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Abstract

This paper introduces a new method for minimizing matrix-smooth non-convex ob-1

jectives through the use of novel Compressed Gradient Descent (CGD) algorithms2

enhanced with a matrix-valued stepsize. The proposed algorithms are theoretically3

analyzed first in the single-node and subsequently in the distributed settings. Our4

theoretical results reveal that the matrix stepsize in CGD can capture the objec-5

tive’s structure and lead to faster convergence compared to a scalar stepsize. As6

a byproduct of our general results, we emphasize the importance of selecting the7

compression mechanism and the matrix stepsize in a layer-wise manner, taking8

advantage of model structure. Moreover, we provide theoretical guarantees for9

free compression, by designing specific layer-wise compressors for the non-convex10

matrix smooth objectives. Our findings are supported with empirical evidence.11

1 Introduction12

The minimization of smooth and non-convex functions is a fundamental problem in various domains13

of applied mathematics. Most machine learning algorithms rely on solving optimization problems for14

training and inference, often with structural constraints or non-convex objectives to accurately capture15

the learning and prediction problems in high-dimensional or non-linear spaces. However, non-convex16

problems are typically NP-hard to solve, leading to the popular approach of relaxing them to convex17

problems and using traditional methods. Direct approaches to non-convex optimization have shown18

success but their convergence and properties are not well understood, making them challenging for19

large scale optimization. While its convex alternative has been extensively studied and is generally an20

easier problem, the non-convex setting is of greater practical interest often being the computational21

bottleneck in many applications.22

In this paper, we consider the general minimization problem:23

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable function. In order for this problem to have a finite solution we24

will assume throughout the paper that f is bounded from below.25

Assumption 1. There exists f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.26

The stochastic gradient descent (SGD) algorithm [MB11, B+15, GLQ+19] is one of the most27

common algorithms to solve this problem. In its most general form, it can be written as28

xk+1 = xk − γg(xk), (2)

where g(xk) is a stochastic estimator of ∇f(xk) and γ > 0 is a positive scalar stepsize. A particular29

case of interest is the compressed gradient descent (CGD) algorithm [KFJ18], where the estimator g30
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is taken as a compressed alternative of the initial gradient:31

g(xk) = C(∇f(xk)), (3)
and the compressor C is chosen to be a "sparser" estimator that aims to reduce the communication32

overhead in distributed or federated settings. This is crucial, as highlighted in the seminal paper33

by [KMY+16], which showed that the bottleneck of distributed optimization algorithms is the34

communication complexity. In order to deal with the limited resources of current devices, there are35

various compression objectives that are practical to achieve. These include also compressing the36

model broadcasted from server to clients for local training, and reducing the computational burden37

of local training. These objectives are mostly complementary, but compressing gradients has the38

potential for the greatest practical impact due to slower upload speeds of client connections and the39

benefits of averaging [KMA+21]. In this paper we will focus on this latter problem.40

An important subclass of compressors are the sketches. Sketches are linear operators defined on41

Rd, i.e., C(y) = Sy for every y ∈ Rd, where S is a random matrix. A standard example of such42

a compressor is the Rand-k compressor, which randomly chooses k entries of its argument and43

scales them with a scalar multiplier to make the estimator unbiased. Instead of communicating all d44

coordinates of the gradient, one communicates only a subset of size k, thus reducing the number of45

communicated bits by a factor of d/k. Formally, Rand-k is defined as follows: S =
∑k
j=1

d
ke
>
ij
e>ij ,46

where ij are the selected coordinates of the input vector. We refer the reader to [SSR22] for an47

overview on compressions.48

Besides the assumption that function f is bounded from below, we also assume that it is L matrix49

smooth, as we are trying to take advantage of the entire information contained in the smoothness50

matrix L and the stepsize matrix D.51

Assumption 2 (Matrix smoothness). There exists L ∈ Sd+ such that52

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
1

2
〈L(x− y), x− y〉 (4)

holds for all x, y ∈ Rd.53

The assumption of matrix smoothness, which is a generalization of scalar smoothness, has been54

shown to be a more powerful tool for improving supervised model training. In [SHR21], the authors55

proposed using smoothness matrices and suggested a novel communication sparsification strategy to56

reduce communication complexity in distributed optimization. The technique was adapted to three57

distributed optimization algorithms in the convex setting, resulting in significant communication58

complexity savings and consistently outperforming the baselines. The results of this study demonstrate59

the efficacy of the matrix smoothness assumption in improving distributed optimization algorithms.60

The case of block-diagonal smoothness matrices is particularly relevant in various applications, such61

as neural networks (NN). In this setting, each block corresponds to a layer of the network, and we62

characterize the smoothness with respect to nodes in the i-th layer by a corresponding matrix Li.63

Unlike in the scalar setting, we favor the similarity of certain entries of the argument over the others.64

This is because the information carried by the layers becomes more complex, while the nodes in the65

same layers are similar. This phenomenon has been observed visually in various studies, such as66

those by [YCN+15] and [ZCAW17].67

Another motivation for using a layer-dependent stepsize has its roots in physics. In nature, the68

propagation speed of light in media of different densities varies due to frequency variations. Similarly,69

different layers in neural networks carry different information, metric systems, and scaling. Thus, the70

stepsizes need to be picked accordingly to achieve optimal convergence.71

We study two matrix stepsized CGD-type algorithms and analyze their convergence properties for72

non-convex matrix-smooth functions. As mentioned earlier, we put special emphasis on the block-73

diagonal case. We design our sketches and stepsizes in a way that leverages this structure, and we74

show that in certain cases, we can achieve compression without losing in the overall communication75

complexity.76

1.1 Related work77

Many successful convex optimization techniques have been adapted for use in the non-convex78

setting. Here is a non-exhaustive list: adaptivity [DOG+19, ZKV+20], variance reduction [JRSPS16,79
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LBZR21], and acceleration [GNDG19]. A paper of particular importance for our work is that of80

[KR20], which proposes a unified scheme for analyzing stochastic gradient descent in the non-convex81

regime. A comprehensive overview of non-convex optimization can be found in [JK+17, DDG+22].82

A classical example of a matrix stepsized method is Newton’s method. This method has been popular83

in the optimization community for a long time [GT74, Mie80, Yam87]. However, computing the84

stepsize as the inverse Hessian of the current iteration results in significant computational complexity.85

Instead, quasi-Newton methods use an easily computable estimator to replace the inverse of the86

Hessian [Bro65, DM77, ABK07, ABSM14]. An example is the Newton-Star algorithm [IQR21],87

which we discuss in Section 2.88

[GR15] analyzed sketched gradient descent by making the compressors unbiased with a sketch-and-89

project trick. They provided an analysis of the resulting algorithm for the linear feasibility problem.90

Later, [HMR18] proposed a variance-reduced version of this method.91

Leveraging the layer-wise structure of neural networks has been widely studied for optimizing the92

training loss function. For example, [ZTJY19] propose SGD with different scalar stepsizes for each93

layer, [YHL+17, GCH+19] propose layer-wise normalization for Stochastic Normalized Gradient94

Descent, and [DBA+20, WSR22] propose layer-wise compression in the distributed setting.95

DCGD, proposed by [KFJ18], has since been improved in various ways, such as in [HHH+19,96

LKQR20]. There is also a large body of literature on other federated learning algorithms with97

unbiased compressors [AGL+17, MGTR19, GBLR21, MMSR22, MSR22, HKM+23].98

1.2 Contributions99

Our paper contributes in the following ways:100

• We propose two novel matrix stepsize sketch CGD algorithms in Section 2, which, to the101

best of our knowledge, are the first attempts to analyze a fixed matrix stepsize for non-102

convex optimization. We present a unified theorem in Section 3 that guarantees stationarity103

for minimizing matrix-smooth non-convex functions. The results shows that taking our104

algorithms improve on their scalar alterantives. The complexities are summarized in Table 1105

for some particular cases.106

• We design our algorithms’ sketches and stepsize to take advantage of the layer-wise structure107

of neural networks, assuming that the smoothness matrix is block-diagonal. In Section 4,108

we prove that our algorithms achieve better convergence than classical methods.109

• Assuming the that the server-to-client communication is less expensive [KMY+16,110

KMA+21], we propose distributed versions of our algorithms in Section 5, following111

the standard FL scheme, and prove weighted stationarity guarantees. Our theorem recovers112

the result for DCGD in the scalar case and improves it in general.113

• We validate our theoretical results with experiments. The plots and framework are provided114

in the Appendix.115

1.3 Preliminaries116

The usual Euclidean norm on Rd is defined as ‖·‖. We use bold capital letters to denote matrices.117

By Id we denote the d × d identity matrix, and by Od we denote the d × d zero matrix. Let Sd++118

(resp. Sd+) be the set of d × d symmetric positive definite (resp. semi-definite) matrices. Given119

Q ∈ Sd++ and x ∈ Rd, we write ‖x‖Q :=
√
〈Qx, x〉, where 〈·, ·〉 is the standard Euclidean inner120

product on Rd. For a matrix A ∈ Sd++, we define by λmax(A) (resp. λmin(A)) the largest (resp.121

smallest) eigenvalue of the matrix A. Let Ai ∈ Rdi×di and d = d1 + . . . + d`. Then the matrix122

A = Diag(A1, . . . ,A`) is defined as a block diagonal d× d matrix where the i-th block is equal to123

Ai. We will use diag(A) ∈ Rd×d to denote the diagonal of any matrix A ∈ Rd×d. Given a function124

f : Rd → R, its gradient and its Hessian at point x ∈ Rd are respectively denoted as ∇f(x) and125

∇2f(x).126
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2 The algorithms127

Below we define our two main algorithms:128

xk+1 = xk −DSk∇f(xk), (det-CGD1)

and129

xk+1 = xk − T kD∇f(xk). (det-CGD2)

Here, D ∈ Sd++ is the fixed stepsize matrix. The sequences of random matrices Sk and T k satisfy130

the next assumption.131

Assumption 3. We will assume that the random sketches that appear in our algorithms are i.i.d.,132

unbiased, symmetric and positive semi-definite for each algorithm. That is133

Sk,T k ∈ Sd+, Sk
iid∼ S and T k iid∼ T

E
[
Sk
]

= E
[
T k
]

= Id, for every k ∈ N.

A simple instance of det-CGD1 and det-CGD2 is the vanilla GD. Indeed, if Sk = T k = Id and134

D = γId, then xk+1 = xk − γ∇f(xk). In general, one may view these algorithms as Newton-type135

methods. In particular, our setting includes the Newton Star (NS) algorithm by [IQR21]:136

xk+1 = xk −
(
∇2f(xinf)

)−1∇f(xk). (NS)

The authors prove that in the convex case it converges to the unique solution xinf locally quadratically,137

provided certain assumptions are met. However, it is not a practical method as it requires knowledge138

of the Hessian at the optimal point. This method, nevertheless, hints that constant matrix stepsize can139

yield fast convergence guarantees. Our results allow us to choose the D depending on the smoothness140

matrix L. The latter can be seen as a uniform upper bound on the Hessian.141

The difference between det-CGD1 and det-CGD2 is the update rule. In particular, the order of the142

sketch and the stepsize is interchanged. When the sketch S and the stepsize D are commutative w.r.t.143

matrix product, the algorithms become equivalent. In general, a simple calculation shows that if we144

take145

T k = DSkD−1, (5)

then det-CGD1 and det-CGD2 are the same. Defining T k according to (5), we recover the unbiased-146

ness condition:147

E
[
T k
]

= DE
[
Sk
]
D−1 = Id. (6)

However, in general DE
[
Sk
]
D−1 is not necessarily symmetric, which contradicts to Assumption 3.148

Thus, det-CGD1 and det-CGD2 are not equivalent for our purposes.149

3 Main results150

Before we state the main result, we present a stepsize condition for det-CGD1 and det-CGD2,151

respectively:152

E
[
SkDLDSk

]
�D, (7)

and153

E
[
DT kLT kD

]
�D. (8)

In the case of vanilla GD (7) and (8) become γ < L−1, which is the standard condition for conver-154

gence.155

Below is the main convergence theorem for both algorithms in the single-node regime.156

Theorem 1. Suppose that Assumptions 1-3 are satisfied. Then, for each k ≥ 0157

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2

D

]
≤ 2(f(x0)− f inf)

K
, (9)

if one of the below conditions is true:158
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i) The vectors xk are the iterates of det-CGD1 and D satisfies (7);159

ii) The vectors xk are the iterates of det-CGD2 and D satisfies (8).160

It is important to note that Theorem 1 yields the same convergence rate for any D ∈ Sd++, despite161

the fact that the matrix norms on the left-hand side cannot be compared for different weight matrices.162

To ensure comparability of the right-hand side of (9), it is necessary to normalize the weight matrix163

D that is used to measure the gradient norm. We propose using determinant normalization, which164

involves dividing both sides of (9) by det(D)1/d, yielding the following:165

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤ 2(f(x0)− f inf)

det(D)1/dK
. (10)

This normalization is meaningful because adjusting the weight matrix to D
det(D)1/d allows its determi-166

nant to be 1, making the norm on the left-hand side comparable to the standard Euclidean norm. It is167

important to note that the volume of the normalized ellipsoid
{
x ∈ Rd : ‖x‖2D/det(D)1/d ≤ 1

}
does168

not depend on the choice of D ∈ Sd++. Therefore, the results of (9) are comparable across different169

D in the sense that the right-hand side of (9) measures the volume of the ellipsoid containing the170

gradient.171

3.1 Optimal matrix stepsize172

In this section, we describe how to choose the optimal stepsize that minimizes the iteration complexity.173

The problem is easier for det-CGD2. We notice that (8) can be explicitly solved. Specifically, it is174

equivalent to175

D �
(
E
[
T kLT k

])−1
. (11)

We want to emphasize that the RHS matrix is invertible despite the sketches not being so. Indeed.176

The map h : T → TLT is convex on Sd+. Therefore, Jensen’s inequality implies177

E
[
T kLT k

]
� E

[
T k
]
LE

[
T k
]

= L � Od.

This explicit condition on D can assist in determining the optimal stepsize. Since both D and178

(T kLT k)−1 are positive definite, then the right-hand side of (10) is minimized exactly when179

D = (T kLT k)−1. (12)

The situation is different for det-CGD1. According to (10), the optimal D is defined as the solution180

of the following constrained optimization problem:181

minimize log det(D−1)

subject to E
[
SkDLDSk

]
�D (13)

D ∈ Sd++.

182

Proposition 1. The optimization problem (13) with respect to stepsize matrix D ∈ Sd++, is a convex183

optimization problem with convex constraint.184

The proof of this proposition can be found in the Appendix. It is based on the reformulation of the185

constraint to its equivalent quadratic form inequality. Using the trace trick, we can prove that for186

every vector chosen in the quadratic form, it is convex. Since the intersection of convex sets is convex,187

we conclude the proof.188

One could consider using the CVXPY [DB16] package to solve (13), provided that it is first transformed189

into a Disciplined Convex Programming (DCP) form [GBY06]. Nevertheless, (7) is not recognized190

as a DCP constraint in the general case. To make CVXPY applicable, additional steps tailored to the191

problem at hand must be taken.192
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Table 1: Summary of communication complexities of det-CGD1 and det-CGD2 with different
sketches and stepsize matrices. The Di here for det-CGD1 is Wi with the optimal scaling determined
using Theorem 2, for det-CGD2 it is the optimal stepsize matrix defined in (11). The constant
2(f(x0)− f inf)/ε2 is hidden, ` is the number of layers, ki is the mini-batch size for the i-th layer if
we use the rand-k sketch. The notation L̃i,k is defined as d−k

d−1 diag(Li) + k−1
d−1Li.

No. The
method

(
Ski ,Di

)
l ≥ 1, di , ki ,

∑`
i=1 ki = k, layer structure l = 1, ki = k, general structure

1. det-CGD1
(
Id, γL

−1
i

)
d · det(L)1/d d · det(L)1/d

2. det-CGD1
(
Id, γ diag−1(Li)

)
d · det

(
diag(L)

)1/d d · det
(
diag(L)

)1/d
3. det-CGD1

(
Id, γIdi

)
d ·
(∏l

i=1 λ
di
max(Li)

)1/d
d · λmax(L)

4. det-CGD1
(

rand-1, γIdi

)
` ·
(∏l

i=1 d
di
i

(
maxj(Li)jj

)di)1/d
d · maxj(Ljj)

5. det-CGD1
(

rand-1, γL−1
i

)
`·


∏l
i=1 d

di
i
λ
di
max

(
L

1
2
i

diag(L
−1
i

)L

1
2
i

)
∏l
i=1

det(L
−1
i

)


1/d

dλmax

(
L

1
2 diag

(
L−1

)
L

1
2

)
det

(
L−1

)1/d

6. det-CGD1
(

rand-1, γL−1/2
i

)
` ·
(∏l

i=1 d
di
i
λ
di
max(L

1/2
i

)∏l
i=1

det(L
−1/2
i

)

)1/d

d · λ1/2
max(L) det(L)1/(2d)

7. det-CGD1
(

rand-1, γ diag−1(Li)
)

` ·
( ∏l

i=1 d
di
i∏d

j=1
(L
−1
jj

)

)1/d

d · det
(
diag(L)

)1/d
8. det-CGD1

(
rand-ki, γ diag−1(Li)

)
k ·
(∏l

i=1

(
di
ki

)di det
(
diag(L)

))1/d
d · det

(
diag(L)

)1/d
9. det-CGD2

(
Id,L

−1
i

)
d · det(L)1/d d · det(L)1/d

10. det-CGD2
(

rand-1, diag−1(Li)
di

)
` ·
(∏l

i=1 d
di
i

)1/d
det(diagL)1/d d · det(diag(L))1/d

11. det-CGD2
(

rand-k, ki
di

L̃−1
i,ki

)
k ·
(∏l

i=1

(
di
ki

) di
d

)(∏l
i=1 det(L̃i,ki

)
)1/d

d · det(L̃1,k)

12. det-CGD2
(

Bern-qi, qiL
−1
i

) (∑l
i=1 qidi

)
·
∏l
i=1

(
1
qi

) di
d det(L)1/d d · det(L)1/d

13. GD
(
Id, λ

−1
max(L)Id

)
N/A d · λmax(L)

4 Leveraging the layer-wise structure193

In this section we focus on the block-diagonal case of L for both det-CGD1 and det-CGD2. In194

particular, we propose hyper-parameters of det-CGD1 designed specifically for training NNs. Let195

us assume that L = Diag(L1, . . . ,L`), where Li ∈ Sdi++. This setting is a generalization of the196

classical smoothness condition, as in the latter case Li = LIdi for all i = 1, . . . , `. Respectively,197

we choose both the sketches and the stepsize to be block diagonal: D = Diag(D1, . . . ,D`) and198

Sk = Diag(Sk1 , . . . ,S
k
` ), where Di,S

k
i ∈ Sdi++.199

Let us notice that the left hand side of the inequality constraint in (13) has quadratic dependence on200

D, while the right hand side is linear. Thus, for every matrix W ∈ Sd++, there exists γ > 0 such that201

γ2λmax

(
E
[
SkWLWSk

])
≤ γλmin(W ).

Therefore, for γW we deduce202

E
[
Sk(γW )L(γW )Sk

]
� γ2λmax

(
E
[
SkWLWSk

])
Id � γλmin(W )Id � γW . (14)

The following theorem is based on this simple fact applied to the corresponding blocks of the matrices203

D,L,Sk for det-CGD1.204

Theorem 2. Let f : Rd → R satisfy Assumptions 1 and 2, with L admitting the layer-separable struc-205

ture L = Diag(L1, . . . ,L`), where L1, . . . ,L` ∈ Sdi++. Choose random matrices Sk1 , . . . ,S
k
` ∈ Sd+206

to satisfy Assumption 3 for all i ∈ [`], and let Sk := Diag(Sk1 , . . . ,S
k
` ). Furthermore, choose207

matrices W1, . . . ,W` ∈ Sd++ and scalars γ1, . . . , γ` > 0 such that208

γi ≤ λ−1
max

(
E
[
W
−1/2
i Ski WiLiWiS

k
i W

−1/2
i

])
∀i ∈ [`]. (15)

Letting W := Diag(W1, . . . ,W`), Γ := Diag(γ1Id1
, . . . , γ`Id`) and D := ΓW , we get209

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
ΓW

det(ΓW )1/d

]
≤ 2(f(x0)− f inf)

det (ΓW )
1/d

K
. (16)
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In particular, if the scalars {γi} are chosen to be equal to their maximum allowed values from (15),210

then the convergence factor of (16) is equal to211

det (ΓW )
− 1
d =

[∏̀
i=1

λdimax

(
E
[
W
− 1

2
i Ski WiLiWiS

k
i W

− 1
2

i

])] 1
d

det(W−1)
1
d .

Table 1 contains the (expected) communication complexities of det-CGD1, det-CGD2 and GD for212

several choices of W ,D and Sk. Here are a few comments about the table. We deduce that taking a213

matrix stepsize without compression (row 1) we improve GD (row 13). A careful analysis reveals214

that the result in row 5 is always worse than row 7 in terms of both communication and iteration215

complexity. However, the results in row 6 and row 7 are not comparable in general, meaning that216

neither of them is universally better. More discussion on this table can be found in the Appendix.217

Compression for free. Now, let us focus on row 12, which corresponds to a sampling scheme218

where the i-th layer is independently selected with probability qi. Mathematically, it goes as follows:219

T k
i =

ηi
qi
Idi , where ηi ∼ Bernoulli(qi). (17)

Jensen’s inequality implies that220 (
l∑
i=1

qidi

)
·
l∏
i=1

(
1

qi

) di
d

≥ d. (18)

The equality is attained when qi = q for all i ∈ [`]. The expected bits transferred per iteration of221

this algorithm is then equal to kexp = qd and the communication complexity equals ddet(L)1/d.222

Comparing with the results for det-CGD2 with rand-kexp on row 11 and using the fact that det(L) ≤223

det (diag(L)), we deduce that the Bernoulli scheme is better than the uniform sampling scheme.224

Notice also, the communication complexity matches the one for the uncompressed det-CGD2225

displayed on row 9. This, in particular means that using the Bern-q sketches we can compress the226

gradients for free. The latter means that we reduce the number of bits broadcasted at each iteration227

without losing in the total communication complexity. In particular, when all the layers have the same228

width di, the number of broadcasted bits for each iteration is reduced by a factor of q.229

5 Distributed setting230

In this section we describe the distributed versions of our algorithms and present convergence231

guarantees for them. Let us consider an objective function that is sum decomposable:232

f(x) :=
1

n

n∑
i=1

fi(x),

where each fi : Rd → R is a differentiable function. We assume that f satisfies Assumption 1 and233

the component functions satisfy the below condition.234

Assumption 4. Each component function fi is Li-smooth and is bounded from below: fi(x) ≥ f inf
i235

for all x ∈ Rd.236

This assumption also implies that f is of matrix smoothness with L̄ ∈ Sd++, where L̄ = 1
n

∑n
i=1 Li.237

Following the standard FL framework [KMY+16, MMR+17, KFJ18], we assume that the i-th238

component function fi is stored on the i-th client. At each iteration, the clients in parallel compute239

and compress the local gradient ∇fi and communicate it to the central server. The server, then240

aggregates the compressed gradients, computes the next iterate, and in parallel broadcasts it to the241

clients. See the algorithms below for the pseudo-codes.242

7



Algorithm 1 Distributed det-CGD1
1: Input: Starting point x0, stepsize matrix D,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample Ski ∼ S;
5: compute Ski ∇fi(xk);
6: broadcast Ski ∇fi(xk).
7: The server:
8: combines gk = D

n

∑n
i S

k
i ∇fi(xk);

9: computes xk+1 = xk − gk;
10: broadcasts xk+1.
11: end for
12: Return: xK

Algorithm 2 Distributed det-CGD2
1: Input: Starting point x0, stepsize matrix D,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample T k

i ∼ T ;
5: compute T k

i D∇fi(xk);
6: broadcast T k

i D∇fi(xk).
7: The server:
8: combines gk = 1

n

∑n
i T

k
i D∇fi(xk);

9: computes xk+1 = xk − gk;
10: broadcasts xk+1.
11: end for
12: Return: xK

243

Theorem 3. Let fi : Rd → R satisfy Assumption 4 and let f satisfy Assumption 1 and Assumption 2244

with smoothness matrix L. If the stepsize satisfies245

DLD �D, (19)

then the following convergence bound is true for the iteration of Algorithm 1:246

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤

2(1 + λD

n )K
(
f(x0)− f inf

)
det(D)1/dK

+
2λD∆inf

det(D)1/d n
, (20)

where ∆inf := f inf − 1
n

∑n
i=1 f

inf
i and247

λD := max
i

{
λmax

(
E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

])}
.

The same result is true for Algorithm 2 with a different constant λD . The proof of Theorem 3 and its248

analogue for Algorithm 2 are presented in the Appendix. The analysis is largely inspired by [KR20,249

Theorem 1]. Now, let us examine the right-hand side of (20). We start by observing that the first term250

has exponential dependence in K. However, the term inside the brackets, 1 + λD/n, depends on the251

stepsize D. Furthermore, it has a second-order dependence on D, implying that λαD = α2λD, as252

opposed to det(αD)1/d, which is linear in α. Therefore, we can choose a small enough coefficient α253

to ensure that λD is of order n/K. This means that for a fixed number of iterations K, we choose the254

matrix stepsize to be "small enough" to guarantee that the denominator of the first term is bounded.255

The following corollary summarizes these arguments, and its proof can be found in the Appendix.256

Corollary 1. We reach an error level of ε2 in (20) if the following conditions are satisfied:257

DLD �D, λD ≤ min

{
n

K
,
nε2

4∆inf
det(D)1/d

}
, K ≥ 12(f(x0)− f inf)

det(D)1/d ε2
. (21)

Proposition 2 in the Appendix proves that these conditions with respect to D are convex. In order to258

minimize the iteration complexity for getting ε2 error, one needs to solve the following optimization259

problem260

minimize log det(D−1)

subject to D satisfies (21).

Choosing the optimal stepsize for Algorithm 1 is analogous to solving (13). One can formulate the261

distributed counterpart of Theorem 2 and attempt to solve it for different sketches. Furthermore,262

this leads to a convex matrix minimization problem involving D. We provide a formal proof of this263

property in the Appendix. Similar to the single-node case, computational methods can be employed264

using the CVXPY package. However, some additional effort is required to transform (21) into the265

disciplined convex programming (DCP) format.266

The second term in (20) corresponds to the convergence neighborhood of the algorithm. It does267

not depend on the number of iteration, thus it remains unchanged, after we choose the stepsize.268
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Figure 1: Comparison of standard DCGD, DCGD with matrix smoothness, D-det-CGD1 and D-
det-CGD2 with optimal diagonal stepsizes under rand-1 sketch. The stepsize for standard DCGD
is determined using [KR20, Proposition 4], the stepsize for DCGD with matrix smoothness along
with D1, D2 is determined using Corollary 1, the error level is set to be ε2 = 0.0001. Here
GK,D := 1

K

(∑K−1
k=0

∥∥∇f(xk)
∥∥2

D/det(D)1/d

)
.

Nevertheless, it depends on the number of clients n. In general, the term ∆inf/n can be unbounded,269

when n → +∞. However, per Corollary 1, we require λD to be upper-bounded by n/K. Thus,270

the neighborhood term will indeed converge to zero when K → +∞, if we choose the stepsize271

accordingly.272

We compare our results with the existing results for DCGD. In particular we use the technique273

from [KR20] for the scalar smooth DCGD with scalar stepsizes. This means that the parameters of274

algorithms are Li = LiId,L = LId,D = γId, ω = λmax

(
E
[(
Ski
)>

Ski

])
− 1. One may check275

that (21) reduces to276

γ ≤ min

{
1

L
,

√
n

KLmaxLω
,

nε2

4∆infLmaxLω

}
and Kγ ≥ 12(f(x0)− f inf)

ε2
(22)

As expected, this coincides with the results from [KR20, Corollary 1]. See the Appendix for the277

details on the analysis of [KR20]. Finally, we back up our theoretical findings with experiments.278

See Figure 1 for a simple experiment confirming that Algorithms 1 and 2 have better iteration and279

communication complexity compared to scalar stepsized DCGD. For more details on the experiments280

we refer the reader to the corresponding section in the Appendix.281

6 Conclusion282

6.1 Limitations283

It is worth noting that every point in Rd can be enclosed within some volume 1 ellipsoid. To see284

this, let 0 6= v ∈ Rd and define Q := α
‖v‖2 vv

> + β
∑d
i=1 viv

>
i , where v1 = v

‖v‖ , v2, . . . , vd form an285

orthonormal basis. The eigenvalues of Q are β (with multiplicity d− 1) and α (with multiplicity 1),286

so we have det(Q) = βd−1α ≤ 1. Furthermore, we have ‖v‖2Q = v>Qv = α ‖v‖2. By choosing287

α = 1
‖v‖2 and β = ‖v‖2/(d−1), we can obtain det(Q) = 1 while ‖v‖2Q ≤ 1. Therefore, having the288

average D-norm of the gradient bounded by a small number does not guarantee that the average289

Euclidean norm is small. This implies that the theory does not guarantee stationarity in the Euclidean290

sense.291

6.2 Future work292

Matrix stepsize gradient methods are still not well studied and require further analysis. Although293

many important algorithms have been proposed using scalar stepsizes and are known to have good294

performance, their matrix analogs have yet to be thoroughly examined. The distributed algorithms295

proposed in Section 5 follow the structure of DCGD by [KFJ18]. However, other federated learning296

mechanisms such as MARINA, which has variance reduction [GBLR21], or EF21 by [RSF21], which297

has powerful practical performance, should also be explored.298
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