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Abstract:1

When interacting with objects, humans effectively reason about which regions of2

objects are viable for an intended action, i.e., the affordance regions of the ob-3

ject. They can also account for subtle differences in object regions based on the4

task to be performed and whether one or two hands need to be used. However,5

current vision-based affordance prediction methods often reduce the problem to6

naive object part segmentation. In this work, we propose a framework for extract-7

ing affordance data from human activity video datasets. Our extracted 2HANDS8

dataset contains precise object affordance region segmentations and affordance9

class-labels as narrations of the activity performed. The data also accounts for10

bimanual actions, i.e., two hands co-ordinating and interacting with one or more11

objects. We present a VLM-based affordance prediction model, 2HandedAfforder,12

trained on the dataset and demonstrate superior performance over baselines in af-13

fordance region segmentation for various activities. Finally, we show that our pre-14

dicted affordance regions are actionable, i.e., can be used by an agent performing15

a task, through demonstration in robotic manipulation scenarios.16

Keywords: Affordance Extraction, Affordance Grounding, Egocentric Vision17

1 Introduction18

When humans perceive objects, they understand different object regions and can predict which19

object region affords which activities [1], i.e., which object regions can be used for a task. We20

wish our machines to have this ability, referred to in literature as “affordance grounding”. Affor-21

dance grounding has several downstream applications, including building planning agents, VR, and22

robotics. Affordance grounding is especially important for robotics since robots must reason about23

various actions that can be performed using different object regions which is a crucial step towards24

performing useful tasks in everyday, unstructured environments. For example, to pour into a bowl,25

the robot should know that it should hold the bottle in a region close to the center of mass of the bot-26

tle (Figure 1), i.e., a region that affords pouring. Predicting such affordance regions is challenging27

since it requires a fine-grained understanding of object regions and their semantic relationship to the28

task.29

Recent advances in large-language and multimodal models have shown impressive visual reasoning30

capabilities using self-supervised objectives [5, 6, 7]. However, there is still a big gap in their ability31

to detect accurate object affordance regions in images [8]. Moreover, most existing state-of-the-art32

affordance detection methods [9, 10, 11, 12, 13] use labeled data [14, 10, 15, 16, 17] that lacks33

precision and is more akin to object part segmentation rather than actionable affordance-region34

prediction. When humans interact with objects, they are much more precise and use specific object35

regions important in the context of the task. An example is provided in Fig. 1. For the task of pouring36

into the bowl, part segmentation labels the entire bottom of the bottle with the affordance ‘pour’. But,37
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Figure 1: A motivating example: When labeling affordances for a task ‘Pour into bowl’, typical
labeled affordances provided by annotators are not precise and reduce the problem to object part
segmentation. Alternatively, our affordance extraction method uses the hand-object interaction se-
quence to get precise bimanual affordance regions that are not just ‘conceptual’ but also ‘actionable’.

Figure 2: Affordance extraction pipeline. Given a human activity video sequence and a single-
frame object and hand masks, we first obtain dense, full-sequence object and hand masks using a
video mask-propagation network [2]. We then inpaint out the hands in the RGB images using a
video-based hand inpainting model [3]. This gives us an image with the objects reconstructed and
un-occluded by the hands. With the inpainted image and the original object masks, we use [4] to
“complete” the object masks by again propagating the object masks to the inpainted image. Finally,
we can extract the affordance region masks for the given task as the intersection between the com-
pleted masks and the hand masks. We also label the affordance class using the narration of the task.

to pour correctly, humans leverage the appropriate region of the bottle. Moreover, the affordances38

are inherently bimanual, i.e., the affordance regions of the bowl and bottle are interconnected.39

We argue that affordances should not be labeled but automatically extracted by observing humans40

performing tasks, e.g. in activity video datasets. We propose a method that uses hand-inpainting and41

mask completion to extract affordance regions occluded by human hands. This has several advan-42

tages. First, by using this procedure, we are able to obtain bimanual and precise affordances (Figure43

1) rather than simply predicting object parts. Second, it makes affordance specification more natural44

since it is often easier for humans to show the object region to interact with, rather than label and45

segment it correctly in an image. Third, using human activity videos gives us diverse task-specific46
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affordances, with the affordance class label naturally coming from the narration of what task is being47

done by the human. This makes our affordances task-oriented with natural language specification,48

unlike previous methods focused on predicting task-agnostic interaction hotspots [18, 19].49

Figure 3: Affordance prediction network. Given an input image and task, we use a question asking
where the objects should be interacted for the desired task as a text prompt to a Vision-Language
model (VLM). The VLM produces language tokens and a [SEG] token which is passed to the af-
fordance decoders. We also use a SAM [20] vision-backbone to encode the image and pass it to
the affordance decoders. The decoders predict the left hand and right hand affordance region masks
as well as a taxonomy classification indicating whether the interaction is supposed to be performed
with the left hand, right hand, or both hands. The vision encoder is frozen, while the VLM predic-
tions are fine-tuned using LORA [21].

2 Related Work50

Fully supervised affordance detection. In fully supervised affordance detection datasets and meth-51

ods such as by Qian and Fouhey [10], AffordanceLLM [11], the dataset is fixed and hand-annotated52

such as from IIT-AFF [14] and 3DOI [10]. The affordance classes in these datasets are explicit53

and annotators guess which affordance class may apply to object regions. Other methods, such54

as VLPart [12], use a general open vocabulary segmentation pipeline. LISA [13] performs open-55

vocabulary, prompt-based “reasoning segmentation”. However, these methods do not consider ac-56

tions and typically segment either the whole object [13] or object parts[12], and not precise affor-57

dance regions.58

Weakly supervised affordance detection. Weakly supervised methods such as Cross-viewAG [15]59

and Locate [22] learn to predict affordances by observing exocentric images of humans interacting60

with objects based on the AGD20K dataset [15]. The model maps object parts across images, trans-61

ferring the learned affordances to non-exocentric images where no hand-object interaction occurs.62

This is similar to saliency matching methods that use one-shot affordance transfer [23, 24]. How-63

ever, these methods still require an initial smaller manually-labeled dataset with explicit affordance64

classes.65

Auto-labeled affordance detection. Egocentric videos of humans performing tasks [25, 26, 27, 28,66

29] are an attractive option for extracting affordance data since they include object interactions up67

close and in the camera field of view. Recently, Goyal et al. [18] and Bahl et al. [19] have shown that68

videos from datasets such as EPIC kitchens [25] and Ego4D [27] can be used to segment regions of69

interest in objects using weak supervision from hand and object bounding-boxes. However, these70

works focus on segmenting task-agnostic ‘hotspot’ interaction regions of objects. The region of71

interactions do not consider the task and whether one or two hands would be needed.72

Our approach and goals. In this work, we propose a method to extract affordance masks leveraging73

recent video-based hand inpainting techniques [3]. Since our dataset contains precise segmentation74

masks, we can predict pixel-wise affordance segments in the image, as opposed to methods only75

trained with point-labels of affordance [10] or that only predict heatmaps [15, 19, 30]. Moreover, we76

consider the especially challenging problem of bimanual affordance detection, for which the spatial77
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context of the objects and their interconnection is also important. Although bimanual affordances78

have been considered in previous work [31, 32, 33, 34, 35, 36], to the best of our knowledge, ours is79

the first method to extract bimanual affordances from videos which we then use to train our model80

to predict task-specific affordance masks based on a text prompt.81

3 Extraction and Learning of Bimanual Affordances from Human Videos82

3.1 Affordance Extraction from Human Videos83

We use videos of humans performing tasks to extract precise affordance masks. This involves closely84

examining the contact regions between the hands and objects. We propose a pipeline to extract85

affordances that leverages recent advances in hand inpainting [3] and object mask completion [37, 4],86

providing the first bimanual affordance region segmentation dataset. Moreover, we use the narration87

of the task being performed as the affordance text label, obtaining a diverse set of affordance classes88

for various objects.89

We use videos from EPIC-KITCHENS [25], containing ∼100 hours of egocentric human videos in90

kitchens. We use VISOR [26] annotations of the dataset, which contain sparse hand-object mask91

segmentations and binary labels for whether the hand is in contact with the object.To obtain dense92

hand-object masks for entire video sequences, we use a video-based mask propagation network [2].93

With the hand and object masks available over the entire video sequence, we obtain an un-occluded94

view of the objects by inpainting out the hands. We use a video-based hand inpainting model,95

VIDM [3], that uses 4 frames from the sequence as input to inpaint the missing regions. This96

sequence-based inpainting better reconstructs the target objects since the objects may be visible in97

another frame of the sequence without occlusion. Inpainting provides us with an un-occluded view98

of the objects. We then precisely segment these un-occluded objects in the inpainted image using99

mask completion. For this, we use the segmentation masks from the original image and prompt100

SAM2 [4] to propagate these masks to the new inpainted image.To obtain the final affordance region101

where the hand and object interact, we can simply compute the intersection of the un-occluded object102

masks and the hand masks (Fig. 2). For bimanual affordances, we also classify into a bimanual103

taxonomy [31] of unimanual left, unimanual right, and bimanual actions.104

We extract a dataset of 278K images with affordance segmentation masks, narration-based class-105

labels, and bimanual taxonomy annotations. We call our dataset 2HANDS, i.e., the 2-Handed106

Affordance + Narration DataSet.107

3.2 Task-oriented Bimanual Affordance Prediction108

Reasoning segmentation, i.e., text-prompt-based segmentation of full objects, is a difficult task. Seg-109

mentation of precise object affordance regions is even more challenging. The complexity is further110

increased when considering bimanual affordances with multiple objects. To address this challenge,111

we develop a model for general-purpose bimanual affordance prediction that can process both an112

input image and any task prompt (e.g., ”pour tea from kettle”). We call this model “2HandedAf-113

forder.” We leverage recent developments in reasoning-based segmentation methods [38, 13] and114

train a VLM-based segmentation model to reason about the required task and predict the relevant115

affordance region in the input image.116

Inspired by reasoning segmentation methods such as by Lai et al. [13], we use a Vision-Language117

Model (VLM) [39], a LLaVa-13b, to jointly process the input text prompt and image and produce118

language tokens and a segmentation [SEG] token as output. While VLMs excel at tasks such as vi-119

sual question answering and image captioning, they are not explicitly optimized for vision tasks like120

segmentation, where accurately predicting pixel-level information is key. Thus, to have a stronger121

vision-backbone for our segmentation-related task, we use a modified version of SAM [20]. Given122

the combined embedding provided by the VLM [SEG] token and SAM image encoder, we use af-123

fordance decoders modeled after SAM-style mask decoders to predict the affordances. We use two124
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stir vegetables pour into cup pick up pot open pot open bottle

Figure 4: Examples of different manipulation tasks executed on a bimanual Tiago++ robot. Red
and green masks denote left and right hand affordance mask predictions, respectively. We segment
the task-specific object affordance regions, propose grasps for these regions, and use pre-designed
motion primitives to execute manipulation tasks.

mask decoders, generating separate affordance masks for the left and right hands, respectively. Fur-125

thermore, we add a prediction head to one of the decoders that takes the output token as input and126

predicts the bimanual taxonomy: ‘unimanual left hand’, ‘unimanual right hand’, and ‘bimanual’127

using a separate full-connected classifier decoder. The full architecture is visualized in Figure 3.128

ActAffordance Benchmark
Model EPIC-KITCHENS EGO4D Combined

IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑
LISA [13] 0.048 0.056 298 260 0.053 0.038 0.098 336 257 0.084 0.044 0.050 303 255 0.047

LOCATE [22] 0.010 0.014 274 261 0.007 - - - - - - - - - -
AffLLM [11] 0.010 0.010 267 205 0.010 0.015 0.016 229 226 0.014 0.012 0.013 287 225 0.012
2HAffCLIP 0.032 0.077 359 317 0.068 0.023 0.050 306 250 0.047 0.026 0.064 341 292 0.059

2HAff 0.064 0.125 241 185 0.104 0.051 0.137 292 227 0.105 0.058 0.130 262 202 0.104
AffExtract 0.136 0.334 199 169 - 0.253 0.541 163 121 - 0.185 0.420 184 145 -

Table 1: Comparison of our models and baseline methods on the ActAffordance benchmark. Per-
formance is evaluated separately on the EPIC-KITCHENS and EGO4D splits, as well as on the
combined benchmark. The reported metrics include IoU (Intersection over Union), Precision, HD
(Hausdorff Distance), Dir. HD (Directional Hausdorff Distance), and mAP (Mean Average Preci-
sion). For mAP, we average over five different thresholds, and the values for the other metrics corre-
spond to the highest scores obtained across these thresholds. We also run our affordance extraction
method, AffExtract, as a measure of data quality and alignment with the benchmark annotations.

The VLM is trained to generate a specific output token: a segmentation [SEG] token. Specifically,129

inspired by LISA [13], we use question-answer templates to encapsulate the narration of the individ-130

ual tasks in natural language, e.g. “USER: [IMAGE] Where would you interact with the objects to131

perform the action {action narration} in this image? ANSWER: Use region: [SEG].” This [SEG]132

token encapsulates the general-purpose reasoning information from the VLM for the task which is133

then used by the affordance decoders. For the left and right hand mask decoders, we initialize the134

decoders with pre-trained SAM weights and train them to predict segmentation masks using the en-135

coded image and [SEG] token as input. For the taxonomy classifier decoder, as in [10], we pass the136

left mask decoder output token through an MLP to predict whether the action should be performed137

with the left hand, right hand, or both hands.138

4 Experiments139

4.1 ActAffordance Benchmark140

To answer the first question of the accuracy of our extracted affordances in the 2HANDS dataset, we141

evaluate the alignment of our extracted affordance masks with human-annotated affordance regions.142

As mentioned in Sec. 3.1, when humans label affordances, they often simply label object parts and143

do not necessarily focus on the precise regions of interaction of the objects [15, 10]. Moreover, the144

second question regarding the accuracy of 2HandedAfforder is non-trivial. Using only the masks145

in our 2HANDS dataset as “ground truth” leads to a bias towards our own extracted affordances.146
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Figure 5: Example annotations for the ActAffordance benchmark. Left: The image to be annotated
with the highlighted annotation mask(s). Right: the example interaction provided to the human
annotator, along with the task description. The human is asked to annotate ALL the possible regions
for the interaction to capture all the different modes.

Therefore, we propose a novel benchmark called “ActAffordance” to evaluate both the dataset qual-147

ity and the predicted affordances. Specifically, we evaluate the alignment of our affordances with148

the affordances annotated by humans who are shown the full interaction video sequence. Anno-149

tators predicted ALL possible interaction regions since affordance prediction is inherently multi-150

modal—for instance, when closing a fridge, a human might choose any point along the door length.151

The benchmark contains unimanual and bimanual segmentation masks for 400 activities from EPIC-152

KITCHENS [25] and Ego4D [27], with no overlap with the data used in 2HANDS.153

For the “ActAffordance” benchmark, we asked 10 human annotators to label affordance regions with154

a novel approach: instead of direct segment labeling, we showed them pairs of inpainted and original155

hand-object interaction images. By showing annotators example interactions, we asked them to pre-156

dict similar affordance regions. Fig. 5 illustrates this annotation pipeline. Annotators predicted ALL157

possible interaction regions since affordance prediction is inherently multi-modal—for instance,158

when closing a fridge, a human might choose any point along the door length. The benchmark con-159

tains unimanual and bimanual segmentation masks for 400 activities from EPIC-KITCHENS [25]160

and Ego4D [27], with no overlap between EPIC-KITCHENS data used in 2HANDS. Details about161

the benchmark and annotation process are in Appendix Sec. 10.162

Another point of consideration when evaluating the affordance prediction is that the problem can be163

divided into two parts: correct identification of the objects based on the text prompt and accurate164

affordance region segmentation. Since these are two complementary but different capabilities, we165

further create another version of the benchmark called “ActAffordance-Cropped”. Here, we crop166

the benchmark images to a bounding box containing the target objects. This helps differentiate167

between the capabilities of segmenting the correct object and segmenting the correct object region.168

Moreover, it helps evaluate our network predictions against baselines that cannot identify correct169

objects in images but use bounding-boxes [19] or query points on the object [10] as input.170

5 Results171

Extraction quality & Benchmark performance:172

Table 1 shows the quantitative results, some examples of which are shown in Fig. 6. The high173

precision of AffExtract shows a reasonably good alignment with the human-annotated segmentations174

from the benchmark and meaningful affordance region extraction using our extraction pipeline. The175

IoU scores are relatively lower, with an average of 0.185, showing the challenge of the task when176

compared against human-level object understanding.177

Since ours is the first method to perform bimanual affordance mask detection using text prompts,178

we adapt baselines such as AffordanceLLM [11] and a SOTA text-based reasoning segmentation179

baseline, LISA [13]. To isolate the effect of the 2HANDS dataset, the comparison with AffLLM180

and LISA is key since their network architecture is close to ours. Among the trained prediction181

models, 2HandedAfforder achieves the best results across all metrics. LISA is the next best method182
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put lid on container put some water in the frying pan put down knife

LOCATE

VRB

LISA

AffLLM

3DOI

2HAff

Affordance
Extraction

Benchmark
(Ground Truth)

Figure 6: Qualitative affordance prediction results on the ActAffordance benchmark. We compare
our 2HandedAfforder model against LOCATE [22], VRB [19], LISA [13], AffordanceLLM [11],
3DOI [10]. We also include an example result if we run our affordance extraction method on the
activity sequence to show the quality of the extraction. Red and green masks denote left and right
hand affordance mask predictions, respectively.

since it accurately segments the correct object in the scene, resulting in a natural overlap with the183

ground truth. This demonstrates the power of reasoning segmentation for the challenging task of184

prompt-based affordance prediction. Although our models were not trained on any Ego4D data,185
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their performance on Ego4D is still reasonable and often better than the EPIC-KITCHENS split.186

The IoU scores are low across the board for all methods, indicating further room for improvement187

on this challenging task.188

Real-world Affordance Prediction on a Robot:189

We conduct robotic manipulation experiments with various objects using a bimanual Tiago++ robot190

in a realistic kitchen environment. We deploy our 2HandedAfforder model for affordance region191

segmentation inference based on task prompts such as ‘pour into cup’. By integrating our affordance192

prediction into the grasping pipeline, the robot is able to make more informed grasping decisions,193

leading to greater task success. Examples of different manipulation tasks are shown in Figure 4.194

6 Conclusion195

In this work, we proposed a framework for extracting precise, meaningful affordance regions from196

human activity videos, resulting in the 2HANDS dataset of actionable bimanual affordances. We fur-197

ther introduced a novel VLM-based task-aware bimanual affordance prediction model, 2HandedAf-198

forder, that predicts actionable affordance regions from task-related text prompts. To evaluate the199

alignment of the extracted affordances with human-annotated ones, we further proposed a novel200

ActAffordance benchmark, which is a particularly challenging benchmark for prompt-based seg-201

mentation of precise object affordance regions. Our experiments demonstrate that 2HandedAfforder202

can predict meaningful task-oriented bimanual affordances compared to other works, thereby show-203

casing the effectiveness of our data extraction pipeline and proposed model.204
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