
Exploring the Equivalence of Siamese Self-Supervised Learning via

A Unified Gradient Framework

Chenxin Tao1∗†, Honghui Wang1∗†, Xizhou Zhu2∗, Jiahua Dong3∗†,

Shiji Song1, Gao Huang1,4, Jifeng Dai1,4B

1Tsinghua University, 2SenseTime Research, 3Zhejiang University
4Beijing Academy of Artificial Intelligence, Beijing, China

{tcx20, wanghh20}@mails.tsinghua.edu.cn, zhuwalter@sensetime.com, cnjiahuadong@gmail.com

shijis@mail.tsinghua.edu.cn, gaohuang@tsinghua.edu.cn, daijifeng001@gmail.com

Abstract

Self-supervised learning has shown its great potential to

extract powerful visual representations without human an-

notations. Various works are proposed to deal with self-

supervised learning from different perspectives: (1) con-

trastive learning methods (e.g., MoCo, SimCLR) utilize both

positive and negative samples to guide the training direc-

tion; (2) asymmetric network methods (e.g., BYOL, Sim-

Siam) get rid of negative samples via the introduction of a

predictor network and the stop-gradient operation; (3) fea-

ture decorrelation methods (e.g., Barlow Twins, VICReg)

instead aim to reduce the redundancy between feature di-

mensions. These methods appear to be quite different in the

designed loss functions from various motivations. The fi-

nal accuracy numbers also vary, where different networks

and tricks are utilized in different works. In this work, we

demonstrate that these methods can be unified into the same

form. Instead of comparing their loss functions, we derive

a unified formula through gradient analysis. Furthermore,

we conduct fair and detailed experiments to compare their

performances. It turns out that there is little gap between

these methods, and the use of momentum encoder is the key

factor to boost performance.

From this unified framework, we propose UniGrad, a

simple but effective gradient form for self-supervised learn-

ing. It does not require a memory bank or a predictor

network, but can still achieve state-of-the-art performance

and easily adopt other training strategies. Extensive experi-

ments on linear evaluation and many downstream tasks also

show its effectiveness. Code shall be released.

∗Equal contribution. †This work is done when Chenxin Tao,

Honghui Wang, and Jiahua Dong are interns at SenseTime Research.
BCorresponding author.

𝑢2𝑢1 cross entropy loss

𝜕𝐿𝜕𝑢1 = −𝑢2 +෍𝑣 𝑠𝑣𝑣negative similarity

positive similarity

𝑣
𝑢1𝑇𝑢2
𝑢1𝑇𝑣

𝑢2𝑢1 𝜕𝐿𝜕𝑢1 = −𝑢2 + 𝜆෍𝑣 𝜌𝑣𝑢1𝑇𝑣 𝑣
predictor ℎ(⋅) −ℎ 𝑢1 𝑇𝑢2
𝑊ℎ from 𝐹 = σ𝑣 𝜌𝑣𝑣𝑣𝑇

A closed form solution from [28]

cosine similarity loss

𝑢2𝑢1 𝜕𝐿𝜕𝑢1 = −𝑢2 + 𝜆෍𝑣 𝑢2𝑇𝑣2𝑁 𝑣1correlation matrix𝐶 = 1𝑁 (𝑢1𝑢2𝑇 +෍𝑣 𝑣1𝑣2𝑇)
MSE loss

𝑢2𝑢1 −𝑢1𝑇𝑢2 + 𝜆2෍𝑣 𝜌𝑣 𝑢1𝑇𝑣 2
𝜕𝐿𝜕𝑢1 = −𝑢2 + 𝜆𝐹𝑢1negative similarity

positive similarity

𝑢1𝑇𝑢2
σ𝑣 𝜌𝑣 𝑢1𝑇𝑣 2𝐹 = σ𝑣 𝜌𝑣𝑣𝑣𝑇

Contrastive Learning Methods

Asymmetric Network Methods

Feature Decorrelation Methods

UniGrad

𝑣

𝑣

Figure 1. Overview of three typical types of self-supervised learn-

ing methods and our proposed UniGrad. u1 and u2 are two aug-

mented views of the same image. v denote views of other images.

We find these methods have a similar gradient structure composed

of the positive and negative gradients, which can be analogous

to positive and negative samples in contrastive learning. Because

some methods do not explicitly utilize negative samples, we high-

light the source of negative gradient in each method.

1. Introduction

Self-supervised learning (SSL) has recently attracted

much research interest [1, 6, 8, 17, 21, 34]. It has shown the

potential to extract powerful visual representations that are

competitive with supervised learning, and delivered supe-

rior performance on multiple visual tasks.

14431

Recent works deal with SSL from different points of

view, leading to three typical types of methods (see Fig-

ure 1), while siamese networks are always employed. Con-

trastive Learning methods [6,7,9,17] aim to reduce the dis-

tance between two augmented views from the same image

(positive samples), and push apart views from different im-

ages (negative samples). Negative samples play an impor-

tant role in these methods to avoid representational collapse.

Asymmetric Network methods [8,21] claim that only adopt-

ing positive samples is sufficient. The key is the introduc-

tion of asymmetric network architecture. In these methods,

a predictor network is only appended after one branch of the

siamese network, and the other branch is detached from the

gradient back-propagation. Although these methods have

achieved impressive performance, they are still poorly un-

derstood. Recent work [28] has tried to analyze their train-

ing dynamics, but still lacks a straight-forward explana-

tion. Feature Decorrelation methods [1, 13, 20, 34] have

recently been proposed as a new solution for SSL. They in-

stead focus on reducing the redundancy between different

feature dimensions. These methods seem to be highly dif-

ferent in how to learn representations, and it’s also hard to

compare their performances because different networks and

tricks are utilized in different works. With so many differ-

ent methods, it is natural to ask: What is the relationship

among them? Are there any connections among the work-

ing mechanisms behind them? What factors actually cause

the performance difference?

In this work, we unify the aforementioned three typical

types of SSL methods in a unified framework. Instead of

comparing their loss functions, the unified formula is de-

rived through gradient analysis. We find that all these meth-

ods have similar gradient formulas. They consist of three

components: the positive gradient, the negative gradient and

a scalar that balances these two terms. The positive gradi-

ent is the representation of another augmented view from

the same image, while the negative gradient is a weighted

combination of the representations from different images.

The effects of these two terms are similar to that of positive

and negative samples in contrastive learning methods. This

suggests that these methods share a similar working mech-

anism, but organize the loss functions in different manners.

Moreover, since these methods are different in the specific

formula of the gradient, we conduct fair and detailed exper-

iments for comparison. It turns out that different gradient

formulas result in close performance, and what really mat-

ters is the use of momentum encoder.

From this unified framework, we propose a concise but

effective gradient formula named UniGrad, which explic-

itly maximizes the similarity between positive samples and

expects the similarity between negative samples to be zero.

This formula does not require memory bank or asymmet-

ric network, and can easily adopt prevalent augmentation

strategies (e.g., CutMix [33] and multi-crop [4, 5]) to fur-

ther improve the performance. Extensive experiments show

that our method is competitive on various tasks, including

the standard linear evaluation protocol, the semi-supervised

learning task and various downstream vision tasks. Our

contribution can be summarized as:

• A unified framework is proposed for different self-

supervised learning methods through the perspective

of gradient analysis. This shows that although previ-

ous works seem to be distinct in loss functions, they

actually work in a similar mechanism;

• Different self-supervised learning methods are com-

pared under a fair and controlled experiment setting.

The results show that they can achieve similar perfor-

mance, while the momentum encoder is actually the

key factor affecting the final performance;

• UniGrad is proposed as a concise but effective gradient

formula for self-supervised learning. Extensive exper-

iments demonstrate its competitive performance.

2. Related Work

Contrastive Learning Methods have long been studied

in the area of self-supervised learning [2, 10, 31]. The

main idea is to discriminate positive and negative sam-

ples. Since the propose of InfoNCE [26], many recent

works [3, 4, 6, 7, 9, 17, 19, 22, 23, 36] have pushed the per-

formance to a new height. In these methods, negative sam-

ples play a critical role and are carefully designed. Mo-

Cos [7, 9, 17] build a memory bank with a momentum

encoder to provide consistent negative samples, yielding

promising results for both CNNs [7, 17] and Vision Trans-

formers [9]. SimCLR [6] enhances the representation of

negative samples with strong data augmentations and a

learnable nonlinear projection head. Other methods fur-

ther combine contrastive learning with instance classifica-

tion [3], data augmentation [22, 36], clustering [4, 23] and

adversarial training [19].

Contrastive learning methods pull positive samples to-

gether and push negative samples away, leading to the align-

ment and uniformity properties of the representation on

the hypersphere [30]. Our work finds that although non-

contrastive learning methods are optimized for different ob-

jective functions, they share the similar gradient structure

with that of contrastive learning.

Asymmetric Network Methods aim to accomplish self-

supervised learning with only positive pairs [8, 21, 27].

The representational collapse is avoided through the intro-

duction of asymmetric network architecture. BYOL [21]

appends a predictor network after the online branch, and

adopts a momentum encoder for the target branch. [27]

shows that BYOL is able to achieve competitive perfor-

mance even without batch statistics. SimSiam [8] further

14432

shows that stopping the gradient to target branch can serve

a similar role as the momentum encoder. DINO [5] adopts

an asymmetric pipeline with a self-distillation loss. Despite

the impressive performance, little is known about how the

asymmetric network can avoid collapse. Recent work [28]

makes a preliminary attempt to analyze the training dynam-

ics, but still lacks a straight-forward explanation.

Based on the conclusion of [28], our work builds a

connection between asymmetric network with contrastive

learning methods. From the perspective of backward gradi-

ent, we demonstrate the predictor learns to encode the in-

formation of previous samples in its weight, which serves

as negative gradient during back-propagation. This leads to

a similar gradient structure with contrastive learning.

Feature Decorrelation Methods are recently proposed for

self-supervised learning to prevent the representational col-

lapse [1, 13, 20, 34]. W-MSE [13] whitens feature repre-

sentations before computing a cosine similarity loss so that

the representations are scattered on the unit sphere. Bar-

low Twins [34] encourages the cross-correlation matrix of

representations close to identity matrix, which decorrelates

different dimensions of the representation, and strength-

ens the correlation in the same dimension. VICReg [1]

applys variance-invariance-covariance principle to replace

the use of batch normalization and cross-correlation matrix.

Shuffled-DBN [20] explores the function of batch normal-

ization on the embedding and develops a shuffle method for

better feature decorrelation.

Feature decorrelation methods show comparable results

to contrastive learning methods. However, it is still unclear

why such approach works well. Our work demonstrates that

the gradient formulas of feature decorrelation methods can

be transformed to a combination of positive and negative

samples, and thus share the similar gradient structure with

that of contrastive learning.

3. A Unified Framework for SSL

A typical self-supervised learning framework consists of

a siamese network. The two branches of the siamese net-

work are named as online branch and target branch, respec-

tively, where target branch representation is served as the

training target for the online branch. Given the input image

x, two augmented views x1 and x2 are created as the inputs

of the two branches. The encoder f(·) extracts representa-

tions ui ≜ f(xi), i = 1, 2 from these views.

Table 1 illustrates the notations used in this paper. u1

and u2 denote the currently concerned training samples,

while v denotes unspecified samples. uo
1 and vo denote

the representation extracted from the online branch. There

are three types of target branches that are widely used: 1)

weight-sharing with the online branch, corresponding to us
2

and vs; 2) weight-sharing but detached from gradient back-

Notation Meaning

u1, u2 current concerned samples

v unspecified samples

uo
1, vo samples from online branch

ut
2, vt samples from unspecified target branch

us
2, vs samples from weight-sharing target branch

ud
2, vd samples from stop-gradient target branch

um
2 , vm samples from momentum-encoder target branch

V unspecified sample set

Vbatch sample set of current batch

Vbank sample set of memory bank

V∞ sample set of all previous samples

Table 1. Notations used in this paper.

propagation, corresponding to ud
2 and vd; 3) momentum en-

coder updated from the online branch, corresponding to um
2

and vm. If the target branch type is not specified, ut
2 and vt

are used. Note that the symmetric loss is always used for

the two augmented views as described in [8].

Moreover, V represents the sample set considered in cur-

rent training step. Different methods construct the sample

set in different manners: Vbatch contains all samples from

current batch, Vbank consists of a memory bank that stores

previous samples, and V∞ denotes the set of all previous

samples, which can be much larger than a memory bank.

Details of gradient analysis can refer to Appendix A.

3.1. Contrastive Learning Methods

Contrastive learning methods require negative samples

to avoid representational collapse and achieve high perfor-

mance. They use another view from the same image as

the positive sample, and different images as the negative

samples. These methods aim to pull positive pairs together

while push negative pairs apart. The following InfoNCE

loss [26] is usually employed:

L = E
u1,u2

[

− log
exp (cos(uo

1, u
t
2)/τ)

∑

vt∈V exp (cos(uo
1, v

t)/τ)

]

, (1)

where the function cos(·) measures the cosine similarity be-

tween two representations, and τ is the temperature hyper-

parameter. Eq.(1) can be instantiated for different methods,

which we shall discuss below.

Relation to MoCo [7, 17]. MoCo adopts a momentum en-

coder for the target branch, and a memory bank to store

previous representations from the target branch. Its nega-

tive samples come from the memory bank. The gradient for

sample uo
1 is therefore:

∂L

∂uo
1

=
1

τN

(

− um
2 +

∑

vm∈Vbank

svv
m

)

, (2)

where sv =
exp (cos(uo

1,v
m)/τ)∑

ym∈Vbank
exp (cos(uo

1,y
m)/τ) is the softmax re-

sults over similarities between uo
1 and other samples, and N

is the number of all samples in current batch.

14433

Relation to SimCLR [6]. For SimCLR, the target branch

shares weights with the online branch, and does not stop the

back-propagated gradient. It uses all representations from

other images of the same batch as negative samples. Thus,

its gradient can be calculated as:

∂L

∂uo
1

=
1

τN

(

− us
2 +

∑

vs∈Vbatch\uo
1

svv
s

)

+
1

τN

(

− us
2 +

∑

vs∈Vbatch\uo
1

tvv
s

)

︸ ︷︷ ︸

reduce to 0

,
(3)

where tv =
exp (cos(vs,uo

1)/τ)∑
ys∈Vbatch\vs exp (cos(vs,ys)/τ) is computed

over similarities between sample vs and its contrastive sam-

ples Vbatch \ vs. If the gradient through the target branch

is stopped, the second term in Eq.(3) will vanish. We have

verified that stopping the second gradient term will not af-

fect the performance (see Appendix Table 6), so Eq.(3) can

be simplified to only the first term.

Unified Gradient. From the perspective of gradient, above

methods can be represented in a unified form:

∂L

∂uo
1

=
1

τN

(

− ut
2 +

∑

vt∈V

svv
t

)

, (4)

where the gradient is made up of a weighted sum of positive

and negative samples. The effect of −ut
2 is to pull positive

samples together, and the effect of
∑

vt∈V svv
t is to push

negative samples apart. We name these two terms as the

positive and negative gradient, respectively. The only dif-

ference between methods is what type of target branch is

used and how the contrastive sample set V is built.

3.2. Asymmetric Network Methods

Asymmetric network methods learn powerful represen-

tations by maximizing the similarity of positive pairs, with-

out using negative samples. Such methods need symmetry-

breaking network designs to avoid representational col-

lapse. To achieve this, a predictor h(·) is appended after

the online branch. The gradient to the target branch is also

stopped. The objective function can be presented as:

L = E
u1,u2

[

− cos(h(uo
1), u

t
2)

]

. (5)

Relation to BYOL [21]. For BYOL, a momentum encoder

is used for the target branch, i.e., ut
2 = um

2 in Eq.(5).

Relation to Simsiam [8]. Simsiam shows that momentum

encoder is not necessary, and only applies the stop-gradient

operation to the target branch, i.e., ut
2 = ud

2 in Eq.(5).

Unified Gradient. While asymmetric network methods

have achieved impressive performance, it is unclear how

these methods avoid collapse solution. Recently, Direct-

Pred [28] makes a preliminary attempt towards this goal via

studying the training dynamics. It further proposes an ana-

lytical solution for the predictor h(·).
Specifically, DirectPred claims that the predictor can be

formulated as h(v) = Whv, where Wh can be directly

calculated based on the correlation matrix Ev(vv
T). In

practice, this correlation matrix is calculated as the mov-

ing average of the correlation matrix for each batch, i.e.,

F ≜
∑

vo∈V∞
ρvv

ovoT , where ρv is the moving average

weight for each sample according to their batch order. By

decomposing F into its eigenvalues ΛF and eigenvectors U ,

Wh can be calculated as

Wh = UΛhU
T , Λh = Λ

1/2
F + ϵλmaxI, (6)

where λmax is the max eigenvalue of F and ϵ is a hyper-

parameter to help boost small eigenvalues.

While DirectPred shows what the predictor learns, We

step further and try to reveal the relationship between the

predictor and contrastive learning. With the help of Di-

recPred, the gradient can be derived and simplified as:

∂L

∂uo
1

=
1

||Whuo
1||2N

(

−W
T
h u

t
2+λ

∑

vo∈V∞

(ρvu
o
1
T
v
o)vo

)

, (7)

where −WT
h ut

2 and
∑

vo∈V∞
(ρvu

o
1
T vo)vo work as the

positive and negative gradient respectively and λ =
uo
1
TWT

h ut
2

uo
1
T (F+ϵ2I)uo

1

is a balance factor.

It seems counter-intuitive that Eq.(7) is also a combi-

nation of positive and negative samples, since no negative

samples appear in the loss function explicitly. In fact, they

come from the optimization of the predictor network. From

the findings of [28], the eigenspace of the predictor Wh will

gradually align with that of the feature correlation matrix

F . Hence the predictor may learn to encode the informa-

tion of correlation matrix in its parameters. During back-

propagation, the encoded information will work as negative

gradient and contribute to the direction of optimization.

3.3. Feature Decorrelation Methods

Feature decorrelation methods emerge recently as a new

solution to self-supervised learning. It proposes to reduce

the redundancy among different feature dimensions so as to

avoid collapse. Recent works adopt different loss forms for

feature decorrelation. We discuss their relations below.

Relation to Barlow Twins [34]. Barlow Twins utilizes the

following loss function:

L =

C∑

i=1

(Wii − 1)2 + λ

C∑

i=1

∑

j ̸=i

W 2
ij , (8)

where W = 1
N

∑

vo
1 ,v

s
2∈Vbatch

vo1v
sT
2 is a cross-correlation

matrix, C denotes the number of feature dimensions and λ

14434

is a balancing hyper-parameter. The diagonal elements of

W are encouraged to be close to 1, while those off-diagonal

elements are forced to be close to 0.

At first glance, Eq.(8) is drastically different from loss

functions of previous methods. However, it actually works

in the same way from the view of gradient, which can be

calculated as

∂L

∂uo
1

=
2

N

(

−Aus
2

︸ ︷︷ ︸

reduce to −0.1us
2

+λ
∑

vo
1 ,v

s
2∈Vbatch

usT
2 vs2
N

vo1

)

, (9)

where A = I − (1− λ)Wdiag. Here (Wdiag)ij = δijWij is

the diagonal matrix of W , where δij is the Kronecker delta.

We plot the max and min values of Wdiag in Figure 3(c),

which shows Wdiag is close to a scaled identity matrix.

Therefore, we replace A with an identity matrix multiplied

by 0.1 in practice. It has been verified that such replacement

actually does no harm to the final result (see Table 2(g)). In

addition, it should be noted that Barlow Twins applies batch

normalization rather than ℓ2 normalization to the represen-

tation v. We have verified that changing to ℓ2 normalization

will not affect the performance (see Table 2(h)).

Relation to VICReg [1]. VICReg does a few modifications

to Barlow Twins with the following loss function:

L =
1

N

∑

vo
1 ,v

s
2∈Vbatch

||vo1 − vs2||
2
2 +

λ1

c

c∑

i=1

c∑

j ̸=i

W ′2
ij

+
λ2

c

c∑

i=1

max(0, γ − std(vo1)i),

(10)

where W ′ = 1
N−1

∑

vo
1∈Vbatch

(vo1−v̄o1)(v
o
1−v̄o1)

T is the co-

variance matrix of the same view, std(v)i denotes the stan-

dard deviation of the i-th channel of v, γ is a constant target

value for it, and λ1, λ2 are balancing weights.

Similarly, its gradient can be derived as:

∂L

∂uo
1

=
2

N

(

− us
2 + λ

∑

vo
1∈Vbatch

ũoT
1 ṽo1
N

ṽo1

)

+
2λ

N

(
1

λ
uo
1 −Bũo

1

)

︸ ︷︷ ︸

reduce to 0

,
(11)

where ṽ = v − v̄ is the de-centered sample, λ = 2λ1N
2

c(N−1)2 ,

and B = N
cλ(N−1) (2λ1W

′
diag + λ2

2 diag(✶(γ − std(vo1) >

0)⊘std(vo1))). Here diag(x) is a matrix with diagonal filled

with the vector x, ✶(·) is the indicator function, and ⊘ de-

notes element-wise division.

VICReg does not apply any normalization on v, and in-

stead requires the de-center operation and standard devia-

tion term in the loss function. We have verified that it is

able to get rid of such terms by employing ℓ2 normalization

on v (see Table 2(j)). In fact, we have plotted the cosine sim-

ilarity between the neglected term and
∑

vo
1∈Vbatch

ũoT
1 ṽo

1

N ṽo1
in Figure 3(d). They are expected to have similar effect on

the training because of similar direction. Eq.(11) can be re-

duced to only the first term without de-center operation.

Unified Gradient. Because vs and vo are mathematically

equivalent, the gradient form of feature decorrelation family

can be unified as:

∂L

∂uo
1

=
2

N

(

− ut
2 + λ

∑

vo∈Vbatch

uoT vo

N
vo1

)

, (12)

where the first term −ut
2 acts as the positive gradient, the

second term
∑

vo∈Vbatch

(
uoT vo/N

)
vo1 is the negative gra-

dient, and λ is also a balance factor. The only difference

between methods is the subscript for negative coefficient.

Feature decorrelation methods actually work in a similar

way with other self-supervised methods. The positive and

negative gradient come from the diagonal and off-diagonal

elements of the correlation matrix.

4. Key Factors in SSL

As we analyzed before, the gradients for different self-

supervised learning methods share a similar formula:

∂L

∂uo
1

= ∇Lp + λ∇Ln, (13)

where the gradient consists of three components: the posi-

tive gradient ∇Lp, the negative gradient ∇Ln and the bal-

ance factor λ. However, there are still differences on the

specific form of these three components, and a natural ques-

tion arises: will the gradient form affect the performance

of self-supervised learning? Furthermore, although these

methods share similar gradient formula, they usually differ

from each other on the type of target branch and the con-

struction of sample set V . In this section, we shall conduct

a thorough comparison between these methods and present

the key factors that influence the final performance.

Although previous works have compared their meth-

ods with others, the training settings are usually different.

To provide a fair comparison, we use a unified training

and evaluation setting, in which only the loss function is

changed. Our setting mainly follows [8] (see Appendix B).

4.1. Gradient Form

We first explore how much difference the gradient form

can make in different methods. For a fair comparison, the

target branch adopts momentum encoder for all methods.

The effect of target branch type will be discussed in Sec-

tion 4.2. It should be noted that the we apply momentum

encoder in the loss form and derive the corresponding gra-

dients, so some negative gradient forms do not contain vm.

14435

Method Norm Pos Grad Balance Factor Neg Grad Sample Set Linear Eval

Contrastive learning methods

(a) MoCo [17] ℓ2 −um
2 1

∑

vm∈Vbank
svv

m Vbank 70.0

(b) SimCLR∗ [6] ℓ2 −um
2 1

∑

vm∈Vbatch\uo
1
svv

m Vbatch \ uo
1 70.0

Asymmetric network methods

(c) BYOL [21] ℓ2 - - - - 70.3

(d) BYOL(DirectPred [28]) ℓ2 −WT
h um

2
uoT
1 WT

h um
2

uoT
1 (F+ϵ2I)uo

1

∑

vo∈V∞
(ρvu

oT
1 vo)vo V∞ 70.2

(e) - ℓ2 −um
2 100

∑

vo∈V∞
(ρvu

oT
1 vo)vo V∞ 70.3

Feature decorrelation methods

(f) Barlow Twins∗ [34] BN −Aum
2 5×10−3

∑

vo
1 ,v

m
2 ∈Vbatch

umT
2 vm

2

N vo1 Vbatch 69.0

(g) - BN −um
2 5×10−3

∑

vo
1 ,v

m
2 ∈Vbatch

umT
2 vm

2

N vo1 Vbatch 69.7

(h) - ℓ2 −um
2 50

∑

vo
1 ,v

m
2 ∈Vbatch

umT
2 vm

2

N vo1 Vbatch 70.0

(i) VICReg∗ [1] - −um
2 4×10−5

∑

vo
1∈Vbatch

uoT
1 vo

1

N vo1 +
1
λu

o
1 −Bũo

1 Vbatch 70.0

(j) - ℓ2 −um
2 25

∑

vo
1∈Vbatch

uoT
1 vo

1

N vo1 Vbatch 69.8

Table 2. Performance comparison for different methods on ImageNet [12]. “Norm” denotes the normalization applied to the representations

before loss calculation. “Pos Grad”, “Balance Factor” and “Neg Grad” correspond to the components in Eq. (13). Linear evaluation follows

the protocol in [8]. ∗Note that momentum encoder is used for target branch.

Specifically, we first try to compare and simplify the gra-

dient form within each type of method. This can filter out

irrelevant elements at early stage and make the comparison

more clear. After that we can compare these methods all

together. Because the scales of positive and negative gradi-

ents can vary a lot during simplification, we search for the

best balance factor for each combination.

Simplification for Contrastive Learning. Table 2(ab) re-

port the performance of different contrastive learning meth-

ods. Original MoCo [17] is used in Table 2(a). Because

momentum encoder is applied to SimCLR [6] in Table 2(b),

the second term in Eq.(3) naturally diminishes. These two

methods show nearly no differences on the final results.

We also note that SimCLR uses Vbatch rather than Vbank

as in MoCo, but there is only minor difference. This sug-

gests that with proper training setting, larger number of neg-

ative samples may not be necessary for good performance.

Simplification for Asymmetric Network. Table 2(c-

e) give the simplification results for asymmetric network

methods. The original BYOL [21] and the gradient ver-

sion of BYOL with DirectPred [28] form are presented in

Table 2(cd), respectively, whose results are consistent with

the conclusion of [28]. SimSiam [8] is not presented here,

because its momentum encoder variant is just BYOL.

In Table 2(e) we substitute Wh in the positive gradient

with identity matrix, and reduce the dynamic balance fac-

tor to a constant scalar. Such replacement does not lead to

performance degradation. Therefore, the gradient form of

asymmetric network methods can be unified as Table 2(e).

Simplification for Feature Decorrelation. We demon-

strate the results of feature decorrelation methods in Ta-

ble 2(f-j). For Barlow Twins [34], the matrix A in the pos-

itive gradient of Table 2(f) is first substituted with identity

matrix in Table 2(g). The results imply that this will not

harm the performance. In Table 2(h), batch normalization

is then replaced with ℓ2 normalization, and no accuracy de-

crease is observed.

For VICReg [1], we report its result in Table 2(i). In

Table 2(j), ℓ2 normalization is applied to the representation,

and the λ1u1−Bũ1 term is removed from negative gradient.

Such simplification produces similar result.

In the end, Table 2(hj) only differ in how to calculate

negative coefficients. The comparison indicates that similar

performances can be obtained. Thus, the gradient form of

feature decorrelation methods can be unified as Table 2(j).

Comparison between Different Methods. Finally, we can

compare different kinds of methods with their unified gra-

dient form, i.e., Table 2(bej). Among three components

of gradient, they share the same positive gradient, the bal-

ance factor is searched for the best one, and the only differ-

ence is the negative gradient. Table 2 shows that the per-

formance gap between different methods is actually minor

(<0.5% points). What’s more, asymmetric network meth-

ods are similar with feature decorrelation methods on gradi-

ent form, but utilize V∞ instead of Vbatch. This implies the

construction of V is not vital for self-supervised learning.

4.2. Target Branch Type

The type of target branch is distinct for different methods

in their original implementation. In Section 4.1, we adopts

momentum encoder for all methods. Now, we study the

effect of different target branch types in Table 3. There can

be three choices for the target branch: weight-sharing, stop-

gradient and momentum-encoder. We use the unified form

(i.e., Table 2(bej)) as representatives for these three kinds

14436

Pos Grad Neg Grad

Contrastive

Learning

Asymmetric

Network

Feature

Decorrelation

Table 2(b) Table 2(e) Table 2(j)

stop gradient 67.6 67.9 67.6

momentum 70.0 70.2 69.8

momentum stop gradient 70.1 70.3 69.8

Table 3. Effect of target branch type. We report ImageNet [12]

linear evaluation accuracy after 100-epoch pre-training.

of methods, and change the target branch type. Because a

symmetric loss is always employed, the weight-sharing and

stop-gradient variants of the gradient form are actually the

same. We omit the weight-sharing variant for simplicity.

For the stop-gradient target branch type, the results for

different self-supervised learning methods are very simi-

lar, which is consistent with the conclusion in Section 4.1.

For the momentum-encoder target branch type, it can im-

prove the performance of all three kinds of methods with

∼ 2% points compared to the stop-gradient target branch

type. This shows that momentum encoder is beneficial for

these self-supervised learning methods, and can provide a

consistent performance gain.

We further consider which part of gradient the momen-

tum encoder has effect on. To achieve this, we only adopt

momentum encoder output for the positive gradient. Ta-

ble 3 indicates that it’s enough to apply momentum encoder

to the positive gradient. This suggests that a consistent and

slow-updating positive goal may be very important for self-

supervised learning.

5. A Concise Gradient Form for SSL

5.1. UniGrad

The comparison between gradients of different methods

leads us to find a concise but effective gradient form for self-

supervised learning. The proposed gradient, named Uni-

Grad, can be represented as

∂L

∂uo
1

= −u
m
2 + λFu

o
1, (14)

where F =
∑

vo∈V∞
ρvv

ovoT . Note that this gradient form

is exactly the one described in Table 2(e).

To fully understand this gradient, we give analysis

through its corresponding object function:

L = E
u1,u2

[

− cos(uo
1, u

m
2) +

λ

2

∑

vo∈V∞

ρvcos
2(uo

1, v
o)

]

, (15)

where λ is set to 100 as default. The objective function con-

sists of two terms. The first term maximizes the cosine sim-

ilarity between positive samples, which encourages model-

ing the invariance with respect to data augmentations. The

second term expects the similariry between negative sam-

ples close to zero so as to avoid representational collapse.

Relation to Contrastive Learning. Compare to the In-

foNCE [26] used in MoCo [7, 17] and SimCLR [6], Uni-

Grad expects the similarity with negative samples close to

zero to avoid collapse, while the InfoNCE encourages the

similarity with negative samples to be lower than that with

positive samples as much as possible. Moreover, UniGrad

could encode infinite negative samples via a correlation ma-

trix with less memory cost compared to a memory bank.

Relation to Asymmetric Network. Compare to

BYOL [21] and SimSiam [8], our method could learn mean-

ingful representations without the need of a predictor, thus

gets rid of additional optimization tricks (usually a larger

learning rate is needed for the predictor) and potential in-

fluence of the design of this predictor. Compare to Direct-

Pred [28] with a optimization-free predictor, UniGrad re-

moves the need for SVD decomposition.

Relation to Feature Decorrelation. Compare to Barlow

Twins [34] and VICReg [1], UniGrad could achieve a sim-

ilar effect to decorrelate different channels without direct

optimization of the covariance or cross-correlation matrix

(see Figure 2). In addition, our method uses ℓ2 normaliza-

tion instead of batch normalization or extra restrictions on

the variance of each channel.

Discussion. Since we have observed close performance

achieved by UniGrad and other methods in Table 2, we

wonder if the representations learned via various losses

could end up with similar properties. In Figure 2, We com-

pare the learning trajectory of different methods from the

aspects of the similarity between positive/negative pairs, the

k-NN accuracy and the degree of feature decorrelation. We

find that there is no significant difference between UniGrad

and other methods. The result implies that these methods

work in a similar mechanism, which coincides with the

comparison of their gradients in Section 4. For instance,

SimCLR and BYOL can also learn to decorrelate different

channels and Barlow Twins can learn to discriminate posi-

tive and negative samples as well. Besides its competitive

performance, our method works as a concise version con-

nected to these three kinds of methods without complicated

components, such as memory bank and predictor.

5.2. Application on Data Augmentations

Benefiting from its concise form, UniGrad can be easily

extended with commonly used data augmentations [4,5,24,

30, 33, 35] to further boost its performance. As a demon-

stration, we show how to apply CutMix [24, 33] and multi-

crop [4, 5] to our method below.

CutMix generates new samples by replacing a randomly

selected image region with a patch from another image.

Given a batch of images, we cut patches from this batch

with shuffled order, and paste them onto the original batch.

For these mixed images, their positive gradients are calcu-

14437

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

Po
sit

iv
e

Co
sin

e
Si

m
ila

rit
y

SimCLR
BYOL
Barlow Twins
UniGrad

(a) positive cosine similarity

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ne
ga

tiv
e

Co
sin

e
Si

m
ila

rit
y SimCLR

BYOL
Barlow Twins
UniGrad

(b) negative cosine similarity

0 20 40 60 80 100
Epoch

10

20

30

40

50

60

k-
NN

 a
cc

 (%
)

SimCLR
BYOL
Barlow Twins
UniGrad

(c) k-NN accuracy

0 20 40 60 80 100
Epoch

0

10

20

30

40

50

Pr
in

cip
al

 C
om

po
ne

nt
 R

at
io

 (%
)

SimCLR
BYOL
Barlow Twins
UniGrad

(d) principal component ratio

Figure 2. Learning trajectory for different methods. The metric of principal component ratio is to evaluate feature decorrelation degree.

We apply PCA to representations, and count the number of eigenvalues whose cumulative sum first exceeds 90%.

Method Epoch Time Linear Eval

UniGrad 100 38.2h 70.3

UniGrad+CutMix 100 38.2h 71.2

UniGrad+multi-crop 100 114.6h 71.7

UniGrad+CutMix+multi-crop 100 114.6h 72.3

Table 4. Ablation on CutMix and multi-crop.

lated from the normal images and then mixed according to

the mixup ratio. F is calculated from normal images only.

Multi-crop samples additional smaller-sized crops to in-

crease the number of views of an image. Specifically, we

use 2×224 global views and 6×96 local views, with global

scale set to (0.4, 1) and local scale set to (0.05, 0.4) respec-

tively. For each global view, its positive gradient comes

from the other global view. For each local view, its positive

samples consist of the average of two global views. F is

calculated from global views only.

Ablation Study. We first conduct ablation study to validate

the impact of CutMix and multi-crop on UniGrad under the

experiments setting described in Section 4. As shown in

Table 4, CutMix and multi-crop achieve an improvement

of 0.9% and 1.4% respectively, and combining these two

strategies together boosts the improvement to 2.0%. We

also report the training time in Table 4. The implementation

of CutMix only adds negligible training overhead compared

to normal training, while multi-crop introduces a relatively

heavy training cost. These variants can be used according

to the available computational resources.

More Training Epoches. We evaluate the performance

of our method with more training epoches. We adopt an-

other set of training setting for faster pretraining (see Ap-

pendix B). The linear evaluation setting follows Section 4.

Table 5 compares our results with previous methods. Un-

iGrad with CutMix can already surpass other methods that

do not use multi-crop. By further employing multi-crop, it

shows comparable performance with current state-of-the-art

methods. We also transfer the pre-trained model to down-

stream tasks, including semi-supervised learning on Ima-

geNet [12] and object detection on PASCAL VOC [14] and

COCO [25]. Our model is able to achieve competitive re-

sults with other leading methods (see Appendix C).

Method Epoch Linear Eval

MoCov2 [7] 800 71.1

SimCLR [6] 1000 69.3

BYOL [21] 1000 74.3

SimSiam [8] 800 71.3

Barlow Twins [34] 1000 73.2

VICReg [1] 1000 73.2

DINO (+multi-crop) [5] 800 75.3

TWIST (+multi-crop) [29] 800 75.5

UniGrad+CutMix 800 74.9

UniGrad+CutMix+multi-crop 800 75.5

Table 5. Linear classification on ImageNet [12].

6. Conclusion

In this paper, we present a unified framework for three

typical self-supervised learning methods from the perspec-

tive of gradient analysis. While previous works appear to

be distinct in their loss functions, we demonstrate that they

share a similar gradient form. Such form consists of the pos-

itive gradient, the negative gradient and the balance factor,

which suggests that these methods work in a similar mech-

anism. We further compare their performances under a fair

experiment setting. It’s shown that they can deliver similar

performances, and momentum encoder is the key factor to

boost performance. Finally, we propose UniGrad, a sim-

ple but effective gradient form for self-supervised learning.

Extensive experiments have shown its effectiveness in lin-

ear evaluation and downstream tasks.

Limitations. This work only adopts linear evaluation

for performance comparison, while different methods may

have a different impact on downstream tasks, e.g., object

detection and semantic segmentation. We leave the transfer

learning performance comparison for future work.

Potential Negative Societal Impact. This work may in-

herit the negative impacts of self-supervised learning. Be-

cause a large-scale training is usually required, it may con-

sume lots of electricity and cause environmental pollu-

tion. This method also learns representations from training

dataset and may contain data biases. Future work can seek

for a more efficient and unbiased training method.

Acknowledgments The work is supported by the Na-

tional Key R&D Program of China (2020AAA0105200),

Beijing Academy of Artificial Intelligence.

14438

References

[1] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-

creg: Variance-invariance-covariance regularization for self-

supervised learning. arXiv preprint arXiv:2105.04906, 2021.

1, 2, 3, 5, 6, 7, 8, 13

[2] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard

Säckinger, and Roopak Shah. Signature verification using

a” siamese” time delay neural network. Advances in neural

information processing systems, 6, 1993. 2

[3] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang,

and Han Hu. Parametric instance classification for unsuper-

vised visual feature learning. In NeurIPS, 2020. 2

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learn-

ing of visual features by contrasting cluster assignments. In

NeurIPS, 2020. 2, 7

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In

ICCV, 2021. 2, 3, 7, 8, 15

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In ICML, 2020. 1, 2, 4, 6, 7, 8, 11,

12, 14, 15

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint arXiv:2003.04297, 2020. 2, 3, 7, 8, 15

[8] Xinlei Chen and Kaiming He. Exploring simple siamese rep-

resentation learning. In CVPR, 2021. 1, 2, 3, 4, 5, 6, 7, 8,

14

[9] Xinlei Chen, Saining Xie, and Kaiming He. An empirical

study of training self-supervised vision transformers. arXiv

preprint arXiv:2104.02057, 2021. 2

[10] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning

a similarity metric discriminatively, with application to face

verification. In CVPR, 2005. 2

[11] ImageNet contributors. Imagenet terms of access. https:

//image-net.org/download, 2020. 15

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 6, 7, 8, 15

[13] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,

and Nicu Sebe. Whitening for self-supervised representation

learning. In ICML, 2021. 2, 3

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. In IJCV, 2010. 8, 15

[15] Inc. Flickr. Flickr terms & conditions of use. http://

aiweb.techfak.uni-bielefeld.de/content/

bworld-robot-control-software/, 2020. 15

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 14

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In CVPR, 2020. 1, 2, 3, 6, 7, 11, 14

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 14

[19] Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi. Adco:

Adversarial contrast for efficient learning of unsupervised

representations from self-trained negative adversaries. In

CVPR, 2021. 2

[20] Tianyu Hua, Wenxiao Wang, Zihui Xue, Yue Wang, Sucheng

Ren, and Hang Zhao. On feature decorrelation in self-

supervised learning. In ICCV, 2021. 2, 3

[21] Grill Jean-Bastien, Strub Florian, Altché Florent, Tallec

Corentin, Pierre Richemond H., Buchatskaya Elena, Doer-

sch Carl, Bernardo Pires Avila, Zhaohan Guo Daniel, Mo-

hammad Azar Gheshlaghi, Piot Bilal, Kavukcuoglu Koray,

Munos Rémi, and Valko Michal. Bootstrap your own latent

- a new approach to self-supervised learning. In NeurIPS,

2020. 1, 2, 4, 6, 7, 8, 14, 15

[22] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion,

Philippe Weinzaepfel, and Diane Larlus. Hard negative mix-

ing for contrastive learning. In NeurIPS, 2020. 2

[23] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi.

Prototypical contrastive learning of unsupervised representa-

tions. In ICLR, 2021. 2

[24] Suichan Li, Dongdong Chen, Yinpeng Chen, Lu Yuan, Lei

Zhang, Qi Chu, Bin Liu, and Nenghai Yu. Unsupervised

finetuning. arXiv preprint arXiv:2110.09510, 2021. 7

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 8, 15

[26] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 2, 3, 7

[27] Pierre H Richemond, Jean-Bastien Grill, Florent Altché,

Corentin Tallec, Florian Strub, Andrew Brock, Samuel

Smith, Soham De, Razvan Pascanu, Bilal Piot, et al.

Byol works even without batch statistics. arXiv preprint

arXiv:2010.10241, 2020. 2

[28] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Un-

derstanding self-supervised learning dynamics without con-

trastive pairs. In ICML, 2021. 2, 3, 4, 6, 7, 11, 12

[29] Feng Wang, Tao Kong, Rufeng Zhang, Huaping Liu, and

Hang Li. Self-supervised learning by estimating twin class

distributions. arXiv preprint arXiv:2110.07402, 2021. 8, 14,

15

[30] Tongzhou Wang and Phillip Isola. Understanding contrastive

representation learning through alignment and uniformity on

the hypersphere. In ICML, 2020. 2, 7

[31] Kilian Q Weinberger and Lawrence K Saul. Distance met-

ric learning for large margin nearest neighbor classification.

Journal of machine learning research, 10(2), 2009. 2

[32] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd

batch size to 32k for imagenet training. arXiv preprint

arXiv:1708.03888, 6:12, 2017. 14

14439

[33] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. In ICCV, 2019. 2, 7

[34] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and

Stéphane Deny. Barlow twins: Self-supervised learning via

redundancy reduction. In ICML, 2021. 1, 2, 3, 4, 6, 7, 8, 12,

14, 15

[35] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018. 7

[36] Rui Zhu, Bingchen Zhao, Jingen Liu, Zhenglong Sun, and

Chang Wen Chen. Improving contrastive learning by visual-

izing feature transformation. In ICCV, 2021. 2

14440

