
Error Broadcast and Decorrelation as a Potential
Artificial and Natural Learning Mechanism

Mete Erdogan1,2 Cengiz Pehlevan3,4,5 Alper T. Erdogan1,2

1KUIS AI Center, Koc University, Turkey 2EEE Department, Koc University, Turkey
3John A. Paulson School of Engineering & Applied Sciences, Harvard University, USA

4Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, USA
5Center for Brain Science, Harvard University, USA

{merdogan18, alperdogan}@ku.edu.tr, cpehlevan@seas.harvard.edu

Abstract

We introduce Error Broadcast and Decorrelation (EBD), a novel learning
framework for neural networks that addresses credit assignment by directly
broadcasting output errors to individual layers, circumventing weight transport
of backpropagation. EBD is rigorously grounded in the stochastic orthogonality
property of Minimum Mean Square Error estimators. This fundamental principle
states that the error of an optimal estimator is orthogonal to functions of the input.
Guided by this insight, EBD defines layerwise loss functions that directly penalize
correlations between layer activations and output errors, thereby establishing a
principled foundation for error broadcasting. This theoretically sound mechanism
naturally leads to the experimentally observed three-factor learning rule and
integrates with biologically plausible frameworks to enhance performance and
plausibility. Numerical experiments demonstrate EBD’s competitive or better
performance against other error-broadcast methods on benchmark datasets. Our
findings establish EBD as an efficient, biologically plausible, and principled
alternative for neural network training. The implementation is available at:
https://github.com/meterdogan07/error-broadcast-decorrelation.

1 Introduction

Neural networks are dominant mathematical models for biological and artificial intelligence. A major
challenge in these networks is determining how to adjust individual synaptic weights to optimize a
global learning objective, known as the credit assignment problem. In Artificial Neural Networks
(ANNs), the most common solution is the backpropagation (BP) algorithm [1].

In contrast to ANNs, the mechanisms for credit assignment in biological neural networks remain
poorly understood. While backpropagation is highly effective for training ANNs, it is not directly
applicable to biological systems because it relies on biologically implausible assumptions. In its
standard form, backpropagation propagates output errors backward through a separate pathway,
reusing the same synaptic weights as in the forward pass (Figure 1a). This requirement for weight
symmetry is not supported by biological evidence [2]. Although many experimentally motivated
models of local synaptic plasticity have been proposed [3], a biologically feasible theory of credit
assignment that integrates these mechanisms remains unresolved.

To address the credit assignment problem in biological networks, researchers have proposed methods
known as error broadcasting [4–9]. These methods involve broadcasting the global output error
directly to all layers, often through random projections or fixed pathways, without relying on precise
backward paths or symmetric weights (as summarized in Section 1.1). This eliminates the weight

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/meterdogan07/error-broadcast-decorrelation

symmetry issue inherent in backpropagation. Error broadcasting offers practical benefits for hardware
implementation; recent work [10] demonstrates potential for efficient neural network execution.
However, despite encouraging progress in both theory and application [11, 12], error broadcasting
still needs stronger theoretical foundations to fully validate and enhance its training effectiveness.

In this context, we introduce a novel learning framework termed the Error Broadcast and Decor-
relation (EBD), which builds on basic error broadcasting by introducing layer-specific objectives
grounded in estimation theory. The fundamental principle of EBD is to adjust network weights to
minimize the correlation between broadcast output errors and the activations of each layer. This
approach is rigorously grounded in Minimum Mean Square Error (MMSE) estimation, where an
optimal estimator’s error is orthogonal to any measurable function of its input. We leverage this
orthogonality principle for EBD, defining layer-specific training losses to drive layer activations
(functions of the network input) towards orthogonality with the broadcast error. This enables a
more distributed mechanism for credit assignment, alternative to approaches relying solely on an
output-defined loss and end-to-end error propagation.

(a) BP (b) EBD (c) Correlation between
layer activations and output
error.

Figure 1: Comparison of error feedback mechanisms and correlation dynamics in multilayer percep-
trons. (a) Backpropagation (BP) transmits errors sequentially through symmetric backward paths. (b)
Error Broadcast and Decorrelation (EBD) broadcasts output errors to all layers using error–activation
cross-correlations. (c) Average absolute correlation between layer activations and the output error
during BP training on CIFAR-10 with MSE loss, illustrating its decline over epochs (see Appendix J).

EBD directly broadcasts output errors to layers, simplifying credit assignment and enabling parallel
synaptic updates. It offers two key advantages for biologically realistic networks. First, optimizing
EBD’s loss naturally leads to experimentally observed three-factor learning rules [13, 14], which
extend Hebbian plasticity by incorporating a neuromodulatory signal (the third factor) modulating
synaptic updates based on pre- and postsynaptic activity. Second, by broadcasting errors directly to
layers as shown in Figure 1b, it overcomes the weight transport problem inherent in backpropagation
and some more biologically plausible credit assignment approaches [15, 16].

We demonstrate EBD’s utility by applying it to both artificial and biologically realistic neural networks.
Benchmark results show EBD matching/exceeding state-of-the-art error-broadcast techniques. Its
successful application to a 10-layer biologically plausible network (CorInfoMax-EBD) provides
initial evidence of depth scalability for more complex tasks.

1.1 Related work and contributions

Several frameworks have been proposed as alternatives to the backpropagation algorithm for modeling
credit assignment in biological networks [8]. These include predictive coding [15, 17, 18], similarity
matching [16, 19], time-contrastive approaches [20–22], forward-only methods [23–25], target

2

propagation [26–28], random feedback alignment [29], and learned feedback weights [30, 31].
Alternative strategies also seek to establish local learning rules by optimizing statistical objectives,
such as the Hilbert-Schmidt Independence Criterion (HSIC) bottleneck [32].

Another significant alternative is error-broadcast methods, where output errors are directly transmitted
to network layers without relying on precise backward pathways or symmetric weights. Two important
examples of this approach are weight and node perturbation algorithms [4, 33–35], in which global
error signals are broadcast to all network units. These signals reflect the change in overall error
caused by individual perturbations in the network’s weights or units. A more recent and prominent
example of error broadcast is Direct Feedback Alignment (DFA) [6]. In DFA, the output errors are
projected onto the hidden layers through fixed random weights, effectively replacing the symmetric
backward weights required in traditional backpropagation. The core challenge of weight transport
has been tackled by several other methods, many of which also rely on fixed random signals or avoid
feedback entirely [36, 37]. Encouragingly, a number of these biologically-plausible frameworks have
demonstrated the ability to scale effectively to large datasets, underscoring their potential as viable
training mechanisms [38]. This approach first emerged as a modification to the feedback alignment
approach (which replaced the symmetric weights of the backpropagation algorithm with random
ones). DFA has been extended and analyzed in several studies [11, 12, 39–41], demonstrating its
potential in training neural networks with less biologically implausible mechanisms. Clark et al. [9]
introduced another broadcast approach for a network with vector units and nonnegative weights for
which three factor learning based update rule is applied.

Our framework for error broadcasting differentiates itself through

• a principled method based on the orthogonality property of nonlinear MMSE estimators,
• error projection weights determined by the cross-correlation between the output errors and

the layer activations as opposed to random weights of DFA,
• dynamic Hebbian updating of projection weights as opposed to fixed weights of DFA,
• updates involving arbitrary nonlinear functions of layer activities, encompassing a family

of three-factor learning rules,
• the option to project layer activities forward to the output layer.

In summary, our approach provides a theoretical grounding for the error broadcasting mechanism
and suggests ways to enhance its effectiveness in training networks.

2 Error Broadcast and Decorrelation method

2.1 Problem statement

To illustrate our approach, we first assume a multi-layer perceptron (MLP) network with L layers.
We label the input x = h(0) ∈ RN(0)

and layer activations h(k) ∈ RN(k)

for k = 1, . . . , L, where
N (k) is layer size. The layer activations are:

h(k) = f (k)(u(k)), u(k) = W(k)h(k−1) + b(k), (1)

where k ∈ {1, . . . L} is the layer index, f (k) are activation functions, W(k) weights, u(k) preactiva-
tions and b(k) biases. We consider input-output pairs (x,y) sampled from a joint distribution P (x,y).
The performance criterion is the mean square of the output error ϵ = h(L) − y, i.e., EP (x,y)[∥ϵ∥22].

2.2 Error Broadcast and Decorrelation loss functions

To guide the training of our neural network (which aims to minimize this MSE), we draw inspiration
from the fundamental principles of Minimum Mean Square Error (MMSE) estimation theory [42].
This theory defines an ideal estimator, denoted ŷ∗(x), which achieves the absolute minimum possible
MSE for a given joint data distribution P (x,y). A crucial characteristic of this optimal estimator is
its stochastic orthogonality property, which forms the theoretical cornerstone of our EBD approach.

Formally, considering input-output pairs (x,y) drawn from P (x,y), this optimal nonlinear MMSE
estimator is given by ŷ∗(x) = E[y|x] (its derivation and properties as the optimal MSE-minimizing

3

function are detailed in Appendix A, Lemma A.1). Its estimation error ϵ∗ = y − ŷ∗(x) satisfies:

E[g(x)ϵT∗] = 0, (2)

for any properly measurable function g(x) of the input x (see Appendix A, Lemma A.2). This means
ϵ∗ is orthogonal to g(x) (i.e., their expected outer product is zero). While this orthogonality property,
stated in Eq. (2), is foundational, its application in constructing estimators has predominantly been in
linear MMSE estimation. In that context, the estimator ŷ(x) is constrained to be a linear function of
x, and under the linearity constraint on the estimator, Eq. (2) is restricted to a form where g(x) = x.
This restricted orthogonality condition has long been used to derive parameters for linear estimators,
such as Wiener-Kolmogorov and Kalman filters [43].

A key aspect of our work is to leverage the full generality of the orthogonality condition Eq. (2) for
obtaining nonlinear estimators. For such estimators, this condition holds for any measurable function
g(x) and, crucially, is not only necessary but also sufficient for MMSE optimality (as established in
Appendix B, Theorem B.1). EBD distinctively employs this sufficiency as a constructive principle to
train nonlinear estimators, specifically the neural network parameters.

We model the neural network (Eq. (1)) as a parameterized nonlinear estimator fΘ(x) = h(L)(x; Θ)
and aim to satisfy Eq. (2) for its output error ϵ = fΘ(x)−y. We choose g(x) as the network’s hidden
layer activations h(k)(x; Θ(k)), where Θ(k) = (W(k),b(k)). This choice is motivated because:

(i). Since each hidden-layer activation is a nonlinear function of input x, the output error of
an optimal estimator should be stochastically orthogonal to those activations. Figure 1c
illustrates this phenomenon by showing the evolution of the average absolute correlation
between layer activations and the error signal during backpropagation training of an MLP
with three hidden layers on the CIFAR-10 dataset, based on the MSE criterion. Similar
correlation declining trends are also observed across different datasets and architectures (see
Appendix J). The declining correlation during MSE training reflects the MMSE estimator’s
stochastic orthogonality of layer activations and output errors.,

(ii). h(k) depends on layer parameters Θ(k), enabling their direct updates via differentiation,
(iii). if hidden-layer activations form a “rich enough” set of functions of x (as elaborated below),

then enforcing error orthogonality to them implies orthogonality to ”every” function of x.

Indeed, in Theorem B.2 of Appendix B, we show that when the hidden-layer activations—say, those
in the first layer—form a sufficiently rich basis (for example, becoming dense in L2(Px) as network
width tends to infinity), enforcing that the output error ϵ be orthogonal to these activations naturally
drives the estimator toward the true MMSE solution. Accordingly, we aim to enforce zero correlation
between the output error ϵ and hidden layer activations, or more generally their nonlinear functions:

R(k)
gϵ = E[g(k)(h(k))ϵT] = 0, k = 0, . . . , L, with the typical choice g(k)(h(k)) = h(k). (3)

Building on the orthogonality property and its established sufficiency for optimality (Appendix B,
Theorem B.1), we define layer-specific surrogate loss functions that enforce orthogonality conditions
with respect to the hidden layer activations. As demonstrated in Section 2.3, these losses yield an
alternative to backpropagation by broadcasting output errors directly to network nodes (Figure 1b).

Specifically, based on the stochastic orthogonality condition in Eq. (3), we propose minimizing the
Frobenius norm of the cross-correlation matrices R(k)

gϵ as a replacement for the standard MSE loss. To
this end, we define the estimated cross-correlation matrix between a function g(k) of layer activations
and the output error for batch m and layer k as

R̂(k)
gϵ [m] = λR̂(k)

gϵ [m− 1] +
1− λ
B

G(k)[m]E[m]T ,

where m is the batch index, λ ∈ [0, 1] is the forgetting factor used in the autoregressive estimation, B
is the batch size, R̂(k)

gϵ [0] is the initial value hyperparameter for the correlation matrix, and

G(k)[m] =
[
g(k)(h(k)[mB + 1]) . . . g(k)(h(k)[mB +B])

]
, (4)

is the matrix of nonlinearly transformed activations of layer k for batch m. In the above equation,
mB + l refers to absolute (sequence) index for the lth member of batch-m. Furthermore,

E[m] = [ϵ[mB + 1] . . . ϵ[mB +B]] , (5)

4

is the output error matrix for batch m. We then define the layer-specific loss function based on the
stochastic orthogonality condition for layer k as

J (k)(h(k), ϵ)[m] =
1

2

∥∥∥R̂(k)
gϵ [m]

∥∥∥2
F
, (6)

where ∥ · ∥F denotes the Frobenius norm. This loss function captures the sum of the squared
magnitudes of all cross-correlations between the components of the output error and the (potentially
transformed) activations of layer k. Thus, we refer to the minimization of this loss as decorrelation.

2.3 Error Broadcast and Decorrelation algorithm

The functions in Eq. (6) defines individual loss functions for each hidden layer, which are used to
adjust the layer parameters. These loss functions can be minimized using a gradient based algorithm.

To minimize the loss for layer k, we compute the gradient of the loss function J (k)(h(k), ϵ) with
respect to the weight W (k)

ij . The derivative can be decomposed into two terms:

∂J (k)(h(k), ϵ)

∂W
(k)
ij

[m] = ζTr

(
R̂(k)

gϵ [m]E[m]
∂G(k)[m]T

∂W
(k)
ij

)
︸ ︷︷ ︸

[∆W
(k)
1 [m]]ij

+ ζTr

(
R̂(k)

gϵ [m]
∂E[m]

∂W
(k)
ij

G(k)[m]T

)
︸ ︷︷ ︸

[∆W
(k)
2 [m]]ij

,

where ζ := (1− λ)/B. Similarly, the derivative with respect to the bias b(k)i is given by:

∂J (k)(h(k), ϵ)

∂b
(k)
i

[m] = ζTr

(
R̂(k)

gϵ [m]E[m]
∂G(k)[m]T

∂b
(k)
i

)
︸ ︷︷ ︸

[∆b
(k)
1 [m]]i

+ ζTr

(
R̂(k)

gϵ [m]
∂E[m]

∂b
(k)
i

G(k)[m]T

)
︸ ︷︷ ︸

[∆b
(k)
2 [m]]i

.

Here ∆W
(k)
1 ,∆b

(k)
1 [m] (∆W

(k)
2 ,∆b

(k)
2 [m]) represent the components of the gradients contain-

ing derivatives of activations (output errors) with respect to the layer parameters. As derived in
Appendix C.1, we obtain the closed-form expressions for ∆W

(k)
1 [m] and ∆b

(k)
1 [m]:

[∆W
(k)
1 [m]]ij = ζ

(m+1)B∑
n=mB+1

ϑ(k)[n]h
(k−1)
j [n], [∆b

(k)
1 [m]]i = ζ

(m+1)B∑
n=mB+1

ϑ(k)[n], (7)

where ϑ(k)[n] = g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n], g′(k)i and f ′(k) denote the derivatives of the

nonlinearity g(k) and the activation function f (k), respectively. The term q(k)[m] is defined as:

q(k)[m] = R̂(k)
gϵ [m] ϵ[m],

representing the projection of the output error onto the layer activations, with the cross-correlation
matrix R̂

(k)
gϵ [m] as the transformation matrix. These projections are shown in Figure 1b.

For the special case of batchsize, B = 1, the weight update in (7) simplifies to

[∆W
(k)
1 [m]]ij = ζg′

(k)
i (h

(k)
i [m])f ′

(k)
(u

(k)
i [m])q

(k)
i [m]h

(k−1)
j [m]. (8)

The update terms ∆W
(k)
1 [m] and ∆b

(k)
1 [m] aim to adjust the activations to gradually become

orthogonal to ϵ, as they are based on the derivatives of activations with respect to layer parameters.
In contrast, ∆W

(k)
2 [m] and ∆b

(k)
2 [m], derived from the derivatives of the output error, work to

push the output errors into a configuration more orthogonal to the activations. While both update
types strive for decorrelation, a critical distinction exists: ∆W

(k)
1 [m] and ∆b

(k)
1 [m] depend only

on layer activations and broadcast error signals, whereas ∆W
(k)
2 [m] and ∆b

(k)
2 [m] rely on signals

propagated backward from the output layer, resembling backpropagation (see Appendix C.2).

By focusing solely on ∆W
(k)
1 [m] and ∆b

(k)
1 [m], we eliminate the need for propagation terms, result-

ing in a completely localized update mechanism for training the neural network. This simplification to

5

localized updates is supported by their positive alignment with backpropagation and full (untruncated)
EBD gradient directions, as demonstrated in Appendix E.1 and E.2, respectively. Therefore, we
prescribe the Error Broadcast and Decorrelation (EBD) update expressions as:

W(k)[m+ 1] = W(k)[m]− µ(k)[m]∆W
(k)
1 [m], b(k)[m+ 1] = b(k)[m]− µ(k)[m]∆b

(k)
1 [m],

for k = 1, . . . , L − 1, where µ(k)[m] is the learning rate for layer k at batch m. Although these
updates resemble backpropagation, a key difference lies in the error signals: the backpropagated error
is replaced by the broadcasted error. Furthermore, the algorithm introduces flexibility by allowing the
choice of nonlinearity functions g(k), which influence the gradient terms ∆W

(k)
1 [m] and ∆b

(k)
1 [m].

For the final layer (k = L), we utilize the standard MMSE gradient update:

W(L)[m+ 1] = W(L)[m]− µ(L)[m]

B

(m+1)B∑
n=mB+1

(
f ′

(k)
(u(L)[n])⊙ ϵ[n]

)
h(L−1)[n]T ,

b(L)[m+ 1] = b(L)[m]− µ(L)[m]

B

(m+1)B∑
n=mB+1

f ′
(k)

(u(L)[n])⊙ ϵ[n],

where f ′(L) is the derivative of the activation function of the output layer.

2.4 Further EBD algorithm extensions

We propose further extensions to the EBD framework to address potential activation collapse, which
can arise when minimizing correlations is the sole objective. To prevent unit-level collapse, we
introduce power regularization, while entropy regularization is employed to prevent dimensional
collapse. Both regularizations can be implemented in ANNs as well as biologically plausible
networks. The biological plausibility of employing these regularizers in MLP-based EBD is discussed
in Appendix H.1. Although CorInfoMax-EBD inherently includes entropy regularization, it can also
benefit from the addition of power regularization for enhanced stability. Additionally, we introduce
forward layer activation projections to improve the algorithm’s versatility. We also extend the EBD
formulations to more complex architectures, including Convolutional Neural Networks (CNNs) and
Locally Connected (LC) networks. For further details on these extensions, please refer to Appendix D.

2.4.1 Avoiding collapse

A critical challenge with EBD is potential activation collapse, where decorrelation losses (Eq. (6)) are
minimized by driving activations h(k) → 0, even with non-zero output errors, undermining learning.
To counteract this, we introduce two complementary regularizers:

Power normalization: To prevent total activation collapse, power normalization (Eq. (9)) regulates
layer activation power around a target level P (k).

J
(k)
P (h(k))[m] =

N(k)∑
l=1

(B−1
(m+1)B∑
n=mB+1

h
(k)
l [n]2 − P (k))2, (9)

which simplifies to

J
(k)
P (h(k))[m] =

N(k)∑
l=1

(h
(k)
l [n]2 − P (k))2, (10)

for B = 1.

Layer entropy: To mitigate collapse into low-dimensional subspaces, which restricts expressiveness,
we incorporate layer entropy (Eq. (11)), building on prior work [44, 45].

J
(k)
E (h(k))[m] =

1

2
log det(R

(k)
h [m] + ε(k)I). (11)

6

Here, R(k)
h [m] is the layer autocorrelation matrix, updated autoregressively with forgetting factor λE :

R
(k)
h [m] = λER

(k)
h [m− 1] + (1− λE)

1

B
H(k)[m]H(k)[m]T , (12)

where H(k)[m] = [h(k)[mB + 1] . . . h(k)[(m+ 1)B]], (13)
is the activation matrix. Gradient derivations for these objectives are in Appendices C.3 and C.4.

2.4.2 Forward broadcast

In the EBD algorithm (Section 2.3), output errors are broadcast to layers to adjust weights and reduce
correlations with activations. To complement this, we introduce forward broadcasting, projecting
hidden layer activations onto the output layer to optimize the decorrelation loss by adjusting the
final layer’s parameters. Details are provided in Appendix C.5.

2.4.3 Extensions to other network architectures

The EBD approach is independent of network topology. We extend EBD to convolutional neural
networks (CNNs) in Appendix D.1 and to locally connected (LC) networks in Appendix D.2.

3 EBD for biologically realistic networks

h(k)
ih(k−1)

j

ϵ

q(k)
i

ΔW(k)
ij ∝ h(k−1)

j ⋅ q(k)
i ⋅ g′￼i

(k)(h(k)
i)f′￼

(k)(u(k)
i)

Pre-synaptic Post-synaptic Output Error
Synapse

Figure 2: Error–broadcast learning as a
three-factor synaptic update. The presynap-
tic firing rate h(k−1)j (green, left) projects onto the

postsynaptic neuron h(k)i (blue, centre) through the
synapse W

(k)
ij . A layer-specific broadcast of the

output error e → q
(k)
i (yellow, right) provides the

modulatory third factor that gates plasticity. Together,
presynaptic activity, postsynaptic non-linear deriva-
tives g′(k)i f ′(k) (blue rectangle), and the modulatory
signal form the product that drives the EBD weight
change ∆W

(k)
ij displayed underneath the circuit.

In the previous section, we introduced
the EBD algorithm within the context of
MLP networks. While MLPs can resemble
biologically plausible networks depending
on the credit assignment mechanism, in
this section, we extend the application
of the EBD approach to neural networks
that exhibit more biologically realistic
dynamics and architectures, motivated by
its inherent solutions to key neuroscientific
challenges: 1) EBD’s direct error broadcast
naturally resolves the problematic weight
symmetry requirement of BP, and 2) its
update rules intrinsically manifest as
modulated, extended Hebbian mechanisms
(three-factor learning), aligning with current
understanding of synaptic plasticity. In
the following subsections, we explore how
EBD relates to the biologically plausible
three-factor learning rule and demonstrate
its integration with the biologically more
realistic CorInfoMax networks [45].

3.1 Three factor learning rule and EBD

The three-factor learning rule for biological neural networks extends the traditional two-factor
Hebbian rule by incorporating a modulatory signal into synaptic updates based on presynaptic and
postsynaptic activity [13, 46]. While backpropagation can be expressed similarly, it is not typically
considered a three-factor rule in neuroscience, as its ’third factor’ is a locally tailored signal specific
to each neuron requiring a biologically implausible dual network with symmetric weights, unlike
global neuromodulatory signals [13]. In contrast, EBD update for batchsize B = 1 in (8) naturally
matches the three-factor structure:

∆W
(k)
ij ∝ g

′(k)
i (h

(k)
i)f ′

(k)
(u

(k)
i)︸ ︷︷ ︸

Postsynaptic

q
(k)
i︸︷︷︸

Modulatory

h
(k−1)
j︸ ︷︷ ︸

Presynaptic

,

where q(k)i is the projected global error. Thus, EBD supports various three-factor rules depending

on nonlinearity g(k). For example, g(k)i (h
(k)
i) = h

(k)
i

2
yields the error-modulated Hebbian update

7

[11, 47]: ∆W
(k)
ij ∝ h

(k)
i f ′

(k)
(u

(k)
i) q

(k)
i h

(k−1)
j . By enabling diverse three-factor updates via

different nonlinear functions, EBD holds potential for modeling biologically consistent neural
learning processes.

Figure 2 breaks the EBD weight update (8) into its three interacting factors. The presynaptic activity
h
(k−1)
j from the sending unit; the postsynaptic term is g′(k)i f ′(k) computed from the receiving unit’s

own activation; and the modulatory broadcast error q(k)i , derived from the network’s output error ϵ.
Multiplying these three quantities produces the weight change ∆W

(k)
ij shown beneath the diagram,

revealing that EBD naturally realises the classical three-factor learning rule in neural networks.

3.2 CorInfoMax-EBD: CorInfoMax with three factor learning rule

One of the significant advantages of the EBD framework is its flexibility to broadcast output errors
into network nodes, which can be leveraged to transform time-contrastive, biologically plausible
approaches into non-contrastive forms. To illustrate this property, we propose a modification of the
recently introduced CorInfoMax framework [45] (see Appendix F for a summary). The CorInfoMax
approach uses correlative information flow between layers as its objective function:

JCI [m] =

L−1∑
k=1

(Î(εk)r (h(k−1),h(k))[m] + Î
(εk)
l (h(k),h(k+1))[m]), where,

Î(εk)r (h(k),h(k+1))[m] = 0.5 log det(R̂h(k+1) [m] + εkI)− 0.5 log det(R̂→
e

(k+1) [m] + εkI),

Î
(εk)
l (h(k),h(k+1))[m] = 0.5 log det(R̂h(k) [m] + εkI)− 0.5 log det(R̂←

e
(k) [m] + εkI),

are alternative forms of correlative mutual information between nodes, defined in terms of the
correlation matrices of layer activations, i.e., R̂h(k) and forward and backward prediction errors
(R̂→

e
(k+1) and R̂←

e
(k)). Here, forward/backward prediction errors are defined by

→
e
(k+1)

[n] = h(k+1)[n]−W(f,k)[m]h(k)[n],
←
e
(k)

[n] = h(k)[n]−W(b,k)[m]h(k+1)[n],

respectively. Here, W(f,k)[m] (W(b,k)[m]) is the forward (backward) prediction matrix for layer k.

This objective leads to network dynamics corresponding to a structure with feedforward and feedback
prediction weights, and lateral connections B(k) that maximize layer entropy. In the original work
[45], the two-phase EP approach [22] is proposed to train the network weights. As an alternative,
we propose employing the EBD update rule to replace the two-phase EP adaptation. The proposed
CorInfoMax-EBD algorithm is described by the following update equations defined in Algorithm 1.

Algorithm 1 CorInfoMax-EBD Algorithm for Updating Weights in Layer k
Input: Batch size B, layer index k, iteration step m, learning rates µ(f,k), µ(b,k), µ(df ,k), µ(db,k), µ(dl,k),
factors λd, λE , γE , activations H(k) in Eq. (13), the nonlinear function of layer activations G(k) in Eq. (4)
and their derivatives G(k)

d in Eq. (28), the derivative of activations F(k)
d in Eq. (29), output error E in Eq. (5),

prediction errors
←
E

(k)

and
→
E

(k)

in Eq. (54)-(55), lateral outputs Z(k) in Eq. (56).
Output: Updated weights W(f,k), W(b,k), B(k).
Step 1: Update error projection weights: R̂

(k)
gϵ [m] = λdR̂

(k)
gϵ [m− 1] + 1−λd

B
G(k)[m]E[m]T

Step 2: Project errors to layer k: Q(k)[m] = R̂
(k)
gϵ [m]E[m]

Step 3: Find the gradient of the nonlinear function of activations for layer k:

Φ(k)[m] = F
(k)
d [m]⊙Q(k)[m]⊙G

(k)
d [m]

Step 4: Update forward, backward and lateral weights for layer k:

W(f,k)[m] = W(f,k)[m− 1] +

(
B−1µ(f,k)[m]

→
E

(k)

[m]−B−1µ(df ,k)[m]Φ(k)[m]

)
H(k−1)[m]T

W(b,k)[m] = W(b,k)[m− 1] +

(
B−1µ(b,k)[m]

←
E

(k)

[m]−B−1µ(db,k)[m]Φ(k)[m]

)
H(k+1)[m]T

B(k)[m] = λ−1
E B(k−1)[m]−B−1γEZ

(k)[m]Z(k)[m]T −B−1µ(dl,k)[m]Φ(k)[m]H(k)[m]T

8

Table 1: Accuracy (%) results for MLP, CNN, and LC networks on MNIST and CIFAR-10. Best and
second-best results are bold and underlined. GEVB results are from Clark et al. [9].

Dataset Model DFA DFA+E NN- MS- BP EBD
(ours) GEVB GEVB (MSE) (ours)

MNIST
MLP 98.1±0.21 98.2±0.03 98.1 97.7 98.7±0.05 98.2±0.08
CNN 99.1±0.05 99.1±0.07 97.7 98.2 99.5±0.04 99.1±0.07
LC 98.9±0.03 98.9±0.04 98.2 98.2 99.1±0.04 98.9±0.04

CIFAR-10
MLP 52.1±0.33 52.2±0.49 52.4 51.1 56.4±0.33 55.5±0.19
CNN 58.4±1.59 58.6±0.66 66.3 61.6 75.2±0.28 66.4±0.43
LC 62.2±0.21 62.1±0.19 58.9 59.9 67.8±0.27 64.3±0.26

Table 2: Accuracy (%) results for the CNN on CIFAR-100.
Dataset Model DFA BP (CE) EBD (ours)

CIFAR-100 CNN 41.9±0.32 60.5±0.17 45.9±0.69

Here, we assume layer activations H(k), forward (backward) prediction errors
→
E (
←
E), output error E,

and lateral weight outputs Z are computed via CorInfoMax network dynamics in [45] (see Appendix
F). Integrating EBD enables single-phase updates per input, eliminating the less biologically plausible
two-phase mechanism required by CorInfoMax-EP. EP’s two-phase approach—separate label-free
and label-connected phases—is implausible, as biological neurons unlikely alternate between distinct
global phases for learning. Our method simplifies the process, aligns more closely with biological
learning, and achieves comparable or superior performance to CorInfoMax-EP (see Section 4).

The CorInfoMax-EBD scheme introduced in this section is more biologically plausible than the
earlier MLP-based EBD formulation, as its learning rules can be implemented through local
mechanisms such as lateral and three-factor Hebbian/anti-Hebbian updates, realistic neuron models
with apical and basal dendrites, and feedback via backward predictors. Additionally, both the entropy
and power normalization terms in CorInfoMax are realizable using biologically plausible operations,
particularly in the online setting with single-sample updates. See Appendix H.2 for further discussion.

4 Numerical experiments

In this section, we evaluate the performance of the proposed Error Broadcast and Decorrelation (EBD)
approach on benchmark datasets: MNIST [48] and CIFAR-10/100 [49]. For experiments with MNIST
and CIFAR-10 involving MLP, CNN and LC, we use the same architectures used in [9]; while for
CIFAR-100 we adopt a CNN architecture closely following that of [41]. We also tested the proposed
CorInfoMax-EBD model against the CorInfoMax-EP model of [45]. More details about architectures,
implementations, hyperparameter selections, and experimental outputs are provided in the Appendix I.

EBD test accuracy results compared to BP (with MSE criterion) and three error-broadcast methods:
DFA without and with entropy regularization (DFA-E) [6], global error vector broadcasting
(nonnegative-(NN-GEVB) and mixed-sign-(MS-GEVB))[9] are in Table 1 for both MNIST and
CIFAR-10. Under our training setup, BP yielded comparable test accuracies for these datasets with
both MSE and Cross-Entropy losses, though we report only the MSE results. In addition, CIFAR-100
results of EBD compared to BP (with Cross-Entropy criterion) and DFA is given in Table 2. Lastly, the
test accuracies for biological CorInfoMax networks trained with EP and EBD methods are in Table 3.

These results show that EBD-trained networks achieve equivalent performance on the MNIST dataset
and significantly better performance on the CIFAR-10 and CIFAR-100 datasets compared to other
error broadcasting methods. These improvements of EBD in Table 1 over DFA can be attributed
to the adaptability of error projection weights in EBD. The improvement of CorInfoMax-EBD over
CorInfoMax-EP in Table 3 can be attributed to CorInfoMax-EBD incorporating error decorrelation in
updating lateral weights, whereas CorInfoMax-EP relies only on (anti-)Hebbian updates. Particularly
noteworthy is the performance of CorInfoMax-EBD, which not only substantially improves upon
the original CorInfoMax-EP on CIFAR-10 (e.g., 55.79% vs. 50.97% for 3-layers with batch size
20) but also demonstrates encouraging scalability with depth, with a 10-layer CorInfoMax-EBD
achieving 96.38% on MNIST and 54.89% on CIFAR-10 using online learning (batch size 1). This
highlights EBD’s potential in deeper, more complex biological networks.

9

Table 3: Accuracy (%) results for EP and EBD CorInfoMax (CIM) algorithms on MNIST and CIFAR-
10. Best and second-best are bold and underlined. Column marked with [*] is from Bozkurt et al. [45].

CIM-EP [*] CIM-EBD (Ours) CIM-EBD (Ours) CIM-EBD (Ours)
Dataset 3-Layers 3-Layers 3-Layers 10-Layers

(batch size : 20) (batch size : 20) (batch size : 1) (batch size : 1)

MNIST 97.6 97.5±0.12 94.9±0.16 96.4±0.11
CIFAR-10 51.0 55.7±0.17 53.4±0.33 54.9±0.58

5 Conclusions, extensions and limitations

Conclusions. We introduced the Error Broadcast and Decorrelation framework, a biologically
plausible alternative to backpropagation. EBD addresses the credit assignment problem by
minimizing correlations between layer activations and output errors, offering fresh insights into
biologically realistic learning. This approach provides a theoretical foundation for existing error
broadcast mechanisms and three-factor learning rules in biological neural networks and facilitates
flexible implementations in neuromorphic and artificial neural systems. EBD’s error-broadcasting
mechanism aligns with biological processes using local updates, and notably, has proven effective for
training deep recurrent biologically-plausible networks (e.g., the 10-layer CorInfoMax-EBD), thereby
addressing a key challenge in effectively scaling deep, biologically plausible learning with local rules.
Moreover, EBD’s simplicity and parallelism suit efficient hardware, like neuromorphic systems.

Extensions. The MMSE orthogonality property underlying EBD offers significant promise for new
algorithms, deeper theoretical understanding, and neural network analysis in both artificial and bio-
logical contexts. Further theoretical extensions, drawing from the groundwork laid in Appendix B.2,
could focus on deriving tighter convergence guarantees for EBD in practical (finite-width) settings
and on investigating the impact of more adaptive choices for the decorrelation functions g(k). In
addition, EBD provides theoretical underpinnings for error-broadcast mechanisms with three-factor
learning rules, enabling the conversion of two-phase contrastive methods into a single-phase approach.
We are currently unaware of similar theoretical properties for alternative loss functions. Finally, our
numerical experiments in Appendix J.2 reveal that similar decorrelation behavior occurs for networks
trained with backpropagation and categorical cross entropy loss, suggesting that decorrelation may
be a general feature of the learning process and an intriguing avenue for further investigation.

Impact and limitations. This paper seeks to advance the fields of Machine Learning and Computa-
tional Neuroscience by proposing a novel learning mechanism. As a foundational learning algorithm,
we do not identify specific negative societal impacts arising directly from the EBD mechanisms
beyond general considerations common to advancements in machine learning. While EBD offers a
theoretically-grounded framework for error broadcast based and three factor learning that has yielded
competitive (and in some cases, superior) performance against other error-broadcast methods on the
presented benchmarks, several aspects warrant future investigation:

Scalability: The current work evaluates EBD on MLP, CNN, LC and recurrent biological networks
for image classification tasks like MNIST and CIFAR-10. Results on the 10-layer CorInfoMax-
EBD demonstrate the potential to scale EBD to deeper, biologically realistic recurrent architectures
using online learning. However, assessing EBD’s performance on significantly larger datasets, or
its applicability to diverse large-scale architectures in other domains, remains an important open
direction. While related methods like DFA have been explored in such contexts [41], comprehensive
empirical validation of EBD itself under those conditions is needed.

Computational Cost and Hyperparameters: The dynamic updating of error projection matrices R̂(k)
gϵ

and the optional inclusion of regularization terms like layer entropy (discussed in Appendix G and
Appendix I.7) contribute to computational and memory overhead compared to simpler schemes like
DFA with fixed projectors, or standard backpropagation. EBD also introduces several hyperparameters
(e.g., learning rates for decorrelation and regularization, forgetting factors) that require careful tuning,
although this offers flexibility. Future work could explore more efficient update mechanisms or
automated tuning strategies.

10

Acknowledgements

This work was supported by KUIS AI Center Research Award. C.P. was supported by an NSF
CAREER Award (IIS-2239780) and a Sloan Research Fellowship. This work has been made possible
in part by a gift from the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute
for the Study of Natural and Artificial Intelligence.

References
[1] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

[2] Francis Crick. The recent excitement about neural networks. Nature, 337:129–132, 1989.

[3] Jeffrey C Magee and Christine Grienberger. Synaptic plasticity forms and functions. Annual
Review of Neuroscience, 43(1):95–117, 2020.

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

[5] Justin Werfel, Xiaohui Xie, and H Seung. Learning curves for stochastic gradient descent in
linear feedforward networks. Advances in Neural Information Processing Systems, 16, 2003.

[6] Arild Nokland. Direct feedback alignment provides learning in deep neural networks. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

[7] Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the machine: Random backpropagation
and the deep learning channel. Artificial Intelligence, 260:1–35, July 2018. doi: 10.1016/j.artint.
2017.06.003.

[8] James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain.
Trends in Cognitive Sciences, 23(3):235–250, 2019.

[9] David Clark, L.F. Abbott, and SueYeon Chung. Credit assignment through broadcasting a
global error vector. In Advances in Neural Information Processing Systems, 2021.

[10] Ziao Wang, Kilian Müller, Matthew Filipovich, Julien Launay, Ruben Ohana, Gustave Pariente,
Safa Mokaadi, Charles Brossollet, Fabien Moreau, Alessandro Cappelli, et al. Optical training
of large-scale transformers and deep neural networks with direct feedback alignment. arXiv
preprint arXiv:2409.12965, 2024.

[11] Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics
in wide neural networks. In International Conference on Learning Representations, 2022.

[12] Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with
direct feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

[13] Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eli-
gibility traces and plasticity on behavioral time scales: experimental support of neohebbian
three-factor learning rules. Frontiers in Neural Circuits, 12:53, 2018.

[14] Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulat-
ing hebbian plasticity with errors. Current Opinion in Neurobiology, 46:170–177, 2017.

[15] James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algo-
rithm in a predictive coding network with local hebbian synaptic plasticity. Neural Computation,
29(5):1229–1262, 2017.

[16] Shanshan Qin, Nayantara Mudur, and Cengiz Pehlevan. Contrastive similarity matching for
supervised learning. Neural Computation, 33(5):1300–1328, 2021.

11

[17] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87,
1999.

[18] Siavash Golkar, Tiberiu Tesileanu, Yanis Bahroun, Anirvan Sengupta, and Dmitri Chklovskii.
Constrained predictive coding as a biologically plausible model of the cortical hierarchy. Ad-
vances in Neural Information Processing Systems, 35:14155–14169, 2022.

[19] Yanis Bahroun, Shagesh Sridharan, Atithi Acharya, Dmitri B Chklovskii, and Anirvan M
Sengupta. Unlocking the potential of similarity matching: Scalability, supervision and pre-
training. arXiv preprint arXiv:2308.02427, 2023.

[20] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for
boltzmann machines. Cognitive Science, 9(1):147–169, 1985.

[21] Randall C O’Reilly. Biologically plausible error-driven learning using local activation differ-
ences: The generalized recirculation algorithm. Neural Computation, 8(5):895–938, 1996.

[22] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in Computational Neuroscience, 11:24,
2017.

[23] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

[24] Matilde Tristany Farinha, Thomas Ortner, Giorgia Dellaferrera, Benjamin Grewe, and Angeliki
Pantazi. Efficient biologically plausible adversarial training. arXiv preprint arXiv:2309.17348,
2023.

[25] Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit
assignment problem without a backward pass. In International Conference on Machine Learning,
pages 4937–4955. PMLR, 2022.

[26] Yann Le Cun. Learning process in an asymmetric threshold network. In Disordered Systems
and Biological Organization, pages 233–240. Springer, 1986.

[27] Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

[28] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propa-
gation. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pages
498–515. Springer, 2015.

[29] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature Communications,
7(1):13276, 2016.

[30] John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings
of 1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pages
1375–1380. IEEE, 1994.

[31] Li Ji-An and Marcus K Benna. Deep learning without weight symmetry. arXiv preprint
arXiv:2405.20594, 2024.

[32] Wan-Duo Kurt Ma, J P Lewis, and W Bastiaan Kleijn. The hsic bottleneck: Deep learning
without back-propagation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5085–5092, 2020.

[33] Amir Dembo and Thomas Kailath. Model-free distributed learning. IEEE Transactions on
Neural Networks, 1(1):58–70, 1990.

[34] Gert Cauwenberghs. A fast stochastic error-descent algorithm for supervised learning and
optimization. Advances in Neural Information Processing Systems, 5, 1992.

12

[35] Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic
perturbation of conductances. Physical Review Letters, 97(4):048104, 2006.

[36] Mohamed Akrout, Colin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed.
Deep learning without weight transport. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[37] Corentin Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed ran-
dom learning signals allow for feedforward training of deep neural networks. Frontiers in
Neuroscience, 15:629892, 2021.

[38] Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-plausible learning
algorithms can scale to large datasets. In International Conference on Learning Representations
(ICLR), 2019.

[39] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. Advances in Neural Information Processing Systems, 31, 2018.

[40] Donghyeon Han and Hoi-jun Yoo. Efficient convolutional neural network training with direct
feedback alignment. arXiv preprint arXiv:1901.01986, 2019.

[41] Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in Neural Information
Processing Systems, 33:9346–9360, 2020.

[42] Athanasios Papoulis and S Unnikrishna Pillai. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill Europe: New York, NY, USA, 2002.

[43] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice-Hall information
and system sciences series. Prentice Hall, 2000. ISBN 9780130224644.

[44] Serdar Ozsoy, Shadi Hamdan, Sercan O Arik, Deniz Yuret, and Alper T. Erdogan. Self-
supervised learning with an information maximization criterion. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[45] Bariscan Bozkurt, Cengiz Pehlevan, and Alper T. Erdogan. Correlative information maximiza-
tion: a biologically plausible approach to supervised deep neural networks without weight
symmetry. Advances in Neural Information Processing Systems, 37, 2023.

[46] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

[47] Yonatan Loewenstein and H Sebastian Seung. Operant matching is a generic outcome of
synaptic plasticity based on the covariance between reward and neural activity. Proceedings of
the National Academy of Sciences, 103(41):15224–15229, 2006.

[48] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[49] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from
tiny images. Technical Report Technical Report, University of Toronto, 2009.

[50] Anuran Makur. Inference and information lecture notes. Lecture Notes, 2017. URL
https://www.cs.purdue.edu/homes/amakur/docs/6.437%20Recitation%20Notes%
20Anuran%20Makur.pdf. Purdue University, Department of Computer Science.

[51] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing mini-
mization with randomization in learning. In Daphne Koller, Dale Schuurmans, Yoshua Bengio,
and Léon Bottou, editors, Advances in Neural Information Processing Systems 21 (NIPS 2008),
pages 1313–1320. Curran Associates, Inc., 2008.

13

https://www.cs.purdue.edu/homes/amakur/docs/6.437%20Recitation%20Notes%20Anuran%20Makur.pdf
https://www.cs.purdue.edu/homes/amakur/docs/6.437%20Recitation%20Notes%20Anuran%20Makur.pdf

[52] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In
2008 46th Annual Allerton Conference on Communication, Control, and Computing, pages
555–561. IEEE, 2008.

[53] Yitong Sun, Anna C. Gilbert, and Ambuj Tewari. On the approximation properties of random
ReLU features. arXiv preprint arXiv:1810.04374, 2018.

[54] Alex TL Leong, Russell W Chan, Patrick P Gao, Ying-Shing Chan, Kevin K Tsia, Wing-Ho
Yung, and Ed X Wu. Long-range projections coordinate distributed brain-wide neural activity
with a specific spatiotemporal profile. Proceedings of the National Academy of Sciences, 113
(51):E8306–E8315, 2016.

[55] Leena Ali Ibrahim, Shuhan Huang, Marian Fernandez-Otero, Mia Sherer, Yanjie Qiu, Spurti
Vemuri, Qing Xu, Robert Machold, Gabrielle Pouchelon, Bernardo Rudy, et al. Bottom-up inputs
are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform
cells. Neuron, 109(21):3473–3485, 2021.

[56] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. URL http://yann.lecun.com/exdb/mnist/.

[57] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

[58] Tony F Chan, Gene H Golub, and Randall J LeVeque. Updating formulae and a pairwise
algorithm for computing sample variances. In COMPSTAT 1982 5th Symposium held at
Toulouse 1982: Part I: Proceedings in Computational Statistics, pages 30–41. Springer, 1982.

14

http://yann.lecun.com/exdb/mnist/

Appendix

Table of contents

A Preliminaries on nonlinear Minimum Mean Square Error (MMSE) estimation 17

B On the stochastic orthogonality condition based network training 18

B.1 The stochastic orthogonality condition and linear MMSE estimation 18

B.2 The use of stochastic orthogonality conditions for nonlinear MMSE estimation . . 18

C The derivation of update terms 22

C.1 ∆W1 and ∆b1 calculation . 22

C.2 ∆W2 and ∆b2 calculation . 23

C.3 Update corresponding to the layer entropy regularization 24

C.4 Update corresponding to the power normalization regularization 25

C.5 On the EBD with forward projections . 25

D Additional extensions of EBD 27

D.1 Extensions to Convolutional Neural Networks (CNNs) 27

D.2 Extensions to Locally Connected (LC) Networks 29

E Gradient alignment in EBD 31

E.1 Alignment between EBD updates and backpropagation gradients 31

E.2 On gradient truncation and biological plausibility 32

F Background on online Correlative Information Maximization (CorInfoMax) based
biologically plausible neural networks 33

F.1 The derivation of the CorInfoMax network . 33

F.2 CorInfoMax-EP learning dynamics . 34

F.3 CorInfoMax-EP . 35

G Implementation complexity of the EBD approach 36

G.1 Complexity analysis: Error Propagation vs. Error Broadcast 36

H On the biologically plausible nature of Entropy and Power-normalization updates 39

H.1 MLP implementation with Entropy and Power-normalization regularizations 39

H.2 CorInfoMax-EBD implementation . 39

H.3 Summary and conclusions . 40

I Supplementary on numerical experiments 41

I.1 Architectures . 41

I.2 CorInfoMax-EBD . 42

I.3 Multi-Layer Perceptron . 46

15

I.4 Convolutional Neural Network . 48

I.5 Locally Connected Network . 50

I.6 Implementation details for Direct Feedback Alignment (DFA) and backpropagation
training . 51

I.7 Runtime comparisons for the update rules . 52

I.8 Reproducibility . 52

I.9 Computational resources . 52

I.10 Accuracy and loss curves . 53

J Calculation of the correlation between layer activations and output error 56

J.1 Correlation in the mean squared error (MSE) criterion-based training 56

J.2 Correlation in the cross-entropy criterion-based training 57

16

A Preliminaries on nonlinear Minimum Mean Square Error (MMSE)
estimation

Let y ∈ Rp and x ∈ Rn represent two non-degenerate random vectors with a joint probability density
function fyx(y,x) and conditional density fy|x(y|x). The goal of nonlinear minimum mean square
error (MMSE) estimation is to find an estimator function b : Rn → Rp that minimizes the mean
squared error (MSE), which is defined as:

MSE(b) = E[∥y − b(x)∥22].

Lemma A.1. The best nonlinear MMSE estimate of y given x is:

b∗(x) = Ey|x(y|x).

The proof of Lemma A.1 relies on the following fundamental result (see, for example, Papoulis and
Pillai [42]), which is central to the development of the entire EBD framework in the current article:
Lemma A.2. The estimation error for b∗(x) = Ey|x[y|x], denoted as e∗ = y−b∗(x), is orthogonal
to any vector-valued function g : Rn → Rk of x. Formally, we have:

E[e∗g(x)T] = 0.

Proof. (Lemma A.2) The proof follows simple steps:

E[e∗g(x)T] = Ex

[
Ey|x

[
(y − Ey|x[y|x])g(x)T |x

]]
= Ex

[(
Ey|x[y|x]− Ey|x[y|x]

)
g(x)T

]
= 0.

Using Lemma A.2, we can now prove Lemma A.1:

Proof. (Lemma A.1) Let b : Rn → Rp be any arbitrary function. The corresponding MSE can be
written as:

MSE(b) = E[∥y − b(x)∥22].

By adding and subtracting Ey|x[y|x], we can decompose the error as:

MSE(b) = E
[
∥y − Ey|x[y|x] + Ey|x[y|x]− b(x)∥22

]
= E[∥y − Ey|x[y|x]∥22) + E(∥Ey|x[y|x]− b(x)∥22)
+ 2E[(y − Ey|x[y|x])T (Ey|x[y|x]− b(x)))

= E[∥y − Ey|x[y|x]∥22] + E[∥Ey|x(y|x)− b(x)∥22]
+ 2E

[
Tr
(
(y − Ey|x[y|x])(Ey|x[y|x]− b(x))T

)]
= E[∥y − Ey|x[y|x]∥22] + E[∥Ey|x[y|x]− b(x)∥22]
+ 2Tr(E[e∗(Ey|x[y|x]− b(x))T]).

The third term, representing the cross product, vanishes by Lemma A.2, leaving us with:

MSE(b) = E[∥y − b∗(x)∥22] + E[∥b∗(x)− b(x)∥22].

Since the second term is always non-negative, the MSE is minimized when b(x) = b∗(x).

17

B On the stochastic orthogonality condition based network training

This appendix provides further theoretical grounding for the Error Broadcast and Decorrelation (EBD)
framework, addressing the use of the nonlinear Minimum Mean Square Error (MMSE) orthogonality
condition for deriving estimators and the implications of orthogonality in high-dimensional spaces.
We begin by re-establishing the geometric interpretation of stochastic orthogonality in the linear
MMSE setting. We then demonstrate the sufficiency of the nonlinear MMSE orthogonality condition
for an estimator to be optimal. Crucially, we address, under reasonable assumptions, how the EBD
algorithm, by enforcing orthogonality to hidden unit activations, can approximate orthogonality to
arbitrary measurable functions of the input, particularly in the infinite width limit. Finally, we briefly
touch upon the scaling of these orthogonality conditions.

B.1 The stochastic orthogonality condition and linear MMSE estimation

Within the context of this article, stochastic orthogonality refers to statistical uncorrelatedness. The
term orthogonality is defined within a Hilbert space of random variables, where the inner product
between two random variables a and b is given by:

⟨a, b⟩ ≜ E[ab]. (14)

Here, the inner product is defined as the expected value of their product, which corresponds to their
correlation. Two random variables a and b are said to be orthogonal if their inner product is zero:

⟨a, b⟩ = E[ab] = 0. (15)

Thus, two random variables are orthogonal if and only if their correlation is zero (see, for example,
Kailath et al. [43], Chapter 3).

In the context of Minimum Mean Square Error (MMSE) estimation, where the goal is to estimate
a vector y ∈ Rp from observations x ∈ Rn, it is known (e.g., Lemma A.2 in Appendix A) that the
error e∗ of the optimal MMSE estimator ŷ∗(x) satisfies:

E
[
e∗g(x)

⊤] = 0p×k, (16)

where g : Rn → Rk is an arbitrary vector-valued measurable function of x. This equation states that
the cross-correlation matrix between the nonlinear function of the input g(x) and the output error e∗
is a p× k zero matrix.

The matrix equation in Eq. (16) can be expressed more explicitly as p · k zero-correlation conditions:

E [e∗,i · gj(x)] = 0, i = 1, . . . , p, j = 1, . . . , k. (17)

Using the inner product definition in Eq. (14), we can rewrite Eq. (17) as p ·k stochastic orthogonality
conditions:

⟨e∗,i, gj(x)⟩ = 0, i = 1, . . . , p, j = 1, . . . , k. (18)

This geometric interpretation, where correlation is viewed as an inner product, is foundational. In the
linear MMSE estimation setting, the orthogonality condition in (18) is restricted by choosing g(x) to
be linear functions of x, most commonly the identity mapping, i.e., g(x) = x. This leads to:

⟨e∗,i, xj⟩ = 0, i = 1, . . . , p, j = 1, . . . , n. (19)

These linear orthogonality conditions are fundamental and are used in reverse to derive the parameters
of linear MMSE estimators, such as the Wiener and Kalman filters [43]. The estimator’s structure is
assumed (linear), and its parameters are found by enforcing these orthogonality conditions.

B.2 The use of stochastic orthogonality conditions for nonlinear MMSE estimation

The principle of using orthogonality conditions to define estimators extends to the nonlinear domain.
A key question is whether the nonlinear MMSE orthogonality condition can be similarly used ”in
reverse” to identify optimal nonlinear estimators.

18

B.2.1 The sufficiency of the nonlinear MMSE orthogonality condition

The nonlinear orthogonality principle states that for an optimal nonlinear MMSE estimator, the
estimation error is orthogonal to any measurable function of the input. The following theorem
establishes that this is not only a necessary condition but also a sufficient one, providing a strong
theoretical basis for using these conditions to define and seek optimal estimators [50].
Theorem B.1 (Nonlinear MMSE Estimation and Orthogonality Condition). Let y ∈ Rp and x ∈ Rn

be random vectors with a joint probability distribution. An estimator ŷ(x) is the optimal nonlinear
MMSE estimator, ŷMMSE(x), if and only if the error e = y − ŷ(x) satisfies:

E[e · g(x)⊤] = 0p×k

for all measurable functions g : Rn → Rk for any k ≥ 1.

Proof. The necessity part (⇒), i.e., if ŷ(x) = ŷMMSE(x), then the orthogonality condition holds, is
a standard result (established, for instance, in Lemma A.2 Appendix A).

Here we prove the sufficiency part (⇐). Let fΘ(x) be an estimator such that its error eΘ = y− fΘ(x)
satisfies the orthogonality condition:

E[(y − fΘ(x)) · g(x)⊤] = 0p×kg
(20)

for all measurable functions g : Rn → Rkg (where kg is the dimension of g(x)). Consider the
difference between fΘ(x) and the true MMSE estimator ŷMMSE(x). We can write:

y − fΘ(x) = (y − ŷMMSE(x)) + (ŷMMSE(x)− fΘ(x)).

Substituting this into the assumed orthogonality condition for fΘ(x):

E[((y − ŷMMSE(x)) + (ŷMMSE(x)− fΘ(x))) · g(x)⊤] = 0p×kg .

By linearity of expectation:

E[(y − ŷMMSE(x)) · g(x)⊤] + E[(ŷMMSE(x)− fΘ(x)) · g(x)⊤] = 0.

The first term is zero due to the (necessary) orthogonality property of the MMSE estimator
ŷMMSE(x). Therefore, we are left with:

E[(ŷMMSE(x)− fΘ(x)) · g(x)⊤] = 0, (21)

for any measurable function g(x). Choosing g(x) = ŷMMSE(x)− fΘ(x), and taking the trace of
Eq. (21), and applying the cyclic property of the trace operator, we obtain

E[∥ŷMMSE(x)− fΘ(x)∥22] = 0.

Since ∥ŷMMSE(x)− fΘ(x)∥22 is a non-negative random variable, its expectation being zero implies
that ∥ŷMMSE(x)− fΘ(x)∥22 = 0 almost surely. This means ŷMMSE(x)− fΘ(x) = 0 almost surely,
or fΘ(x) = ŷMMSE(x) almost surely. Thus, fΘ(x) is the optimal MMSE estimator.

This theorem provides a strong justification: if we can find an estimator fΘ(x) whose error y− fΘ(x)
is orthogonal to all measurable functions of x, then fΘ(x) is indeed the optimal MMSE estimator.
This underpins the EBD framework’s objective.

B.2.2 From orthogonality to hidden units to arbitrary functions: an infinite width perspective

A critical point is that Theorem B.1 requires the estimation error to be orthogonal to any measurable
function g(x) of the input. However, the EBD algorithm, as practically implemented, enforces
orthogonality of the output error eΘ(x) = y − fΘ(x) to the activations of the network’s hidden units,
h
(k)
j (x). The question is whether satisfying these more limited orthogonality conditions is sufficient

to approach the true MMSE estimator. We argue that in the limit of infinite network width, this can
indeed be the case.

The argument relies on the universal approximation capabilities of wide neural networks:

19

• Rahimi and Recht showed that a hidden layer with random i.i.d. Gaussian weights and
appropriately chosen biases (e.g., uniform for Fourier features) can linearly approximate
functions within a corresponding Reproducing Kernel Hilbert Space (RKHS)Hk associated
with a shift-invariant kernel k [51, 52]. Specifically, for a function in Hk, N such hidden
units (random features) can achieve an expected L2(PX) approximation error of order
1/
√
N , assuming the input distribution PX has compact support.

• Building on this, Sun et.al. analyzed random ReLU networks, where hidden units are of
the form ReLU(w⊤x) with w ∼ N (0, I) [53]. They demonstrated that the RKHS induced
by the corresponding random feature kernel is dense in L2(PX) under mild conditions
on PX . This establishes the universality of random ReLU features for approximating any
square-integrable function with the linear combination of that hidden layer units.

Our initial setting for the EBD framework—specifically, a first hidden layer with ReLU activations
initialized with random i.i.d. Gaussian weights—is essentially the same as the random ReLU feature
setting analyzed in [53]. Although weights change during training, one might hypothesize that in the
infinite width limit and with sufficiently controlled learning rates (to limit the deviation of weights
from their initial distribution), the set of first hidden layer activations {h(1)i (x)}N(1)

i=1 could retain its
universal approximation capability. This is an area for future rigorous analysis.

Under this crucial assumption that the (potentially trained) first hidden layer activations {h(1)i (x)}N(1)

i=1

can form a basis that is dense in L2(PX) as N (1) →∞, we can state the following result concerning
an estimator that achieves perfect orthogonality with these activations.
Theorem B.2 (Convergence to MMSE for Estimators Orthogonal to a Dense Basis of First-Layer
Activations). Let fΘ(x) be an estimator for y given x. Assume its error eΘ(x) = y − fΘ(x)
satisfies the orthogonality condition with respect to a set of N (1) first-layer hidden unit activations
{h(1)i (x)}N(1)

i=1 :

⟨y − fΘ(x), h(1)i (x)⟩ = 0, for i = 1, . . . , N (1). (22)

Further assume that the linear span of these activations {h(1)i (x)}N(1)

i=1 is dense in L2(PX) as
N (1) → ∞. That is, for any g(x) ∈ L2(PX) and any ε > 0, there exists a sufficiently large N (1)

and a linear combination ĝ(1)(x) =
∑N(1)

i=1 cih
(1)
i (x) such that:∥∥∥g(x)− ĝ(1)(x)∥∥∥

L2(PX)
≤ ε. (23)

Then, as ε→ 0 (corresponding to the infinite width limit where N (1) →∞), fΘ(x) converges to the
optimal MMSE estimator fMMSE(x) in the L2(PX) sense:

∥fMMSE(x)− fΘ(x)∥L2(PX) → 0.

Proof. Consider the inner product between the error of the estimator fΘ(x), eΘ(x) = y − fΘ(x),
and an arbitrary function g(x) ∈ L2(PX). We can write:

⟨y − fΘ(x), g(x)⟩ = ⟨y − fΘ(x), g(x)− ĝ(1)(x) + ĝ(1)(x)⟩
= ⟨y − fΘ(x), g(x)− ĝ(1)(x)⟩+ ⟨y − fΘ(x), ĝ(1)(x)⟩.

The second term, ⟨y − fΘ(x), ĝ
(1)(x)⟩ =

〈
y − fΘ(x),

∑N(1)

j=1 cjh
(1)
j (x)

〉
=
∑N(1)

j=1 cj⟨y −

fΘ(x), h
(1)
j (x)⟩, is zero due to the assumed orthogonality condition (22). Thus, we are left with the

first term. Applying the Cauchy-Schwarz inequality and using the denseness assumption Eq. (23):

|⟨y − fΘ(x), g(x)⟩| = |⟨y − fΘ(x), g(x)− ĝ(1)(x)⟩|
≤ ∥y − fΘ(x)∥L2(PX)∥g(x)− ĝ(1)(x)∥L2(PX)

≤ ∥eΘ(x)∥L2(PX) · ε. (24)

This shows that as ε → 0, the error eΘ(x) becomes orthogonal to any g(x) ∈ L2(PX), i.e.,
⟨y − fΘ(x), g(x)⟩ → 0.

20

Now, let fMMSE(x) be the true MMSE estimator. By definition, its error eMMSE(x) = y −
fMMSE(x) is orthogonal to any g(x) ∈ L2(PX), so ⟨y − fMMSE(x), g(x)⟩ = 0. We can rewrite
the left side of Eq. (24) as:

⟨y − fΘ(x), g(x)⟩ = ⟨(y − fMMSE(x)) + (fMMSE(x)− fΘ(x)), g(x)⟩
= ⟨y − fMMSE(x), g(x)⟩+ ⟨fMMSE(x)− fΘ(x), g(x)⟩
= 0 + ⟨fMMSE(x)− fΘ(x), g(x)⟩
= ⟨fMMSE(x)− fΘ(x), g(x)⟩.

Substituting this back into the inequality Eq. (24):

|⟨fMMSE(x)− fΘ(x), g(x)⟩| ≤ ∥eΘ(x)∥L2(PX) · ε. (25)

This inequality holds for any g(x) ∈ L2(PX). We can choose g(x) = fMMSE(x)−fΘ(x) (assuming
this difference is in L2(PX)). This yields:

∥fMMSE(x)− fΘ(x)∥2L2(PX) ≤ ∥eΘ(x)∥L2(PX) · ε.

As ε→ 0 (corresponding to N (1) →∞ under the denseness assumption), and assuming the error
of the estimator fΘ(x), ∥eΘ(x)∥L2(PX), remains bounded, the right-hand side approaches zero.
Therefore:

∥fMMSE(x)− fΘ(x)∥2L2(PX) → 0,

which implies fΘ(x)→ fMMSE(x) in the L2(PX) sense.

Discussion of Theorem B.2: This theorem is significant because it elucidates the properties of an
estimator that achieves the specific orthogonality targeted by the EBD algorithm with respect to its
first-layer hidden units. Theorem B.1 established that orthogonality to all measurable functions is
sufficient for MMSE optimality. Theorem B.2 demonstrates that, if an estimator’s error is perfectly
orthogonal to its first-layer hidden unit activations, and if these activations form a dense basis (a
condition motivated by infinite-width random feature networks), then such an estimator indeed
converges to the true MMSE solution. This provides a theoretical rationale for the EBD algorithm’s
objective: by striving to decorrelate output errors with hidden unit activations, EBD aims to satisfy the
premise of this theorem. The result offers a theoretical justification for how achieving orthogonality
with respect to a practical, finite set of internal network features can, under idealized conditions of
network width and feature richness, lead to overall MMSE optimality. The ”meaningfulness” of these
orthogonality constraints, even in high-dimensional spaces, is thus linked to the expressive power of
the network’s learned features. The theorem hinges on the denseness of the feature space generated
by the first hidden layer and the perfect satisfaction of the orthogonality conditions. Formalizing
the conditions under which EBD effectively approximates these conditions and the extent to which
universality of features is preserved during training remain important directions for future research.

B.2.3 EBD framework objective

The EBD framework designs loss functions that aim to satisfy the orthogonality conditions discussed.
Specifically, for a network fΘ(x), the target is to achieve:

⟨y − fΘ(x), h(k)j (x)⟩ = 0, for all output components, layers k, and units j. (26)

By minimizing decorrelation losses based on Eq. (26), particularly for a universal first layer as
analyzed in Theorem B.2, the network is guided towards the MMSE optimal solution. The practical
EBD algorithm uses empirical estimates of these correlations and updates network weights to
minimize their magnitudes.

B.2.4 Scaling of orthogonality conditions for nonlinear MMSE

The generality of the stochastic orthogonality condition in Eq. (18) for nonlinear estimators allows, in
principle, for an even greater expansion of the number of constraints. If the error e∗(x) of the optimal
MMSE estimator is orthogonal to any g(x), it is also orthogonal to any function of its own hidden
unit activations, gm(h

(k)
j (x)), since h(k)j (x) is itself a function of x. Thus, one could enforce:

⟨eEBD,i(x), gm(h
(k)
j (x))⟩ = E

[
eEBD,i(x) · gm(h

(k)
j (x))

]
= 0, (27)

21

for i = 1, . . . , p, j = 1, . . . , N (k), and for a set of M different nonlinear functions gm(·). This
extension could potentially introduce a greater diversity of updates and more strongly enforce
the conditions for MMSE optimality. While this approach theoretically increases the number of
constraints and might offer benefits, it also increases computational complexity and has not been
pursued in our current numerical experiments. The practical benefit versus the added cost of enforcing
orthogonality against more complex functions of hidden units remains an open question. The primary
EBD algorithm focuses on gm(h

(k)
j) = h

(k)
j .

C The derivation of update terms

In this section, we present the detailed derivations for the EBD algorithm and its variations, as
introduced in Section 2.3.

C.1 ∆W1 and ∆b1 calculation

In Section 2.3, we defined the weight update elemet [∆W1]ij as follows:

ζTr

(
R̂(k)

gϵ [m]E[m]
∂G(k)[m]T

∂W
(k)
ij

)
.

The derivative term in this expression can be expanded as

∂G(k)[m]

∂W
(k)
ij

= ei


g′

(k)
i (h

(k)
i [mB + 1])f ′

(k)
(u

(k)
i [mB + 1])h

(k−1)
j [mB + 1]

g′
(k)
i (h

(k)
i [mB + 2])f ′

(k)
(u

(k)
i [mB + 2])h

(k−1)
j [mB + 2]

...
g′

(k)
i (h

(k)
i [(m+ 1)B])f ′

(k)
(u

(k)
i [(m+ 1)B])h

(k−1)
j [(m+ 1)B]


T

,

where ei represents the standard basis vector with all elements set to zero, except for the element at
index i, which is equal to 1.

By defining the matrix

Q(k)[m] = R̂(k)
gϵ [m]E[m] =

[
q(k)[mB + 1] . . . q(k)[(m+ 1)B]

]
,

which represents the projection of the output error onto layer k, we can express the weight update as:

[∆W
(k)
1 [m]]ij = ζ

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n]h

(k−1)
j [n].

To further simplify this expression, we introduce the matrices:

G
(k)
d [m] =

[
g(k)′(h(k)[mB + 1]) g(k)′(h(k)[mB + 2]) . . . g(k)′(h(k)[(m+ 1)B])

]
, (28)

F
(k)
d [m] =

[
f (k)
′
(u(k)[mB + 1]) f (k)

′
(u(k)[mB + 2]) . . . f (k)

′
(u(k)[(m+ 1)B])

]
, (29)

and Z(k)[m] = G
(k)
d [m]⊙ F

(k)
d [m]⊙Q(k)[m], which allows us to express the weight update in a

more compact form:

∆W
(k)
1 [m] = ζZ(k)[m]H(k−1)[m]T .

Following a similar procedure, the bias update is given by:

∆b
(k)
1 [m] = ζZ(k)[m]1B×1.

22

C.2 ∆W2 and ∆b2 calculation

In Section 2.3, we defined the weight update element [∆W2]ij involving the derivative of the output
error as

ζTr

(
R̂(k)

gϵ [m]
∂E[m]

∂W
(k)
ij

G(k)[m]T

)
.

To begin, we consider the derivative term:

∂ϵ

∂W
(k)
ij

,

which can be expanded as

∂ϵ

∂W
(k)
ij

=
∂ϵ

∂h(L)︸ ︷︷ ︸
I

∂h(L)

∂u(L)︸ ︷︷ ︸
diag(f ′(k)(u(L)))

∂u(L)

∂h(L−1)︸ ︷︷ ︸
W(L)

∂h(L−1)

∂u(L−1)︸ ︷︷ ︸
diag(f ′(k)(u(L−1)))

. . .

. . .
∂h(k+1)

∂u(k+1)︸ ︷︷ ︸
diag(f ′(k)(u(k+1)))

∂u(k+1)

∂h(k)︸ ︷︷ ︸
W(k+1)

∂h(k)

∂u(k)︸ ︷︷ ︸
diag(f ′(k)(u(k)))

∂u(k)

∂W
(k)
ij︸ ︷︷ ︸

eih
(k−1)
j

This expression reflects propagation terms, from the output back to the layer k. Defining Φ(L)[n] =

diag(f (L)′(u(L)[n])), and

Φ(k)[n] = Φ(k+1)[n]W(k+1)[m]diag(f ′(k)(u(k)[n])),

we obtain
∂ϵ[n]

∂W
(k)
ij

= Φ(k)[n]h
(k−1)
j [n]ei.

Thus, the derivative of the error at time step n with respect to W (k)
ij can be written as:

ζTr

(
R(k)

gϵ [m]
∂E[m]

∂W
(k)
ij

G(k)[m]T

)
=

ζTr

R(k)
gϵ [m]

(m+1)B∑
n=mB+1

∂ϵ[n]

∂W
(k)
ij

g(k)(h(k)[n])T

 .

Substituting the definition g̃(k)[n] = R
(k)
gϵ [m]Tg(k)(h(k)[n]), we obtain:

ζTr

(
Rg(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
,

= ζTr

 (m+1)B∑
n=mB+1

h
(k−1)
j [n]Φ(k)[n]eig̃

(k)[n]T

 ,

= ζ

(m+1)B∑
n=mB+1

eTj h
(k−1)[n]g̃(k)[n]TΦ(k)[n]ei,

= eTi

ζ (m+1)B∑
n=mB+1

Φ(k)[n]T g̃(k)[n]h(k−1)T

 ej .

Now, defining:

ψ(k)[n] = Φ(k)[n]T g̃(k)[n],

23

and assembling these into the matrix:

Ψ(k)[m] =
[
ψ(k)[mB + 1] ψ(k)[mB + 2] . . . ψ(k)[(m+ 1)B]

]
,

we can compactly express the weight and bias updates as:

∆W
(k)
2 [m] = ζΨ(k)[m]H(k−1)[m]T ,

∆b
(k)
2 [m] = ζΨ(k)[m]1B×1.

C.3 Update corresponding to the layer entropy regularization

In Section 2.4.1, we introduced the layer entropy objective as

J
(k)
E (h(k))[m] =

1

2
log det(R

(k)
h [m] + ε(k)I) (30)

where,

R
(k)
h [m] = λER

(k)
h [m− 1] + (1− λE)

1

B
H(k)[m]H(k)[m]T , and,

H(k)[m] = [h(k)[mB + 1] .. h(k)[(m+ 1)B]]. (31)

The derivative of the entropy objective in Eq. (30) with respect to Wij is given by

∂J
(k)
E [m]

∂W
(k)
ij

= Tr

(
∇

R
(k)
h [m]+ε(k)I

JE [m] ·
∂(R

(k)
h [m] + ε(k)I)

∂W
(k)
ij

)

=
2(1− λE)

B
Tr

(
(R

(k)
h [m] + ε(k)I)−1H(k)[m]

∂H(k)[m]

∂W
(k)
ij

T
)

In this expression, the derivative term can be explicitly written as

∂H(k)[m]

∂W
(k)
ij

= F
(k)
d [m]⊙ ∂(W(k)H(k−1)[m] + b(k))

∂W
(k)
ij

= F
(k)
d [m]⊙ (eie

T
j H

(k−1)[m])

= ei(Fd
(k)
i,: [m]⊙H

(k−1)
j,: [m])

∂J
(k)
E [m]

∂W
(k)
ij

=
2(1− λE)

B
Tr
(
(R

(k)
h [m] + ε(k)I)−1H(k)[m](Fd

(k)
i,: [m]⊙H

(k−1)
j,: [m])TeTi

)
=

2(1− λE)
B

Tr
(
(((R

(k)
h [m] + ε(k)I)−1H(k)[m])⊙ Fd

(k)[m])H(k−1)[m]Teje
T
i

)
=

2(1− λE)
B

eTi (((R
(k)
h [m] + ε(k)I)−1H(k)[m])⊙ Fd

(k)[m])H(k−1)[m]Tej

=
2(1− λE)

B

[
(((R

(k)
h [m] + ε(k)I)−1H(k)[m])⊙ Fd

(k)[m])H(k−1)[m]T
]
ij

Consequently, we obtain

∇W(k)J
(k)
E [m] =

2(1− λE)
B

(((R
(k)
h [m] + ε(k)I)−1H(k)[m])⊙ Fd

(k)[m])H(k−1)[m]T . (32)

Through a similar derivation, we also obtain

∇b(k)J
(k)
E [m] =

2(1− λE)
B

(((R
(k)
h [m] + ε(k)I)−1H(k)[m])⊙ Fd

(k)[m])1B×1. (33)

24

C.4 Update corresponding to the power normalization regularization

In Section 2.4.1, we introduced power normalization objective as,

J
(k)
P (h(k))[m] =

N(k)∑
l=1

 1

B

(m+1)B∑
n=mB+1

h
(k)
l [n]2 − P (k)

2

.

The derivative of this objective with respect to W (k)
ij can be written as

∂J
(k)
P [m]

W
(k)
ij

= 4

 1

B

(m+1)B∑
n=mB+1

h
(k)
i [n]2 − P (k)


︸ ︷︷ ︸

di[m]

 1

B

(m+1)B∑
n=mB+1

h
(k)
i [n]f (k)

′
(u(k)[n])

∂h
(k)
i [n]

∂W
(k)
ij



= 4di[m]

 1

B

(m+1)B∑
n=mB+1

h
(k)
i [n]f (k)

′
(u(k)[n])h

(k−1)
j [n]

 .

Therefore, the gradient of the power-normalization objective with respect to W(k) can be written as

∇W(k)J
(k)
P [m] =

4

B
D[m](H(k)[m]⊙ F

(k)
d)H(k−1)[m]T , (34)

where D[m] = diag(d1[m], d2[m], . . . , dN(k) [m]). The gradient with respect to b(k) can be obtained
in a similar way as

∇b(k)J
(k)
P [m] =

4

B
D[m](H(k)[m]⊙ F

(k)
d)1B×1. (35)

C.5 On the EBD with forward projections

In the EBD algorithm introduced in Section 2.3 , output errors are broadcast to individual layers
to modify their weights, thereby reducing the correlation between hidden layer activations and
output errors. To enhance this mechanism, we introduce forward broadcasting, where hidden layer
activations are projected onto the output layer. This projection facilitates the optimization of the
decorrelation loss by adjusting the parameters of the final layer more effectively.

The purpose of forward broadcasting is to enhance the network’s ability to minimize the decorrelation
loss by directly influencing the final layer’s weights using the activations from the hidden layers. By
projecting the hidden layer activations forward onto the output layer, we establish a direct pathway
for these activations to impact the adjustments of the final layer’s weights. This mechanism allows
the final layer to update its parameters in a way that reduces the correlation between the output errors
and the hidden layer activations. Consequently, the errors at the output layer are steered toward being
orthogonal to the hidden layer activations.

This mechanism could potentially be effective because the final layer is responsible for mapping the
network’s internal representations to the output space. By incorporating information from earlier
layers, we enable the final layer to align its parameters more closely with the features that are most
relevant for reducing the overall error.

While the proposed forward broadcasting mechanism is primarily motivated by performance optimiza-
tion, it can conceptually be related to the long-range [54] and bottom-up [55] synaptic connections
in the brain, which allow certain neurons to influence distant targets. These long-range bottom-up
connections are actively being researched, and incorporating similar mechanisms into computational
models could enhance their alignment with biological neural processes. By integrating mechanisms
that mirror these neural pathways, forward broadcasting may be useful for modeling how information
is transmitted across different neural circuits.

C.5.1 Gradient derivation for the EBD with forward projections

We derive the gradients of the layer decorrelation losses with respect to the parameters of the final
layer. The partial derivative of the objective function J (k)(h(k), ϵ) with respect to the final layer

25

weights can be written as:

∂J (k)(h(k), ϵ)

∂W
(L)
ij

[m] = ζTr

(
R̂g(h(k))ϵ[m]

∂(E[m]G(k)[m]T)

∂W
(L)
ij

)

= ζTr

(
R̂g(h(k))ϵ[m]

∂E[m]

∂W
(L)
ij

G(k)[m]T

)
︸ ︷︷ ︸

[∆W(L,k),f [m]]ij

,

= ζTr

Rg(h(k))ϵ[m]

(m+1)B∑
n=mB+1

∂ϵ[n]

∂W
(L)
ij

g(h(k)[n])T

 .

Substituting the definition g̃(k)[n] = Rg(h(k))ϵ[m]Tg(h(k)[n]), we can further express the partial
derivative as:

∂J (k)(h(k), ϵ)

∂W
(L)
ij

[m] = ζTr

 (m+1)B∑
n=mB+1

h
(L−1)
j [n]Φ(L)[n]eig̃

(k)[n]T

 ,

= ζ

(m+1)B∑
n=mB+1

eTj h
(L−1)[n]g̃(k)[n]TΦ(L)[n]ei,

= eTi

ζ (m+1)B∑
n=mB+1

Φ(L)[n]T g̃(k)[n]h(L−1)T

 ej ,

= eTi

ζ (m+1)B∑
n=mB+1

(f ′(u(L)[n])⊙ g̃(k)[n])h(L−1)T

 ej .

Next, defining the following terms:

ψ(k,L)[n] = f ′(u(L)[n])⊙ g̃(k)[n],

and assembling them into the matrix:

Ψ(k,L)[m] =
[
ψ(k,L)[mB + 1] ψ(k,L)[mB + 2] . . . ψ[(m+ 1)B]

]
,

we can write the weight update as:

∆W(L,k),f [m] = ζΨ(k,L)[m]H(k−1)[m]T .

Following a similar procedure, the bias update can be written as:

∆b(L,k),f [m] = ζΨ(k,L)[m]1B×1.

Based on these expressions, we can write

[∆W(L,k),f [m]]ij = ζ

(m+1)B∑
n=mB+1

f (L)′(u
(L)
i [n])g̃

(k)
i [n]h

(L−1)
j

[∆b(L,k),f [m]]i = ζ

(m+1)B∑
n=mB+1

f (L)′(u
(L)
i [n])g̃

(k)
i [n].

26

D Additional extensions of EBD

D.1 Extensions to Convolutional Neural Networks (CNNs)

Let H(k) ∈ RP (k)×M(k)×N(k)

represent the output of the kth layer of a Convolutional Neural Network
(CNN), where P (k) is the number of channels and the layer’s output is M (k) ×N (k) dimensional.
Furthermore, we use W(k,p) ∈ RP (k−1)×Ω(k)×Ω(k)

and b(k,p) ∈ R to represent the filter tensor
weights and bias coefficient respectively for the channel-p of the kth layer, and Ω(k) is the symmetric
convolution kernel size. Then a convolutional layer can be defined as

H(k,p) = f(U (k,p)), (36)

U (k,p) = (H(k−1) ∗W(k,p)) + b(k,p), (37)

where the symbol ”∗” represents the convolution 1 operation that acts upon both the spatial and
channel dimensions to generate the pth channel of kth layer output H(k,p), and f is the nonlinearity
acted on the convolution output.

D.1.1 Error Broadcast and Decorrelation formulation

Similar to Eq. (3), we have the cross-correlation between output errors ϵ and the arbitrary function of
the kth layer activation of the pth channel denoted as g(k)(H(k,p)), for each layer and spatial indexes
r ∈ Z : 1 ≤ r ≤M (k) and s ∈ Z : 1 ≤ s ≤ N (k) as

Rg(k)(H(k,p))ϵ[q, r, s] = E[g(k)(H(k,p)[r, s])ϵq] = 0. (38)

Then this cross-correlation must ideally be zero due to the stochastic orthogonality condition. We can
then write the loss for layer-k at batch-m as:

J (k)(H(k,p), ϵ)[m] =
1

2

nc∑
q=1

∥∥∥R̂g(k)(H(k,p))ϵ[m, q, :, :]
∥∥∥2
F
, (39)

where R̂g(H(k),p)ϵ is the recurrently estimated cross-correlation using the training batches. Then we
can optimize the network by taking the derivative of the loss function with respect to the weight
W

(k,p)
hij corresponding to input channel h and weight spatial indexes i, j ∈ Z : 1 ≤ i, j ≤ Ω(k) as

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
hij

= ζ

nc∑
q=1

(m+1)B∑
n=mB+1

ϵq[n] · Tr

(
(R̂g(k)(H(k,p))ϵ[m, q, :, :]

T ∂g
(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

)

= ζ

nc∑
q=1

(m+1)B∑
n=mB+1

∑
r,s

ϵq[n]

[
(R̂g(k)(H(k,p))ϵ[m, q, :, :]⊙

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

]
[r,s]

,

(40)

in which nc is the error dimension, N (k) and M (k) are the width and height of the kth layer, and the
derivative with respect to the ϵ term is neglected. The inner partial derivative term can be written as

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

= g′
(k)

(H(k,p)[n, :, :])⊙ ∂H(k,p)[n, :, :]

∂W
(k,p)
hij

, (41)

and using the Eq. (36) and Eq. (37),

∂H(k,p)[n, :, :]

∂W
(k,p)
hij

= f ′(U (k,p)[n, :, :])⊙ (E(k)hij ∗H
(k−1)[n, :, :]). (42)

1Although we call it as convolution, in CNNs, the actual operation used is the correlation operation where
the kernel is unflipped.

27

where E(k)hij ∈ RP (k−1)×Ω(k)×Ω(k)

is a Kronecker delta tensor that occurs as the gradient of W(k,p)

with respect to W
(k,p)
hij . Combining the expressions, we have

ϕ[n, p, :, :] =

nc∑
q=1

ϵq[n]·
(
R̂g(k)(H(k,p))ϵ[n, q, :, :]⊙ g(k)(H(k,p)[n, :, :])⊙ f ′(U (k,p)[n, :, :])

)
. (43)

Then, combining the Equations (40), (41), (42), and then writing the convolution explicitly, we have

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
hij

= ζ

(m+1)B∑
n=mB+1

∑
r,s

[
ϕ[n, p, :, :]⊙ (E(k)hij ∗H

(k−1)[n, :, :])
]
[r,s]

= ζ

(m+1)B∑
n=mB+1

∑
r,s

ϕ[n, p, r, s] ·

 ∑
h′,i′,j′

E(k)hij [h
′, i′, j′] ·H(k−1,h′)[n, r + i′, s+ j′]

 .

By the definition of the delta function E(k)hij and writing the resulting expression as a 2D convolution
between H(k−1) and ϕ respectively, we have

=ζ

(m+1)B∑
n=mB+1

∑
r,s

ϕ[n, p, r, s] ·H(k−1,h)[n, r + i, s+ j]

=ζ

(m+1)B∑
n=mB+1

[
ϕ[n, p, :, :] ∗H(k−1,h)[n, :, :]

]
[i,j]

.

The resulting expression for the weight update is:

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
h

= ζ

(m+1)B∑
n=mB+1

(ϕ[n, p, :, :] ∗H(k−1,h)[n, :, :]). (44)

Similarly, it can be shown that the bias update:

∂J (k)(H(k,p), ϵ)[m]

∂b(k,p)
= ζ

(m+1)B∑
n=mB+1

N(k)∑
r=1

M(k)∑
s=1

ϕ[n, p, r, s].

The convolutional layer parameters can be trained using these gradient formulas for each layer
separately, and can be calculated by utilizing the batched convolution operation.

D.1.2 Weight entropy objective

The layer entropy objective is computationally cumbersome for a convolutional layer that has multiple
dimensions. Therefore, we propose the weight-entropy objective to avoid dimensional collapse

J
(k)
E (W(k)) =

1

2
log det(R

W
(k) + ε(k)I),

where we define W
(k) ∈ RP (k)×P (k−1).Ω(k).Ω(k)

as the unraveled version of the full size weight
tensor W(k), and the covariance matrix R

W
(k) is conditionally defined as:

R
W

(k) =

{
W

(k)T
W

(k)
, if P (k) ≥ P (k−1).Ω(k).Ω(k),

W
(k)

W
(k)T

, otherwise,

to decrease its dimensions and reduce the computational costs for further steps. Then, the derivative
of this objective can be written as:

∆J
(k)
E (W(k)) =

W
(k)

R−1
W

(k) , if P (k) ≥ P (k−1).Ω(k).Ω(k),

R−1
W

(k)W
(k)
, otherwise.

Therefore, ∂JE(W(k))

∂W
(k,p)
hij

can be obtained by reshaping ∆J
(k)
E (W(k)) as the weight tensor W(k).

28

D.1.3 Activation sparsity regularization

To further regularize the model, we enforce the layer activation sparsity loss that is given as

J
(k)
ℓ1

(H(k,p)) =
∥H(k,p)∥1
|H(k,p)∥2

. (45)

The gradient of the sparsity loss with respect to the hidden layer can be written as:

∆J
(k)
ℓ1

(H(k,p)) =
1

∥H(k,p)∥2
sign(H(k,p))− ∥H

(k,p)∥
∥H(k,p)∥32

H(k,p). (46)

Then, the gradient of the loss with respect to the model weights can be calculated in a similar manner
as the Eq. (44):

∂J
(k)
ℓ1

(H(k,p))[m]

∂W
(k,p)
h

=
1

B

(m+1)B∑
n=mB+1

(
∆J

(k)
ℓ1

(H(k,p))[n, p, :, :] ∗H(k−1,h)[n, :, :]

)
.

D.2 Extensions to Locally Connected (LC) Networks

Let H(k) ∈ RP (k)×M(k)×N(k)

represent the output of the kth layer of a Locally Connected Network
(LC), where P (k) is the number of channels and the layer’s output is M (k) ×N (k) dimensional. We
use W(k,p,r,s) ∈ RP (k−1)×Ω(k)×Ω(k)

and b(k,p,r,s) ∈ R to represent the filter tensor weights and bias
coefficient at spatial locations r ∈ Z : 1 ≤ r ≤ M (k) and s ∈ Z : 1 ≤ s ≤ N (k), for channel-p
of the kth layer, where Ω(k) is the local receptive field size. Then a locally connected layer can be
defined as

H(k,p) = f(U (k,p)), (47)

U (k,p) = (H(k−1) ⊛W(k,p)) + b(k,p), (48)
where the symbol ”⊛” represents the locally connected operation which acts upon both the spatial and
channel dimensions, but without weight sharing across spatial locations, generating the pth channel
of the kth layer output H(k,p), and f is the nonlinearity applied to the result.

D.2.1 Error Broadcast and Decorrelation formulation

For the LC network, the stochastic orthogonality condition and the corresponding loss
J (k)(H(k,p), ϵ)[m] for layer-k at batch-m can be written equivalently as Eq. (38) and Eq. (39) respec-
tively. Then the optimization can be performed by taking the derivative of the loss function with re-
spect to W

(k,p,r,s)
hij corresponding to input channel h, weight spatial indexes i, j ∈ Z : 1 ≤ i, j ≤ Ω(k)

as

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

= ζ

nc∑
q=1

(m+1)B∑
n=mB+1

ϵq[n] · Tr

(
(R̂g(k)(H(k,p))ϵ[m, q, :, :]

T ∂g
(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

)

= ζ

nc∑
q=1

(m+1)B∑
n=mB+1

∑
r,s

ϵq[n]

[
(R̂g(k)(H(k,p))ϵ[m, q, :, :]⊙

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

]
[r,s]

.

(49)

The inner partial derivative term can be written as

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

= g′
(k)

(H(k,p)[n, :, :])⊙ ∂H(k,p)[n, :, :]

∂W
(k,p,r,s)
hij

, (50)

and using Eq. (47) and Eq. (48), we obtain:

∂H(k,p)[n, :, :]

∂W
(k,p,r,s)
hij

= f ′(U (k,p)[n, :, :])⊙ (E(k)hij ⊛H(k−1)[n, :, :]). (51)

29

Here, E(k,r,s)hij ∈ RP (k−1)×Ω(k)×Ω(k) ×M (k) ×N (k) is a Kronecker delta tensor that occurs as the

gradient of W(k,p) with respect to W
(k,p,r,s)
hij . Combining the expressions in Eq. (49), Eq. (50),

Eq. (51), and the expression for ϕ as in Eq. (43) which is equivalent for both CNNs and LCs, and
then writing the locally connected operation explicitly, we have

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

= ζ

(m+1)B∑
n=mB+1

∑
r,s

[
ϕ[n, p, :, :]⊙ (E(k,r,s)hij ⊛H(k−1)[n, :, :])

]
[r,s]

= ζ

(m+1)B∑
n=mB+1

ϕ[n, p, r, s] ·

 ∑
h′,i′,j′

r′,s′

E(k,r,s)hij [h′, i′, j′, r′, s′] ·H(k−1,h′)[n, r′ + i′, s′ + j′]

 .

Then, by the definition of the Kronecker delta, the resulting expression for the weight update is:

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

= ζ

(m+1)B∑
n=mB+1

(
ϕ[n, p, r, s] ·H(k−1,h)[n, r + i, s+ j]

)
. (52)

Similarly, it can be shown that the bias update is:

∂J (k)(H(k,p), ϵ)[m]

∂b(k,p,r,s)
= ζ

(m+1)B∑
n=mB+1

ϕ[n, p, r, s].

D.2.2 Weight entropy objective

Similar to CNNs, we propose the weight-entropy objective to avoid dimensional collapse in LCs

J
(k)
E (W(k)) =

1

2
log det(R

W
(k) + ε(k)I),

where we define W
(k) ∈ RP (k)×P (k−1).M(k).N(k).Ω(k).Ω(k)

as the unraveled version of the full size
weight tensor W(k), then the covariance matrix R

W
(k) is defined as:

R
W

(k) = W
(k)T

W
(k)
.

Then, the derivative of this objective can be written as:

∆J
(k)
E (W(k)) = W

(k)
R−1

W
(k)

∂JE(W(k))

∂W
(k,p,r,s)
hij

can be obtained by reshaping ∆J
(k)
E (W(k)) as the weight tensor W(k).

D.2.3 Activation sparsity regularization

The layer activation sparsity loss for the LC is the same as the one given for the CNN in Eq. (45),
with its gradient with respect to the activations as in Eq. (46). Then, the gradient of the loss with
respect to the model weights can be calculated in a similar manner as the expression in Eq. (52):

∂J
(k)
ℓ1

(H(k))[m]

∂W
(k,p,r,s)
hij

=
1

B

(m+1)B∑
n=mB+1

(
∆J

(k)
ℓ1

(H(k))[n, p, r, s]⊛H(k−1,h)[n, r + i, s+ j]

)
.

30

E Gradient alignment in EBD

E.1 Alignment between EBD updates and backpropagation gradients

To investigate the relationship between the EBD update directions and the gradients produced by
backpropagation (BP), we analyze the cosine similarity between the EBD update vectors and the
corresponding BP gradients throughout training. This analysis quantifies how well the EBD learning
dynamics align with traditional gradient-based optimization methods.

We conduct experiments on two architectures: a 3-layer multilayer perceptron (MLP) and a locally
connected (LC) network, both trained on CIFAR-10. Figure 3 and Figure 4 illustrate the cosine
similarity between EBD updates and BP gradients at each training epoch.

Figure 3: Cosine similarity between EBD updates and backpropagation gradients in a 3-layer MLP
trained on CIFAR-10. Alignment is consistently positive and improves during training.

Figure 4: Cosine similarity between EBD updates and backpropagation gradients in a locally
connected network on CIFAR-10. Positive alignment indicates directional consistency between EBD
and BP.

These results demonstrate that EBD update directions are not arbitrary but align with the descent
direction of the loss function as indicated by BP, supporting its effectiveness as a gradient-free but
principled optimization strategy.

31

E.2 On gradient truncation and biological plausibility

The decorrelation objective used in EBD naturally decomposes into two sets of parameter updates
per layer k:

(∆W
(k)
1 ,∆b

(k)
1) and (∆W

(k)
2 ,∆b

(k)
2).

Here, (∆W (k)
1 ,∆b

(k)
1) corresponds to updates that modify the hidden representation to reduce

correlation with the output error, while (∆W
(k)
2 ,∆b

(k)
2) corresponds to updates that aims to reshape

the error signal itself.

For reasons of local learning and biological plausibility, EBD retains only the (∆W
(k)
1 ,∆b

(k)
1)

component and drops the error-shaping terms (∆W
(k)
2 ,∆b

(k)
2), thereby avoiding the backward

propagation of gradients through the network.

To assess the impact of this truncation, we measured the cosine similarity between the full gradient
(which includes both components) and the truncated update used in EBD. As shown in Figure 5, the
truncated update direction remains consistently aligned with the full gradient throughout training on
CIFAR-10 using a 3-layer MLP. This positive alignment suggests that the retained component is
sufficient for effective learning, validating our simplification.

Figure 5: Cosine similarity between the full decorrelation gradient (including (∆W
(k)
2 ,∆b

(k)
2)) and

the truncated EBD update (only (∆W
(k)
1 ,∆b

(k)
1)). Positive similarity confirms that the truncated

update remains a valid descent direction.

32

F Background on online Correlative Information Maximization
(CorInfoMax) based biologically plausible neural networks

Bozkurt et.al. recently proposed a framework, which we refer as CorInfoMax-EP, to address weight
symmetry problem corresponding to backpropagation algorithm Bozkurt et al. [45]. In this section,
we provide a brief summary of this framework.

The CorInfoMax-EP framework utilizes an online optimization setting to maximize correlative
information between two consequitive layers:

L−1∑
k=0

Î(ϵ)(h(k),h(k+1))[m]− β

2
∥y[m]− h(L)[m]∥22,

where Î(ϵ)(h(k),h(k+1))[m] is the correlative mutual information between layers k and k + 1, and
the term on the right corresponds to the mean square error between the network output h(L)[m]
and the training label y[m]. This framework utilizes two alternative but equivalent forms for the
correlative mutual information

Î(εk)r (h(k),h(k+1))[m] =
1

2
log det(R̂h(k+1) [m] + εkI)−

1

2
log det(R̂→

e
(k+1)

∗
[m] + εkI),

Î
(εk)
l (h(k),h(k+1))[m] =

1

2
log det(R̂h(k) [m] + εkI)−

1

2
log det(R̂←

e
(k)

∗
[m] + εkI),

defined in terms of the correlation matrices of layer activations, i.e., R̂h(k) and the correlation matrices
of forward and backward prediction errors (R̂→

e
(k+1)

∗
and R̂←

e
(k)

∗
) between two consequitive layers.

Here, forward/backward prediction errors are defined by

→
e
(k+1)

∗ [n] = h(k+1)[n]−W(f,k)[m]h(k)[n],
←
e
(k)

∗ [n] = h(k)[n]−W(b,k)[m]h(k+1)[n],

respectively. Here, W(f,k)[m] (W(b,k)[m]) is the forward (backward) prediction matrix for layer k.

In order to enable online implementation, the exponentially weighted correlation matrices for hidden
layer activations and prediction errors are defined as follows:

R̂h(k) [m] =
1− λ
1− λm

m∑
i=1

λm−ih(k)[m]h(k)[m]
T
,

R̂→
e

(k) [m] =
1− λ
1− λm

m∑
i=1

λm−i
→
e
(k)

[m]
→
e
(k)

[m]
T

,

R̂←
e

(k) [m] =
1− λ
1− λm

m∑
i=1

λm−i
←
e
(k)

[m]
←
e
(k)

[m]
T

.

Through the trace approximation of log det(·) function, we obtain:

log det
(
R̂→

e
(k+1) [m] + εI

)
≈ 1

εk

t∑
i=1

λt−i∥h(k+1)[i]−W
(k)
ff,∗[m]h(k)[i]∥22 + εk∥W (k)

ff,∗[m]∥2F +Nk+1 log(εk)

log det
(
R̂←

e
(k) [m] + εkI

)
≈ 1

εk

t∑
i=1

λt−i∥h(k)[i]−W
(k)
fb,∗[m]h(k+1)[i]∥22 + εk∥W (k)

fb,∗[m]∥2F +Nk log(εk),

F.1 The derivation of the CorInfoMax network

Based on the definitions above, the following layerwise objectives can be defined:

Ĵk(h
(k))[m] = Î(ϵk−1)

r (h(k−1),h(k))[m] + Î
(εk)
l (h(k),h(k+1))[m], for k = 1, . . . , L− 1,

33

i.e., correlative information maximization objectives for the hidden layers, and the mixture of
correlation maximization and MSE objectives for the final layer

ĴL(h
(L))[m] = Î(ϵL−1)

r (h(L−1),h(L))[m]− β

2
∥h(L)[m]− y[m]∥22.

The gradient of the hidden layer objective functions with respect to the corresponding layer activations
can be written as:

∇h(k) Ĵk(h
(k))[m] = 2γBh(k) [m]h(k)[m]− 1

ϵk−1

→
e
(k)

[m]− 1

εk

←
e
(k)

[m], (53)

where γ = 1−λ
λ , and Bh(k) [m] = (R̂h(k) [m] + ϵk−1I)

−1, i.e., the inverse of the layer correlation
matrix.

For the output layer, we can write the gradient as

∇h(L) ĴL(h
(L))[m] = γBh(L) [m]h(L)[m]− 1

ϵL−1

→
e
(L)

[m]− β(h(L)[m]− y[m]).

The gradient ascent updates corresponding to these expressions can be organized to obtain CorInfo-
Max network dynamics:

τu
du(k)[m; s]

ds
= −glku(k)[m; s] +

1

εk
M (k)[m]h(k)[m; s]− 1

ϵk−1

→
e
(k)

u [m; s]− 1

ϵk

←
e
(k)

u [m; s],

→
e
(k)

u [m; s] = u(k)[m; s]−W
(k−1)
ff [t]h(k−1)[m; s],

←
e
(k)

u [m; s] = u(k)[m; s]−W
(k)
fb [m]h(k+1)[m; s],

h(k)[m; s] = σ+(u
(k)[m; s]),

where m is the sample index, s is the time index for the network dynamics, τu is the update time con-
stant, M (k)[t] = εk(2γBh(k) [t] + glkI), and σ+ = min(1,max(u, 0)) represents the elementwise
clipped-ReLU function, which is the projection operation corresponding to the combination of the
nonnegativity constraint h(k) ≥ 0 and the boundedness constraint ∥h(k)∥∞ ≤ 1 on the activations of
the network.

Note that Bozkurt et al. [45] takes one more step to organize the network dynamics into a form that
fits into the form of a network with three compartment (soma, basal dendrite and appical dendrite
compartments) neuron model.

F.2 CorInfoMax-EP learning dynamics

The CorInfoMax-EP framework in Bozkurt et al. [45] employs equilibrium propagation (EP) to
update feedforward and feedback weights of the CorInfoMax network.

F.2.1 Feedforward and feedback weights

In the CorInfoMax objective, feedforward and feedback weights correspond to forward and backward
predictors corresponding to the regularized least squares objectives

Cff (W
(k)
ff [m]) = εk∥W (k)

ff [m]∥2F + ∥→e
(k+1)

[m]∥22,

and

Cfb(W
(k)
fb [m]) = εk∥W (k)

ff [m]∥2F + ∥←e
(k)

[m]∥22,

respectively. The derivatives of these functions with respect to forward and backward synaptic
weights can be written as

∂Cff (W
(k)
ff [m])

∂W
(k)
ff [m]

= 2εkW
(k)
ff [m]− 2

→
e
(k+1)

[m]h(k)[m]T ,

34

and

∂Cfb(W
(k)
fb [m])

∂W
(k)
fb [m]

= 2εkW
(k)
fb [m]− 2

←
e
(k)

[m]h(k+1)[m]T .

The EP based updates of the feedforward and feedback weights are obtained by evaluating these
gradients in two different phases: the nudge phase (β = β′ > 0), and the free phase (β = 0):

δW
(k)
ff [m] ∝ 1

β′

(
(
→
e
(k+1)

[m]h(k)[m]T)
∣∣∣
β=β′

− (
→
e
(k+1)

[m]h(k)[m]T)
∣∣∣
β=0

)
,

δW
(k)
fb [m] ∝ 1

β′

(
(
←
e
(k)

[m]h(k+1)[m]T)
∣∣∣
β=β′

− (
←
e
(k)

[m]h(k+1)[m]T)
∣∣∣
β=0

)
.

F.2.2 Lateral weights

The lateral weight updates derived from the weight correlation matrices of the layer activations, using
the matrix inversion lemma [43]:

B(k)[m+ 1] = λ−1r (B(k)[m]− γz(k)[m]z(k)[m]T), where z(k)[m] = B(k)[m]h(k)[m]
∣∣
β=β′

.

F.3 CorInfoMax-EP

Although the CorInfoMax-EP algorithm derivation above is based on single input sample based
updates, it can be extendable to batch updates. Assuming a batch size of B, and we define the
following matrices:

H(k)[m] =
[
h(k)[mB + 1] h(k)[mB + 2] . . . h(k)[(m+ 1)B]

]
,

as the activation matrix for the layer-k,

←
E

(k)

[m] =
[
←
e
(k)

[mB + 1]
←
e
(k)

[mB + 2] . . .
←
e
(k)

[(m+ 1)B]

]
, (54)

as the backward prediction matrix for the layer-k,

→
E

(k)

[m] =
[
→
e
(k)

[mB + 1]
→
e
(k)

[mB + 2] . . .
→
e
(k)

[(m+ 1)B]

]
, (55)

as the forward prediction matrix for the layer-k,

Z(k)[m] =
[
z(k)[mB + 1] z(k)[mB + 2] . . . z(k)[(m+ 1)B]

]
, (56)

as the lateral weights’ output matrix for the layer-k, and

E = [ϵ[mB + 1] ϵ[mB + 2] . . . ϵ[(m+ 1)B]] ,

as the output error matrix.

In terms of these definitions, Algorithm 2 lays out the details of the CorInfoMax-EP algorithm:

35

Algorithm 2 CorInfoMax Equilibrium Propagation (CorInfoMax-EP) Update for Layer k

Require: Learning rate parameters λE , µ(f,k)[m], µ(b,k)[m]
Require: Previous synaptic weights W(f,k)[m − 1] (forward), W(b,k)[m − 1] (backward), B(k)

(lateral)
Require: Batch size B
Require: Layer activations H(k)[m], preactivations U(k)[m], output errors E(k)[m], lateral weight

outputs Z(k)[m], forward prediction errors
→
E

(k)

[m] and backward prediction errors
←
E

(k)

[m]
computed by CorInfoMax network dynamics described in Bozkurt et al. [45]

Ensure: Updated weights W(f,k)[m], W(b,k)[m] ,B(k)[m]

1: γE ← 1−λE

λE

Update forward weights for layer k:

2: ∆W
(f,k)
EP [m]← −µ

(df ,k)[m]

Bβ′

(
(
→
E

(k+1)

[m]H(k)[m]T)
∣∣∣
β=β′

− (
→
E

(k+1)

[m]H(k)[m]T)
∣∣∣
β=0

)
3: W(f,k)[m]←W(f,k)[m− 1] + ∆W

(f,k)
EP [m]

Update backward weights for layer k:

4: ∆W
(b,k)
EP [m]← −µ

(db,k)[m]

Bβ′

(
(
←
E

(k)

[m]H(k)[m]T)
∣∣∣
β=β′

− (
←
E

(k)

[m]H(k)[m]T)
∣∣∣
β=0

)
5: W(b,k)[m]←W(b,k)[m− 1] + ∆W

(b,k)
EP [m]

Update Lateral weights for layer k:
6: ∆B

(k)
E [m]← −γE

B
Z(k)[m]Z(k)[m]T

7: B(k)[m]← 1
λE

B(k)[m] + ∆B
(k)
E [m]

G Implementation complexity of the EBD approach

In this section, we analyze the computational and memory complexity trade-offs of the proposed
Error Broadcast and Decorrelation (EBD) approach.

G.1 Complexity analysis: Error Propagation vs. Error Broadcast

Considering the standard MLP implementation outlined in Section 2, we compare the memory and
computational requirements of the error backpropagation and error broadcast approaches as follows:

G.1.1 Delivering output error information to layers

• Memory Requirements: For the standard backpropagation algorithm, the error is propagated through
the transposed forward filters W(k). Consequently, no additional memory is required for the weights
used in error propagation. In contrast, the error broadcast approach uses error projection matrices
R̂

(k)
gϵ , which require memory storage of O

(
N (k)N (L)

)
for each layer. Thus, the total additional

storage requirement for broadcast weights is given by O
(
(
∑L

l=1N
(l))N (L)

)
.

• Computational Requirements: In the standard backpropagation algorithm, propagating the error
to layer k (from layer k + 1) requires O

(
BN (k)N (k+1)

)
multiplications per batch, where B is the

batch size. On the other hand, the broadcast algorithm projects the output error to layer k, requiring
O
(
BN (k)N (L)

)
multiplications. Additionally, the projection matrix R̂

(k)
gϵ is updated at the end of

each batch using the Hebbian rule. Therefore, the overall computational complexity for the EBD
approach is:

O
(
(B + 1)N (k)N (L)

)
.

When the number of output elements N (L) is significantly smaller than the hidden dimensions
N (k), the computational cost of the broadcast algorithm is lower. Furthermore, the error projection

36

operations can be implemented in parallel for all layers, whereas backpropagation must be executed
sequentially.

G.1.2 Additional cost of Entropy Regularization

• Memory requirements: As described in Section 2.4.1, layer entropies are based on the covariance
matrix R

(k)
h , which requiresO

(
(N (k))2

)
additional memory storage. In a computationally optimized

implementation, storing the inverse covariance matrix B
(k)
h = R

(k)
h

−1
may be preferred, though it

still requires the same memory allocation.

• Computational requirements: The main computational load is due to the computation of the
gradient of the layer entropy function. The expression for the gradient is obtained in Appendix C.3 as

∇W(k) J (k)[m] = 2 1−λE

B

[
(R

(k)
h [m] + ϵ I)−1 H(k)[m] ⊙ f ′

(
W(k) H(k−1)[m] + b(k) 1T

)] (
H(k−1)[m]

)T
,

where for each batch, we update the layer correlation matrix matrix R
(k)
h [m]. We can divide the

computational requirement into following pieces:

– Correlation Matrix Recursion
Recall we have

R
(k)
h [m] = λE R

(k)
h [m− 1] +

1− λE
B

H(k)[m]
(
H(k)[m]

)T
.

In order to form R
(k)
h [m] explicitly at iteration m, we must compute H(k)[m]

(
H(k)[m]

)T
and

then add the result to λE R
(k)
h [m− 1].

* The matrix–matrix product H(k)[m] ∈ RN(k)×B times its transpose in RB×N(k)

yields an
N (k) ×N (k) matrix, costing O

(
N (k) 2B

)
.

* Adding λE R
(k)
h [m− 1] to that product is another O

(
(N (k))2

)
operation, though usually

smaller in comparison to the product above if B is moderate.

Hence the complexity of forming the new correlation matrix R
(k)
h [m] at each iteration is

O
(
N (k) 2B

)
.

– Naive Matrix Inversion and Gradient Computation
Once R

(k)
h [m] is formed, we need to invert R(k)

h [m] + ϵ I to evaluate J (k)[m] and its gradient.
Naive inversion of an N (k) × N (k) matrix is O

(
(N (k))3

)
. After this inversion, we multiply

(R
(k)
h [m] + ϵ I)−1 by H(k)[m] ∈ RN(k)×B , which costs O

(
(N (k))2B

)
. Next, we do the ele-

mentwise multiplication (⊙) with f ′(W(k) H(k−1)[m] + b(k)1T), costing O(N (k)B). Finally,
we multiply by

(
H(k−1)[m]

)T ∈ RB×N(k−1)

, which costs O
(
N (k)BN (k−1)).

Summing all these terms, the dominant operations in naive update and inversion are:

1. Forming R
(k)
h [m]: O

(
N (k) 2B

)
.

2. Inverting (R
(k)
h [m] + ϵ I): O

(
(N (k))3

)
.

3. Multiplying inverse by H(k)[m]: O
(
(N (k))2B

)
.

4. Final multiplication by (H(k−1)[m])T : O
(
N (k)BN (k−1)).

Thus, overall cost per batch is

O
(
N (k) 2B + (N (k))3 + (N (k))2B + N (k)BN (k−1)

)
,

which could be simplified to

O
(
(N (k))3 + (N (k))2B + N (k)BN (k−1)

)
.

If N (k) is large, the cubic term (N (k))3 associated with the matrix inversion typically dominates.

37

An alternative is to update the inverse of the correlation matrix incrementally using the fact that

R
(k)
h [m] = λE R

(k)
h [m− 1] +

1− λE
B

H(k)[m]
(
H(k)[m]

)T
,

so the new correlation matrix differs from the previous one by a low-rank term of rank at most
min(N (k), B). Neglecting the ϵ term, the recursion for the inverse can be obtained using matrix
inversion lemma [43] as

B
(k)
h [m] = λ−1E

(
B

(k)
h [m− 1]−V[m]

(
λEB

1− λE
I+H(k)[m]TV[m]

)−1
V[m]T

)
, (57)

where V[m] = B
(k)
h [m− 1]H(k)[m].

The corresponding computational cost is:

– Two matrix–matrix multiplications of shape (N (k) × N (k)) with (N (k) × B), costing
O((N (k))2B).

– Inverting the B ×B matrix, costing O(B3) if B is not too large.
Thus, the update of the inverse alone costs

O
(
(N (k))2B +B3

)
,

instead of O
(
(N (k))3

)
. If B ≪ N (k), this can be a large savings compared to the naive cubic cost.

Once this updated inverse is in hand, the subsequent multiplications to form the gradient (e.g.
(R

(k)
h [m] + ϵ I)−1 H(k)[m], etc.) still take O((N (k))2B +N (k)BN (k−1)). Overall, for each new

time step m, the dominant costs become

O
(
(N (k))2B +B3 + (N (k))2B + N (k)BN (k−1)

)
,

which is usually simplified to

O
(
(N (k))2B +B3 +N (k)BN (k−1)

)
.

Hence, using the Woodbury identity is beneficial whenever B is much smaller than N (k), because
N (k) 2B +B3 ≪ (N (k))3.

G.1.3 Additional cost of Power-normalization

• Memory requirements: The power normalization described in Section 2.4.1, involves a power
estimate parameter per hidden unit, so it will require additional N (k) storage elements for the layer-k.

• Computational requirements: The gradient for the power normalization regularization function
derived in Appendix C.4 takes the form:

∇W(k)J
(k)
P [m] =

4

B
D[m](H(k)[m]⊙ F

(k)
d)H(k−1)[m]T ,

Based on this expression, the required number of operations per batch for layer-k is
O
(
BN (k)N (k−1)).

Therefore, we can consider the impact of the power-normalization on memory and computational
requirements as negligible.

In Section I.7, we provide empirical runtime results for the EBD algorithm, relative to the backpropa-
gation algorithm. These experimental results show a 7 to 8 time increase in the runtimes of the MLP
model with the EBD algorithm (employing entropy regularization) relative to the BP algorithm. The
runtime increase is less for CNN and LC models.

Finally, we note that the implementation complexity analysis provided above is for the MLP based
EBD approach. For the biologically more realistic CorInfoMax-EBD networks, entropy maximization
is implemented through lateral weights (see Appendices F, F.2.2 and H), whose update requires
O
(
(N (k))2

)
multiplications per sample.

38

H On the biologically plausible nature of Entropy and Power-normalization
updates

As discussed in Section 2.4.1, the layer-entropy and power-normalization objectives are introduced to
avert potential collapse of network coefficients in the EBD algorithm. A natural question arises re-
garding the biological plausibility of the EBD framework when these regularizations are incorporated.
We address this question by examining two specific cases:

1. MLP Implementation with Entropy and Power-normalization regularizations (Sec-
tion 2)

2. CorInfoMax-EBD implementation (Section 3.2)

H.1 MLP implementation with Entropy and Power-normalization regularizations

In Section 2, we presented an MLP-based EBD framework that uses batch-SGD to optimize the
feedforward weights with EBD, along with entropy and power-normalization losses. As outlined
in Sections 2.3 and 3.1, the gradient-based updates of the EBD loss naturally reduce to a three-
factor update rule, which is considered biologically plausible. We now examine whether adding the
layer-entropy objective in Eq. (11) and the power-normalization objective in Eq. (9) preserves this
biological realism.

H.1.1 Power normalization-based SGD updates

Appendix C.4 derives the gradient expression for the power-normalization loss:

∇W(k)J
(k)
P [m] =

4

B
D[m]

(
H(k)[m]⊙ F

(k)
d [m]

)
H(k−1)[m]T .

Focusing on an individual element of this matrix gives

[∇W(k)J
(k)
P [m]]ij =

4

B
di[m]

mB+B∑
n=mB+1

h
(k)
i [n] f

(k)
i

′
(u

(k)
i [n])h

(k−1)
j [n]. (58)

This update depends only on the activations of the neurons connected by the synapse Wij , thus
satisfying a local learning rule. However, the summation over the batch index in Eq. (58) might be
considered biologically implausible unless the batch size B = 1. In practice, one can interpret the
summation for B > 1 as an integral of local updates over the time window corresponding to the
batch, which may still be reasonably viewed as local integration in a biological setting.

H.1.2 Layer entropy regularization-based SGD updates

Appendix C.3 derives the gradient of the layer-entropy objective:

∇W(k)J
(k)
E [m] =

2(1− λE)
B

[(
(R

(k)
h [m] + ε(k)I)−1H(k)[m]

)
⊙ Fd

(k)[m]
]
H(k−1)[m]T . (59)

Examining an individual element of this gradient shows

[∇W(k)J
(k)
E [m]]ij =

2(1− λE)
B

mB+B∑
n=mB+1

v
(k)
i [n] f

(k)
i

′
(u

(k)
i [n])h

(k−1)
j [n],

where v(k)[n] = (R
(k)
h [m] + ε(k)I)−1 h(k)[n]. Because v(k)i [n] depends on all neurons’ activations

in the layer, the layer-entropy update for feedforward weights is not strictly local and hence violates
the criteria for strict biological plausibility.

Nevertheless, this limitation is circumvented by the CorInfoMax-EBD approach, wherein the lateral
(recurrent) weights, rather than the feedforward weights, implement the layer-entropy maximization
objective. We discuss this in the next section.

H.2 CorInfoMax-EBD implementation

Section 3.2 introduces a more biologically realistic network by combining the CorInfoMax
framework—known to yield recurrent networks closely reflecting biological dynamics—with the
proposed EBD approach to enable a three-factor update rule in supervised learning.

39

H.2.1 Power-normalization-based SGD updates

In CorInfoMax-EBD, we adopt the same power-normalization gradient in Eq. (58) for updating
feedforward weights. Therefore, by setting the batch size to B = 1, these updates remain local and
thus biologically plausible.

H.2.2 Layer entropy maximization

As summarized in Appendix F, CorInfoMax networks inherently include layer-entropy maximization
via the correlative-information objective. Crucially, this entropy maximization is implemented through
lateral weights of the RNN structure rather than by modifying feedforward weights. Specifically,
from the gradient of the correlative-information objective (see Eq. (53)):

∇h(k) Ĵk(h
(k))[m] = 2γBh(k) [m]h(k)[m] − 1

ϵk−1

→
e
(k)

[m] − 1

εk

←
e
(k)

[m], (60)

the first term, 2γBh(k) [m]h(k)[m], corresponds to the layer-entropy maximization. Here, the lateral
weight matrix Bh(k) [m] approximates the inverse of the layer correlation matrix. As described in
Appendix F.2.2 (and in [45]), the lateral weights can be updated by an anti-Hebbian rule:

B(k)[m+ 1] = λ−1r

(
B(k)[m] − γ z(k)[m]z(k)[m]T

)
,

where

z(k)[m] = B(k)[m]h(k)[m]
∣∣
β=β′

.

Once again, this update is strictly local if B = 1, while for B > 1, the rank-B extension may break
strict locality. We demonstrate in Section 4 that CorInfoMax-EBD with B = 1 yields comparable or
superior performance to CorInfoMax-EP with larger batch sizes.

H.3 Summary and conclusions

In summary, the CorInfoMax-EBD implementation described in Section 3.2 offers a more biologically
plausible approach to supervised learning compared to the MLP-based EBD approach in Section 2
due to several factors:

• Using lateral weights to impose layer-entropy maximization in a biologically realistic
manner;

• Employing feedforward/feedback weights for forward and backward predictive coding;
• Adopting neuron models with distinct compartments (soma, basal dendrites, and apical

dendrites);
• Incorporating EBD updates, which naturally embody a three-factor learning rule; and
• Leveraging power-normalization updates, which satisfy local-learning constraints when
B = 1.

These features stem from the CorInfoMax-EP framework [45], enhanced by our proposed EBD-based
regularizations. This architecture reconciles the benefits of layer-entropy and power-normalization
objectives with the demands of biological plausibility.

40

I Supplementary on numerical experiments

The models were trained on an NVIDIA Tesla V100 GPU, using the hyperparameters detailed in
the sections below. Each experiment was conducted five times under identical settings, and the
reported results reflect the average performance. We used the standard train/test splits for the datasets,
with MNIST comprising 60,000 training examples and CIFAR-10 comprising 50,000, while both
datasets included 10,000 test examples. The MNIST dataset [56] is made available under the Creative
Commons Attribution-Share Alike 3.0 license. The CIFAR-10 dataset [45], originating from the
University of Toronto, is publicly available for academic research purposes. Both datasets were
accessed via standard deep learning library functionalities.

Rather than utilizing automatic differentiation tools, we manually implemented the gradient
calculations for the EBD algorithm, utilizing batched operations to ensure computational efficiency.
As a side note, the (1 − λ) factors present in the derived update expressions are absorbed into
the learning rate constants and thus eliminated. In our experiments, we trained the MLP models
for 120 epochs and the CNN and LC models for 100 epochs on MNIST and 200 epochs on
CIFAR-10. In addition, we trained the CNN model for the CIFAR-100 dataset for 300 epochs, and
the CorInfoMax-EBD (3-layer, batch size = 20) model for 60 epochs.

I.1 Architectures

The architectural details of MLP, CNN and LC networks for the MNIST and CIFAR-10 datasets
are shown in Tables 4 and 5, respectively, while the CNN model used in the CIFAR-100 experiments
is detailed in Table 7. The structure of the MNIST and CIFAR-10 models are the same as in the
reference [9], while the CIFAR-100 model closely matches [6], differing only in the MaxPool shape.
In all architectures, we used ReLU as the nonlinear functions except the last layer. Furthermore, the
architectural details of the biologically more realistic CorInfoMax network for MNIST and CIFAR-10
datasets are shown in Table 6. These techniques are the same as examples in Appendix J.5 of [45].

Table 4: MNIST architectures. FC: fully connected; Conv: convolutional; LC: locally connected.
FC layers are reported by hidden size. Conv/LC layers are reported as (channels, kernel size, stride,
padding). Pooling layers use stride 1; we report the kernel size.

MLP
FC1 1024
FC2 512

Convolutional
Conv1 64, 3× 3, 1, 1

AvgPool 2× 2
Conv2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Locally connected
LC1 32, 3× 3, 1, 1

AvgPool 2× 2
LC2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Table 5: CIFAR-10 architectures. Conventions are the same as in Table 4.
MLP

FC1 1024
FC2 512
FC3 512

Convolutional
Conv1 128, 5× 5, 1, 2

AvgPool 2× 2
Conv2 64, 5× 5, 1, 2

AvgPool 2× 2
Conv3 64, 2× 2, 2, 0
FC1 1024

Locally connected
LC1 64, 5× 5, 1, 2

AvgPool 2× 2
LC2 32, 5× 5, 1, 2

AvgPool 2× 2
LC3 32, 2× 2, 2, 0
FC1 512

Table 6: CorInfoMax architectures. Conventions are the same as in Table 4.
MNIST

FC1 500
FC2 500

CIFAR-10
FC1 1000
FC2 500

41

Table 7: CIFAR-100 architectures. Conventions are the same as in Table 4.
Convolutional

Conv1 96, 5× 5, 1, 2
MaxPool 2× 2

Conv2 128, 5× 5, 1, 2
MaxPool 2× 2

Conv3 256, 5× 5, 1, 2
MaxPool 2× 2
Dropout p

FC1 2048
Dropout p

FC2 2048
Softmax 100

I.2 CorInfoMax-EBD

In this section, we offer additional details regarding the numerical experiments conducted with
the CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-EBD) algorithm. Appendix I.2.1
elaborates on the general implementation details. Appendix I.2.2 presents the fundamental learning
steps of the algorithm, which are based on the EBD method. Appendices I.2.3 and I.2.4 discuss the
initialization of the algorithm’s variables and describe the hyperparameters. Finally, Appendix I.2.5
(3-Layer and batch size=20, 3-Layer batch size=1) and Appendix I.2.6 (10-Layer batch size=1)
detail the specific hyperparameter configurations used in our numerical experiments for the MNIST
and CIFAR-10 datasets. In Appendix I.10 we present the accuracy and loss learning curves for the
CorInfoMax-EBD, shown in Figures 6.(g)-(h) and Figures 7.(g)-(h), respectively.

I.2.1 Implementation details

We implemented the CorInfoMax-EBD algorithm based on the repository available at GitHub 2. This
repository from Bozkurt et al. [45], used as a basis for our CorInfoMax-EBD implementation, did
not specify an explicit license in its public repository at the time of access. Our use and modification
are for academic research purposes, building upon the published scientific work presented in [45].
The following modifications were made to the original code:

• Reduction to a single phase: We simplified the algorithm by reducing it to a single phase.
Specifically, we removed the nudge phase, during which the label is coupled to the network
dynamics. In this modified version, the network operates solely in the free phase, where the
label is decoupled from the network. This change aligns with the removal of time-contrastive
updates from the CorInfoMax-EP algorithm.

• Algorithmic updates: We incorporated the updates outlined in Algorithm 3.
• Hyperparameters: We maintained the same hyperparameters for the neural dynamics as in

the original code. Additionally, new hyperparameters specific to the learning dynamics were
introduced, which are detailed in Appendix I.2.4.

In the CorInfoMax-EBD implementation the following loss and regularization functions are used

• EBD loss: J (k),

• Power normalization loss: J (k)
P ,

• ℓ2 weight regularization (weight decay): J (k)
ℓ2

,

• Activation sparsity regularization: J (k)
ℓ1

= ∥H(k)∥1.

2https://github.com/BariscanBozkurt/Supervised-CorInfoMax

42

I.2.2 Algorithm

The CorInfoMax-EBD algorithm follows the same neural dynamics framework detailed in [45] for
computing neuron activations. Consequently, we only outline the steps specific to the learning process,
which distinguishes it from the original CorInfoMax-EP algorithm described in [45]. The full iterative
process for updating weights in the CorInfoMax-EBD algorithm is provided in Algorithm 3.

Algorithm 3 CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-EBD) Update for Layer k

Require: Learning rate parameters λd,λE , µ(d,k)[m], µ(f,k)[m], µ(b,k)[m]
Require: Previous synaptic weights W(f,k)[m−1] (forward), W(b,k)[m−1] (backward), B(k)[m−

1] (lateral)
Require: Previous error projection weights Rg(h(k))ϵ[m− 1]
Require: Batch size B
Require: Layer activations H(k)[m] in Eq. (13), the derivative of activations F(k)

d in Eq. (29), in

Eq. (5), prediction errors
←
E and

→
E

(k)

in Eq. (54)-Eq. (55), lateral weight outputs Z(k) in Eq. (56)
computed by CorInfoMax network dynamics described in Bozkurt et al. [45] (and Appendix F)

Require: The nonlinear function of layer activations G(k) in Eq. (4) and the derivative of the
nonlinear function of layer activations G(k)

d in Eq. (28)
Ensure: Updated weights W(f,k)[m], W(b,k)[m], B(k)[m]

Error projection weight update for layer k:

1: R̂
(k)
gϵ [m]← λd R̂

(k)
gϵ [m− 1] +

1− λd
B

G(k)[m]E(k)[m]T

Project errors to layer k:
2: Q(k)[m]← R̂

(k)
gϵ [m]E(k)[m]

Find the gradient of the nonlinear function of activations for layer k:
3: Φ(k)[m] = F

(k)
d [m]⊙Q(k)[m]⊙G

(k)
d [m]

Update forward weights for layer k:

4: ∆W
(f,k)
EBD [m]← −µ

(df ,k)[m]

B
Φ(k)[m]H(k−1)[m]

⊤

5: ∆W
(f,k)
Pred [m]← µ(f,k)[m]

B

→
E

(k)

[m]
(
H(k−1)[m]

)⊤
6: W(f,k)[m]←W(f,k)[m− 1] + ∆W

(f,k)
EBD [m] + ∆W

(f,k)
Pred [m]

Update backward weights for layer k:

7: ∆W
(b,k)
EBD [m]← −µ

(db,k)[m]

B
Φ(k)[m]H(k+1)[m]

⊤

8: ∆W
(b,k)
Pred [m]← µ(b,k)[m]

B

←
E

(k)

[m]H(k+1)[m]⊤

9: W(b,k)[m]←W(b,k)[m− 1] + ∆W
(b,k)
EBD [m] + ∆W

(b,k)
Pred [m]

Update Lateral weights for layer k:

10: ∆B
(k)
EBD[m]← −µ

(dl,k)[m]

B
Φ(k)[m]H(k)[m]⊤

11: ∆B
(k)
E [m]← −γE

B
Z(k)[m]Z(k)[m]T

12: B(k)[m]← 1
λE

B(k)[m] + ∆B
(k)
E [m] + ∆B

(k)
EBD[m]

43

I.2.3 Initialization of algorithm variables

We initialize the variables W(f,k), W(b,k), and Rh(k)ϵ using PyTorch’s Xavier uniform initialization
with its default parameters for the MNIST dataset. For the CIFAR-10 dataset is initialized with gain
0.25. For the lateral weights B(k), we first generate a random matrix J(k) of the same dimensions,
also using the Xavier uniform distribution, with gain= 1 for the MNIST dataset and with gain= 0.5

for the CIFAR-10 dataset. We then compute B(k)[0] = J(k)J(k)T , ensuring that B(k)[0] is a positive
definite symmetric matrix.

I.2.4 Description of hyperparameters

Table 8 presents a description of the hyperparameters used in the CorInfoMax-EBD implementation.

Table 8: Detailed explanation of hyperparameter notations for the CorInfoMax-EBD algorithm
Hyperparameter Description

α[m] Learning rate dynamic scaling factor
α2[m] Learning rate dynamic scaling factor 2
µ(df ,k) Learning rate for decorrelation loss (forward weights)
µ(db,k) Learning rate for decorrelation loss (backward weights)
µ(dl,k) Learning rate for decorrelation loss (lateral weights)
µ(f,k) Learning rate for forward prediction
µ(b,k) Learning rate for backward prediction
µ(p,k) Learning rate for power normalization loss
p(k) Target power level
µ
(k)
f,ℓ1

Learning rate for activation sparsity (forward weights)
µ
(k)
b,ℓ1

Learning rate for activation sparsity (backward weights)
µ
(k)
f,w−ℓ2 Forward weight ℓ2-regularization coefficent
µ
(k)
b,w−ℓ2 Backward weight ℓ2-regularization coefficent
λE Layer correlation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
m(d) Momentum factor for decorrelation forward weight gradient
B Batch size

I.2.5 Hyperparameters for 3-Layer MNIST and CIFAR-10 Models

Table 9 and 10 summarizes the hyperparameters used in the 3-layer CorInfoMax-EBD experiments
for the MNIST and CIFAR-10 datasets with a batch size of 20 and 1 respectively. The iteration index
is denoted by m in all expressions.

Table 9: 3-Layer CorInfoMax-EBD hyperparameters for MNIST and CIFAR-10 datasets (B = 20).
Hyperparameter MNIST CIFAR-10

α[m]
1

3× 10−3 × ⌊m10⌋+ 1

1

3× 10−3 × ⌊m10⌋+ 1

α2[m]
1

3× ⌊m10⌋+ 1

1

3× ⌊m10⌋+ 1
µ(df ,k)[m] [96, 60, 1e5]α[m] [80, 50, 1e5]α[m] for epoch= 0

[320, 400, 1e5]α[m] for epoch> 0
µ(db,k)[m] [96, 60, 1e5]α[m] [0, 0, 0]α[m]
µ(dl,k)[m] [0.25, 0.25, 0.25]α[m] for epoch= 0 [0.5, 0.5, 0.5]α[m] for epoch= 0

[0.5, 0.5, 0.5]α[m] for epoch> 0 [2.0, 2.0, 2.0]α[m] for epoch> 0
µ(f,k)[m] [0.11× 10−18, 0.06× 10−18, 0.035× 10−18]α[m] [0.11× 10−18, 0.06× 10−18, 0.035× 10−18]α[m]
µ(b,k)[m] [1.125× 10−18, 0.375× 10−18]α[m] [1.125× 10−18, 0.375× 10−18]α[m]
µ(p,k)[m] [4.4× 10−3, 6× 10−3, 3.5× 10−12]α2[m] [4.4× 10−3, 6× 10−3, 3.5× 10−12]α2[m]
p(k) [2.5, 2.5, 0.1] [2.5, 2.5, 0.1]

µ
(k)
f,ℓ1

[m] [0.008, 0.135, 0]α2[m] [0.008, 0.135, 0]α2[m]

µ
(k)
b,ℓ1

[m] [0, 0.35, 0.05]α2[m] [0, 0.35, 0.05]α2[m]

µ
(k)
f,w−ℓ2 [m]

8× 10−2

10−2 × ⌊m10⌋+ 1

8× 10−2

10−2 × ⌊m10⌋+ 1

µ
(k)
b,w−ℓ2 [m]

8× 10−2

10−2 × ⌊m10⌋+ 1

8× 10−2

10−2 × ⌊m10⌋+ 1
λE 0.999999 0.999999
λd 0.99999 0.99999

m(d)[m] 0.99
1

⌊m10⌋+ 1
+ 0.999

(
1− 1

⌊m10⌋+ 1

)
0.99

1

⌊m10⌋+ 1
+ 0.999

(
1− 1

⌊m10⌋+ 1

)
B 20 20

44

Table 10: 3-Layer CorInfoMax-EBD hyperparameters for MNIST and CIFAR-10 datasets (B = 1).
Hyperparameter MNIST CIFAR-10

α[m]
1

3× 10−3 × ⌊m10⌋+ 1

1

3× 10−3 × ⌊m10⌋+ 1

α2[m]
1

3× ⌊m10⌋+ 1

1

3× ⌊m10⌋+ 1
µ(df ,k)[m] [4.8, 3.0, 5× 103]α[m] [4, 2.5, 5× 103]α[m] for epoch= 0

[16, 20, 5× 103]α[m] for epoch> 0
µ(db,k)[m] [4.8, 3.0, 5× 103]α[m] [0, 0, 0]α[m]
µ(dl,k)[m] [0.0125, 0.0125, 0.0125]α[m] for epoch= 0 [0.025, 0.025, 0.025]α[m] for epoch= 0

[0.025, 0.025, 0.025]α[m] for epoch> 0 [0.1, 0.1, 0.1]α[m] for epoch> 0
µ(f,k)[m] [0.11× 10−18, 0.06× 10−18, 0.035× 10−18]α[m] [0.11× 10−18, 0.06× 10−18, 0.035× 10−18]α[m]
µ(b,k)[m] [1.125× 10−18, 0.375× 10−18]α[m] [1.125× 10−18, 0.375× 10−18]α[m]
µ(p,k)[m] [2.2× 10−4, 3× 10−4, 3.5× 10−12]α2[m] [2.2× 10−4, 3× 10−4, 3.5× 10−12]α2[m]
p(k) [2.5, 2.5, 0.1] [0.125, 0.125, 0.005]

µ
(k)
f,ℓ1

[m] [0.0004, 0.00675, 0]α2[m] [0.0004, 0.000675, 0]α2[m]

µ
(k)
b,ℓ1

[m] [0, 0.0175, 0.0025]α2[m] [0, 0.0175, 0.0025]α2[m]

µ
(k)
f,w−ℓ2 [m]

8× 10−2

10−2 × ⌊m10⌋+ 1

8× 10−2

10−2 × ⌊m10⌋+ 1

µ
(k)
b,w−ℓ2 [m]

8× 10−2

10−2 × ⌊m10⌋+ 1

8× 10−2

10−2 × ⌊m10⌋+ 1
λE 0.99999995 0.99999995
λd 0.99999 0.99999

m(d)[m] 0.99
1

⌊m10⌋+ 1
+ 0.999

(
1− 1

⌊m10⌋+ 1

)
0.99

1

⌊m10⌋+ 1
+ 0.999

(
1− 1

⌊m10⌋+ 1

)
B 1 1

I.2.6 Hyperparameters for 10-layer CorInfoMax-EBD on MNIST and CIFAR-10 datasets for
batch size 1

Table 11 list the hyperparameters used in the 10-Layer CorInfoMax-EBD numerical experiments for
the MNIST and CIFAR-10 datasets with a batch size of 1. In these experiments, a weight thresholding
scheme is applied to the network weights for every 5000 samples, where the weights with 0.00003
scale (relative to the peak) are set to zero.

Table 11: 10-Layer CorInfoMax-EBD hyperparameters: MNIST and CIFAR-10 datasets (B = 1).
Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [3.5 3.5 . . . 3.5 6e4]α[m]
µ(dl,k)[m] 0.03α[m] · 11×10
µ(f,k)[m] [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.11, 0.06, 0.035] · 1e(−18) · α[m]
µ(b,k)[m] [1.1, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4] · 1e(−18) · α[m]
µ(p,k)[m] [2, 2, 2, 2, 2, 2, 2, 2, 5, 1e− 7] · 1e(−3) · α2[m]
p(k) [1, 1, 1, 1, 1, 1, 1, 1, 2, 0.1]

µ
(k)
f,ℓ1

[m] [0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.0]α2[m]

µ
(k)
f,w−ℓ2 [m] 01×10

µ
(k)
l,w−ℓ2 [m] 5e− 4 · α2[m]11×10
λE 0.99999995
λd 0.999999γ + (1− γ)0.99999999 with γ = 1

m
5 +1

m(d)[m] 0.99 1
⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1)

B 1

45

I.3 Multi-Layer Perceptron

In this section, we provide additional details about the numerical experiments conducted to train
Multi-layer Perceptrons (MLPs) using the EBD algorithm (MLP-EBD). Appendix I.3.1 outlines
the implementation details of these experiments, while Appendix I.3.2 discusses the initialization
of algorithm variables. Information about hyperparameters and their values for the MNIST and
CIFAR-10 datasets can be found in Appendices I.3.3-I.3.4. In Appendix I.10 we present the accuracy
and loss learning curves for the MLP architecture, shown in Figures 6.(a)-(b) and Figures 7.(a)-(b),
respectively.

I.3.1 Implementation details

For the MLP experiments using the proposed EBD approach, we adopted the same network architec-
ture as described in [9], detailed in Tables 4 and 5.

In the MLP-EBD implementation, the following loss and regularization functions were employed:

• EBD loss: J (k),

• Power normalization loss: J (k)
P ,

• Entropy objective: J (k)
E ,

• ℓ2 weight regularization (weight decay): J (k)
ℓ2

,

• Activation sparsity regularization: J (k)
ℓ1

= ∥H(k)∥1.

Additionally, we imposed a weight-sparsity constraint by setting WS percent of the weights to zero
during the initialization phase and maintaining these weights at zero throughout training.

I.3.2 Initialization of algorithm variables

We use the Pytorch framework’s Xavier uniform initialization with gain value 10−2 on the Rh(k)ϵ

variables, and Kaiming uniform distribution with gain 0.75 for synaptic weights W(k).

I.3.3 Description of hyperparameters

Table 12 provides the description of the hyperparameters for the MLP-EBD implementation.

Table 12: Description of the hyperparameter notations for MLP-EBD.
Hyperparameter Description

α[m] Learning rate dynamic scaling factor
α2[m] Learning rate dynamic scaling factor 2
µ(d,b,k) Learning rate for (backward projection) decorrelation loss
µ(d,f,k) Learning rate for (forward projection) decorrelation loss
µ(E,k) Learning rate for entropy objective
µ(p,k) Learning rate for power normalization loss
p(k) Target power level
µ
(k)
ℓ1

Learning rate for activation sparsity
µ
(k)
w−ℓ2 Weight ℓ2-regularization coefficent
λE Layer autocorrelation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
m(d) Momentum factor for decorrelation gradient
B Batch size
WS Weight Sparsity

46

I.3.4 Hyperparameters for MLP-EBD on MNIST and CIFAR-10 Datasets

Table 13 summarizes the hyperparameters used in the MLP-EBD experiments for the MNIST and
CIFAR-10 datasets. The iteration index is denoted by m in all expressions.

Table 13: MLP-EBD hyperparameters for MNIST and CIFAR-10 datasets.
Hyperparameter MNIST CIFAR-10

α[m]
1

1.5× ⌊m10⌋+ 1

1

1.5× ⌊m10⌋+ 1

α2[m]
⌊m10⌋

3× 104
+ 1

⌊m10⌋
3× 104

+ 1

µ(d,b,k)[m] 18000α[m]α2[m] for k = 0, 1 [4000, 2000, 2000, 3500]α[m]α2[m]
20000α[m]α2[m] for k = 2

µ(d,f,k)[m] 0.005α[m]α2[m] for k = 0, 1 0.005α[m]α2[m] for k = 0, 1
µ(E,k)[m] [2.5× 10−4, 1.5× 10−3, 0]α[m] [2.5× 10−4, 1.5× 10−3, 1.5× 10−3, 0]α[m]
µ(p,k)[m] [4× 10−3, 6× 10−3, 1× 10−10]α[m] [4× 10−3, 6× 10−3, 6× 10−3, 1× 10−10]α[m]
p(k)[m] [0.25, 0.25, 0.1]α[m] [0.25, 0.25, 0.25, 0.1]α[m]

µ
(k)
ℓ1

[0.8, 0.3, 0]α[m] [0.8, 0.3, 0.3, 0]α[m]

µ
(k)
w−ℓ2 1.6× 10−4 α[m] for all layers 1.6× 10−4 α[m] for all layers
λE 0.99999 0.99999
λd 0.999999 0.999999
m(d) 0.9999 for all layers 0.9999 for all layers
B 20 20
WS 55 40

47

I.4 Convolutional Neural Network

In this section, we offer additional details regarding the numerical experiments for training Convolu-
tional Neural Neural Networks (CNNs) using EBD algorithm (CNN-EBD). Section I.4.1 provides
information about implemetation details. Appendices I.4.2 and I.4.3 discuss the initialization of the
algorithm’s variables and describe the hyperparameters. Finally, Appendix I.4.4 detail the specific
hyperparameter configurations used in our numerical experiments for the MNIST, CIFAR-10 and
CIFAR-100 datasets. In Appendix I.10 we present the accuracy and loss learning curves for the CNN,
shown in Figures 6.(c)-(d) and Figures 7.(c)-(d), respectively.

I.4.1 Implementation details

The architectures we utilized for the CNN networks can be found in tables 4 and 5 respectively for the
MNIST and CIFAR10 datasets. In the training, we used the Adam optimizer with hyperparameters
β1 = 0.9, β2 = 0.999, and ϵ = 10−8 [57]. Also, the model biases are not utilized. In the CNN-EBD
implementation the following loss and regularization functions as detailed in section D.1 are used:

• EBD loss: J (k),

• Entropy objective: J (k)
E ,

• Activation sparsity regularization: J (k)
ℓ1

.

Specifically for the CIFAR-100 experiments, we applied both training and test time augmentation of
data to improve model generalization and handle increased difficulty in the task. At training time, each
image was randomly translated into 2-pixels with reflection padding and a deterministic alternating
horizontal flip that ensures that every image is flipped every other epoch, reducing redundancy
compared to standard random flipping. During evaluation, we used test-time augmentation combining
horizontal flipping and multi-crop averaging over six translated views (the original, two one-pixel
translations, and their mirrored counterparts).

I.4.2 Initialization of algorithm variables

We use the Kaiming normal initialization for the weights, with a common standard deviation scaling
parameter σW, on both the linear and convolutional layers. Furthermore, the estimated cross-
correlation variable Rh(k)ϵ (linear layers) and Rg(k)(H(k,p))ϵ (convolutional layers) are initialized
with zero mean normal distributions with standard deviations σRlin

and σRconv
respectively.

I.4.3 Description of hyperparameters

Table 14 describes the notation for the hyperparameters used to train CNNs using the Error Broadcast
and Decorrelation (EBD) approach.

48

Table 14: Description of the hyperparameter notations for CNN-EBD.
Hyperparameter Description

αexp Exponential learning rate decay parameter.
α[i] Learning rate dynamic scaling factor where i is the epoch index
µ(d,b,k) Learning rate for (backward projection) decorrelation loss
µ(E,k) Learning rate for entropy objective
µ
(k)
ℓ1

Learning rate for activation sparsity
σW Standard deviation of the weight initialization.
σRlin

Std. dev. of Rh(k)ϵ initialization in linear layers
σRconv Std. dev. of Rg(k)(H(k,p))ϵ initialization in convolutional layers
σRlocal

Gain parameter for Rg(k)(H(k,p))ϵ initialization in locally connected layers
λE Layer autocorrelation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
λR Convergence parameter for λ as in Equations (61), (62)
ϵL Entropy objective epsilon parameter for linear layers
ϵ Entropy objective epsilon parameter for conv. or locally con. layers
β Adam Optimizer weight decay parameter
p Dropout probability
B Batch size

We also introduce a convergence parameter λR which increases the estimation parameter for the
decorrelation loss λd, together with the estimation parameter for the layer entropy objective λE , to
converge to 1 as the training proceeds with the following Equations (61), (612) where i is the epoch
index:

λ
(i+1)
d = λ

(i)
d + λR ·

(
1− λ(i)d

)
, i ≥ 0. (61)

λ
(i+1)
E = λ

(i)
E + λR ·

(
1− λ(i)E

)
, i ≥ 0. (62)

I.4.4 Hyperparameters for MNIST, CIFAR-10 and CIFAR-100 datasets

Table 15, lists the hyperparameters as defined in Table 14, used in the CNN-EBD training experiments.

Table 15: Hyperparameters for CNN-EBD for the MNIST, CIFAR-10 and CIFAR-100 datasets,
where i denotes the epoch index.

Hyperparameter MNIST CIFAR-10 CIFAR-100

αexp 0.97 0.97 0.97
α[i] 10−4 · α−iexp 10−4 · α−iexp 10−4 · α−iexp
µ(d,b,k)[i] 0.1α[i] for k = 0, 1, 2, 3 0.1α[i] for k = 0, 1, 2, 3 0.1α[i] for k = 0, 1, 2, 3, 4

10α[i] for k = 4 10α[i] for k = 4 10α[i] for k = 5
µ(E,k)[i] [1 1 1 10 0] 10−7α[i] [1 1 1 1 1] 10−6α[i] [0 0 0 5 5 5] 10−7α[i]

µ
(k)
ℓ1

[i] [1 1 1 10 0] 10−11α[i]
[
1 1 1 102 0

]
10−10α[i] [0 0 0 1 1 0] 10−7α[i]

σW

√
1
6

√
1
6

√
1
6

σRlin
1e− 2 1e− 2 1e− 2

σRconv
1e− 2 1e− 2 1e− 2

λd 0.99999 0.99999 0.99999
λE 0.99999 0.99999 0.99999
λR 2e− 2 2e− 2 2e− 2
β 1e− 8 1e− 5 1e− 5
ϵL 1e− 8 1e− 8 1e− 8
ϵ 1e− 5 1e− 5 1e− 5
B 16 16 16
p N/A N/A 0.075

49

I.5 Locally Connected Network

In this section, we offer additional details regarding the numerical experiments for the training
of Locally Connected Networks (LCs) using EBD algorithm (LC-EBD). Appendix I.5.1 provides
information about implemetation details. Appendices I.5.2 and I.5.3 discuss the initialization of the
algorithm’s variables and describe the hyperparameters. Finally, Appendix I.5.4 detail the specific
hyperparameter configurations used in our numerical experiments for the MNIST and CIFAR-10
datasets. In Appendix I.10 we present the accuracy and loss learning curves for the LCs, shown in
Figures 6.(e)-(f) and Figures 7.(e)-(f), respectively.

I.5.1 Implementation details

The training procedure mirrors the CNN approach described in Section I.4.1 for CNNs. In the
LC-EBD implementation, the loss and regularization functions detailed in section D.2 are used:

• EBD loss: J (k),

• Entropy objective: J (k)
E ,

• Activation sparsity regularization: J (k)
ℓ1

.

I.5.2 Initialization of algorithm variables

We use the Kaiming uniform initialization for the weights, with a common standard deviation scaling
parameter σW, on both the linear and locally connected layers. The estimated cross-correlation
variable Rh(k)ϵ (linear layers) is initialized with a normal distribution with zero mean and standard
deviation σRlin

. Also, the parameter Rg(k)(H(k,p))ϵ (locally connected layers) is initialized with
Pytorch framework’s Xavier uniform initialization with the gain parameter equal to σRlocal

.

I.5.3 Description of hyperparameters

Table 14 in the CNN section, again describes the notation for the hyperparameters used to train
LCs using the Error Broadcast and Decorrelation (EBD) approach. The convergence parameter λR
introduced in equations Eq. (61) and Eq. (61) is used as well.

I.5.4 Hyperparameters for MNIST and CIFAR-10 datasets

Table 16, lists the hyperparameters as defined in Table 14, used in the LC-EBD training experiments.

Table 16: Hyperparameters for LC-EBD for both the MNIST and CIFAR-10 datasets, where i denotes
the epoch index.

Hyperparameter MNIST CIFAR-10

αexp 0.96 0.98
α[i] 10−4 · α−iexp 10−4 · α−iexp
µ(d,b,k)[i] 0.1α[i] for k = 0, 1, 2, 3 0.5α[i] for k = 0, 1, 2, 3

10α[i] for k = 4 5α[i] for k = 4
µ(E,k)[i]

[
1 1 1 102 0

]
10−9α[i]

[
1 1 1 10 103

]
10−11α[i]

µ
(k)
ℓ1

[i] [1 1 1 10 0] 10−11α[i] [1 1 1 10 0] 10−13α[i]

σW

√
1
6

√
1
6

σRlin
1 1e− 3

σRlocal
1 1e− 1

λd 0.99999 0.99999
λE 0.99999 0.99999
λR 3e− 2 3e− 2
β 1e− 8 1e− 6
ϵL 1e− 8 1e− 8
ϵ 1e− 5 1e− 5
B 16 16
p N/A N/A

50

I.6 Implementation details for Direct Feedback Alignment (DFA) and backpropagation
training

This section presents further details on the numerical experiments comparing Direct Feedback
Alignment (DFA) and Backpropagation (BP) methods, conducted under the same training conditions
and number of epochs as those used for our proposed EBD algorithm. The results of these experiments
are provided in Table 1 . We also include the DFA+E method, which extends DFA by incorporating
correlative entropy regularization similar to the EBD. Note that, when the update on the Rh(k)ϵ is
fixed to its initialization, the EBD algorithm reduces to standard DFA.

For BP-based models trained on MNIST, CIFAR-10 and CIFAR-100, we used the Adam optimizer
with hyperparameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8 [57]. For DFA and DFA+E models, we
again used the Adam optimizer for CNN and LC models, while MLP models were trained using
SGD with momentum.

In Tables 17 and 18, we detail the hyperparameters for models trained with BP, DFA, and DFA+E
update rules on MNIST and CIFAR-10 respectively. In Table 19, we give the hyperparameters
for the CNN model (detailed in Table 7) trained with with BP and DFA. Some of the learning rate
and the learning rate decay values or methodologies are linked to the tables corresponding to the
hyperparameter details of its EBD counterpart, where the same method is also utilized for its DFA
or DFA+E counterpart. Unlinked values denote a constant value applied to each layer, or the step
decay multiplier applied per epoch. Additionally, sparsity inducing losses are not utilized for BP,
DFA and DFA+E models.

Table 17: Hyperparameter details for models trained on the MNIST dataset, including learning rate,
L2 regularization coefficient, learning rate decay, and number of epochs for MLP, CNN, and LC
models using BP, DFA, and DFA+E methods.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay (αexp) Epochs
BP 5e− 5 1e− 5 0.96 120

MLP DFA Table-13 Table-13 Table-13 120
DFA+E Table-13 Table-13 Table-13 120

BP 5e− 5 1e− 8 0.97 100
CNN DFA Table-15 1e− 8 0.97 100

DFA+E Table-15 1e− 8 0.97 100

BP 5e− 5 1e− 8 0.96 100
LC DFA Table-16 1e− 8 0.96 100

DFA+E Table-16 1e− 8 0.96 100

Table 18: Hyperparameter details for models trained on the CIFAR-10 dataset, including learning
rate, L2 regularization coefficient, learning rate decay, and number of epochs for MLP, CNN, and LC
models using BP, DFA, and DFA+E methods.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay (αexp) Epochs
BP 5e− 5 1e− 5 0.85 120

MLP DFA Table-13 0 Table-13 120
DFA+E Table-13 0 Table-13 120

BP 5e− 5 1e− 5 0.92 200
CNN DFA Table-15 1e− 5 0.97 200

DFA+E Table-15 1e− 5 0.97 200

BP 1e− 4 1e− 6 0.90 200
LC DFA Table-16 1e− 6 0.96 200

DFA+E Table-16 1e− 6 0.96 200

Table 19: Hyperparameter details for the CNN model trained on the CIFAR-100 dataset, including
learning rate, L2 regularization coefficient, learning rate decay, dropout probability and number of
epochs using BP and DFA methods.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay (αexp) Dropout (p) Epochs

CNN BP 5e− 5 1e− 5 0.97 0.5 200
DFA [0.1 0.1 0.1 1 1 50] · 0.25α[i] 0 0.95 0.075 300

51

I.7 Runtime comparisons for the update rules

In this section, we present the relative average runtimes from the simulations, normalized to BP
for the MNIST and CIFAR-10 models in Tables 20 and 21 respectively, for the models that we
implemented and demonstrated their performance in Table 1.

The results show that entropy regularization in both EBD and DFA+E more than doubles the average
runtime. However, these runtimes could be significantly improved by optimizing the implementation
of the entropy gradient terms, specifically by avoiding repeated matrix inverse calculations. A more
efficient approach would involve directly updating the inverses of the correlation matrices instead
of recalculating both the matrices and their inverses at each step. This strategy aligns with the
CorInfoMax-(EP/EBD) network structure. Nonetheless, we chose not to pursue this optimization, as
CorInfoMax networks already employ it effectively.

The efficiency of the DFA, DFA+E, and EBD methods can be further enhanced through low-level
optimizations and improved implementations.

Table 20: Average Runtimes in MNIST (relative to BP)
Model DFA DFA+E BP EBD

MLP 3.40 7.68 1.0 8.06
CNN 1.68 2.95 1.0 3.85
LC 1.61 3.57 1.0 3.54

Table 21: Average Runtimes in CIFAR-10 (relative to BP)
Model DFA DFA+E BP EBD

MLP 2.85 6.94 1.0 7.61
CNN 2.10 3.24 1.0 4.11
LC 1.35 2.01 1.0 2.41

I.8 Reproducibility

To facilitate the reproducibility of our results, we have included the following:

i. Detailed information on the derivation of the weight and bias updates of the Error Broadcast
and Decorrelation (EBD) Algorithm for various networks in Appendix C for MLPs, D.1 for
CNNs, D.2 for LCs,

ii. Full list of hyperparameters used in the experiments in Appendix I.2.5, I.3.4, I.4.4, I.5.4,
iii. Algorithm descriptions for CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-

EBD) Algorithm in pseudo-code format in Appendix I.2.2,
iv. Python scripts, Jupyter notebooks, and bash scripts for replicating the individual experiments

and reported results are included in the supplementary zip file.

I.9 Computational resources

All experiments were conducted within a High-Performance Computing (HPC) facility. Each
experimental run utilized a single NVIDIA Tesla V100 GPU equipped with 32GB of HBM2 memory.
To provide context on execution times for our proposed CorInfoMax-EBD models:

• Training the 3-Layer CorInfoMax-EBD model (as described in Appendix I.2.5) for 30
epochs required approximately 22 hours.

• Training the 10-Layer CorInfoMax-EBD model (as described in Appendix I.2.6) for 100
epochs took approximately 75 hours. Execution times for other models (MLP, CNN, LC)
and baseline methods were generally shorter; relative runtime comparisons are provided in
Appendix I.7.

52

I.10 Accuracy and loss curves

Figures 6 and 7 present the training/test accuracy and MSE loss curves over epochs for the CIFAR-10
and MNIST datasets. Solid lines represent test curves; dashed lines denote training curves.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Train and test accuracies plotted as a function of algorithm epochs for various update rules
(averaged over n = 5 runs associated with the corresponding ± std envelopes) for the (a) MLP
on MNIST (b) MLP on CIFAR-10 (c) CNN on MNIST (d) CNN on CIFAR-10 (e) LC on MNIST
(f) LC on CIFAR-10 (g) 10-Layer CorInfoMax-EBD with batchsize=1 on MNIST (h) 10-Layer
CorInfoMax-EBD with batchsize=1 on CIFAR-10.

53

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Train and test mean squared errors (MSE) plotted as a function of algorithm epochs for
various update rules (averaged over n = 5 runs associated with the corresponding ± std envelopes)
for the (a) MLP on MNIST (b) MLP on CIFAR-10 (c) CNN on MNIST (d) CNN on CIFAR-10 (e)
LC on MNIST (f) LC on CIFAR-10 (g) 3-Layer CorInfoMax-EBD with batchsize=20 on MNIST (h)
3-Layer CorInfoMax-EBD with batchsize=20 on CIFAR-10.

54

Figure 8 shows the training/test accuracy curves over epochs in the 10-Layer CorInfoMax-EBD
numerical experiments for the CIFAR-10 and MNIST datasets. Furthermore, Figure 9 presents the
training/test accuracy curves over epochs for the CNN model trained with the CIFAR-100 dataset.
Solid lines represent test curves; dashed lines denote training curves.

(a) (b)

Figure 8: Train and test accuracies plotted as a function of algorithm epochs (averaged over n = 5
runs associated with the corresponding ± std envelopes) for training with (a) 10-Layer CorInfoMax-
EBD with batchsize=1 on MNIST (b) 10-Layer CorInfoMax-EBD with batchsize=1 on CIFAR-10.

Figure 9: Train and test accuracies plotted as a function of algorithm epochs for various update rules
(averaged over n = 5 runs associated with the corresponding ± std envelopes) for training with the
CNN network on CIFAR-100.

55

J Calculation of the correlation between layer activations and output error

Figure 10: The evolution of the average
absolute correlation between layer activa-
tions and the error signal during backprop-
agation training of an MLP with two hid-
den layers (using the MSE criterion) on the
MNIST dataset, showing the correlation
decrease over epochs, on both the training
and test sets.

Figure 1c illustrates the decrease in the average abso-
lute correlation between hidden activations and output
error during backpropagation, using a Multi-layer Per-
ceptron (MLP) model with the architecture outlined in
Table 5, on the CIFAR-10 dataset. Details for the MSE
based training and the Cross-Entropy based training are
explained in Appendices J.1 and J.2 respectively.

J.1 Correlation in the
mean squared error (MSE) criterion-based training

The MLP models are trained using the Stochastic Gra-
dient Descent (SGD) optimizer with a small learning
rate of 10−4 and the MSE criterion. In both plots, the
initial value represents the correlation before training
begins. The reduction in correlation observed during
training provides insight into the core principle of the
EBD algorithm.

To compute these correlations, we apply a batched ver-
sion of Welford’s algorithm [58], which efficiently calcu-
lates the Pearson correlation coefficient between hidden
activations and errors in a memory-efficient way by us-
ing streaming statistics.

Welford’s algorithm works by accumulating the neces-
sary statistics (e.g., sums and sums of squares) across
batches of data and finalizing the correlation computa-
tion only after all data has been processed, avoiding the
need to store all hidden activations simultaneously.

Given the hidden activations h(k) ∈ Rb×N(k)

, where b is the batch size and N (k) is the number of
hidden units, and the errors ϵ ∈ Rb×k, where k is the number of output dimensions (e.g., classes);
the goal is to compute the Pearson correlation coefficient between activations hi for each hidden unit
i and the corresponding error values across all samples as:

ρ(k) =
Cov(h(k), ϵ)√
σ2
h(k)

√
σ2
ϵ + ϵ

where ϵ is a small constant for numerical stability. Finally, we compute the average of the absolute
values of the correlation coefficients for each hidden layer k to generate the corresponding plots.

Figure 10 shows the correlation throughout training on the MNIST dataset, employing the MLP
model detailed in Table 4, where we observe the correlation decay behavior similar to Figure 1c.

To verify that the correlation–decay phenomenon observed for fully-connected networks extends to
convolutional architectures, we trained a compact five-layer CNN consisting of three Conv+ReLU+
MaxPool blocks (with 32, 64, and 128 3×3 filters, respectively) followed by a fully–connected
layer with 512 hidden units and an output layer with 10 logits. The network was optimized for 30
epochs on CIFAR –10 using mini-batch SGD (η = 10−3, momentum 0.9) and the mean-squared error
criterion on one-hot labels. After every forward pass we streamed the Pearson correlation between
each hidden activation vector and the output error using the batched Welford estimator. Figure 11
plots the epoch-wise evolution of the average absolute correlation coefficient for both training and test
data. As with the MLP in Figure 1c, all layers exhibit a pronounced monotonic decline, confirming
that back-propagation progressively enforces the stochastic orthogonality of hidden activations and
output errors in convolutional networks as well, as expected.

56

Figure 11: The evolution of the average absolute correlation between layer activations and the
error signal during back-propagation training of a CNN on CIFAR–10. The CNN contains three
convolutional layers and two fully–connected layers and is trained with the MSE criterion. The
correlation decreases over epochs on both the training and test sets, mirroring the behavior observed
for the MLP architecture and supporting the generality of the correlation decay across architectures.

J.2 Correlation in the cross-entropy criterion-based training

Although the stochastic orthogonality property is specifically associated with the MSE loss, we
also explored the dynamics of cross-correlation between layer activations and output errors when
cross-entropy is used as the training criterion.

With the same experimental setup as described in Appendix J.1, but replacing the MSE loss with
cross-entropy, we obtained the correlation evolution curves shown in Figure 12a for CIFAR-10 and in
Figure 12b for MNIST dataset. Notably, the correlation between layer activations and output errors
still decreases over epochs, despite the change in the loss function.

(a) (b)

Figure 12: Evolution of the average absolute correlation between layer activations and output errors
during backpropagation training of an MLP with three hidden layers, trained using cross-entropy
loss. (a) CIFAR-10 dataset and (b) MNIST dataset. Despite the use of cross-entropy, the correlation
decreases similarly to the MSE criterion.

57

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim EBD is a novel, MMSE-grounded frame-
work for biologically plausible credit assignment, circumventing weight transport, leading
to three-factor rules, integrating with CorInfoMax, and achieving competitive or better per-
formance against other error-broadcast methods on benchmarks. These claims are supported
by the theoretical development in Sections 2 and 3 (e.g., MMSE orthogonality, three-factor
learning rule derivation in 3.1) and experimental results in Section 4 (Tables 1 and 2). The
scope, including scalability as an area for further exploration, is also appropriately stated.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 (Impact and Limitations”) explicitly discusses limitations concerning
scalability, computational costs/hyperparameter complexity of EBD.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

58

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical grounding of EBD on the MMSE orthogonality principle is
detailed in Section 2.2. Appendix A provides preliminaries on nonlinear MMSE estimation.
Appendix B elaborates on the stochastic orthogonality condition, its sufficiency for MMSE
optimality (Theorem B.1), and its application to network training, including arguments for
using hidden unit activations under idealized conditions (Theorem B.2). These sections
outline the assumptions and provide the theoretical arguments/proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 outlines the experimental setup. Appendix I (”Supplementary on
Numerical Experiments”) provides extensive details regarding network architectures (I.1),
hyperparameters for all presented models (EBD variants and baselines like BP, DFA) across
datasets (I.3-I.7), optimizers, learning rate schedules, and other implementation specifics
necessary to understand and reproduce the experiments. We also provide all codes as
supplementary to the article.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

59

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the implementation of the proposed method in the supplementary
material, accompanied by a README file that outlines the structure and usage instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The datasets (MNIST, CIFAR-10) use standard train/test splits as detailed in
Appendix I (lines 1051-1053). Appendix I extensively lists hyperparameters, their selection
rationale or values for different models/datasets (e.g., I.3.4-I.3.7, I.4.3-I.4.4, I.5.3-I.5.4, I.6.3-
I.6.4, I.7), optimizer types (Adam, SGD with momentum), and other training configurations
(epochs, batch sizes).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

60

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments were conducted five times, and average and standard deviation
values are reported in Tables. In Appendix I, Figures 5 and 6 explicitly state that they show
mean results with standard deviation envelopes from these multiple runs. Table 2 reports
mean and standard deviation for the 10-layer CorInfoMax-EBD results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments utilized a single NVIDIA Tesla V100 GPU with 32GB HBM2
memory, accessed via an HPC facility (details in Appendix I). Appendix I.9 provides specific
execution time examples for the more computationally intensive CorInfoMax-EBD models.
Appendix I.7 further provides relative runtime comparisons for other models and methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

61

https://neurips.cc/public/EthicsGuidelines

Justification: The research proposes a novel learning algorithm and evaluates it using
standard public datasets. The work is foundational. The ”Impact and Limitations” section
(Section 5, lines 315-318) outlines the positive aim of advancing the fields and notes that
specific negative societal impacts directly from EBD mechanisms are not identified beyond
general ML considerations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 5 (”Impact and Limitations”) discusses the positive societal impact
by stating the aim to advance Machine Learning and Computational Neuroscience. It also
addresses the negative aspect by stating that, as a foundational algorithm, no specific negative
societal impacts directly attributable to EBD are identified beyond general considerations
common to advancements in machine learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research proposes a new learning algorithm (EBD) and primarily evaluates
it on standard, publicly available datasets (MNIST, CIFAR-10). The paper does not introduce
or release new large-scale datasets or pre-trained models that would typically carry a high
risk for misuse requiring specific safeguards (such as those for large generative models or
models trained on sensitive scraped data).

62

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The sources for the standard datasets used (MNIST [52], CIFAR-10 [45]) are
cited in Section 4 and their licenses/terms of public availability (CC BY-SA 3.0 for MNIST,
public availability for research for CIFAR-10) are noted in Appendix I . The external code
repository from Bozkurt et al. [45] used as a basis for the CorInfoMax-EBD implementation
is cited, and its observed licensing status (no explicit license found in the public repository
at the time of access) is transparently stated in Appendix I.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The primary new assets are the proposed EBD algorithm and its variations,
along with their software implementation. As stated in the filled checklist answer for question
5, the code implementation and a README file with usage instructions are provided in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

63

paperswithcode.com/datasets

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve crowdsourcing or direct research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve direct research with human subjects that would
necessitate IRB approval or a discussion of participant risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as a component of the core research methodology,
theoretical development, or experimental analysis presented in this paper. Any use of LLMs
was restricted to assistance with writing and editing the manuscript, which does not require
declaration per NeurIPS policy.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

64

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work and contributions

	Error Broadcast and Decorrelation method
	Problem statement
	Error Broadcast and Decorrelation loss functions
	Error Broadcast and Decorrelation algorithm
	 Further EBD algorithm extensions
	Avoiding collapse
	Forward broadcast
	Extensions to other network architectures

	EBD for biologically realistic networks
	Three factor learning rule and EBD
	CorInfoMax-EBD: CorInfoMax with three factor learning rule

	Numerical experiments
	Conclusions, extensions and limitations
	Preliminaries on nonlinear Minimum Mean Square Error (MMSE) estimation
	On the stochastic orthogonality condition based network training
	The stochastic orthogonality condition and linear MMSE estimation
	The use of stochastic orthogonality conditions for nonlinear MMSE estimation
	The sufficiency of the nonlinear MMSE orthogonality condition
	From orthogonality to hidden units to arbitrary functions: an infinite width perspective
	EBD framework objective
	Scaling of orthogonality conditions for nonlinear MMSE

	The derivation of update terms
	Delta W1 and Delta b1 calculation
	Delta W2 and Delta b2 calculation
	Update corresponding to the layer entropy regularization
	Update corresponding to the power normalization regularization
	On the EBD with forward projections
	Gradient derivation for the EBD with forward projections

	Additional extensions of EBD
	Extensions to Convolutional Neural Networks (CNNs)
	Error Broadcast and Decorrelation formulation
	Weight entropy objective
	Activation sparsity regularization

	Extensions to Locally Connected (LC) Networks
	Error Broadcast and Decorrelation formulation
	Weight entropy objective
	Activation sparsity regularization

	Gradient alignment in EBD
	Alignment between EBD updates and backpropagation gradients
	On gradient truncation and biological plausibility

	Background on online Correlative Information Maximization (CorInfoMax) based biologically plausible neural networks
	The derivation of the CorInfoMax network
	CorInfoMax-EP learning dynamics
	Feedforward and feedback weights
	Lateral weights

	CorInfoMax-EP

	Implementation complexity of the EBD approach
	Complexity analysis: Error Propagation vs. Error Broadcast
	Delivering output error information to layers
	Additional cost of Entropy Regularization
	Additional cost of Power-normalization

	On the biologically plausible nature of Entropy and Power-normalization updates
	MLP implementation with Entropy and Power-normalization regularizations
	Power normalization-based SGD updates
	Layer entropy regularization-based SGD updates

	CorInfoMax-EBD implementation
	Power-normalization-based SGD updates
	Layer entropy maximization

	Summary and conclusions

	Supplementary on numerical experiments
	Architectures
	CorInfoMax-EBD
	Implementation details
	Algorithm
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for 3-Layer MNIST and CIFAR-10 Models
	Hyperparameters for 10-layer CorInfoMax-EBD on MNIST and CIFAR-10 datasets for batch size 1

	Multi-Layer Perceptron
	Implementation details
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MLP-EBD on MNIST and CIFAR-10 Datasets

	Convolutional Neural Network
	Implementation details
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MNIST, CIFAR-10 and CIFAR-100 datasets

	Locally Connected Network
	Implementation details
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MNIST and CIFAR-10 datasets

	Implementation details for Direct Feedback Alignment (DFA) and backpropagation training
	Runtime comparisons for the update rules
	Reproducibility
	Computational resources
	Accuracy and loss curves

	Calculation of the correlation between layer activations and output error
	Correlation in the mean squared error (MSE) criterion-based training
	Correlation in the cross-entropy criterion-based training

