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Figure 1: Our Solution Pipeline in WhoIsWho-IND task of KDD Cup 2024

Abstract
We propose Dynamic Identity Equilibrium (DIEq), a novel data pre-
processing technique for author disambiguation. DIEq addresses
dataset imbalance by simultaneously interpreting a subset of neg-
ative samples as both negative and positive, creating ’academic
identity phantoms’ that enrich the feature space. This approach not
only exploits data imbalance but also accelerates convergence and
enhances model prediction accuracy. Ranking in the top 10 of the
WhoIsWho-IND task at KDD Cup 2024, our approach combines
over 3,000 hand-crafted features with a 5-fold LGBM model, achiev-
ing a 0.5-1.2% increase in wAUC on test data, contributing to more
precise academic impact assessment and knowledge discovery.
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1 Introduction
The rapid growth of academic publications has made author disam-
biguation an increasingly critical challenge in managing academic
knowledge graphs [1, 20, 21]. This task is particularly crucial for
accurately assessing research impact, facilitating collaboration, and
enhancing the overall integrity of scientific databases [3, 13]. How-
ever, the inherent imbalance in author attribution datasets, where
correctly attributed papers significantly outnumber misattributed
ones, poses a substantial challenge to developing effective disam-
biguation models [12, 19].

Traditional approaches to author disambiguation have relied
heavily on metadata analysis and string-matching techniques [9].
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More recent methods have incorporated machine learning algo-
rithms, leveraging features extracted from publication metadata,
content analysis, and citation networks [22]. Despite these advance-
ments, the problem of data imbalance continues to hinder the per-
formance of many state-of-the-art models, often resulting in high
false positive rates or reduced sensitivity to genuine cases of misat-
tribution [16].

In this paper, we introduce Dynamic Identity Equilibrium (DIEq),
a novel data preprocessing technique designed to leverage issues
in author disambiguation tasks. DIEq operates by simultaneously
interpreting a subset of negative samples (misattributed papers) as
both negative and positive, effectively creating "academic identity
phantoms". This approach strategically exploits dataset imbalance
while enriching the feature space, compelling the model to learn
more nuanced and discriminative representations of author identi-
ties.

Our method builds upon recent advancements in adversarial
learning and data augmentation techniques, adapting these con-
cepts to the specific challenges of academic data mining. By com-
bining DIEq with a comprehensive set of over 3,000 hand-crafted
features and employing a Light Gradient Boosting Machine (LGBM)
model [15], we demonstrate significant improvements in bothmodel
convergence speed and prediction accuracy.

We evaluate our approach on the WhoIsWho-IND task of KDD
Cup 2024, a large-scale author disambiguation challenge focused on
detecting misattributed papers in author profiles. Our experiments
show that DIEq not only strategically leverages the data imbalance
issue but also leads to a 0.5-1.2% increase in Weighted Area Under
the Curve (wAUC) on test data, outperforming several baseline
methods.

The rest of this paper is organized as follows: Section 2 pro-
vides a comprehensive description of the dataset used in the KDD
Cup 2024 WhoIsWho-IND task, along with our initial Exploratory
Data Analysis (EDA) findings. Section 3 details our proposed DIEq
method and feature engineering approach. Section 4 presents our
experimental setup and results. Finally, Section 5 concludes the
paper and discusses future directions.

2 WhoIsWho-IND KDD Cup 2024
2.1 Competition Task
The WhoIsWho-IND task of the OAG-Challenge, focuses on de-
tecting incorrectly attributed papers in academic literature. The
main task is to develop models to distinguish between correctly and
incorrectly assigned papers using a dataset of 148,309 labelled sam-
ples, with a significant class imbalance (131,024 correct and 17,285
incorrect attributions). The challenge lies in leveraging text length
distributions and additional paper attributes (e.g., title, abstract,
authors, keywords) to overcome the substantial overlap between
classes. This task aims to enhance author name disambiguation, cru-
cial for improving the accuracy of academic knowledge graphs and
supporting various applications in scientific research and policy-
making.

2.2 Dataset
The training dataset for this task comprised 148,309 samples, with
131,024 instances of correctly assigned papers (Label 1) and 17,285

instances of incorrectly assigned papers (Label 0) [21], which im-
plies that class imbalance (approximately 7.58:1 ratio) is a crucial
factor that should be addressed in the model development strategies.

2.3 Text Length Distribution
The Figure 3 in the appendix illustrates the distribution of text
lengths in theWhoIsWho-IND task dataset from theOAG-Challenge,
utilizing density curves to compare the text length distributions
of different labels. The vast majority (99.7%) of the samples have
text lengths below 4,096 characters, while the primary concentra-
tion of text lengths between 0 and 2,000 characters. Incorrectly
assigned papers (Label 0) display a pronounced peak near short text
length(<128 characters). This could indicate a higher likelihood of
misattribution for extremely short texts.

3 Method
3.1 Feature Engineering
We meticulously engineered over 3,000 features, encompassing
a wide range of textual, semantic, and author-specific statistical
attributes (see Figure 1). Our comprehensive feature set includes:

• Popularity Features: Authors and venue popularity are
derived from frequency distributions, computed using Map-
Reduce to capture citation patterns

• Semantic Embeddings: Tf-idf [10], Word2Vec [11]and Scib-
ert based representations [14]

• Textual Similarity Metrics: Employing cosine similar-
ity measures to quantify textual relationships

• Keywords Overlap Score: Quantify the overlap of key-
words in each author’s research domain in the corresponding
article

• Author-grouped Statistical Features: Statistical fea-
tures to capture author relationships and influence

• Feature Interactions: Generating composite features to
capture complex relationships between authors’ research
domains

3.2 Definition of Keywords Overlap Score
For each author, we calculate the top 100 most frequent words in all
texts of each author. Let𝑊author represent all texts for the author
author, and Count(𝑤,𝑊author) represent the occurrence count of
word𝑤 in𝑊author. We define the set of top 100 most frequent words
for the author author as:

𝑇author = {𝑤 | 𝑤 ∈ Top100words(𝑊author)} (1)

For each sample 𝑖 , we calculate the keywords overlap score between
the sample’s text𝑦𝑖 and the top 100 keywords set𝑇𝑥𝑖 of the sample’s
corresponding author 𝑥𝑖 . Let 𝑦𝑖 represent the text of sample 𝑖 , and
𝑇𝑥𝑖 represent the set of top 100 keywords for the author 𝑥𝑖 . The
overlap score overlap_score(𝑦𝑖 ,𝑇𝑥𝑖 ) is defined as:

KeywordsOverlapScore(𝑦𝑖 ,𝑇𝑥𝑖 ) =
��{𝑤 | 𝑤 ∈ 𝑦𝑖 ∩𝑇𝑥𝑖 }

����𝑇𝑥𝑖 �� (2)

3.3 Embedding Cosine Similarities
Given two embedding matrices, one representing the mean embed-
ding of all articles related to an author and the other representing

2024-08-14 17:43. Page 2 of 1–5.
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the embedding of the current sample article, we compute the cosine
similarity between these embeddings for each sample.

Let 𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛] be the matrix of embeddings for all arti-
cles related to an author, and let 𝐹 = [𝑓1, 𝑓2, . . . , 𝑓𝑛] be the matrix
of embeddings for the current sample articles. For each sample 𝑖 ,
we calculate the following:

1. Compute the mean embedding of all articles related to the
author of the 𝑖-th sample:

𝜇𝑖 =
1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝑒𝑖 𝑗 (3)

where𝑚𝑖 is the number of articles related to the author of the 𝑖-th
sample.

2. Calculate the difference between the mean embedding 𝜇𝑖 and
the embedding of the 𝑖-th sample article 𝑓𝑖 :

𝑑𝑖 = 𝑓𝑖 − 𝜇𝑖 (4)

3. Calculate the cosine similarity between the mean embedding 𝜇𝑖
and the embedding of the 𝑖-th sample article 𝑓𝑖 :

CosineSims(𝑑𝑖 , 𝑓𝑖 ) =
𝑑𝑖 · 𝑓𝑖

∥𝑑𝑖 ∥∥ 𝑓𝑖 ∥
(5)

Thus, the process can be summarized as follows:
(1) Convert text columns Text1(all related articles) and Text2(current

articles) to embedding matrices 𝐸 and 𝐹 , respectively.
(2) Initialize an empty list CosineSims.
(3) For each 𝑖 from 1 to 𝑛:
(a) Compute the mean embedding 𝜇𝑖 of all articles related to

the author of the 𝑖-th sample.
(b) Calculate the difference 𝑑𝑖 = 𝑓𝑖 − 𝜇𝑖 .
(c) Compute CosineSims(𝑑𝑖 , 𝑓𝑖 ).
(d) Append the result to CosineSims.

(4) Return the list CosineSims.

3.4 Dynamic Identity Equilibrium
Author disambiguation is a critical task in bibliometrics and digital
libraries, where accurately identifying the authors of academic pa-
pers is essential. Traditional methods often struggle with dataset
imbalance, leading to suboptimal performance. In addressing the
challenges of author disambiguation, we introduce Dynamic Iden-
tity Equilibrium (DIEq), an innovative data preprocessing technique
inspired by concepts from quantum mechanics and adversarial
learning that revolutionizes the approach to dataset imbalance.
DIEq operates on the principle of quantum superposition in the aca-
demic identity space, allowing a strategic subset of negative samples
to exist simultaneously as both negative and positive entities.

Phantom Identity Generation: In this task, DIEq transforms
all negative samples into positive ones, inspired by quantum super-
position [17]. The transformation is governed by:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (6)

where |0⟩ and |1⟩ represent negative and positive states respectively,
and |𝛼 |2 + |𝛽 |2 = 1. In our case, 𝛽 = 1 and 𝛼 = 0 for all samples,
analogous to a quantum measurement collapsing the superposition
[23]. The phantom strength P(x) is defined as:

𝑃 (𝑥) = 𝜎 (𝑤 · 𝑓 (𝑥) + 𝑏) (7)

where 𝜎 is the sigmoid function,𝑤 is a learned weight vector, and
𝑓 (𝑥) is a non-linear transformation. P(x) modulates the impact of
each transformed sample on the model, similar to the amplitude
amplification in Grover’s algorithm [8]. This approach strategically
leverages class imbalance while preserving information density,
akin to quantum error correction techniques [7]. The resulting
enriched feature space facilitates more nuanced author disambigua-
tion, as demonstrated in recent work on quantum-inspired machine
learning [2, 23].

Adversarial Learning: In adversarial learning, perturbations
are introduced to input samples to challenge and improve model
robustness [6]. Similarly, DIEq creates ’adversarial’ samples by
transforming negative instances into positive ones, challenging the
model to learn more nuanced decision boundaries. This process
is analogous to the generator in Generative Adversarial Networks
(GANs) [5], where the generator creates samples to deceive the
discriminator.

The phantom strength P(x) in DIEq serves a role similar to the
discriminator in GANs, modulating the impact of transformed sam-
ples. This creates a dynamic equilibrium between the original data
distribution and the transformed one, reminiscent of the Nash equi-
librium sought in adversarial training [18].

Furthermore, the quantum-inspired superposition in DIEq aligns
with recent work on quantum adversarial learning [4], where quan-
tum states are used to represent and manipulate adversarial ex-
amples. This quantum perspective offers a unique approach to
enhancing model generalization in author disambiguation tasks.
By incorporating these adversarial learning concepts, DIEq utilized
class imbalance and potentially improved the model’s robustness
and generalization capabilities in author disambiguation scenarios.

4 Results
By applying DIEq to the WhoIsWho-IND task of KDD Cup 2024,
we observed a significant improvement in model performance as
shown in Table 1. The introduction of academic identity phantoms
not only improved model performance but also facilitated faster
convergence during training. Our method achieved a remarkable
0.5-1.2% increase in wAUC on test data, pushing the boundaries of
author disambiguation accuracy.

Table 1: Model Performance Comparison

Model* wAUC† TT (s)‡

LGBM+Basic Features 0.612 22.4
LGBM+Scibert Embeddings 0.654 37.9

LGBM+Basic Features+Scibert Embeddings 0.679 42.1
LGBM+Feature Engineering 0.715 334.8

LGBM+Feature Engineering+DIEq 0.722 67.5
* Model: Single-Fold with Author-based Stratified Sampling
† wAUC: Weighted Area Under the Curve on Validation Leaderboard
‡ TT (s): Training Time (seconds)

Our DIEq method demonstrated significant improvements in
model performance on the WhoIsWho-IND task of KDD Cup 2024.
The LGBM+Feature Engineering+DIEq model achieved a wAUC of
0.722, representing a 0.5-1.2% increase over baseline models on the

2024-08-14 17:43. Page 3 of 1–5.
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test set. This improvement, while numerically small, is substantial
in the context of author disambiguation tasks. The introduction
of academic identity phantoms effectively utilized the inherent
class imbalance, a persistent challenge in scholarly databases. No-
tably, DIEq facilitated faster convergence during training, reducing
the computational time from 334.8s to 67.5s compared to feature
engineering alone, marking a 79.8% reduction in training time.

Figure 2: DIEq Performance Comparison

Performance gains were consistent across both validation and
testing leaderboards, with Figure 2 illustrating superior results
for Feature Engineering+DIEq on both metrics. The progressive
improvement across model configurations, from LGBM+Basic Fea-
tures (wAUC: 0.612) to our final model, underscores the cumula-
tive benefits of each methodological enhancement. Moreover, the
approach demonstrated robustness to potential over-fitting, main-
taining its performance advantage in transitioning from validation
to testing phases.

5 Conclusion
This study presents DIEq as a novel and effective approach for
enhancing author disambiguation in imbalanced academic datasets.
By leveraging academic identity phantoms, our method signifi-
cantly accelerates training convergence, addressing two critical
challenges in large-scale bibliometric analysis. The observed 0.5-
1.2% improvement in wAUC, while seemingly modest, represents a
significant advancement in the highly competitive domain of au-
thor disambiguation, where marginal gains often translate to sub-
stantial real-world impact. Our approach’s consistent performance
across validation and testing phases underscores its generalizability
and reliability, which are crucial factors for deployment in pro-
duction environments. The substantial reduction in training time
without compromising accuracy highlights the method’s efficiency,
making it particularly valuable for processing large-scale scholarly
databases. These findings contribute to the broader field of entity
resolution in academic literature and offer promising directions for
addressing imbalanced datasets in related domains. Furthermore,
the success of DIEq in this context suggests potential applications in
other areas of natural language processing and information retrieval
where data imbalance is prevalent. Future work could explore the
adaptability of this method to other entity disambiguation tasks
and its integration with emerging deep learning architectures for
even greater performance gains.
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A Reproducibility
Our solution’s code is available at: https://github.com/Leo1998-
Lu/KDD2024-WhoIsWho.

We describe in detail how to run the code in the readme files in
that git repository. We also describe the execution environment.
The top level directory provides instruction on how to run each
directory code in which order. Our solution primarily relies on
CPU-based computations, utilizing an i9-14900K processor and
128GB of RAM. We did not use any GPU for our model training
or inference. Due to the CPU-intensive nature of our approach,
the total runtime for feature extraction and model training varied
depending on the dataset size and complexity. However, our method
generally completed within a reasonable timeframe on the specified
hardware. We provide detailed instructions in our repository on
how to reproduce our results, including steps for feature generation
and model training. Our code is optimized for RAM usage and does
not require GPU resources.

B Online Resources
The pre-trained weights for Scibert that we used in the competition
can be downloaded from the Huggingface Hub at the following
link: https://huggingface.co/allenai/scibert_scivocab_uncased.

C Appendix

Figure 3: Text Length Distribution of Different Labels

Table 2: Impact of Text Length on Modeling

Model Text Length Validation wAUC

LGBM+Scibert Embeddings-64 64 0.611
LGBM+Scibert Embeddings-128 128 0.613
LGBM+Scibert Embeddings-256 256 0.628
LGBM+Scibert Embeddings-512 512 0.634
LGBM+Scibert Embeddings-1024 1024 0.646
LGBM+Scibert Embeddings-4096 4096 0.654

2024-08-14 17:43. Page 5 of 1–5.

https://github.com/Leo1998-Lu/KDD2024-WhoIsWho
https://github.com/Leo1998-Lu/KDD2024-WhoIsWho
https://huggingface.co/allenai/scibert_scivocab_uncased

	Abstract
	1 Introduction
	2 WhoIsWho-IND KDD Cup 2024
	2.1 Competition Task
	2.2 Dataset
	2.3 Text Length Distribution

	3 Method
	3.1 Feature Engineering
	3.2 Definition of Keywords Overlap Score
	3.3 Embedding Cosine Similarities
	3.4 Dynamic Identity Equilibrium

	4 Results
	5 Conclusion
	References
	A Reproducibility
	B Online Resources
	C Appendix

