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ABSTRACT

As the quality of image generators continues to improve, deepfakes become a topic of con-
siderable societal debate. Image watermarking allows responsible model owners to detect
and label their AI-generated content, which can mitigate the harm. Yet, current state-of-
the-art methods in image watermarking remain vulnerable to forgery and removal attacks.
This vulnerability occurs in part because watermarks distort the distribution of generated
images, unintentionally revealing information about the watermarking techniques.
In this work, we first demonstrate a distortion-free watermarking method for images, based
on a diffusion model’s initial noise. However, detecting the watermark requires comparing
the initial noise reconstructed for an image to all previously used initial noises. To miti-
gate these issues, we propose a two-stage watermarking framework for efficient detection.
During generation, we augment the initial noise with generated Fourier patterns to embed
information about the group of initial noises we used. For detection, we (i) retrieve the
relevant group of noises, and (ii) search within the given group for an initial noise that
might match our image. This watermarking approach achieves state-of-the-art robustness
to forgery and removal against a large battery of attacks.

1 INTRODUCTION
Generative AI is capable of synthesizing high-quality images indistinguishable from real ones. This capabil-
ity can be used to deliberately deceive. These fake image generations, called deepfakes, have the potential to
cause severe societal harms through the spread of confusion and misinformation (Peebles & Xie, 2022; Esser
et al., 2024; Chen et al., 2024; Ramesh et al., 2021). In addition, owners of different models and images may
want to control the spread of their derivatives for copyright reasons and safeguard their intellectual property.
One way to mitigate these harms is model watermarking. The study of watermarking has a rich history and
has recently been adopted for AI-generated content (Pun et al., 1997; Langelaar et al., 2000; Craver et al.,
1998). For an extended discussion of recent work in this area, we direct the reader to Appendix B. Unfor-
tunately, most current image watermarking methods are not robust to watermark removal attacks utilizing
image diffusion generative models (Zhao et al., 2023a).

Recently, new watermarking methods utilize the inversion property of DDIM to achieve more robust water-
marking (Wen et al., 2023; Ci et al., 2024; Yang et al., 2024b). These methods embed patterns in a diffusion
model’s initial noise and then detect them in the noise pattern reconstructed from the generated image.
This technique provides strong robustness against various attacks, making it effective at resisting water-
mark removal attempts. Yet, these prior methods are themselves vulnerable to new types of attacks. Tree-
Ring Wen et al. (2023) add a pattern to the initial noise, making it distinct from a random Gaussian initial
noise in a way that an attacker can detect (Yang et al., 2024a). This may enable forgery attacks, aimed at
applying the watermark without the owner’s permission. Such attacks are often even more concerning than
removal attacks, as they can cause severe damage to model owners if their watermark is associated with
illegal content.

Therefore, there is a need for image watermarking methods that generate images that are not distinct from
non-watermarked images (to anyone but the model owner). As suggested by previous works, since the model
already takes random noise as initialization, we may initialize it with a pseudo-random noise pattern that we
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Figure 1: The WIND method for robust image watermaking. The method is designed to use N possible
initial noises splitted to M groups. Generation: Using a secret salt and an index i∗, we securely and
reproducibly generate initial noise zi∗ . We then embed a group index g∗ of that noise to make easier retrieval
possible and embed it using a Fourier pattern. Finally, we run diffusion with the embedded latent noise to
produce a watermarked image. Detection: We reconstruct the initial noise z̃. Next, we search over the
possible group indices g for the closest Fourier pattern to the one embedded in z̃. We then look over initial
noises in group g̃ to find the match.
can detect later (Yang et al., 2024b; Kuditipudi et al., 2023). Namely, reconstructing an approximation of
the initial noise used in the diffusion process from a given image allows the detection of the noise pattern
used by the model. Although this reconstructed noise is not completely identical to the used initial noise, it
is much more similar to the initial noise than it is to other randomly distributed noise patterns. Thus, it can
serve as a watermark that can be identified in the generated images (see also Appendix C for similar ideas
used in previous works).

While using a pseudo-random initial noise does not distort the distribution of single generated images, it
may carry information about the watermark when groups of images are examined together. Specifically,
works such as Yang et al. (2024b) embeds the watermark in an initial noise such that the resulting generated
image comes from the same distribution as non-watermarked images. Yet, when many images generated
from the same noise pattern are examined together, the correlation between them may expose that they are
not distortion-free as a set. E.g., the average of many similarly-watermarked images may differ from the
average of non-watermarked ones (Yang et al., 2024a). A natural solution to this distortion of sets is to use
more than one initial noise for each watermark we deploy.

Yet, given a sufficiently small set of initial noises (denoted as N ) and an enormous number of images
generated by a model, an attacker could potentially still collect many images sharing the same initial noise
in order to perform removal and forgery attacks as was applied to previous methods (Yang et al., 2024a).
Using many initial noises (a large value of N ) will make such attacks much more difficult, if not infeasible.
Surprisingly, we find that a very large number of random initial noises remain distinguishable from one
another, even after reconstructing the noise from a generated image. However, a large value of N might
incur a negative effect on the runtime and accuracy of the approach. In order to lower the effective quantity
of noises we need to scan at detection while retaining strong robustness, we propose a two-stage efficient
watermarking framework. We supplement our N initial noise samples with M Fourier patterns as a group
identifier - a unique identifier of a subset of initial noises we might have used for generating a given image
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(Figure 1). During detection, we may first recover the group identifier (stage 1) and use it to find an exact
match (stage 2). Thus, we reduce our search space to the number of initial noises per group (N/M ).

Our key contributions are as follows:
1. We demonstrate that the initial noise used in the diffusion process is itself a distortion-free water-

marking method for images (Section 3).
2. We present WIND, our two-stage method for effectively using the initial noise as a watermark

(Section 4).
3. We demonstrate that WIND achieves state-of-the-art results for its robustness to removal and

forgery attempts (Section 5).

2 PRELIMINARIES

2.1 DIFFUSION MODELS INVERSION

Diffusion model inversion aims to find the reconstructed noise representation of a given data point, effec-
tively reversing the generative process. Let T be the number of diffusion steps, in both the generation and
inversion processes. In the standard generation process, we start with noise x̃T drawn from an appropriately
scaled Gaussian and iteratively apply x̃t = x̃t+1 + ϵΘ(x̃t+1), where ϵΘ is a trained model that predicts the
noise to be removed and t ∈ [T ] is the time step describing how much noise should be removed in each stage.
Conversely, the inversion process begins with a data point x̂0 and moves towards its reconstructed noise rep-
resentation by applying x̂t+1 = x̂t−ϵΘ(x̂t). This process relies on the assumption that ϵΘ(x̂t+1) ≈ ϵΘ(x̂t),
allowing us to approximately invert the diffusion process by adding the predicted noise (Ho et al., 2020; Song
et al., 2022). DDIM’s efficient sampling allows this technique to be particularly useful. (Song et al., 2022).

2.2 TREE-RING AND RINGID WATERMARKS

In order to watermark images in a human-imperceptible and robust way, previous works have encoded
specific patterns in the Fourier space of the initial noise. Tree-Ring (Wen et al., 2023) first transforms the
initial noise into the Fourier space. A key pattern is then embedded into the center of the transformed noise.
The noise is subsequently transformed back into the spatial domain. During the detection phase, the diffusion
process is inverted, and the Fourier domain is examined to verify the presence of the imprinted pattern.
RingID (Ci et al., 2024) shows that Tree-Ring struggles to distinguish between different keys. Therefore,
the number of unique keys (distinguishable from one another) that can be embedded with Tree-Ring is low.
They increase the possible number of unique keys that can be encoded using Fourier patterns.

Systematic Distribution Shifts in Generated Images Enable Attacks. Systematic distribution shifts in
the generated content make it easier to verify the existence of a watermark. However, in the case of Tree-
Ring and other watermarking techniques, it also opens up an avenue of attack (Wen et al., 2023; Yang et al.,
2024b; Xian et al., 2024; Bui et al., 2023). Emblematic is the method of Yang et al. (2024a), whose attack
approximates the difference between watermarked and non-watermarked images. Increasing the number of
images with the watermark can improve the accuracy of the approximation. The impact of distribution shifts
is significant, as the attack remains effective even when the watermarked and non-watermarked images are
not paired (Figure 3).

3 INITIAL NOISE IS A DISTORTION FREE WATERMARK

Watermarks which systematically perturb the distribution of image generations are more vulnerable to re-
moval and forgery attacks. A distortion-free watermarking method, by contrast, is more robust (Kuditipudi
et al., 2023). Our first finding is that the initial noise already in standard use in diffusion models can be such
a watermark.

Let N be the number of initial noises we can generate. We will secure our watermarking process with a
long, secret salt s. We begin by sampling a random (and reproducible) initial noise. Let i∗ ∼ Unif([N ])
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Figure 2: Cosine similarity distribution between initial noise, and: (i) a noise reconstructed from a water-
marked image (reconstructed noise) (ii) a noise reconstructed from a forged image using a public model to
imitiate our watermarked image (reconstruction attack, described in Section 3). (iii) Random noise. These
results are reliant on the approximate inversion of DDIM without the ground-truth prompt .

be the index of the initial noise. We will use a hash function to get a seed hash(i∗, s). Plugging the seed
into a pseudorandom generator, we generate a reproducible initial noise vector zi∗ ∼ N (0, I) drawn from
a centered Gaussian distribution. When we generate fewer than N images, we can use each initial noise at
most once and the noise appears distortion-free. We discuss the case when the number of images exceeds N
in Appendix F.

Empirical validation of initial noise watermarking. To empirically validate our claim that the initial noise
can serve as a watermark, we compute the cosine similarity between the initial noise zi∗ and (i) random
noise z ∼ N (0, I), (ii) the reconstructed noise z̃ when we have access to the private model weights, and (iii)
the reconstructed noise z̃attack from an image imitating our noise pattern without access to the private model
weights. The imitation attempt is done by inversing our watermarked image back into noise, and generating
a new image from it; where both steps are done using a public model as described in reconstruction attack
below (we used Stable Diffusion-v2 (Rombach et al., 2022) for the experiment, as it is the most similar
model to our watermarking model).

During the watermarking process, we create an image image through diffusion with the private model
weights Θ conditioned on a private text prompt p. Formally, image = GΘ(zi∗ , p). We obtain the recon-
structed noise that we use for detection via an inverse diffusion process G−1. Formally, z̃ = G−1

Θ (image).

Reconstruction Attack. An attacker trying to forge the watermarked image will not have access to our
private weights, instead they will have some other weights Θ′. Using the same starting watermarked image,
they will attempt to recover the initial noise. Let z̃′ = G−1

Θ′ (image). Then, with this initial noise, they will
generate a forged image with (possibly offensive) text prompt p′, producing image’ = GΘ′(z̃′, p′). Finally,
the model owner will attempt to detect whether the forged image is watermarked by applying the inverse
diffusion process with the private model weights to the forged image. Let z̃attack = G−1

Θ (image’). As an
upper bound on the capability of this attack, we perform it with the same prompt. Also, Keles & Hegde
(2023) demonstrates that inverting a generative model is a significantly challenging task.

Strikingly, we find that the similarity between the true noise and the noise reconstructed with the model
weights is almost always greater than a relatively large threshold τ = 0.5 (p value < 10−3, Figure 2). At
the same time, the reconstructed similarity from the image made by an attacker using the reconstruction
attack sim(zi∗ , z̃attack), along with the similarity to random vectors sim(zi∗ , z) are both much smaller.
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(a) Forgery Performance (b) Removal Performance

Figure 3: Detection accuracy for forgery and removal attacks using Yang et al. (2024a). A value of 0 rep-
resents complete failure (the attacker successfully removed the watermark or forged it onto another image),
while 100 indicates perfect defense (no watermark removal or forgery occurred).

Algorithm 1 Generation Algorithm

1: Input: N : number of initial noises, M : number of groups, s: secret salt, p: prompt, Θ: private model
weights

2: Sample initial noise index i∗ ∼ Unif([N ])
3: Compute group identifier g∗ = i∗%M ▷ Modulus of initial noise index
4: Calculate embedding of the group identifier gemb(g

∗)
5: Securely generate seed = hash(i∗, s) ▷ Apply cryptographic hash function
6: Sample zi∗ ∼ N (0, I) from a pseudorandom generator with seed
7: Add the identifier embedding gemb(g

∗) to zi∗ to get zi∗ emb

8: return image = GΘ(zi∗ emb, p) ▷ Diffusion process G with weights Θ

Algorithm 2 Detection Algorithm (WINDfast)

1: Input: image: (possibly) watermarked image, N : number of initial noises, M : number of groups, s:
secret salt, Θ: private model weights, τ : threshold for detection

2: Recover reconstructed noise z̃ = G−1
Θ (image) ▷ Inverse diffusion with private weights

3: Extract closest group identifier g̃ from group identifier embedding in z̃
4: for i ∈ [N ] such that i%M = g̃ do ▷ Search over subset of initial noise indices
5: Build initial noise zi using secret salt s and hash ▷ As in Algorithm 1
6: Compare zi to z̃ after removing Fourier embedding g̃
7: end for
8: if any noises are closer than threshold τ then
9: Declare “watermarked”

10: else
11: Declare “not watermarked”
12: end if

Namely, they are respectively z = 5.3 and z = 9.4 standard deviations away from the mean (Table 15).
Taken together, these results mean that the probability p of a non-watermarked image mistakenly labeled as
watermarked is very low in both cases. For the random noise, the probability to confuse it is as the initial

noise is p < e(
τ2

2σ2 ) < 10−19, allowing practically a perfect distinction between any pair of unrelated noises.
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Runtime considerations. Our method requires searching over all N watermarks, leading to a naive
runtime complexity of O(N). However, more efficient algorithms for similarity-based search, such as
HNSW (Malkov & Yashunin, 2018), can reduce this complexity to O(logN), at the expense of additional
memory usage. We provide empirical runtime analysis of our method in Appendix H. For large enough
values of N , this cost may eventually become undesirable. Together with our aim to maintain high robust-
ness with an increasing number of keys, it motivates a more efficient method, which is presented in the next
section.
4 METHOD
4.1 WIND: TWO-STAGE EFFICIENT WATERMARKING

While always using a single initial noise for our model might imply good robustness properties, to make
forgery and removal more difficult, it is generally preferable to maintain a large set of N initial noises to
be used by the model. More importantly, using a large number of different noises N may serve as different
keys, encoding some metadata about each image. This metadata might include information about the specific
model that generated it, as well as additional information about the generation for further validation of the
image source, once detected.

In order to make the search over a large number of noises more efficient, we introduce a two-stage effi-
cient watermarking approach we name WIND (Watermarking with Indistinguishable and Robust Noise for
Diffusion Models). First, we initialize M groups of initial noise, each group associated with its own Fourier-
pattern key. In contrast to prior work, we employ these Fourier patterns not as a watermark, but as a group
identifier to reduce the search space.

Figure 4: Qualitative results of watermarked images
generated using WIND, Tree-Ring, and RingID. See
Appendix D for quantitative results. See Appendix J
for additional qualitative results.

For each image generation, we randomly select an
index for the initial noise, denoted as i∗ ∈ [N ].
We use a group identifier g∗ = i∗%M , where %
denotes the modulus operation. We embed g∗ in
the Fourier space of the latent noise (similar to Wen
et al. (2023)). During detection, we reconstruct the
latent noise and find the group identifier g̃ that is
closest to the Fourier pattern embedded in the im-
age. We then search over all indices i such that
g̃ = i%M . In this way, the search space has size
N/M rather than N . We include an algorithm box
for generation (Algorithm 1) and detection (Algo-
rithm 2).

In the following part, we refer to two variants of our
method: (i) WINDfast where we assume the used
initial noise belongs to the identified group g̃ and
check similarity only to noise patterns in this group.
(ii) WINDfull where we check all N possible initial
noises if we can’t find a match within the detected
group (the gap between the similarity of the correct
noise and random noises, as shown in Figure 2, al-
lows us to determine whether the correct noise has
been identified). This method is slower but more
robust to removal attacks that might interfere with
the Fourier pattern. Additional ablations and results can be found in Appendix D.

4.2 RESILIENCE TO FORGERY

In addition to empirical evaluations of specific attacks as in Figures 2 and 3; we discuss below the attacker’s
ability to infer knowledge about the used noise pattern across different watermarked images. Even if the
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Table 1: Comparison of correct watermark detection accuracy between WIND and previous image water-
marking approaches under various image transformation attacks. WINDM denotes the use of M groups,
with the total number of noises (N ) specified in the “Keys” column. A broader comparison with additional
methods can be found in Table 16.

Method Keys Clean Rotate JPEG C&S Blur Noise Bright Avg ↑

Tree-Ring
32 0.790 0.020 0.420 0.040 0.610 0.530 0.420 0.404
128 0.450 0.010 0.120 0.020 0.280 0.230 0.170 0.183
2048 0.200 0.000 0.040 0.000 0.090 0.070 0.060 0.066

RingID
32 1.000 1.000 1.000 0.530 0.990 1.000 0.960 0.926
128 1.000 0.980 1.000 0.280 0.980 1.000 0.940 0.883
2048 1.000 0.860 1.000 0.080 0.970 0.950 0.870 0.819

WINDfast128 100000 1.000 0.780 1.000 0.470 1.000 1.000 0.960 0.887
WINDfast2048 100000 1.000 0.870 0.960 0.060 0.960 0.950 0.900 0.814

WINDfull128 100000 1.000 0.780 1.000 0.850 1.000 1.000 1.000 0.947
WINDfull2048 100000 1.000 0.880 1.000 0.930 1.000 0.990 0.980 0.969

attacker is able to obtain information about a specific initial noise zi for an index i (which is an extreme
case), the other noise vectors for j ̸= i are still safe1. This is because we use a cryptographic hash function
and a secret salt. Formally, Theorem 4.1 shows that, as long as the cryptographic hash function remains
unbroken and the secret salt is kept private, the watermarking algorithm maintains its security properties
against even very powerful adversaries.

Theorem 4.1. [Cryptographic Security] Let hash: 0, 1∗ → 0, 1ℓ be an unbroken cryptographic hash func-
tion used in our watermarking algorithm, with inputs i∗ ∈ [N ] and a secret salt s. Assume s is sufficiently
long and randomly generated. Then, even if an adversary obtains: the group number g∗, the initial noise
index i∗, the initial noise zi∗ , and even the corresponding output of the hash function seed, the adversary
cannot:

1. Recover the secret salt s,

2. Generate valid reconstructed noise zj for any other initial noise index j ̸= i

We defer the proof to Appendix E.

4.3 WATERMARKING NON-SYNTHETIC IMAGES.

Until now, we have addressed watermarking only for AI-generated synthetic images. Yet, protecting copy-
rights, or preventing the spread of misinformation, may also apply to modified natural images. Most previ-
ous approaches to watermark diffusion models overlook attempting to expand their method to non-generated
images. To allow using our framework for non-generated images, we expand our framework. By using dif-
fusion inpainting, our watermark can be applied to a natural image. Later, by inverting the inpainted image
we can verify the presence of the watermark.

As demonstrated in Appendix J, our inpainting method injects a watermark with minimal visual impact,
preserving the original image’s integrity. Please see Appendix D for additional results.

1We note that obtaining a single noise pattern might not be enough to effectively forge the watermark, as the model
owner may encode this pattern with additional metadata as described in Section 4.1
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Table 2: Cosine similarity between the ini-
tial noise and the inversed noise before
and after the regeneration attack. Also see
Appendix D

Condition Mean STD
Original Image 0.888 0.053
Attacked Image 0.824 0.062
Unrelated Image 0.000 0.008

Table 3: FID scores of WIND compared to
previous watermarking approaches.

Method FID ↓
DwtDctSvd 25.01
RivaGAN 24.51
Tree-Ring 25.93
RingID 26.13
WIND 24.33

5 EXPERIMENTS

5.1 WATERMARK ROBUSTNESS

Setting. For a fair comparison with previous methods (Ci et al., 2024; Wen et al., 2023), we employed
Stable Diffusion-v2 (Rombach et al., 2022), with 50 inference steps for both generation and inversion. Other
implementation-details can be found in Appendix I.

Image Transformation Attacks. Following previous methods (Wen et al., 2023; Ci et al., 2024) we applied
these image transformations to the generated images: 75◦ rotation, 25% JPEG compression, 75% random
cropping and scaling (C & S), Gaussian blur with an 8×8 filter size, Gaussian noise with σ = 0.1, and color
jitter with a brightness factor uniformly sampled between 0 and 6. In Table 1 we compare our methods to
both Tree-Ring and RingID. As the results demonstrate, using multiple keys with RingID (Ci et al., 2024) is
possible. Yet, it remains vulnerable to cropping and scaling attacks. In contrast, WIND effectively addresses
this challenge. It enables accurate watermark detection under all image transformation attacks. We note that
the incorporation of the keys in the RingID method not only allows us to embed keys but also increases the
robustness of the full method to certain attacks.

Steganalysis Attack. We assess the robustness of our method against the attack proposed by Yang et al.
(2024a), which is capable of forging and removing the Tree-Ring and RingID keys. As discussed in Sec-
tion 2.2, this attack attempts to approximate the watermark by subtracting watermarked images from non-
watermarked images. The results, presented in Figure 3, indicate that while the attack could be able to forge
or remove our group identifier, it is unable to forge or remove our watermark (initial noises). Even when the
Fourier pattern type key is removed through an exhaustive search, our method remains robust in identifying
the correct initial noise.

Regeneration Attacks. Recently, Zhao et al. (2023a) introduced a two-stage regeneration attack: (i) adding
noise to the representation of a watermarked image, and (ii) reconstructing the image from this noisy repre-
sentation. To assess the resilience of our approach to regeneration attacks, we applied the attack from Zhao
et al. (2023a) to watermarked images generated by our model. As shown in Table 2, the attack has a minimal
impact on the distribution of the cosine similarities between the initial noise and the inverted noise. The
attacked noise similarity still maintains a significant gap compared to random noise.

To examine the performance of our inpainting method, we report the Fréchet Inception Distance (FID)
(Heusel et al., 2018) on the MS-COCO-2017 (Lin et al., 2015) training dataset in Table 3. Notably, our
method achieves the lowest FID among the compared methods, indicating a closer alignment with real
images. Additionally we include some images generated by our framework in Figure 4.

6 CONCLUSION

In this work, we present a robust and distortion-free watermarking method that leverages the initial noises
employed in diffusion models for image generation. By integrating existing techniques, we enhanced the
approach to achieve improved efficiency and robustness against various types of attacks. Furthermore, we
outlined a strategy for applying our method to non-generated images through inpainting. Additional discus-
sion and limitations can be found in Appendix C.
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A NOTATION

Table 4: Notations used in the paper.

N Number of initial noises

M Number groups

s Secret salt for cryptographic security

i Index of initial noise: i ∈ [N ]

g Index of group: g = i%M

hash A cryptographic hash function

z Initial noise

τ Threshold for declaring an image is watermarked

T Number of diffusion steps

Θ Weights of a diffusion model

p Text prompt for diffusion

GΘ Diffusion model with weights Θ

G−1
Θ Inverse diffusion model with weights Θ

B RELATED WORKS

Memorization in Diffusion Models. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have
demonstrated a capacity not only to generalize but also to memorize training data. This can lead to the
reproduction of specific patterns or, in some cases, exact content from the training set, including sensitive
or proprietary information. This memorization poses significant risks of unintended intellectual property
leakage, particularly in large-scale generative models. Several studies have shown that information from
training data can be extracted from diffusion models (Carlini et al., 2023b; Somepalli et al., 2023b; Carlini
et al., 2023a; Gu et al., 2023; Somepalli et al., 2023a).

Image Watermarking. Image watermarking is essential for protecting intellectual property, verifying con-
tent authenticity, and maintaining the integrity of digital media. The field has ranged from traditional signal
processing techniques to recent deep learning methods (Potdar et al., 2005; Singh & Singh, 2023).

Among Early watermarking strategies, one of the simplest methods was Least Significant Bit (LSB) embed-
ding, which modifies the least significant bits of image pixels to imperceptibly embed watermarks (Wolfgang
& Delp, 1996). Another classical approach utilized frequency-domain transformations and Singular Value
Decomposition (SVD) to hide watermarks within image coefficients. (Chang et al., 2005; Al-Haj, 2007).

Recent developments leverage deep learning for watermarking. For instance, HiDDeN (Zhu et al., 2018)
introduced an end-to-end trainable framework for data hiding. RivaGAN (Zhang et al., 2019) utilizes adver-
sarial training to embed watermarks, while Lukas & Kerschbaum (2023) proposed an embedding technique
that optimizes efficiency by avoiding full generator retraining.

Watermarking for Diffusion Models. Existing watermark methods for diffusion models can be divided
into three categories:
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Table 5: Inpainting correct watermark detection accuracy.

Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
1.000 1.000 1.000 0.880 1.000 0.950 0.950 0.969

(i) Post-processing methods which adjust image features to embed watermarks (Zhao et al., 2023c; Fernan-
dez et al., 2023b). This approach alters the image and its distribution, which can result in significant changes
to the generated image. However, recent work by Zhao et al. (2023b) shows that pixel-level perturbations
are removable by regeneration attacks makes. To date, this approach is not robust.

(ii) Fine-tuning-based approaches combine the watermark within the generation process (Zhao et al., 2023c;
Xiong et al., 2023; Liu et al., 2023; Fernandez et al., 2023a; Cui et al., 2023). To date, these methods have
robustness issues as well (Zhao et al., 2023a).

(iii) Tree-Ring introduced an approach to proposing a method to imprint a tree-ring pattern into the initial
noise of a diffusion model (Wen et al., 2023). Each pattern is used as a key, which is added in the Fourier
space of the noise. The verification of the presence of the key involves recovering the initial noise from the
generated image and checking if the key is still detectable in Fourier space. This approach makes Tree-Ring
and its follow-up works the most robust approach against attacks (Zhao et al., 2023a; An et al., 2024; Gunn
et al., 2024).

Recently, Yang et al. (2024a) took advantage of the distribution shift present in Tree-Ring that occurs with
impainting keys and arranged the first successful black box attack against it, as we detailed in Section 2.2.

C DISCUSSION AND LIMITATIONS

Editing a Given Image vs. Forging. While forging our watermark by obtaining the initial noise is hard
(Section 3), an easier path to obtaining harmful watermarked images might be to apply a slight edit to an
already watermarked image. An harmful image in this context might include a copy-right infringing image,
NSFW image, or any other content the model owner wish to avoid being associated with. Naturally, there is
a trade-off between the severity of the applied edit, and the edit ability to preserve the initial watermark. We
present one solution to mitigating this issue in the next discussion point.

Storing a Database of Generations. Model owners wishing to protect themselves from an attacker mod-
ifying a watermark image may keep a database of the past generations by their model. For these extreme
cases, the model owner might only save the used prompts and initial noiseseeds, and use the reconstructed
noise to retrieve the entire set of prompts used with that specific seed (Huang & Wan, 2024). While this
process may be resource-intensive, it is only required in the rare event that an attacker intentionally modifies
a benign image into a harmful one while preserving the watermark.

Private Model. Our watermark robustness is based to a large extent on the inability of an attacker to invert
a model, which is empirically validated but not a mathematically proven. Yet, as discussed in Section 2.1, the
ability to successfully invert our model may be nearly equivalent to the ability to steal the forward diffusion
process, effectively stealing the model (in which case, any watermarking attempt might be deemed quite
useless anyhow). Still, a better framing of the mathematical assumptions behind this claim is a limitation of
this work, as well as of previous works on watermarking using inversion of the diffusion generative process.

Attacker’s Advantage. There exists a large set of diverse attacks aimed at watermark removal (Zhang
et al., 2023; Yang et al., 2024a; Zhao et al., 2023a), along with image transformations such as rotation and
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Figure 5: Image sequence from 0 to 50 regeneration attack iterations.

crops that also achieve some limited success against our watermark. As in many security applications, we
suspect that an attacker capable enough will still be able to remove the watermark using new techniques we
might not expect. However, a more robust watermark may nevertheless help to decrease the spread of false
information.

Relation to Other Initial Noise Watermarking Methods. The seminal work by Wen et al. (2023) inno-
vated the use of initial noise in DDIM for watermarking. Most related to our work, Yang et al. (2024b)
also embeds a watermark in the initial noise already used by a DDIM diffusion model. Yet, while
Yang et al. (2024b) proposes a watermark that is distortion-free for a single image, it is not distortion-free
when examining sets of images; therefore it is vulnerable to attacks such as Yang et al. (2024a). We aim to
be robust to attacks even when many images are examined together.

There are additional technical differences between our approach and Yang et al. (2024b). Most notably: (i)
Our work also studies applying our watermark to non-synthetic (natural) images, or images coming from
other generative models. (ii) While Yang et al. (2024b) design a function to embed specific bits into the
initial noise, we take another approach. Namely, we view the entire initial noise (with generation and
inversion) as a noisy channel. Inspired by Shannon (1949), we use a random encoding of the watermark
identities into the channel.

Computational Requirements. As discussed in Section 3 our similarity search can be accelerated given
well-known methods. Yet, the computational requirements of our method might be limiting when trying to
use our method on edge devices. However, similarly to Tree-Ring and Ring-ID (Wen et al., 2023; Ci et al.,
2024) our method assumes a private model, which is usually not deployed on edge devices anyhow.

Trade-Offs Between the Watermarking Overhead, and Detection Accuracy. We suggest the following
variants of our method for different possible requirements of runtime scaling, detection robustness, and ease
of adaptation.

A. Detection of the group identifier alone: This operation takes a search of O(M), but is vulnerable to both
removal and forgery attempts, as we use a weaker watermark for group identifiers.

B. Detection of the Fourier pattern, followed by a validation of the exact initial noise (WINDfast): within
the group. This operation takes O(N/M) search. It is vulnerable to removal attempts, but more resilient to
forgery attempts (see Table 1).

C. An exhaustive search of the initial noise, also outside the identified group (WINDfull): This operation
takes O(N) search. It is more resilient to both removal and forgery attempts (see Figure 3, and Table 1).

This method, while slower is also easier to adapt. A user that wishes to use a fast version of this variant may
apply a similar algorithm to the one described above using only a few possible random noises. This would
replace the distinguishability of many different watermarks with the ability to rapidly and simply detect the
watermarked images.
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Practically, an NN search can be accelerated using many methods, and can
be scaled to tens of millions without significantly affecting the detection time
(Wei et al., 2024; Douze et al., 2024; Malkov & Yashunin, 2018; Andoni et al., 2018).

Image Quality Considerations. Our method relies on using an initial random noise, drawn from the same
distribution of initial noises already used by the model. Therefore, the core of our method (the initial noise
stage) is not compromising the visual quality of the generated images at all.

The only effect on visual quality comes from the group identifier, where we use existing off-the-shelf water-
marking images. In our implementation, we used the RingID (Ci et al., 2024) method that adds the Fourier
pattern to the initial noise.

When a model owner wishes to preserve image quality even better, they may use any other existing water-
marking method for the group identifier stage. This will still not compromise the security provided by the
initial noise stage.

Inversion Attack. As discussed in Section 2.1 in our paper, accurately inverting the model is as difficult
as copying the forward process of the model (image generation). While hard, an attacker able to do so is
effectively also capable of generating novel images using the same diffusion process. Therefore, At this
stage, the model itself is effectively compromised (and not only the watermark signature). We believe that
being as hard to forge as the model itself, is a reasonable level of security for almost all use cases.

Yet, approximately inverting the model might also be a threat. While even approximately inverting a model
is also very hard, it might be easier than stealing the model. Still, we would like to emphasize that our
method is more secure than other diffusion-process-based watermarking techniques, where image distortion
themselves may allow easier forging (Yang et al., 2024a).

D ADDITIONAL RESULTS

D.1 APPLICABILITY TO OTHER TYPES OF MODELS

We expect our watermark to be effective directly for any model for which some inversion to the original
noise is possible. Namely, as the correlation between random noises in a very high dimension is very much
concentrated around 0, even a very slight success in the inversion process is enough to be distinguishable.
In higher generation resolutions the dimensionality of the noise is even higher, and therefore the separation
would be even better (El Karoui, 2009).

Empirically, to validate the generality of our method, we also report results for the SD 1.4 model
(Rombach et al., 2022). Using N = 10000 noises and M = 2048 group identifiers, our method achieved a
detection accuracy of 97% to identify the correct watermark (initial noise).

In any case, our method of the reported SD 2.1 model can also be used to watermark images collected from
other sources (please see Section 4.3, Appendix D.2).

D.2 NON-SYNTHETIC IMAGES WATERMARK DETECTION

Our inpainting method allows us to watermark both images generated by any model and non-generated
images. To evaluate the robustness of the inpainting watermarking approach, we present results in Table 1
for this method, utilizing N = 100 noises. Results are shown in Table 5.
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Table 6: Impact of different inference steps on detection accuracy.

Steps Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
20 1.000 0.780 1.000 0.880 0.920 1.000 0.960 0.934
50 1.000 0.930 1.000 0.940 1.000 0.980 0.980 0.976
100 1.000 0.930 1.000 0.940 1.000 1.000 0.990 0.980
200 1.000 0.850 1.000 0.940 1.000 1.000 1.000 0.970

D.3 FURTHER EXPLORATION OF THE REGENERATION ATTACK PERTURBATION STRENGTH

In Section 5.1, we discussed the robustness of WIND against regeneration attacks. However, using it itera-
tively might still be a stronger adversary. We applied the regeneration attack proposed by Zhao et al. (2023a),
up to 50 times. We see that iterative regeneration indeed decreases the similarity between the original noise
and the reconstructed one. This happens as the image becomes less and less correlated to the original gener-
ation Figure 5.

Yet, the detection rate of our algorithm remains very high Table 14. We attribute this to the fact that even a
slight remaining correlation between the attacked image and the initial noise remains significant with respect
to the correlation expected from non-watermarked images. This happens because of the very low correlation
between random (non-watermarked) noises (Figure 2).

D.4 QUANTITATIVE ANALYSIS OF THE EFFECT ON IMAGE QUALITY

We reported the FID of our model on Table 3. To further assess the effect of WIND watermark on image
quality we report the CLIP score Hessel et al. (2021) before and after watermarking on Table 9. Results
indicate that adding the watermark has a negligible effect on the CLIP score for generated images.

To further quantify the distortion introduced by each model, we report pixel-base matrices, SSIM and PSNR
in the two settings we study:

Images Generated by the Diffusion Model. WIND’s distortion arises from using group identifiers, en-
abling faster detection. To disentangle this effect, we also evaluate WINDw/o, which omits group identifiers.
As can be seen in Table 10, the image quality generated using our full method is comparable to that of pre-
vious techniques. Users who wish to generate distortion-free images, without affecting image quality, can
do so by omitting the group identifier (at the cost of a slower detection phase for very large values of N ).

Watermarking Non-Synthetic Images. Additionally, we present results for WINDinpainting, our inpainting-
based approach capable of watermarking both non-synthetic images and outputs from other generative mod-
els (Table 11). Although other watermarking methods may preserve image quality better, our image quality
remains high. Importantly, to the best of our knowledge, our approach is the only one capable of water-
marking non-synthetic images while remaining robust against the regeneration attack (Zhao et al., 2023a).
Therefore, it is preferable when an adversary may try to remove the watermark.

In addition, the inpainting technique can be applied selectively to specific parts of the image if the copyright
owner wishes to perfectly preserve fine details in certain areas.

D.5 ROBUSTNESS COMPARISON TO DIFFERENT NUMBER OF INFERENCE STEPS

We evaluate the impact of inference steps on detection accuracy, as shown in Table 6. The results indicate
that using 100 steps yields better detection accuracy compared to other step counts, including the 50 steps
used in our main experiments.

19



Published as a conference paper at ICLR 2025

Table 7: Success rate of additional attacks.

WeVade Random Search Transfer Attack NES Query
1% 2% 3% 2%

D.6 TRUE POSITIVE AND AUC

Expanding on the detection assessment settings discussed in Section 5, we reported WIND’s error bars.
AUC and True Positive (TPR@1%FPR) results are available on Table 8. Demonstrate strong performance,
emphasizing WIND’s robustness and reliability.

D.7 EVALUATION AGAINST ADDITIONAL ATTACKS

We evaluate WIND against a diverse set of attacks, including transfer-based, query-based, and white-box
methods. Specifically, we employ the WeVade white-box attack (Jiang et al., 2023), the transfer attack de-
scribed in Hu et al. (2024), a black-box attack utilizing NES queries (Ilyas et al., 2018), and a random search
approach discussed in Andriushchenko et al. (2024), adopted to attempt watermark removal. The success
rates of these attacks are detailed in Table 7. Notably, none of these methods succeed against WIND, as the
correct watermark remains detectable in over 97% of cases even after applying these attacks.

E PROOF OF RESILIENCE TO FORGERY

The WIND method is an approach for generating multiple watermarked images. Theorem 4.1 tells us that
compromising one or more watermarked images does not give away any information about any other wa-
termarked images. E.g., the adversary cannot “generate valid reconstructed noise for any other initial noise
index j ̸= i”. That said, Theorem 4.1 does leave open the possibility that an adversary can take a water-
marked image, reconstruct the initial noise only for that image, and use it to attack the method, which we
evaluate empirically.

Cryptographic Background Consider a cryptographic hash function hash: {0, 1}∗ → {0, 1}ℓ with ℓ
output bits. E.g., ℓ = 256 for SHA-256. We will describe properties of the hash function in terms of
‘difficulty’; we say a task is ‘difficult’ if, as far as we know, finding a solution is almost certainly beyond the
computational capabilities of any reasonable adversary. An unbroken cryptographic hash function satisfies
the following properties: Pre-image resistance requires that given a hashed value v, it is difficult to find
any message m such that v =hash(m). Second pre-image resistance requires that given an input m1, it is
difficult to find a different input m2 such that hash(m1)= hash(m2). Collision resistance requires that it
is difficult to find two different messages m1 and m2 such that hash(m1)= hash(m2).

Theorem 4.1. [Cryptographic Security] Let hash: 0, 1∗ → 0, 1ℓ be an unbroken cryptographic hash func-
tion used in our watermarking algorithm, with inputs i∗ ∈ [N ] and a secret salt s. Assume s is sufficiently
long and randomly generated. Then, even if an adversary obtains: the group number g∗, the initial noise
index i∗, the initial noise zi∗ , and even the corresponding output of the hash function seed, the adversary
cannot:

1. Recover the secret salt s,

2. Generate valid reconstructed noise zj for any other initial noise index j ̸= i
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Figure 6: Cosine Similarity from 0 to 50 regeneration attack iterations.

Table 8: Error bars of WIND.

AUC TP@1%
0.971 1.000

Proof of Theorem 4.1. We will prove each part of the theorem separately:

1. The adversary cannot recover the secret salt s: Given the output seed = hash(i∗, s) and partial input
i∗ the adversary aims to find s. This is equivalent to finding a pre-image of given partial information about
the input. By the pre-image resistance property of cryptographic hash functions, this task is computationally
infeasible. Even if the adversary knows all possible values of i, the space of possible secret salts s is too large
to search exhaustively (as s is a sufficiently long random string). Therefore, the adversary cannot recover s.

2. The adversary cannot generate valid reconstructed noise for any other initial noise index j ̸= i. This
security guarantee is ensured by two properties of hash: a) Second pre-image resistance: Given (i∗, s), it’s
computationally infeasible to find (i′, s) where i′ ̸= i∗ such that hash(i∗, s) = hash(i′, s). b) Collision
resistance: It’s computationally infeasible to find any two distinct inputs that hash to the same output. These
properties ensure that the adversary cannot find alternative inputs that produce the same hash output, and
thus cannot generate valid reconstructed noise for different index numbers j.

Table 9: Effect of WIND on CLIP score.

CLIP Before Watermark CLIP After Watermark
0.366 0.360

Theorem 4.1 leaves open the possibility that an adversary can recover the noise from a watermarked image
and use that noise to forge a new watermarked image. However, empirically we show that this attack fails
without access to the weights of the private diffusion model.
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Table 10: SSIM and PSNR values of initial noise-based watermarking approaches. WINDw/o refers to the
method without group identifiers.

Method SSIM ↑ PSNR ↑
WINDw/o 1.000 ∞
WINDfull 0.494 14.647
RingID 0.454 13.560
Tree-Ring 0.545 15.251

Table 11: SSIM and PSNR values for non-synthetic image watermarking approaches.

Method SSIM ↑ PSNR ↑
WINDinpainting 0.768 26.806
DwtDctSvd 0.983 39.381
RivaGAN 0.978 40.550
SSL 0.984 41.795
StegaStamp 0.911 28.503

F FURTHER DISCUSSION ON DISTORTION

Using the same initial noisefor multiple generations is not distortion-free when examining groups of images.
For example, all images with the same prompt p and the same initial noise z will be identical, distorted away
from the distribution of groups of images generated with i.i.d noises. Luckily, the huge gap between the
similarities distribution of (i) reconstructed vs. used noise and (ii) reconstructed vs. another noise, allows us
to use as many different noise patterns, while still keeping the noise we used distinguishable more similar to
the reconstructed noises. Therefore, limiting the level of distortion in practice.

Table 12: Detection time (second)

WIND Tree-Ring RingID
22 20 14

G NUMBER OF GROUPS

In our framework, we divide the initial noises into N groups and associate a Tree-Ring-type key with each
group. The use of Fourier Pattern keys enables robustness against rotation, and grouping reduces the search
space for inverted noise.

To investigate the impact of the number of groups, we performed an experiment with 10, 000 noises and
varied the number of groups from 32 to 2048. As expected, Figure 7 demonstrates that increasing the
number of groups leads to better accuracy in detecting the correct initial noise. This is because a larger
number of groups results in fewer noises per group, which facilitates more accurate detection. Detailed
results for each number of groups under transformation attacks are reported in Table 13.
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Figure 7: Effect of the number of groups on the average accuracy of retrieving initial noise from 10,000
samples under various image transformation attacks.

Table 13: Accuracy of retrieving the initial noise from 10,000 noise samples, divided into varying numbers
of groups, under different image transformation attacks.

Groups Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
32 1.000 0.540 1.000 0.700 1.000 0.990 0.960 0.884
128 1.000 0.810 1.000 0.820 1.000 1.000 0.980 0.944
512 1.000 0.890 1.000 0.880 1.000 0.980 1.000 0.964
2048 1.000 0.930 1.000 0.940 1.000 0.980 0.980 0.976

H EMPIRICAL RUNTIME ANALYSIS

However, the runtime is highly sensitive to the available computational resources. To provide a practical
estimate, we measured the detection time using a single NVIDIA GeForce RTX 3090. Specifically, we
divided 100,000 initial noise samples into 32 groups and reported the detection. Under these conditions,
the detection phase for 100,000 noise samples takes approximately 22 seconds per detection. We include a
comparison with other methods in Table 12.

I IMPLEMENTATION DETAILS

Prompts. For all evaluations we used the set of prompts taken from Gustavosta (2024).

Threshold for Detection. For the first variant WINDfast (see Section 4) we use a threshold of min ℓ2 norm
> 160. The second variant (WINDfull) does not use a threshold, but rather, we choose the noise pattern
within the group that has the lowest ℓ2 as our candidates for the identified noise.

General Retrieval Details. We included simple rotation (using intervals of 2 degrees) and sliding window
(window size of 32, stride of 8) searches as part of the retrieval process. These searches do not involve
directly optimizing for the specific degrees of rotation or cropping encountered, ensuring that robustness
remains intrinsic to the method.
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Table 14: Correct watermark detection after iterative regeneration attack.

Iteration Cosine Similarity Detection Rate
10 0.493 100%
20 0.342 100%
30 0.243 100%
40 0.170 100%
50 0.121 100%

Table 15: Cosine similarity between the first initial noise used for generation and the inversed noise obtained
through three inversion approaches. “Private” refers to models owner’s model, while “Public” denotes ex-
ternal model.

Approach Mean Std
Gen (private) → Rev (private) 0.888 0.053
Gen (private) → Rev (public) → Gen (public) → Rev (private) 0.166 0.063
Random Noise 0.000 0.053
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Table 16: Comparison of correct watermark detection accuracy between WIND and previous image water-
marking approaches under various image transformation attacks. WINDM denotes the use of M groups,
with the total number of noises (N ) specified in the “Keys” column.

Method Keys Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
DwtDct 1 0.974 0.596 0.492 0.640 0.503 0.293 0.519 0.574
DwtDctSvd 1 1.000 0.431 0.753 0.511 0.979 0.706 0.517 0.702
RivaGan 1 0.999 0.173 0.981 0.999 0.974 0.888 0.963 0.854

Tree-Ring
32 0.790 0.020 0.420 0.040 0.610 0.530 0.420 0.404
128 0.450 0.010 0.120 0.020 0.280 0.230 0.170 0.183
2048 0.200 0.000 0.040 0.000 0.090 0.070 0.060 0.066

RingID
32 1.000 1.000 1.000 0.530 0.990 1.000 0.960 0.926
128 1.000 0.980 1.000 0.280 0.980 1.000 0.940 0.883
2048 1.000 0.860 1.000 0.080 0.970 0.950 0.870 0.819

WINDfast128 100000 1.000 0.780 1.000 0.470 1.000 1.000 0.960 0.887
WINDfast2048 100000 1.000 0.870 0.960 0.060 0.960 0.950 0.900 0.814

WINDfull128 100000 1.000 0.780 1.000 0.850 1.000 1.000 1.000 0.947
WINDfull2048 100000 1.000 0.880 1.000 0.930 1.000 0.990 0.980 0.969
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J ADDITIONAL QUALITATIVE RESULTS

Figure 8: More watermarked images generated with WIND.
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Figure 9: More watermarked images generated with WIND.
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Before After Before After

Figure 10: More comparisons of COCO images before and after watermarking with WIND.
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Figure 11: More qualitative results of watermarked images generated using WIND, Tree-Ring, and RingID.
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Figure 12: More qualitative results of watermarked images generated using WIND, Tree-Ring, and RingID.
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Figure 13: More qualitative results of watermarked images generated using WIND, Tree-Ring, and RingID.
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Figure 14: More qualitative results of watermarked images generated using WIND, Tree-Ring, and RingID.
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Figure 15: More qualitative results of watermarked images generated using WIND, Tree-Ring, and RingID.
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Figure 16: More qualitative results of watermarked images generated using WIND, Tree-Ring, and RingID.
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