ(at|st)− αH̄]. (18)

A.2. Model-based RL : Dreamer

To evaluate whether SNeRL can also be adopted in model-based RL algorithms, we adopt Dreamer (Hafner et al., 2019).
Dreamer learns the world model which consists of the following components:

pθ(st|st−1, at−1, ot)

qθ(ot|st)
qθ(rt|st)
qθ(st|st−1, at−1).

(19)

These components are jointly optimized to increase the variational lower bound, which includes the following terms:

J tO = ln q(ot|st)
J tR = ln q(rt|st)
J tD = −βKL

(
p(st|st−1, at−1, ot)||q(st|st−1, at−1)

)
.

(20)

We replace the convolutional encoder of Dreamer with our feature extractor Ω (shared encoder of SNeRL) to design an
RL with a dynamics model over the latent space with pre-trained mapping. To learn the action and value models, Dreamer
optimizes the value model vψ and the action model qϕ using the objectives

max
ϕ

E
( t+H∑
τ=t

Vλ(sτ )

)

max
ψ

Eqθ,qϕ
( t+H∑
τ=t

1

2

∣∣∣∣∣∣vψ(sτ )− Vλ(sτ )∣∣∣∣∣∣2),
(21)

where H denotes the horizon, and Vλ the exponentially-weight value estimation. Refer to Dreamer (Hafner et al., 2019) for
details.
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A.3. Pseudo-code

Algorithm 1 Stage 1. pre-train multi-view encoder with SNeRL

1: Input: encoder Ω, off-the-shelf feature descriptor F̂ , offline dataset D
2: for iteration=1,2,...,N do
3: for sample minibatch d from D do
4: z ← Ω(o1:V ,K1:V )
5: L ← LRGB + λsemLsem + λfeatLfeat
6: update the parameters of Ω to minimize L
7: end for
8: end for

Algorithm 2 Stage 2. Downstream Model-free RL (SAC)
1: Input: total training episodes N , Env, environment horizon H , actor network πϕ, critic networks Qθi=1,2

, target critic
networks Qθ̂i=1,2

, temperature α, replay buffer B, pre-trained encoder Ω.
2: for iteration=1,2,...,N do
3: ot=0 ← Env.reset()
4: for t=0,1,...,H-1 do
5: at ← πϕ(·|Ω(ot))
6: rt, ot+1 ← Env.step(at)
7: B ← B ∪ {(ot, at, rt, ot+1)}
8: end for
9: for each gradient step do

10: θi ← θi − λQ∇θiJQ(θi)
11: ϕ← ϕ− λπ∇ϕJπ(ϕ)
12: α← α− λ∇αJ(α)
13: if update target critic networks then
14: θ̂i ← τθi + (1− τ)θ̂i
15: end if
16: end for
17: end for

Algorithm 3 Stage 2. Downstream Model-based RL (Dreamer)
1: Input: total training episodes N , update step C, Env, environment horizon T , imagination horizon H , Neural network

parameters θ, ϕ, ψ, replay buffer B, pre-trained encoder Ω.
2: for iteration=1,2,...,N do
3: for c=1,...,C do
4: sample data sequence {(at, ot, rt)}t=0,...,H−1 ∼ B
5: compute model states st ∼ pθ(st|Ω(ot−1), at−1) and reward qθ(rt|Ω(ot))
6: update θ using representation learning
7: imaging trajectories and compute value estimates Vλ(sτ )
8: ϕ← ϕ+ α∇ϕ

∑t+H
τ=t Vλ(sτ )

9: ψ ← ψ + α∇ψ
∑t+H
τ=t

1
2 ||vψ(sτ )− Vλ(sτ )||2

10: end for
11: ot=0 ← Env.reset()
12: for t=0,1,...,T − 1 do
13: at ← qϕ(·|Ω(ot))
14: rt, ot+1 ← Env.step(at)
15: B ← B ∪ {(ot, at, rt, ot+1)}
16: end for
17: end for
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B. Training & Experiments Details
B.1. Encoder Architecture

We design the encoder architecture similar to Laskin et al. (2020b), which consists of multiple convolutional layers and
ReLU activation, but modify it to be applicable in the multi-view observation inputs. The same encoder is also adopted in
the actor and critic to embed the pixel-level (multi-view) observations. We demonstrate the details of the convolutional
encoder with PyTorch-like pseudo-code as below.

Algorithm 4 Multi-view Encoder Pseudocode, PyTorch-like

def encoder(x1, x2, x3, K1, K2, K3, z_dim):
"""
Multi-view ConvNet encoder
args:

B = batch_size, C = channels,
H, W =spatial_dims
x1, x2, x3: images from 3 different camera views
x1, x2, x3 shape: [B, C, H, W]
K1, K2, K3: camera poses from 3 different camera views
K1, K2, K3 shape: [B, 4, 4]
z_dim = latent dimension

"""
x = x / 255.

# c: channels, f: filters
# k: kernel, s: stride

z1 = Conv2d(c=x1.shape[1], f=32, k=3, s=2)(x1)
z1 = ReLU(z1)

z2 = Conv2d(c=x2.shape[1], f=32, k=3, s=2)(x2)
z2 = ReLU(z2)

z3 = Conv2d(c=x3.shape[1], f=32, k=3, s=2)(x3)
z3 = ReLU(z3)

for _ in range(num_layers-1):

z1 = Conv2d(c=32, f=32, k=3, s=1)(z1)
z1 = ReLU(z1)

z2 = Conv2d(c=32, f=32, k=3, s=1)(z2)
z2 = ReLU(z2)

z3 = Conv2d(c=32, f=32, k=3, s=1)(z3)
z3 = ReLU(z3)

z1 = flatten(z1)
z2 = flatten(z2)
z3 = flatten(z3)

z1 = concat([z1, K1.view(B,16)], dim=1)
z2 = concat([z2, K1.view(B,16)], dim=1)
z3 = concat([z3, K1.view(B,16)], dim=1)

z1 = Linear(z1.shape[1], z_dim)(z1)
z2 = Linear(z2.shape[1], z_dim)(z2)
z3 = Linear(z3.shape[1], z_dim)(z3)

z = concat([z1, z2, z3], dim=1).mean(dim=1)

z = Linear(z.shape[1], z_dim)(z)
z = LayerNorm(z)
z = tanh(z)

return z
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B.2. Datasets

The offline datasets for SNeRL and baselines consist of 14400 scenes. Each scene consists of three image observations
taken from different camera views. The observations from each camera view are represented in Figure 1 (Window-open-v2)
and Figure 5 (Soccer-v2, Hammer-v2, Drawer-open-v2). To collect the dataset, we utilized random actions and the policies
provided by Meta-world (half-and-half mixed).

To observe how the performance of the proposed method varies with the quality of the dataset, we further trained the SNeRL
encoder with a dataset collected by a single expert demo and random actions. Only 120 scenes of the total scenes (14400,
120/14400≃1%) were obtained from the path of the expert demo, and the remaining 14280 scenes were obtained by taking
random actions from one moment of the path of the expert demo. As shown in Figure 6, we observe that the quality of the
dataset slightly affects the learning stability, but there is no dramatic performance degradation. The results show that there
would be no significant degradation in the performance of the SNeRL if the dataset adequately covers the state space, even
if the policy that collects the offline dataset is suboptimal.
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Figure 6. The performance of SNeRL with different quality of offline datasets.

B.3. Computational Resources

Stage 1 (pre-training encoder) in our experiments has been performed using a single NVIDIA RTX A6000 and AMD Ryzen
2950X, and stage 2 (RL downstream tasks) has been performed using an NVIDIA RTX A5000 and AMD Ryzen 2950X.
Training the SNeRL encoder takes 4-5 days and learning model-based RL and model-free RL takes 1-2 days.

B.4. Hyperparameters

Table 1. Hyperparameters for pre-training multi-view encoder
SNeRL

Convolution layers 4
Number of filters 32

Non-linearity ReLU
MLP layers for NeRF 8
Hidden units (MLP) 256

Number of different views 3
NeRF learning rate 5e-4

Number of rays per gradient step 1024
Number of samples per ray 64
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Table 2. Hyperparameters for SAC (for SNeRL and baselines)
SAC

hidden layer (1024, 1024)
frame stack 2

replay buffer size 100000
initial random steps 1000

batch size 128
actor learning rate 1e-3
critic learning rate 1e-3
α learning rate 1e-4

β for Adam optimizer (actor, critic) 0.9
eps for Adam optimizer (α) 1e-08
β for Adam optimizer (α) 0.5

eps for Adam optimizer (α) 1e-08
critic target update interval 2

actor network update interval 2
actor log std min, max -10, 2

init temperature 0.1
τ for EMA 0.01

discount factor γ 0.99

Table 3. Hyperparameters for Dreamer (for SNeRL and baselines)
Dreamer

embedding size 63
hidden / belief size 128

state size 30
action noise 0.3
batch size 32

world model learning rate 1e-3
actor learning rate 5e-5

value network learning rate 5e-5
discount factor γ 0.99
replay buffer size 100000
planning horizon 15

eps for Adam optimizer 1e-07
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