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ABSTRACT

Remote inference allows lightweight devices to leverage powerful cloud models.
However, communication network latency makes predictions stale and unsuitable
for real-time tasks. To address this, we introduce Dedelayed, a delay-corrective
method that mitigates arbitrary remote inference delays, allowing the local device
to produce low-latency outputs in real time. Our method employs a lightweight lo-
cal model that processes the current frame and fuses in features that a heavyweight
remote model computes from past frames. On video from the BDD100K driving
dataset, Dedelayed improves semantic segmentation accuracy over the stronger
of the local-only and remote-only baselines across all realistic communication
network delays beyond 33 ms. Without incurring additional delay, it improves
accuracy by 6.4 mIoU compared to fully local inference and 9.8 mIoU compared
to remote inference, for a round-trip delay of 100 ms. The advantage grows un-
der longer delays and higher-motion scenes, as delay-mitigated split inference
sustains accuracy more effectively, providing clear advantages for real-time tasks
that must remain aligned with the current world state.

1 INTRODUCTION

In soft real-time applications—such as cloud gaming or video conferencing—late outputs may be
diminished in value, but are still useful. In these applications, we can offload expensive computations
to powerful cloud GPUs to save on-device power. As long as the typical latency is low, the loss of
utility from latency is outweighed by power savings and extended battery life. However, in hard
real-time applications—such as aerial robotic control or obstacle avoidance—late outputs can be
catastrophic, and the system must be designed with a guaranteed deadline. Due to the irreducible
high-tail latency in wireless communication, hard real-time applications must be equipped with a
fully functional local inference pipeline as a fallback in the case that the remote predictions fail
to meet the deadline. In this work, we focus on such real-time applications running on resource-
constrained devices, relying on inference using video inputs.

In recent years, various approaches to split computing have been proposed to offload computation
of expensive image and video models to the cloud to enable the next-generation of robotic, remote
sensing, and wearable technology platforms. For real-time streaming video applications, existing
approaches still fall into one or more of three common pitfalls. (1) They allocate all on-device
power and computation to a single linear inference pipeline, leaving no resources for a local-only
fallback. (2) They do not account for the impact of latency on prediction accuracy. (3) They
operate on videos with significantly reduced spatiotemporal resolution to manage computational
cost, leaving out rich visual details available from modern camera systems.

To address these limitations, we introduce Dedelayed (Fig. 1), a co-inference framework that lever-
ages fresh local information to mitigate the effects of remote inference delay. It consists of a local
model and a remote model connected over a communication network, and fuses delayed remote sig-
nals into a local pipeline operating on fresh on-device inputs, yielding real-time performance that is
never worse than either model in isolation. This enables the use of high-capacity cloud models for
delay-sensitive applications while avoiding the pitfalls of prior offloading approaches:

1. Full integration with local-only fallback model. No wireless communication channel can
offer perfect reliability. For real-time applications with critical deadlines, any remote infer-
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Remote Server

• Full motion video
• Delayed by D frames
• High resolution
• Lossy compression

Sensor
Device

• Still image
• No delay
• Low resolution
• No compression

Delay embedding

Feature layers

Pixel
layers

Task layers

Video 
Transformer 

layers
+Entropy

bottleneck

Complementary
Information

Figure 1: Overview of the Dedelayed real-time inference setup. The lightweight local model and a
powerful remote model augment each other’s strengths to produce accurate and timely outputs.

ence procedure must be accompanied by a lightweight local fallback model. Instead of two
redundant inference pipelines, Dedelayed uses a single path based on a local model that op-
tionally incorporates side information from the remote model. We choose a simple method
to incorporate this side information—element-wise addition of activation maps—resulting
in negligible overhead and well-defined behavior in the absence of remote outputs.

2. Temporal prediction for latency mitigation. During supervised training of the remote
model component, we simulate a delay of D frames. In other words, the remote model is
trained to predict the future. A delay embedding—similar to a position embedding in text
or vision transformers—allows the behavior of the remote model to adapt to changes in
the channel. As shown in Fig. 2, temporally predictive training is able to capture motion
dynamics, which can be used to compensate for latency.

3. Mixed-resolution inference. On-device AI video processing at or near the capture reso-
lution and frame rate—typically > 1 megapixel and > 20 frames per second—is rarely
feasible, even with lightweight models. To save resources, real-time computer vision ap-
plications often process each frame independently or use small motion updates instead of
natively processing a dense 3D pixel volume. Dedelayed is capable of using a mixed-
resolution—instead of reducing the resolution for the entire inference pipeline, only the
local model resolution is reduced. In parallel, the remote model operates on multiple,
high-resolution frames using a 3D transformer. Thus, the remote model can utilize power-
ful GPUs to model fine details and motion of delayed frames, while the local component
can allocate its resources to modeling the current state of objects and the scene, as shown
in Fig. 3.

Our contributions are threefold:

1. We provide measurements demonstrating how higher degrees of latency hurt the accuracy
of dense visual prediction for semantic segmentation of driving scenes.

2. We introduce Dedelayed, a split computing framework for video inputs that integrates the
output of a future-predicting remote model with the current output of a local model.

3. Using Dedelayed, we create a video segmentation system for urban driving scenes that
outperforms any existing local or remote inference solution, while avoiding the pitfalls that
limit the practicality of previous approaches.

For experimental validation, we demonstrate a simple Dedelayed system with an addition-based
fusion on off-the-shelf models with minimal architectural changes. This makes it easy to enhance
existing pipelines, deploy in practice, and extend to other real-time methods.
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(d)

(c)

(b)

(a)

Figure 2: To demonstrate the effect of temporally predictive training, we train a 3D transformer to
predict the next frame with an MSE loss on pixels. (a) shows the original video frame. (b) shows the
difference between (a) and a future frame, with objects such as the traffic sign and road markings in
different locations. (c) shows the pixel predictions of the 3D transformer. (d) shows the difference
from the true future frame. While the predictive model cannot predict high-frequency details, it is
able to accurately model the motion of objects, signs, and road markings.

Remote Server Sensor device

High res, compressed,
delayed frame

Low resolution, 
current frame

+

Prediction from fused
activation map

Figure 3: Example of activation maps from local and remote model components. The remote server
uses the higher level of video detail to accurately distinguish and classify objects. The local model
provides exact position adjustments based on the current frame. When making predictions from the
combined activation map, small details that would be impossible to make out at low resolution (e.g.,
the distant pedestrians, labeled red) are accurately classified and localized.

2 BACKGROUND

In the human visual system, the optic nerve can only transmit a small fraction of the information re-
ceived by the retina (Kelly, 1962). Barlow’s efficient coding hypothesis (Barlow et al., 1961) posits
that compression is the primary role of early processing; once this compressed representation is re-
ceived in deeper layers of the visual cortex, more metabolically intense processing can occur. In the
predictive coding model (Rao & Ballard, 1999), this processing is driven by feedback mechanisms
that minimize a temporally predictive error signal to create a perceptual model that is consistent with
sensory inputs.
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Machines equipped with digital video sensors—which are at the center of ongoing innovation in
robotics (Kim et al., 2024; O’Neill et al., 2024), remote sensing (Szwarcman et al., 2024; Khani
et al., 2021), and wearable technology (Grauman et al., 2022; 2024)—share similar constraints. The
throughput and power efficiency of ingesting pixels on the sensor device (e.g., a battery-powered
robot) are extremely high—typically tens or hundreds of megapixels per watt-second (Engel et al.,
2023). However, moderately sized DNNs can only process visual data at about one megapixel per
watt-second (Cai et al., 2023). For more advanced video AI based on autoregressive modeling (Agar-
wal et al., 2025) or temporal prediction (Assran et al., 2025), the efficiency may be as low as 500
pixels per watt-second. Instead of on-device processing, power constraints can be circumvented by
compressing and transmitting video streams to cloud GPU datacenters supported by a 100-megawatt
power infrastructure (Goldberg & Kehoe, 2013).

However, fully remote processing is challenging for certain real-time applications (e.g., collision
avoidance) due to unreliability in network and cloud infrastructure (Chen et al., 2024; 2025). Thus,
delivering predictions by a guaranteed deadline requires a fallback procedure independent of the re-
mote server. In many systems (e.g., autonomous motor vehicles) the limited accuracy and reliability
of lightweight local models warrant a human operator as the fallback (Committee, 2021), preventing
full automation.

3 RELATED WORK

Prior work has extensively explored lightweight architectures (e.g., EfficientViT (Cai et al., 2023),
MobileNetV4 (Qin et al., 2024)) that minimize computation to achieve real-time on-device perfor-
mance. These approaches deliver low latency but are constrained by device power and compute.
When devices are too limited, the common alternative is fully remote inference, which offloads
computation to servers, but is highly susceptible to network latency.

Split-computing approaches largely focus on distributing workloads rather than optimizing for strict
real-time operation. Next-generation compression standards such as MPEG AI (ISO/IEC, 2025)
and JPEG AI (Ascenso et al., 2023) target bandwidth reduction via task-specific compression, sig-
nificantly lowering transmission costs with reasonable compute overhead. However, even they lack
explicit mechanisms to anticipate or compensate for network delay, leading to stale predictions mis-
aligned with the current world state.

Other efforts related to our work have also been explored. Clockwork Convnets (Shelhamer et al.,
2016) reuse stale features to reduce inference latency, but they offer limited temporal reasoning
and operate on a single device. Accel (Jain et al., 2019) warps heavy-model features forward with
optical flow and corrects them with a lightweight model, but is also not intended for across-network
operation. Adaptive Model Streaming (Khani et al., 2021) streams weight updates from a server
to keep a local model fresh, focusing on model adaptation rather than directly mitigating per-frame
staleness from communication latency. Though less known, Knowledge Boosting (Srinivas et al.,
2024) is very closely related to our work. Like us, it fuses delayed remote features with a small
on-device model, but it assumes a fixed delay. We generalize to longer and variable latencies by
conditioning on a tunable delay while keeping the design simple and reusable.

4 METHOD

4.1 DELAY MITIGATION FRAMEWORK

Dedelayed introduces a general framework that improves the accuracy and robustness of real-time
inference on resource-constrained sensor devices. It does so by combining the strengths of both local
inference and remote inference, while mitigating their weaknesses. The local model has access
to the latest sensor data, and yet lacks the computational capability needed to produce accurate
outputs. The remote model provides accurate outputs, and yet delivers them with delay. By careful
combination of both subsystems, Dedelayed is able to provide bounded performance guarantees—it
is never worse than either local inference or remote inference independently. As we will demonstrate
later, we are able to glue together the two subsystems in a way that is simple yet effective.
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Figure 4: Time progresses left to right. The client-side camera produces video frames, which are
sent across a communication network to the server. The server runs a heavyweight model using the
latest video frame xt−τ that it receives, in addition to a context of previously received video frames
x<t−τ , as well as the measured delay τ . This produces an output zt−τ that the server sends to the
client. The client pairs the latest received response zt−τ with a freshly produced video frame xt,
and runs these inputs through a lightweight model. This finally produces a timely result ŷt that can
be used in real-time delay-sensitive applications.

Dedelayed addresses the problem of stale predictions from powerful remote models by integrating
them with a lightweight, on-device model. The core idea is to leverage the high-quality features
from a heavyweight remote model, despite their inherent delay, by explicitly conditioning them on
the measured latency and fusing them early with live information from a local model. This ensures
that the final predictions are both accurate and timely.

Dedelayed can be formulated in simple mathematical terms as follows. Given a fresh input frame
xt at current time t, the final prediction ŷt is computed using a lightweight local model, flight, which
processes xt along with time-delayed features zt−τ from a heavyweight remote model, fheavy. To
produce powerful predictive features, the remote model is conditioned on the delay τ , and processes
a short clip of past frames x≤t−τ ending at time t− τ . This is expressed by the following equations:

zt−τ = fheavy(τ, x≤t−τ ) (1)
ŷt = flight(xt, zt−τ ) (2)

For clarity, the notation is summarized in Table 1. Fig. 4 presents a system diagram that demonstrates
the fundamental principle we describe, and shows how information propagates through the various
subsystems as time progresses.

Table 1: Notation.

Symbol Meaning
xt Input frame at current time t
x≤t−τ Input frames up to time t− τ
ŷt Prediction for time t
zt−τ Features outputted by heavyweight model run at time t− τ
τ Delay in time between the old and current frame at time t
D Delay in frames between the old and current frame at time t
flight Lightweight model run at time t
fheavy Heavyweight model run at time t− τ

5
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The entire Dedelayed system is trained end-to-end to minimize a task-specific loss function, Ltask,
evaluated against the ground truth yt for the current frame.

Ltask = ℓ(ŷt, yt)

For semantic segmentation, ℓ is typically the cross-entropy loss. The objective is to produce predic-
tions ŷt that are accurate at time t on the local device.

In the next section, we detail how we designed a specific implementation to test the Dedelayed
framework in action.

4.2 DESIGN AND IMPLEMENTATION

Dedelayed consists of a lightweight on-device model and a predictive remote model connected over
a communication network. The remote side computes delay-conditioned features from past inputs
and returns them to the device, where they are fused early into the local model running on the current
input. To provide a guarantee on baseline performance, these components can first be trained to work
independently and later fused and trained jointly.

System overview Information propagates through our system as follows:

1. The local device transmits input frames to the remote via the uplink.

2. Each incoming frame is independently encoded into features using a pretrained 2D ViT
backbone on the remote. We maintain a context window of the K most recent features.

3. The K per-frame features are concatenated along the temporal axis, and a learned delay
embedding conditioned on the measured delay τ is added.

4. A 3D ViT encoder followed by learned pooling (MLP–pool–MLP) produces delay-
conditioned remote features zt−τ , which are sent back to the device via the downlink.

5. The lightweight local model runs on a fresh input xt, and fuses in the remote features zt−τ .

6. The local model finishes decoding the fused representation and outputs labels ŷt.

Remote predictive module. Figure Fig. 5 visualizes the remote component. The remote model
processes a fixed context of K past frames ending at t − τ . Each frame is encoded independently
with a 2D ViT—we use EfficientViT-L1 with an effective 8 × 8 patch. The per-frame features
are concatenated along the temporal axis and spatially merged into larger 16 × 16 patches to keep
the sequence length comparable. (When K = 4, the sequence length is identical.) A learned delay
embedding determined by the delay τ is added, and the result is then processed by a 3D ViT followed
by learned pooling (MLP–pool–MLP) to produce delay-conditioned features zt−τ . We pretrain the
remote predictive module by attaching a task head to the 3D ViT backbone and training it to predict
the target labels yt from inputs up to time t− τ .

Local model and fusion. The lightweight local model processes the fresh input xt. We compute
first-stage features h = T1(xt) and perform early fusion by element-wise addition with the delayed
remote features, h′ = h + zt−τ . Both tensors have shape 96 × H/8 × W/8, so no projection or
resizing is required. The fused features h′ are then processed by the remaining local blocks and
decoded to the final output ŷt. If zt−τ is unavailable, the local model falls back to h′ = h and
proceeds unchanged.

5 EXPERIMENTS

We focus our evaluation of Dedelayed on the task of real-time semantic segmentation of driving
scenes, a domain where timely and accurate perception is critical for applications such as au-
tonomous driving and robotics. We demonstrate that delay-aware feature fusion can mitigate remote
inference latency, sustaining accuracy even when remote predictions are delayed by long communi-
cation network latencies.
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ViT2D applied independently to each frame

Concatenate (temporal axis)

Merge patches (spatial axes)

MLP (task specific)

ViT3D

Current frame, labelInput to remote model (video with frames) Frames in transit (unused)

+

Delay
Embedding

Figure 5: Overview of the remote video predictive model, trained to predict the label at index n from
a K-frame context ending at n−D.

EXPERIMENTAL SETUP

Our experiments utilize the BDD100K video dataset (Yu et al., 2020), containing video of driving
scenes at 30 frames per second (fps). Since the dataset does not provide dense segmentation labels
for all video frames, we generated pseudo-labels using a pretrained EoMT (Kerssies et al., 2025)
model, ignoring pixels with low confidence. We use a subset of 19 labels from Cityscapes.

Our evaluation covers a range of realistic network delays, from 0 to 5 frames, corresponding to 0 to
165 ms. This range is representative of typical round-trip latencies and is sufficient to demonstrate
the degradation of conventional remote inference and the resilience of Dedelayed. At training time,
the delay τ was sampled per batch from a uniform distribution over this range. This delay, together
with the relevant frames from the video, was fed into the remote model. To replicate real-world
usage, we applied compression to the uplink video streams. We chose the resolution and frame rate
to fit within reasonable uplink capacity using the lossy WebP image codec at quality 85.

TRAINING DETAILS

We adopt a multi-stage training strategy, as detailed in Table 2. The remote and local models are
first trained individually and then later combined. Each model is pretrained on the large-scale Ima-
geNet dataset (Russakovsky et al., 2015) for classification, then on the image segmentation task on
Cityscapes (Cordts et al., 2016), before being fine-tuned on the smaller BDD100K driving dataset.
We specifically train the remote model to have predictive capability by supplying it with a delay-
aware (DA) objective: to predict the labels of future frames, conditioned on a tunable delay. By train-
ing in stages, we are able to provide guarantees on baseline remote and local model performance.
Finally, the remote and local models are glued together, and the full system is jointly fine-tuned on
the delay-aware task of streaming semantic segmentation on video.

We train using cross-entropy loss, the Adan (Xie et al., 2024) optimizer, a trapezoidal cosine learning
rate schedule, gradient clipping, and selectively applying discriminative fine-tuning or layer-wise
learning rate decay (LLRD) (Howard & Ruder, 2018).
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Table 2: Training stages for remote, local, and fusion models.

Model Stage Obj. Data Epochs Res. Freeze

Remote (image only)
SegFormer-B5 pre- DU IN1K, CS – – –
SegFormer-B5 1 DU BDD 15 496 –

Remote (video-predictive)
EfficientViT-Seg-L1 pre- DU IN1K, CS – – –
EfficientViT-Seg-L1+ViT3D 1 DA BDD 10 496 img-bkbn
EfficientViT-Seg-L1+ViT3D 2 DA BDD 10 496 –

Local (image only)
MSTransformer2D 1 DU IN1K 320 224 –
MSTransformer2D 2 DU CS 80 336 bkbn + proj
MSTransformer2D 3 DU CS 80 336 LLRD 0.9
MSTransformer2D 4 DU BDD 15 496 LLRD 0.9

Fusion (local image + remote video-predictive)
MSTransformer2D +
EfficientViT-Seg-L1+ViT3D

1 DA BDD 10 480/720 remote img-bkbn + 3D

Stage: pre- = pretrained (external source).
Obj.: DA = delay-aware objective; DU = delay-unaware objective.

Data: IN1K = ImageNet-1K; CS = Cityscapes; BDD = Berkeley DeepDrive 100K.
Freeze: bkbn + proj = backbone & MS-projections frozen; remote img-bkbn + 3D = remote image backbone

and remote 3D encoder frozen; LLRD = layer-wise learning rate decay.

6 RESULTS

We compare how various inference systems perform under the effect of communication network
latency. Fig. 6 visualizes the various local-only, remote-only, and fused local+remote methods from
different stages of our training. Each baseline is effectively an ablation of our final system.

• Local image and Remote image inference setups process individual frames in the conven-
tional way, though the remote is susceptible to communication network delay.

• Remote video has access to past frames of context, but only predicts labels for its present
view, and thus fares no better than “remote image”.

• Remote predictive is fed a tunable delay and sustains accuracy by predicting the future.
• Local + remote predictive represents a Dedelayed system, and is thus able to further

sustain accuracy by merging the remote predictive features with fresh local features.

While the above results demonstrate the dominance that Dedelayed is capable of, one should also
account for the impact of local inference delay. We show this in Fig. 7 by assessing accuracy
versus total latency. For local inference delays of ≤8 ms, the “local + remote predictive” method is
consistently better across all network round-trip delays in terms of both accuracy and total latency.

7 CONCLUSION

Dedelayed addresses a central challenge in real-time systems that rely on remote computation: pre-
diction staleness induced by network delay. It mitigates remote inference delay by elevating delay
to a first-class variable, conditioning the remote model via a learnable delay embedding, and fusing
remote features with fresh local features. Across realistic network conditions, Dedelayed surpasses
strong local-only and remote-only baselines, with a particular advantage for longer latencies and
high-motion content. As a foundational framework, Dedelayed applies to a wide range of real-time
problem domains, enabling intelligent systems that are not only accurate but also truly timely and
dependable in dynamic environments. Future work includes studying variable and stochastic delay
distributions, high-motion data, lighter local models, and local future prediction.
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Figure 6: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames).
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Figure 7: Segmentation accuracy (mIoU) versus total latency (milliseconds or frames) for selected
local model delays. Points are faded as round-trip latency increases. 4 and 8 ms were interpolated.
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A APPENDIX

FREQUENTLY ASKED QUESTIONS (FAQ) FOR REVIEWERS

Our experiments demonstrate the value of the proposed system and validate our central hypothe-
sis: a properly designed Dedelayed system—when composed of the baseline components—should
never perform worse than either baseline alone. Nonetheless, we provide clarifications in advance
addressing anticipated reviewer questions about our evaluation procedure.

Q: Why not use a video segmentation dataset like DAVIS?

Why focus on segmentation?

Why use the Cityscapes taxonomy if you are using BDD100K?

In the computer vision literature, it is common to include evaluations on image segmentation datasets
(e.g., Cityscapes or ADE20K) when proposing new training techniques or model architectures.
For example, foundation models like DINOv3 (Siméoni et al., 2025) include evaluations on these
datasets. By evaluating semantic segmentation performance using the Cityscapes taxonomy, we can
more easily compare our proposed method to a plethora of other model architectures and training
procedures. Additionally, we can use the pretrained weights of Cityscapes segmentation models
from independent researchers exactly as provided or with minimal fine-tuning. This allows us to
provide a strong set of baselines to compare against. Semantic segmentation also involves sim-
pler architectures compared to the interactive or semi-supervised objectives often used for video
segmentation datasets like DAVIS.

Q: Why not compare against video segmentation models (e.g., SAM 2)?

Our models are evaluated on the per-frame image segmentation task. This may seem surprising since
we evaluate on video sequences. However, we only use video sequences to simulate delay and to
provide temporal context to improve predictive performance. The local model takes a single frame
xt and predicts the corresponding label yt for that single frame.

In contrast, interactive video segmentation models by default assume offline access to the full video
sequence {x1, . . . , xN} in advance. This is not ideal for real-time applications, which must pro-
cess frames incrementally frame-by-frame under strict latency constraints. Many popular video
segmentation models are not ideal for real-time applications for a further reason still: they involve
two passes. In the first pass, an initial set of segmentation masks are generated based on the first
frame. In the second pass, segmentation masks from the first frame are adjusted based on subse-
quent frames. The two passes also involve different amounts of processing time, adding significant
operational complexity for real-time applications.

Additionally, to meet the requirements of on-device processing, most image and video segmentation
models dramatically reduce the resolution (e.g., from 1080p or 720p to 4482 or even 2242). Lever-
aging multi-frame context generally increases computation, often requiring even lower resolution
to meet real-time deadlines. While this trade-off can help in some settings, the evidence is less
compelling than the widely observed gains from higher resolution.

Finally, we argue that any model able to incorporate multiple frames of context while only adding a
negligible amount of computation compared to a single-frame model—e.g., by using mask propaga-
tion like SAM 2—will be prone to other failure modes. For example, large motions leading to blur
(e.g., a 90◦ camera turn) or transient poor lighting conditions (e.g., brief direct or reflected sunlight)
could cause catastrophic results on keyframe, leading to poor performance on subsequent frames.
On the other hand, independently segmenting each frame limits the effects of these transients, al-
lowing the output quality to be restored as soon as the input quality improves. Thus, a per-frame
semantic segmentation model is a more versatile and appropriate objective to use in evaluating our
proposed system.
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Q: Why use pseudolabels?

Why not use the human annotated segmentation masks provided in the BDD100K dataset for
training and evaluation?

Have you verified that the pseudolabels used for evaluation are reliable?

To our knowledge, no major video dataset contains reliable and spatiotemporally dense human an-
notations for a standard supervised learning task (e.g., Cityscapes or ADE20K segmentation). For
BDD100K, the annotations are not temporally dense and they are rarely used by other researchers.
We have manually verified dozens of pseudolabel masks generated for the evaluation pipeline. In
our subjective evaluation, the pseudolabels have fewer errors than the human annotations in datasets
like ADE20K or Cityscapes, even in poor lighting or when noticeable motion blur is present.

Q: Why use 500 randomly selected videos instead of the entire BDD100K validation set?

We choose 500 videos to match the size of the Cityscapes evaluation dataset, while allowing more
rapid evaluation and reducing the cost of generating the high quality pseudolabels using DepthAny-
thing+Mask2Former.
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A.1 CODE

The fused “local + remote predictive” model is defined below:

class FusedModel(nn.Module):
def __init__(self, cls_classes=1000, seg_classes=19):

super().__init__()
self.local_model = MSTransformer2D(cls_classes, seg_classes)
self.remote_model = EfficientViTSeg3D()
self.mlp_pre_pool = PrepoolBlock()
self.mlp_post_pool = PostpoolBlock()

def forward(self, x_local, x_remote, delay):
# Local feature extraction:
h = self.local_model.T1(x_local)
_, _, H, W = h.shape

# Remote feature extraction and pooling:
z = x_remote
z = self.remote_model.forward_features(z, delay)
z = einops.rearrange(z, "b c f h w -> b (c f) h w", f=4)
z = self.mlp_pre_pool(z)
z = F.adaptive_avg_pool2d(z, output_size=(H, W))
z = self.mlp_post_pool(z)

# Local and remote feature fusion:
h = h + z

# Remaining local model:
y = h
h = self.local_model.T2(h)
y = y + self.local_model.P2(h)
h = self.local_model.T3(h)
y = y + self.local_model.P3(h)
y = self.local_model.seg_head(y)

return y

class EfficientViTSeg3D(nn.Module):
def __init__(self, name="efficientvit-seg-l1-cityscapes", seg_classes=19):

super().__init__()
self.image_model = create_efficientvit_seg_model(name)
self.delay_embedding = DelayEmbedding()
self.vit3d = nn.Sequential(*[

VitBlock3D(in_channels=256, head_dim=32, expand_ratio=4)
for _ in range(12)

])
self.head = RemotePredictiveHead(seg_classes=seg_classes)

def pool(self, x):
x_pool = F.adaptive_avg_pool3d(x, output_size=(4, x.shape[-2:]))
return einops.rearrange(x_pool, "b c f h w -> b (c f) h w", f=4)

def forward_features(self, x, delay):
video_embedding = self.image_model.backbone(x) # shape: (B, C, F, H, W)
delay_embedding = self.delay_embedding(delay, video_embedding.shape)
return self.vit3d(video_embedding + delay_embedding)

# For pretraining remote predictive model:
def forward(self, x_remote, delay):

return self.head(self.pool(self.forward_features(x_remote, delay)))

class MSTransformer2D(nn.Module):
"""Any 2D image segmentation model. We use one with T1, T2, T3 blocks."""

To train or evaluate the models, simply feed in frames separated by the appropriate delay and com-
pute cross-entropy loss or mIoU in the typical fashion.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 EFFECT OF DELAY JITTER

We evaluate how our model performs under delay jitter, i.e., when the delay varies for each frame.

Our model is trained only to maximize accuracy for a fixed, tunable delay input and is not explicitly
optimized for jitter. Nonetheless, temporal structure in the data allows it to retain accuracy even
when the delay input differs from the observed delay. Fig. 8 characterizes this, showing performance
under different observed delays when the model is force-fed a possibly inaccurate delay as input.
Accuracy peaks when the delay input matches the observed delay, and the drop is less sharp when
the observed delay exceeds the delay input. The latter might be attributed to selection bias—if the
predicted features are relevant for a future frame, they often remain useful for subsequent frames.
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Figure 8: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames). Here,
the remote model’s delay input has been force-fed a specific value.

In Fig. 9, we report the above results in matrix form. Although our model was not explicitly trained
for mismatched delays or delays beyond 5 frames, it continues to perform well under these condi-
tions. This matrix can also be used to estimate the performance under delay jitter. We model the
observed delay as τobs ∼ N (µ = τin, σ

2), centered at the delay input to the model, τin. The expected
accuracy is obtained by taking a weighted sum over mIoU values for each observed delay, using a
discretely binned normal probability mass function, with out-of-bounds mass assigned to the bound-
ary bins. The resulting performance is shown in Fig. 10 for various values of σ. In many networks,
σ = 5 ms and σ = 15 ms correspond to relatively high jitter. Yet, even for higher values of σ,
our method’s performance maintains its advantage, even assuming optimistically that the competing
baselines experience no jitter. This shows that our method performs stably in realistic networks. For
comparison, traditional remote inference loses 3.4% mIoU within the first frame of delay, a drop far
larger than the degradation our method incurs with the corresponding σ.
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Figure 9: Segmentation accuracy (mIoU) over observed delay and model delay input.
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Figure 10: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames). La-
tency jitter is modeled as a normal distribution.
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A.3 LOCAL INPUT RESOLUTION

We evaluate on various local input resolutions. Our remote-assisted local model is able to operate at
far lower resolutions without losing accuracy.
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Figure 11: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames). Fur-
ther fine-tuned and evaluated on various local input resolutions.
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