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Abstract

Paraphrase generation is a fundamental and001
longstanding problem in the Natural Language002
Processing field. With the huge success of pre-003
trained transformers, the pre-train–fine-tune ap-004
proach has become a standard choice. At the005
same time, popular task-agnostic pre-trainings006
usually require terabyte datasets and hundreds007
of GPUs, while available pre-trained models008
are limited to architecture and size. We propose009
a simple and efficient pre-training approach010
specifically for paraphrase generation, which011
noticeably boosts model quality and doesn’t012
require significant computing power. We also013
investigate how this procedure influences the014
scores across different architectures and show015
that it helps them all.016

1 Introduction017

Paraphrase Generation is one of the most popular018

and challenging tasks in the field of Natural Lan-019

guage Processing. There are several good reasons020

for this. First, this task is a special case of text021

generation. And there are many models for text022

generation to apply to the paraphrase generation023

task. Secondly, the task of paraphrase generation is024

essentially an analog of machine translation, with025

the only difference being that the sentence must026

be translated into the same language, but in other027

words. Therefore, not only machine translation028

models are directly applicable to this task, but ma-029

chine translation quality metrics are entirely suit-030

able for paraphrase systems estimation.031

The peculiarity of paraphrase generation in com-032

parison with other tasks of Natural Language Pro-033

cessing is a large number of works that don’t034

use labeled data but operate only with the usual035

text corpora. The fact is that the input and out-036

put for this task are interchangeable: if from the037

sentence x1, x2, . . . , xm we can get the sentence038

y1, y2, . . . , yk with a high probability, then it is039

logical that at the input y1, y2, . . . , yk the output040

x1, x2, . . . , xm must have a high probability. More- 041

over, each sentence should not have strictly 1 para- 042

phrase and could be rewritten in different ways, 043

which emphasizes the probabilistic nature of the 044

problem. There are a relatively large number of 045

data sources of different quality and different levels 046

for the Paraphrase Generation task. 047

In this article, we present a description of the 048

approach for improving the quality of neural net- 049

works for Paraphrase Generation. We propose a 050

simple and efficient pre-training procedure, which 051

is task-specific. It consistently boosts the perfor- 052

mance across different evaluation sets and model 053

architectures. 054

2 Approach 055

Nowadays, the pre-train–fine-tune paradigm pre- 056

vails. Especially in Natural Language Processing, 057

pre-trainings have led to significant performance 058

gains. It was shown that this technique adds ro- 059

bustness, enriches the model with better contextual 060

representation and additional knowledge. Usually, 061

the models are pre-trained on a large unlabeled text 062

corpus. Training objectives could be both general, 063

like Masked Language Modelling, or task-specific. 064

For instance, synthetic data generation (denoising 065

task) is widely known to boost the accuracy of neu- 066

ral Grammatical Error Correction systems (Zhao 067

et al., 2019; Omelianchuk et al., 2020). 068

Ideally, we need a dataset, which would be huge 069

in terms of the number of examples and related 070

to the task. For Paraphrase Generation, ParaNMT- 071

50M (Wieting and Gimpel, 2017) fits well for this 072

purpose. It contains more than 50 million English- 073

English sentential paraphrase pairs. It’s generated 074

automatically by using neural machine translation 075

to translate the non-English side of a large parallel 076

corpus. Thus, we can first train the model on this 077

data and then fine-tune it on specific Paraphrase 078

Generation datasets. 079
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System QQP (test) MSCOCO (dev)
BLEU↑ TER↓ METEOR↑ BLEU↑ TER↓ METEOR↑

residual LSTM 28.4 59.1 30.2 26.9 63.3 24.2
transformer base 29.1 59.5 30.5 26.9 63.3 24.2
CGMH 22.5 65.0 27.0 17.3 72.6 21.9
MCPG 24.1 64.5 31.8 16.5 73.5 23.2
PTS 25.6 58.7 31.4 17.0 69.9 22.8
pre-trained transformer base 30.6 57.4 33.2 27.4 58.5 26.0
pre-trained LSTM + Luong attn 29.2 58.1 32.6 26.7 59.0 25.5
pre-trained fully convolutional 29.5 57.8 32.6 27.7 57.8 25.7

Table 1: Comparison of ParaNMT pre-trained models against other reported systems

3 Experimental Setup080

3.1 Datasets081

Following the majority of works for supervised082

Paraphrase generation, we use the MSCOCO (Lin083

et al., 2014) dataset and the Quora Question Pairs1084

(QQP) dataset in our experiments. The MSCOCO085

dataset was initially built for the image caption-086

ing task. Each image corresponds to 5 different087

annotations, which describe the most noticeable088

object or action. These captions can be treated089

as paraphrases, as they’re generally close to each090

other. There’re two versions of the dataset: 2014091

and 2017. We use the 2017 version. For each set of092

paraphrases, we use all possible pairs during train-093

ing, which helps to increase the number of training094

examples significantly. For the evaluation stage,095

we use the first description as a source and the rest096

as references.097

The QQP dataset is a paraphrase identification098

corpus. Questions from the Quora website were099

marked as either duplicate or not by moderators.100

In the experiments, we use those pairs, which are101

labeled as duplicates. As there are no train/dev/test102

splits in the original dataset, we follow the partition103

in Wang et al. (2017). Similarly, for each pair, we104

use both questions as the paraphrase of each other.105

During the evaluation, we have only 1 reference.106

3.2 Metrics107

As the evaluation of text generation is usually chal-108

lenging, we rely on a combination of metrics in our109

experiments. We report surface metrics BLEU (Pa-110

pineni et al., 2002) and TER (Snover et al., 2006)111

and semantic metric METEOR (Lavie and Agar-112

wal, 2007). As studied by Wubben et al. (2010),113

1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

human judgments on generated paraphrases corre- 114

late well with these metrics. 115

To ensure the evaluation is robust, we use the 116

SacreBLEU (Post, 2018) library for BLEU and 117

TER calculation. For METEOR, we use the origi- 118

nal Java scorer. Both libraries accept detokenized 119

(raw) data and thus eliminate tokenization influ- 120

ence. 121

3.3 Training parameters 122

In our experiments, we use 3 different neural net- 123

work architectures: fully convolutional (Gehring 124

et al., 2017), LSTM (Hochreiter and Schmidhu- 125

ber, 1997), and transformer (Vaswani et al., 2017). 126

All neural networks have a comparable number of 127

parameters. We use shared embeddings both for 128

encoder, decoder input, and decoder output (soft- 129

max), as paraphrase generation is a monolingual 130

task. 131

For the transformer model, we simply use the 132

base setup. For the LSTM model, we use 3-layer 133

(both encoder and decoder) LSTM with Luong at- 134

tention and hidden size 512. The fully convolu- 135

tional model has the following structure: 4 layers 136

of convolutions with kernel size 512 and width 137

3; 2 layers of convolutions with kernel size 1024 138

and width 3; 1 layer of convolutions with kernel 139

size 2048 and width 1. During training, we use 140

an inverse square root schedule with a warm-up. 141

We first train models on the ParaNMT-50M dataset 142

and then fine-tune them on QQP and MSCOCO 143

separately. 144

4 Results 145

We report the results of our experiments in Table 1. 146

There are multiple issues with Paraphrase Genera- 147

tion evaluation methodology, like different dataset 148

versions or splits, sentence length shrinking, tok- 149
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Architecture QQP (test) MSCOCO (dev)
BLEU↑ TER↓ METEOR↑ BLEU↑ TER↓ METEOR↑

No pre-training
transformer base 28.7 58.6 31.5 25.2 60.6 24.5
LSTM with Luong attn 27.5 59.7 30.1 25.0 61.1 24.6
fully convolutional 27.9 59.9 30.7 25.3 61.5 24.9

With pre-training
transformer base 30.6 57.4 33.2 27.4 58.5 26.0
LSTM with Luong attn 29.2 58.1 32.6 26.7 59.0 25.5
fully convolutional 29.5 57.8 32.6 27.7 57.8 25.7

Gain from pre-training
transformer base 1.9 1.2 1.7 2.2 2.1 1.5
LSTM with Luong attn 1.7 1.3 2.5 1.7 2.1 0.9
fully convolutional 1.6 2.1 1.9 2.2 3.7 0.8

No fine-tuning
transformer base 23.7 66.7 31.4 17.4 69.9 23.6
LSTM with Luong attn 24.1 64.1 31.5 18.1 68.7 24.1
fully convolutional 24.2 65.8 31.4 17.9 69.1 24.2

Table 2: Comparison of the models initialized randomly, pre-trained on ParaNMT, and trained solely on ParaNMT
for Paraphrase Generation task regarding the model architecture. The models evaluated on QQP test set and
MSCOCO dev set

enization. Thus, to be able to compare our models,150

we use an evaluation strategy similar to Fabre et al.151

(2021) and compare our results with them.152

In their work, the authors train the neural net-153

works from previous works on Paraphrase Gen-154

eration with fixed train and evaluation strategies.155

Among them enocoder-decoder models, like resid-156

ual LSTM (Prakash et al., 2016) and transformer157

base, and weakly-supervised method CGMH (Miao158

et al., 2019). Additionally, they present Monte-159

Carlo Tree Search For Paraphrase Generation160

(MCPG) and Pareto Tree Search (PTS) methods,161

where paraphrase generation task is treated as a162

multicriteria search problem by using PPDB 2.0163

large-scale database (Pavlick et al., 2015).164

The models pre-trained on ParaNMT consis-165

tently show better results across both evaluation166

sets and all metrics. While the difference on the167

BLEU metric is not that big, transformer base168

shows significant improvement on METEOR and169

TER. Moreover, pre-trained LSTM is on par (or170

better) with the best encoder-decoder models.171

5 Ablation study172

In the era of pre-trained language models, trans-173

former architecture is the default choice for Natu-174

ral Language Processing. At the same time, some175

of the recent studies (Tay et al., 2021) show that176

not only transformers can incorporate knowledge 177

gained during the pre-training stage. In this study, 178

we investigate the influence of Paraphrase Gener- 179

ation pre-training on model quality regarding the 180

architecture. 181

In Table 2, we observe that the pre-training 182

boosts the model performance regardless of the 183

architecture. In some cases fully convolutional and 184

LSTM models outperforms transformer in terms of 185

the score gain from pre-training. Surprisingly, the 186

gain is bigger on average on the MSCOCO dataset 187

(in terms of BLEU and TER), despite the fact that 188

its training set is bigger than QQP. 189

We also explore the quality of the neural net- 190

works trained solely on the ParaNMT-50M dataset, 191

without further fine-tuning, in Table 2 (lower 192

block). For such models, METEOR score is higher 193

on the QQP test set and similar on the MSCOCO 194

dev set, while the models trained on the actual 195

datasets expectedly prevail in terms of BLEU and 196

TER. 197

Another observation is that the ParaNMT-only 198

transformer shows consistently worse results on 199

both datasets compared to LSTM and full convo- 200

lutional nets. One of the possible reasons is that 201

thanks to better inductive bias, the transformer bet- 202

ter tunes to the ParaNMT dataset and, thus, gener- 203

alizes worse on other datasets. 204

3



6 Related Work205

Based on the idea of variational autoencoders with206

discrete latent structures, in Fu et al. (2020a) au-207

thors propose a latent bag of words (BOW) model208

for paraphrase generation. The semantics of a dis-209

crete latent variable is modeled by the BOW from210

the target sentences. This latent variable is used211

to build a fully differentiable content planning and212

surface realization model. Source words are used to213

predict their neighbors and model the target BOW214

with a mixture of softmax. Gumbel top-k reparam-215

eterization is employed to perform differentiable216

subset sampling from the predicted BOW distribu-217

tion. The retrieved sampled word embeddings are218

used to augment the decoder and guide its genera-219

tion search space.220

In paper Krishna et al. (2020), authors reformu-221

late unsupervised style transfer as a paraphrase gen-222

eration problem, and present a simple methodology223

based on fine-tuning pretrained language models on224

automatically generated paraphrase data. Despite225

its simplicity, the described method significantly226

outperforms state-of-the-art style transfer systems227

on both human and automatic evaluations.228

Work Goyal and Durrett (2020) proposes to229

use syntactic transformations to softly “reorder”230

the source sentence and guide neural paraphrasing231

model. First, given an input sentence, the method232

derives a set of feasible syntactic rearrangements233

using an encoder-decoder model. This model oper-234

ates over a partially lexical, partially syntactic view235

of the sentence and can reorder big chunks. Next,236

the method uses each proposed rearrangement to237

produce a sequence of position embeddings, which238

encourages the final encoder-decoder paraphrase239

model to attend to the source words in a particular240

order.241

A method for generating paraphrases of English242

questions that retain the original intent but use a dif-243

ferent surface form was proposed in Hosking and244

Lapata (2021). An encoder-decoder model was245

trained to reconstruct a question from a paraphrase246

with the same meaning and an exemplar with the247

same surface form, leading to separated encoding248

spaces. A Vector-Quantized Variational Autoen-249

coder was used to represent the surface form as a250

set of discrete latent variables that allows the ap-251

plication of a classifier to select a different surface252

form at test time. It was experimentally proved that253

the proposed model is able to generate paraphrases254

with a better tradeoff between semantic preserva-255

tion and syntactic novelty compared to previous 256

methods. 257

In paper Fu et al. (2020b), authors explore the 258

use of structured variational autoencoders to in- 259

fer latent templates for sentence generation using 260

a soft, continuous relaxation in order to utilize 261

reparameterization for training. Specifically, they 262

propose a Gumbel-CRF, a continuous relaxation 263

of the CRF sampling algorithm using a relaxed 264

Forward Filtering Backward-Sampling (FFBS) ap- 265

proach. As a reparameterized gradient estimator, 266

the Gumbel-CRF gives more stable gradients than 267

score-function based estimators. As a structured 268

inference network, it was shown that it learns in- 269

terpretable templates during training, which allows 270

it to control the decoder during testing. The effec- 271

tiveness of methods was demonstrated with experi- 272

ments on unsupervised paraphrase generation. 273

7 Conclusion 274

In this paper, we studied the effect of ParaNMT pre- 275

training for Paraphrase Generation. We propose 276

a simple and efficient approach for improving the 277

quality of neural models for the task. We show that 278

ParaNMT pre-training significantly benefits neural 279

networks regardless of the architecture. Moreover, 280

models trained solely on the ParaNMT already per- 281

form well on both evaluation sets. 282

Relevant pre-training enhances neural networks’ 283

quality at no cost in terms of model size or infer- 284

ence time. Task-agnostic pre-training procedures 285

require substantial computational resources, and 286

available models are limited to architectures. At 287

the same time, task-specific pre-training signifi- 288

cantly improves model performance while being 289

easier to reach. 290
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