
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEDELAYED: DELETING REMOTE INFERENCE DELAY
VIA ON-DEVICE CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Remote inference allows lightweight devices to leverage powerful cloud models.
However, communication network latency makes predictions stale and unsuitable
for real-time tasks. To address this, we introduce Dedelayed, a delay-corrective
method that mitigates arbitrary remote inference delays, allowing the local device
to produce low-latency outputs in real time. Our method employs a lightweight lo-
cal model that processes the current frame and fuses in features that a heavyweight
remote model computes from past frames. On video from the BDD100K driving
dataset, Dedelayed improves semantic segmentation accuracy over the stronger
of the local-only and remote-only baselines across all realistic communication
network delays beyond 33 ms. Without incurring additional delay, it improves
accuracy by 6.4 mIoU compared to fully local inference and 9.8 mIoU compared
to remote inference, for a round-trip delay of 100 ms. The advantage grows un-
der longer delays and higher-motion scenes, as delay-mitigated split inference
sustains accuracy more effectively, providing clear advantages for real-time tasks
that must remain aligned with the current world state.

1 INTRODUCTION

In soft real-time applications—such as cloud gaming or video conferencing—late outputs may be
diminished in value, but are still useful. In these applications, we can offload expensive computations
to powerful cloud GPUs to save on-device power. As long as the typical latency is low, the loss of
utility from latency is outweighed by power savings and extended battery life. However, in hard
real-time applications—such as aerial robotic control or obstacle avoidance—late outputs can be
catastrophic, and the system must be designed with a guaranteed deadline. Due to the irreducible
high-tail latency in wireless communication, hard real-time applications must be equipped with a
fully functional local inference pipeline as a fallback in the case that the remote predictions fail
to meet the deadline. In this work, we focus on such real-time applications running on resource-
constrained devices, relying on inference using video inputs.

In recent years, various approaches to split computing have been proposed to offload computation
of expensive image and video models to the cloud to enable the next-generation of robotic, remote
sensing, and wearable technology platforms. For real-time streaming video applications, existing
approaches still fall into one or more of three common pitfalls. (1) They allocate all on-device
power and computation to a single linear inference pipeline, leaving no resources for a local-only
fallback. (2) They do not account for the impact of latency on prediction accuracy. (3) They
operate on videos with significantly reduced spatiotemporal resolution to manage computational
cost, leaving out rich visual details available from modern camera systems.

To address these limitations, we introduce Dedelayed (Fig. 1), a co-inference framework that lever-
ages fresh local information to mitigate the effects of remote inference delay. It consists of a local
model and a remote model connected over a communication network, and fuses delayed remote sig-
nals into a local pipeline operating on fresh on-device inputs, yielding real-time performance that is
never worse than either model in isolation. This enables the use of high-capacity cloud models for
delay-sensitive applications while avoiding the pitfalls of prior offloading approaches:

1. Full integration with local-only fallback model. No wireless communication channel can
offer perfect reliability. For real-time applications with critical deadlines, any remote infer-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Remote Server

• Full motion video
• Delayed by D frames
• High resolution
• Lossy compression

Sensor
Device

• Still image
• No delay
• Low resolution
• No compression

Delay embedding

Feature layers

Pixel
layers

Task layers

Video
Transformer

layers
+Entropy

bottleneck

Complementary
Information

Figure 1: Overview of the Dedelayed real-time inference setup. The lightweight local model and a
powerful remote model augment each other’s strengths to produce accurate and timely outputs.

ence procedure must be accompanied by a lightweight local fallback model. Instead of two
redundant inference pipelines, Dedelayed uses a single path based on a local model that op-
tionally incorporates side information from the remote model. We choose a simple method
to incorporate this side information—element-wise addition of activation maps—resulting
in negligible overhead and well-defined behavior in the absence of remote outputs.

2. Temporal prediction for latency mitigation. During supervised training of the remote
model component, we simulate a delay of D frames. In other words, the remote model is
trained to predict the future. A delay embedding—similar to a position embedding in text
or vision transformers—allows the behavior of the remote model to adapt to changes in
the channel. As shown in Fig. 2, temporally predictive training is able to capture motion
dynamics, which can be used to compensate for latency.

3. Mixed-resolution inference. On-device AI video processing at or near the capture reso-
lution and frame rate—typically > 1 megapixel and > 20 frames per second—is rarely
feasible, even with lightweight models. To save resources, real-time computer vision ap-
plications often process each frame independently or use small motion updates instead of
natively processing a dense 3D pixel volume. Dedelayed is capable of using a mixed-
resolution—instead of reducing the resolution for the entire inference pipeline, only the
local model resolution is reduced. In parallel, the remote model operates on multiple,
high-resolution frames using a 3D transformer. Thus, the remote model can utilize power-
ful GPUs to model fine details and motion of delayed frames, while the local component
can allocate its resources to modeling the current state of objects and the scene, as shown
in Fig. 3.

Our contributions are threefold:

1. We provide measurements demonstrating how higher degrees of latency hurt the accuracy
of dense visual prediction for semantic segmentation of driving scenes.

2. We introduce Dedelayed, a split computing framework for video inputs that integrates the
output of a future-predicting remote model with the current output of a local model.

3. Using Dedelayed, we create a video segmentation system for urban driving scenes that
outperforms any existing local or remote inference solution, while avoiding the pitfalls that
limit the practicality of previous approaches.

For experimental validation, we demonstrate a simple Dedelayed system with an addition-based
fusion on off-the-shelf models with minimal architectural changes. This makes it easy to enhance
existing pipelines, deploy in practice, and extend to other real-time methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(d)

(c)

(b)

(a)

Figure 2: To demonstrate the effect of temporally predictive training, we train a 3D transformer to
predict the next frame with an MSE loss on pixels. (a) shows the original video frame. (b) shows the
difference between (a) and a future frame, with objects such as the traffic sign and road markings in
different locations. (c) shows the pixel predictions of the 3D transformer. (d) shows the difference
from the true future frame. While the predictive model cannot predict high-frequency details, it is
able to accurately model the motion of objects, signs, and road markings.

Remote Server Sensor device

High res, compressed,
delayed frame

Low resolution,
current frame

+

Prediction from fused
activation map

Figure 3: Example of activation maps from local and remote model components. The remote server
uses the higher level of video detail to accurately distinguish and classify objects. The local model
provides exact position adjustments based on the current frame. When making predictions from the
combined activation map, small details that would be impossible to make out at low resolution (e.g.,
the distant pedestrians, labeled red) are accurately classified and localized.

2 BACKGROUND

In the human visual system, the optic nerve can only transmit a small fraction of the information re-
ceived by the retina (Kelly, 1962). Barlow’s efficient coding hypothesis (Barlow et al., 1961) posits
that compression is the primary role of early processing; once this compressed representation is re-
ceived in deeper layers of the visual cortex, more metabolically intense processing can occur. In the
predictive coding model (Rao & Ballard, 1999), this processing is driven by feedback mechanisms
that minimize a temporally predictive error signal to create a perceptual model that is consistent with
sensory inputs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Machines equipped with digital video sensors—which are at the center of ongoing innovation in
robotics (Kim et al., 2024; O’Neill et al., 2024), remote sensing (Szwarcman et al., 2024; Khani
et al., 2021), and wearable technology (Grauman et al., 2022; 2024)—share similar constraints. The
throughput and power efficiency of ingesting pixels on the sensor device (e.g., a battery-powered
robot) are extremely high—typically tens or hundreds of megapixels per watt-second (Engel et al.,
2023). However, moderately sized DNNs can only process visual data at about one megapixel per
watt-second (Cai et al., 2023). For more advanced video AI based on autoregressive modeling (Agar-
wal et al., 2025) or temporal prediction (Assran et al., 2025), the efficiency may be as low as 500
pixels per watt-second. Instead of on-device processing, power constraints can be circumvented by
compressing and transmitting video streams to cloud GPU datacenters supported by a 100-megawatt
power infrastructure (Goldberg & Kehoe, 2013).

However, fully remote processing is challenging for certain real-time applications (e.g., collision
avoidance) due to unreliability in network and cloud infrastructure (Chen et al., 2024; 2025). Thus,
delivering predictions by a guaranteed deadline requires a fallback procedure independent of the re-
mote server. In many systems (e.g., autonomous motor vehicles) the limited accuracy and reliability
of lightweight local models warrant a human operator as the fallback (Committee, 2021), preventing
full automation.

3 RELATED WORK

Prior work has extensively explored lightweight architectures (e.g., EfficientViT (Cai et al., 2023),
MobileNetV4 (Qin et al., 2024)) that minimize computation to achieve real-time on-device perfor-
mance. These approaches deliver low latency but are constrained by device power and compute.
When devices are too limited, the common alternative is fully remote inference, which offloads
computation to servers, but is highly susceptible to network latency.

Split-computing approaches largely focus on distributing workloads rather than optimizing for strict
real-time operation. Next-generation compression standards such as MPEG AI (ISO/IEC, 2025)
and JPEG AI (Ascenso et al., 2023) target bandwidth reduction via task-specific compression, sig-
nificantly lowering transmission costs with reasonable compute overhead. However, even they lack
explicit mechanisms to anticipate or compensate for network delay, leading to stale predictions mis-
aligned with the current world state.

Other efforts related to our work have also been explored. Clockwork Convnets (Shelhamer et al.,
2016) reuse stale features to reduce inference latency, but they offer limited temporal reasoning
and operate on a single device. Accel (Jain et al., 2019) warps heavy-model features forward with
optical flow and corrects them with a lightweight model, but is also not intended for across-network
operation. Adaptive Model Streaming (Khani et al., 2021) streams weight updates from a server
to keep a local model fresh, focusing on model adaptation rather than directly mitigating per-frame
staleness from communication latency. Though less known, Knowledge Boosting (Srinivas et al.,
2024) is very closely related to our work. Like us, it fuses delayed remote features with a small
on-device model, but it assumes a fixed delay. We generalize to longer and variable latencies by
conditioning on a tunable delay while keeping the design simple and reusable.

4 METHOD

4.1 DELAY MITIGATION FRAMEWORK

Dedelayed introduces a general framework that improves the accuracy and robustness of real-time
inference on resource-constrained sensor devices. It does so by combining the strengths of both local
inference and remote inference, while mitigating their weaknesses. The local model has access
to the latest sensor data, and yet lacks the computational capability needed to produce accurate
outputs. The remote model provides accurate outputs, and yet delivers them with delay. By careful
combination of both subsystems, Dedelayed is able to provide bounded performance guarantees—it
is never worse than either local inference or remote inference independently. As we will demonstrate
later, we are able to glue together the two subsystems in a way that is simple yet effective.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Time progresses left to right. The client-side camera produces video frames, which are
sent across a communication network to the server. The server runs a heavyweight model using the
latest video frame xt−τ that it receives, in addition to a context of previously received video frames
x<t−τ , as well as the measured delay τ . This produces an output zt−τ that the server sends to the
client. The client pairs the latest received response zt−τ with a freshly produced video frame xt,
and runs these inputs through a lightweight model. This finally produces a timely result ŷt that can
be used in real-time delay-sensitive applications.

Dedelayed addresses the problem of stale predictions from powerful remote models by integrating
them with a lightweight, on-device model. The core idea is to leverage the high-quality features
from a heavyweight remote model, despite their inherent delay, by explicitly conditioning them on
the measured latency and fusing them early with live information from a local model. This ensures
that the final predictions are both accurate and timely.

Dedelayed can be formulated in simple mathematical terms as follows. Given a fresh input frame
xt at current time t, the final prediction ŷt is computed using a lightweight local model, flight, which
processes xt along with time-delayed features zt−τ from a heavyweight remote model, fheavy. To
produce powerful predictive features, the remote model is conditioned on the delay τ , and processes
a short clip of past frames x≤t−τ ending at time t− τ . This is expressed by the following equations:

zt−τ = fheavy(τ, x≤t−τ) (1)
ŷt = flight(xt, zt−τ) (2)

For clarity, the notation is summarized in Table 1. Fig. 4 presents a system diagram that demonstrates
the fundamental principle we describe, and shows how information propagates through the various
subsystems as time progresses.

Table 1: Notation.

Symbol Meaning
xt Input frame at current time t
x≤t−τ Input frames up to time t− τ
ŷt Prediction for time t
zt−τ Features outputted by heavyweight model run at time t− τ
τ Delay in time between the old and current frame at time t
D Delay in frames between the old and current frame at time t
flight Lightweight model run at time t
fheavy Heavyweight model run at time t− τ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The entire Dedelayed system is trained end-to-end to minimize a task-specific loss function, Ltask,
evaluated against the ground truth yt for the current frame.

Ltask = ℓ(ŷt, yt)

For semantic segmentation, ℓ is typically the cross-entropy loss. The objective is to produce predic-
tions ŷt that are accurate at time t on the local device.

In the next section, we detail how we designed a specific implementation to test the Dedelayed
framework in action.

4.2 DESIGN AND IMPLEMENTATION

Dedelayed consists of a lightweight on-device model and a predictive remote model connected over
a communication network. The remote side computes delay-conditioned features from past inputs
and returns them to the device, where they are fused early into the local model running on the current
input. To provide a guarantee on baseline performance, these components can first be trained to work
independently and later fused and trained jointly.

System overview Information propagates through our system as follows:

1. The local device transmits input frames to the remote via the uplink.

2. Each incoming frame is independently encoded into features using a pretrained 2D ViT
backbone on the remote. We maintain a context window of the K most recent features.

3. The K per-frame features are concatenated along the temporal axis, and a learned delay
embedding conditioned on the measured delay τ is added.

4. A 3D ViT encoder followed by learned pooling (MLP–pool–MLP) produces delay-
conditioned remote features zt−τ , which are sent back to the device via the downlink.

5. The lightweight local model runs on a fresh input xt, and fuses in the remote features zt−τ .

6. The local model finishes decoding the fused representation and outputs labels ŷt.

Remote predictive module. Figure Fig. 5 visualizes the remote component. The remote model
processes a fixed context of K past frames ending at t − τ . Each frame is encoded independently
with a 2D ViT—we use EfficientViT-L1 with an effective 8 × 8 patch. The per-frame features
are concatenated along the temporal axis and spatially merged into larger 16 × 16 patches to keep
the sequence length comparable. (When K = 4, the sequence length is identical.) A learned delay
embedding determined by the delay τ is added, and the result is then processed by a 3D ViT followed
by learned pooling (MLP–pool–MLP) to produce delay-conditioned features zt−τ . We pretrain the
remote predictive module by attaching a task head to the 3D ViT backbone and training it to predict
the target labels yt from inputs up to time t− τ .

Local model and fusion. The lightweight local model processes the fresh input xt. We compute
first-stage features h = T1(xt) and perform early fusion by element-wise addition with the delayed
remote features, h′ = h + zt−τ . Both tensors have shape 96 × H/8 × W/8, so no projection or
resizing is required. The fused features h′ are then processed by the remaining local blocks and
decoded to the final output ŷt. If zt−τ is unavailable, the local model falls back to h′ = h and
proceeds unchanged.

5 EXPERIMENTS

We focus our evaluation of Dedelayed on the task of real-time semantic segmentation of driving
scenes, a domain where timely and accurate perception is critical for applications such as au-
tonomous driving and robotics. We demonstrate that delay-aware feature fusion can mitigate remote
inference latency, sustaining accuracy even when remote predictions are delayed by long communi-
cation network latencies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ViT2D applied independently to each frame

Concatenate (temporal axis)

Merge patches (spatial axes)

MLP (task specific)

ViT3D

Current frame, labelInput to remote model (video with frames) Frames in transit (unused)

+

Delay
Embedding

Figure 5: Overview of the remote video predictive model, trained to predict the label at index n from
a K-frame context ending at n−D.

EXPERIMENTAL SETUP

Our experiments utilize the BDD100K video dataset (Yu et al., 2020), containing video of driving
scenes at 30 frames per second (fps). Since the dataset does not provide dense segmentation labels
for all video frames, we generated pseudo-labels using a pretrained EoMT (Kerssies et al., 2025)
model, ignoring pixels with low confidence. We use a subset of 19 labels from Cityscapes.

Our evaluation covers a range of realistic network delays, from 0 to 5 frames, corresponding to 0 to
165 ms. This range is representative of typical round-trip latencies and is sufficient to demonstrate
the degradation of conventional remote inference and the resilience of Dedelayed. At training time,
the delay τ was sampled per batch from a uniform distribution over this range. This delay, together
with the relevant frames from the video, was fed into the remote model. To replicate real-world
usage, we applied compression to the uplink video streams. We chose the resolution and frame rate
to fit within reasonable uplink capacity using the lossy WebP image codec at quality 85.

TRAINING DETAILS

We adopt a multi-stage training strategy, as detailed in Table 2. The remote and local models are
first trained individually and then later combined. Each model is pretrained on the large-scale Ima-
geNet dataset (Russakovsky et al., 2015) for classification, then on the image segmentation task on
Cityscapes (Cordts et al., 2016), before being fine-tuned on the smaller BDD100K driving dataset.
We specifically train the remote model to have predictive capability by supplying it with a delay-
aware (DA) objective: to predict the labels of future frames, conditioned on a tunable delay. By train-
ing in stages, we are able to provide guarantees on baseline remote and local model performance.
Finally, the remote and local models are glued together, and the full system is jointly fine-tuned on
the delay-aware task of streaming semantic segmentation on video.

We train using cross-entropy loss, the Adan (Xie et al., 2024) optimizer, a trapezoidal cosine learning
rate schedule, gradient clipping, and selectively applying discriminative fine-tuning or layer-wise
learning rate decay (LLRD) (Howard & Ruder, 2018).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Training stages for remote, local, and fusion models.

Model Stage Obj. Data Epochs Res. Freeze

Remote (image only)
SegFormer-B5 pre- DU IN1K, CS – – –
SegFormer-B5 1 DU BDD 15 496 –

Remote (video-predictive)
EfficientViT-Seg-L1 pre- DU IN1K, CS – – –
EfficientViT-Seg-L1+ViT3D 1 DA BDD 10 496 img-bkbn
EfficientViT-Seg-L1+ViT3D 2 DA BDD 10 496 –

Local (image only)
MSTransformer2D 1 DU IN1K 320 224 –
MSTransformer2D 2 DU CS 80 336 bkbn + proj
MSTransformer2D 3 DU CS 80 336 LLRD 0.9
MSTransformer2D 4 DU BDD 15 496 LLRD 0.9

Fusion (local image + remote video-predictive)
MSTransformer2D +
EfficientViT-Seg-L1+ViT3D

1 DA BDD 10 480/720 remote img-bkbn + 3D

Stage: pre- = pretrained (external source).
Obj.: DA = delay-aware objective; DU = delay-unaware objective.

Data: IN1K = ImageNet-1K; CS = Cityscapes; BDD = Berkeley DeepDrive 100K.
Freeze: bkbn + proj = backbone & MS-projections frozen; remote img-bkbn + 3D = remote image backbone

and remote 3D encoder frozen; LLRD = layer-wise learning rate decay.

6 RESULTS

We compare how various inference systems perform under the effect of communication network
latency. Fig. 6 visualizes the various local-only, remote-only, and fused local+remote methods from
different stages of our training. Each baseline is effectively an ablation of our final system.

• Local image and Remote image inference setups process individual frames in the conven-
tional way, though the remote is susceptible to communication network delay.

• Remote video has access to past frames of context, but only predicts labels for its present
view, and thus fares no better than “remote image”.

• Remote predictive is fed a tunable delay and sustains accuracy by predicting the future.
• Local + remote predictive represents a Dedelayed system, and is thus able to further

sustain accuracy by merging the remote predictive features with fresh local features.

While the above results demonstrate the dominance that Dedelayed is capable of, one should also
account for the impact of local inference delay. We show this in Fig. 7 by assessing accuracy
versus total latency. For local inference delays of ≤8 ms, the “local + remote predictive” method is
consistently better across all network round-trip delays in terms of both accuracy and total latency.

7 CONCLUSION

Dedelayed addresses a central challenge in real-time systems that rely on remote computation: pre-
diction staleness induced by network delay. It mitigates remote inference delay by elevating delay
to a first-class variable, conditioning the remote model via a learnable delay embedding, and fusing
remote features with fresh local features. Across realistic network conditions, Dedelayed surpasses
strong local-only and remote-only baselines, with a particular advantage for longer latencies and
high-motion content. As a foundational framework, Dedelayed applies to a wide range of real-time
problem domains, enabling intelligent systems that are not only accurate but also truly timely and
dependable in dynamic environments. Future work includes studying variable and stochastic delay
distributions, high-motion data, lighter local models, and local future prediction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Round-trip latency [frames]

0 50 100 150

Round-trip latency [milliseconds]

0.50

0.55

0.60

0.65
Se

gm
en
ta
ti
on

ac
cu

ra
cy

[m
Io
U
]

Local image
Remote image
Remote video
Remote predictive
Local + remote predictive

Figure 6: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames).

0 1 2 3 4 5
Total latency [frames]

0 50 100 150

Total latency [milliseconds]

0.50

0.55

0.60

0.65

Se
gm

en
ta
ti
on

ac
cu

ra
cy

[m
Io
U
]

0 ms
4 ms
8 ms

33 ms

0 ms
4 ms
8 ms

33 ms

Local image
Remote image
Remote video
Remote predictive
Local + remote predictive

Figure 7: Segmentation accuracy (mIoU) versus total latency (milliseconds or frames) for selected
local model delays. Points are faded as round-trip latency increases. 4 and 8 ms were interpolated.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
for physical AI. arXiv preprint arXiv:2501.03575, 2025.

João Ascenso, Elena Alshina, and Touradj Ebrahimi. The JPEG AI standard: Providing efficient
human and machine visual data consumption. Ieee Multimedia, 30(1):100–111, 2023.

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-JEPA 2: Self-supervised video
models enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Horace B Barlow et al. Possible principles underlying the transformation of sensory messages.
Sensory communication, 1(01):217–233, 1961.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. EfficientVIT: Lightweight multi-scale
attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 17302–17313, 2023.

Kaiyuan Chen, Michael Wang, Marcus Gualtieri, Nan Tian, Christian Juette, Liu Ren, Jeffrey
Ichnowski, John Kubiatowicz, and Ken Goldberg. FogROS2-LS: A location-independent fog
robotics framework for latency sensitive ros2 applications. In 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 10581–10587. IEEE, 2024.

Kaiyuan Chen, Nan Tian, Christian Juette, Tianshuang Qiu, Liu Ren, John Kubiatowicz, and Ken
Goldberg. FogROS2-PLR: Probabilistic latency-reliability for cloud robotics. In 2025 IEEE
International Conference on Robotics and Automation (ICRA), pp. 16290–16297. IEEE, 2025.

On-Road Automated Driving (ORAD) Committee. Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles. SAE international, 2021.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Jakob Engel, Kiran Somasundaram, Michael Goesele, Albert Sun, Alexander Gamino, Andrew
Turner, Arjang Talattof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al. Project Aria: A new
tool for egocentric multi-modal ai research. arXiv preprint arXiv:2308.13561, 2023.

Ken Goldberg and Ben Kehoe. Cloud robotics and automation: A survey of related work. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2013-5, pp. 13–5, 2013.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 18995–19012, 2022.

Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
Understanding skilled human activity from first-and third-person perspectives. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19383–19400, 2024.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 328–339, 2018.

ISO/IEC. ISO/IEC 23888: MPEG Artificial Intelligence (MPEG-AI), 2025. Parts: Part 2: Video
coding for machines (VCM), Part 3: Optimization of encoders and receiving systems for machine
analysis of coded video content, Part 4: Feature coding for machines (FCM), Part 5: AI-based
point cloud coding.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Samvit Jain, Xin Wang, and Joseph E Gonzalez. Accel: A corrective fusion network for efficient
semantic segmentation on video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8866–8875, 2019.

D. H. Kelly. Information capacity of a single retinal channel. IRE Transactions on Information
Theory, 8(3):221–226, 1962.

Tommie Kerssies, Niccolò Cavagnero, Alexander Hermans, Narges Norouzi, Giuseppe Averta, Bas-
tian Leibe, Gijs Dubbelman, and Daan de Geus. Your ViT is secretly an image segmentation
model. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 25303–
25313, 2025. URL https://arxiv.org/abs/2503.19108.

Mehrdad Khani, Pouya Hamadanian, Arash Nasr-Esfahany, and Mohammad Alizadeh. Real-time
video inference on edge devices via adaptive model streaming. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4572–4582, 2021.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. OpenVLA: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open X-Embodiment:
Robotic learning datasets and RT-X models: Open X-Embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Danfeng Qin, Chas Leichner, Manolis Delakis, Marco Fornoni, Shixin Luo, Fan Yang, Weijun
Wang, Colby Banbury, Chengxi Ye, Berkin Akin, et al. MobileNetV4: universal models for
the mobile ecosystem. In European Conference on Computer Vision, pp. 78–96. Springer, 2024.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpreta-
tion of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor Darrell. Clockwork convnets for video
semantic segmentation. In European Conference on Computer Vision, pp. 852–868. Springer,
2016.

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Théo Moutakanni, Leonel Sentana,
Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, 2025. URL https://arxiv.org/
abs/2508.10104.

Vidya Srinivas, Malek Itani, Tuochao Chen, Emre Sefik Eskimez, Takuya Yoshioka, and Shyamnath
Gollakota. Knowledge boosting during low-latency inference. In Proc. Interspeech 2024, pp.
4338–4342, 2024.

Daniela Szwarcman, Sujit Roy, Paolo Fraccaro, Þorsteinn Elí Gíslason, Benedikt Blumenstiel, Rinki
Ghosal, Pedro Henrique de Oliveira, Joao Lucas de Sousa Almeida, Rocco Sedona, Yanghui
Kang, et al. Prithvi-EO-2.0: A versatile multi-temporal foundation model for earth observation
applications. arXiv preprint arXiv:2412.02732, 2024.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Mad-
havan, and Trevor Darrell. BDD100K: A diverse driving dataset for heterogeneous multitask
learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

11

https://arxiv.org/abs/2503.19108
https://arxiv.org/abs/2508.10104
https://arxiv.org/abs/2508.10104

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

FREQUENTLY ASKED QUESTIONS (FAQ) FOR REVIEWERS

Our experiments demonstrate the value of the proposed system and validate our central hypothe-
sis: a properly designed Dedelayed system—when composed of the baseline components—should
never perform worse than either baseline alone. Nonetheless, we provide clarifications in advance
addressing anticipated reviewer questions about our evaluation procedure.

Q: Why not use a video segmentation dataset like DAVIS?

Why focus on segmentation?

Why use the Cityscapes taxonomy if you are using BDD100K?

In the computer vision literature, it is common to include evaluations on image segmentation datasets
(e.g., Cityscapes or ADE20K) when proposing new training techniques or model architectures.
For example, foundation models like DINOv3 (Siméoni et al., 2025) include evaluations on these
datasets. By evaluating semantic segmentation performance using the Cityscapes taxonomy, we can
more easily compare our proposed method to a plethora of other model architectures and training
procedures. Additionally, we can use the pretrained weights of Cityscapes segmentation models
from independent researchers exactly as provided or with minimal fine-tuning. This allows us to
provide a strong set of baselines to compare against. Semantic segmentation also involves sim-
pler architectures compared to the interactive or semi-supervised objectives often used for video
segmentation datasets like DAVIS.

Q: Why not compare against video segmentation models (e.g., SAM 2)?

Our models are evaluated on the per-frame image segmentation task. This may seem surprising since
we evaluate on video sequences. However, we only use video sequences to simulate delay and to
provide temporal context to improve predictive performance. The local model takes a single frame
xt and predicts the corresponding label yt for that single frame.

In contrast, interactive video segmentation models by default assume offline access to the full video
sequence {x1, . . . , xN} in advance. This is not ideal for real-time applications, which must pro-
cess frames incrementally frame-by-frame under strict latency constraints. Many popular video
segmentation models are not ideal for real-time applications for a further reason still: they involve
two passes. In the first pass, an initial set of segmentation masks are generated based on the first
frame. In the second pass, segmentation masks from the first frame are adjusted based on subse-
quent frames. The two passes also involve different amounts of processing time, adding significant
operational complexity for real-time applications.

Additionally, to meet the requirements of on-device processing, most image and video segmentation
models dramatically reduce the resolution (e.g., from 1080p or 720p to 4482 or even 2242). Lever-
aging multi-frame context generally increases computation, often requiring even lower resolution
to meet real-time deadlines. While this trade-off can help in some settings, the evidence is less
compelling than the widely observed gains from higher resolution.

Finally, we argue that any model able to incorporate multiple frames of context while only adding a
negligible amount of computation compared to a single-frame model—e.g., by using mask propaga-
tion like SAM 2—will be prone to other failure modes. For example, large motions leading to blur
(e.g., a 90◦ camera turn) or transient poor lighting conditions (e.g., brief direct or reflected sunlight)
could cause catastrophic results on keyframe, leading to poor performance on subsequent frames.
On the other hand, independently segmenting each frame limits the effects of these transients, al-
lowing the output quality to be restored as soon as the input quality improves. Thus, a per-frame
semantic segmentation model is a more versatile and appropriate objective to use in evaluating our
proposed system.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Q: Why use pseudolabels?

Why not use the human annotated segmentation masks provided in the BDD100K dataset for
training and evaluation?

Have you verified that the pseudolabels used for evaluation are reliable?

To our knowledge, no major video dataset contains reliable and spatiotemporally dense human an-
notations for a standard supervised learning task (e.g., Cityscapes or ADE20K segmentation). For
BDD100K, the annotations are not temporally dense and they are rarely used by other researchers.
We have manually verified dozens of pseudolabel masks generated for the evaluation pipeline. In
our subjective evaluation, the pseudolabels have fewer errors than the human annotations in datasets
like ADE20K or Cityscapes, even in poor lighting or when noticeable motion blur is present.

Q: Why use 500 randomly selected videos instead of the entire BDD100K validation set?

We choose 500 videos to match the size of the Cityscapes evaluation dataset, while allowing more
rapid evaluation and reducing the cost of generating the high quality pseudolabels using DepthAny-
thing+Mask2Former.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 CODE

The fused “local + remote predictive” model is defined below:

class FusedModel(nn.Module):
def __init__(self, cls_classes=1000, seg_classes=19):

super().__init__()
self.local_model = MSTransformer2D(cls_classes, seg_classes)
self.remote_model = EfficientViTSeg3D()
self.mlp_pre_pool = PrepoolBlock()
self.mlp_post_pool = PostpoolBlock()

def forward(self, x_local, x_remote, delay):
Local feature extraction:
h = self.local_model.T1(x_local)
_, _, H, W = h.shape

Remote feature extraction and pooling:
z = x_remote
z = self.remote_model.forward_features(z, delay)
z = einops.rearrange(z, "b c f h w -> b (c f) h w", f=4)
z = self.mlp_pre_pool(z)
z = F.adaptive_avg_pool2d(z, output_size=(H, W))
z = self.mlp_post_pool(z)

Local and remote feature fusion:
h = h + z

Remaining local model:
y = h
h = self.local_model.T2(h)
y = y + self.local_model.P2(h)
h = self.local_model.T3(h)
y = y + self.local_model.P3(h)
y = self.local_model.seg_head(y)

return y

class EfficientViTSeg3D(nn.Module):
def __init__(self, name="efficientvit-seg-l1-cityscapes", seg_classes=19):

super().__init__()
self.image_model = create_efficientvit_seg_model(name)
self.delay_embedding = DelayEmbedding()
self.vit3d = nn.Sequential(*[

VitBlock3D(in_channels=256, head_dim=32, expand_ratio=4)
for _ in range(12)

])
self.head = RemotePredictiveHead(seg_classes=seg_classes)

def pool(self, x):
x_pool = F.adaptive_avg_pool3d(x, output_size=(4, x.shape[-2:]))
return einops.rearrange(x_pool, "b c f h w -> b (c f) h w", f=4)

def forward_features(self, x, delay):
video_embedding = self.image_model.backbone(x) # shape: (B, C, F, H, W)
delay_embedding = self.delay_embedding(delay, video_embedding.shape)
return self.vit3d(video_embedding + delay_embedding)

For pretraining remote predictive model:
def forward(self, x_remote, delay):

return self.head(self.pool(self.forward_features(x_remote, delay)))

class MSTransformer2D(nn.Module):
"""Any 2D image segmentation model. We use one with T1, T2, T3 blocks."""

To train or evaluate the models, simply feed in frames separated by the appropriate delay and com-
pute cross-entropy loss or mIoU in the typical fashion.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 EFFECT OF DELAY JITTER

We evaluate how our model performs under delay jitter, i.e., when the delay varies for each frame.

Our model is trained only to maximize accuracy for a fixed, tunable delay input and is not explicitly
optimized for jitter. Nonetheless, temporal structure in the data allows it to retain accuracy even
when the delay input differs from the observed delay. Fig. 8 characterizes this, showing performance
under different observed delays when the model is force-fed a possibly inaccurate delay as input.
Accuracy peaks when the delay input matches the observed delay, and the drop is less sharp when
the observed delay exceeds the delay input. The latter might be attributed to selection bias—if the
predicted features are relevant for a future frame, they often remain useful for subsequent frames.

0 1 2 3 4 5
Round-trip latency [frames]

0 50 100 150

Round-trip latency [milliseconds]

0.50

0.55

0.60

0.65

Se
gm

en
ta
ti
on

ac
cu

ra
cy

[m
Io
U
]

delay input = 0 frames
delay input = 1 frames
delay input = 2 frames
delay input = 3 frames
delay input = 4 frames
delay input = 5 frames

Figure 8: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames). Here,
the remote model’s delay input has been force-fed a specific value.

In Fig. 9, we report the above results in matrix form. Although our model was not explicitly trained
for mismatched delays or delays beyond 5 frames, it continues to perform well under these condi-
tions. This matrix can also be used to estimate the performance under delay jitter. We model the
observed delay as τobs ∼ N (µ = τin, σ

2), centered at the delay input to the model, τin. The expected
accuracy is obtained by taking a weighted sum over mIoU values for each observed delay, using a
discretely binned normal probability mass function, with out-of-bounds mass assigned to the bound-
ary bins. The resulting performance is shown in Fig. 10 for various values of σ. In many networks,
σ = 5 ms and σ = 15 ms correspond to relatively high jitter. Yet, even for higher values of σ,
our method’s performance maintains its advantage, even assuming optimistically that the competing
baselines experience no jitter. This shows that our method performs stably in realistic networks. For
comparison, traditional remote inference loses 3.4% mIoU within the first frame of delay, a drop far
larger than the degradation our method incurs with the corresponding σ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10

Delay input [frames]

0

1

2

3

4

5

6

7

8

9

10

O
bs
er
ve
d
de

la
y
[fr
am

es
]

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

Se
gm

en
ta
ti
on

ac
cu

ra
cy

[m
Io
U
]

Figure 9: Segmentation accuracy (mIoU) over observed delay and model delay input.

0 1 2 3 4 5
Delay input [frames]

0 50 100 150

Delay input [milliseconds]

0.50

0.55

0.60

0.65

Se
gm

en
ta
ti
on

ac
cu

ra
cy

[m
Io
U
]

Constant latency
N (τin, σ

2), σ = 5 ms
N (τin, σ

2), σ = 15 ms
N (τin, σ

2), σ = 30 ms
N (τin, σ

2), σ = 60 ms
N (τin, σ

2), σ = 90 ms

Figure 10: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames). La-
tency jitter is modeled as a normal distribution.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 LOCAL INPUT RESOLUTION

We evaluate on various local input resolutions. Our remote-assisted local model is able to operate at
far lower resolutions without losing accuracy.

0 1 2 3 4 5
Round-trip latency [frames]

0 50 100 150

Round-trip latency [milliseconds]

0.50

0.55

0.60

0.65
Se

gm
en
ta
ti
on

ac
cu

ra
cy

[m
Io
U
]

480px

480px

320px

224px

Local image
Remote image
Remote video
Remote predictive
Local + remote predictive

Figure 11: Segmentation accuracy (mIoU) versus round-trip latency (milliseconds or frames). Fur-
ther fine-tuned and evaluated on various local input resolutions.

17

	Introduction
	Background
	Related work
	Method
	Delay mitigation framework
	Design and Implementation

	Experiments
	Results
	Conclusion
	Appendix
	Code
	Effect of delay jitter
	Local input resolution

