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ABSTRACT

Many dynamic decision problems, such as robotic control, involve a series of
tasks, many of which are unknown at training time. Typical approaches for these
problems, such as multi-task and meta reinforcement learning, do not generalize
well when the tasks are diverse. We propose a general framework to address this
issue. In our framework, the goal is to learn a set of policies—a policy commit-
tee—such that at least one is near-optimal for most tasks that may be encoun-
tered at execution time. While we show that even a special case of this problem
is inapproximable, we present two effective algorithmic approaches for it. The
first of these yields provably approximation guarantees, albeit in low-dimensional
settings (the best we can do due to inapproximability), whereas the second is a
general and practical gradient-based approach. In addition, we provide provable
sample complexity bounds for few-shot learning settings. Our experiments in per-
sonalized and multi-task RL settings on MuJoCo and Meta-World show that the
proposed approach outperforms state-of-the-art multi-task, meta-, and personal-
ized RL baselines on training and test tasks, as well as in few-shot learning, often
by a large margin.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success in a variety of domains, from robotic
control (Lillicrap, 2015) to game playing (Xu et al., 2018). However, many real-world applications
involve highly diverse sets of tasks, making it impractical to rely on a single, fixed policy. In these
settings, both the reward structures and the transition dynamics can vary significantly across tasks.
Existing approaches to this challenge—such as multi-task RL (MTRL) and meta-reinforcement
learning (meta-RL)—struggle to generalize effectively when tasks are both diverse and previously
unseen.

Multi-task RL methods typically train a single policy or a shared representation across tasks (Vithay-
athil Varghese & Mahmoud, 2020). However, they often face negative transfer, where optimizing
for one task degrades performance on others (Zhang et al., 2022). This limitation becomes more
pronounced when tasks require drastically different strategies, as the policy is forced to handle con-
flicting objectives. On the other hand, meta-RL approaches, such as Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017b) and PEARL (Rakelly et al., 2019), aim to enable fast adaptation to
new tasks but rely heavily on fine-tuning at test time, which can be computationally expensive and
ineffective in environments with high variability in both rewards and transitions, like Meta-World
benchmark tasks (Yu et al., 2020c). Furthermore, these methods typically underperform on the train-
ing tasks compared to MTRL due to the generalization trade-off inherent in meta-learning. Another
promising direction is personalized RL (Ivanov & Ben-Porat, 2024), where multiple policies are
trained to cater to diverse reward structures, but this line of work focuses predominantly on rewards
while assuming shared transition dynamics.

According to script theory, human cognition enables effective generalization in an open world by
learning a collection of scripts, or behavioral patterns (Abelson, 1981; Schank, 1983), one of which
can then be selected and adapted as needed to particular predicaments. Inspired by this concept,
we propose a novel policy committee framework designed to efficiently handle environments with
diverse task distributions, where both reward functions and transition dynamics can vary signif-
icantly across tasks. Instead of learning a single policy or relying on complex fine-tuning, our
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framework learns a set of policies—a committee—where each policy is specialized to handle a spe-
cific subset of tasks. This allows for task-specific expertise while maintaining generalization across
a wide range of task variations. We refer to our approach as PACMAN.

To summarize, our key contributions are as follows:

• Simple and Effective Policy Committees: Our policy committee approach scales efficiently with
task diversity. By learning a small set of policies that cover a broad range of tasks, we reduce the
computational complexity compared to methods that require a separate policy for each task or
complex adaptation procedures. Additionally, our approach leverages LLM-based task embed-
dings for non-parametric tasks, which provides a more general and scalable solution to environ-
ments where tasks cannot be easily parameterized.

• Theoretical Analysis: We first provide a general computational impossibility result, showing
that even the problem of identifying the optimal sets of tasks for policy committee training is
inapproximable. However, we also present an efficient algorithmic approach with worst-case ap-
proximation guarantees in the special case when task embedding dimension is constant, and a
general gradient-based approach, albeit with weaker guarantees. Finally, we theoretically demon-
strate few-shot efficacy of our approach by showing that it has sample complexity that is linear in
the size of the committee and independent of the size of the state and action space.

• Empirical Validation: We demonstrate the efficacy of the proposed PACMAN approach through
extensive experiments on challenging multi-task benchmarks, including MuJoCo and Meta-
World. Our policy committee framework consistently outperforms state-of-the-art multi-task RL
and meta-RL baselines in both zero-shot and few-shot settings, achieving better generalization
and faster adaptation across diverse tasks.

Related Work: Our work is closely related to three key areas within the broader reinforcement
learning literature: multi-task RL, personalized RL, and meta-RL.

Multi-Task RL (MTRL): A major advantage of MTRL over single-task learning is the ability to
share knowledge across tasks, a concept extensively explored in various studies proposing different
methods to utilize task relationships (Yang et al., 2020b; Sodhani et al., 2021; Sun et al., 2022).
However, naive knowledge-sharing across tasks can lead to negative transfer, as not all tasks benefit
from shared knowledge. Consequently, learning a task-specific skill may distract from the learning
of other tasks. A notable area of research examines task interference in MTRL through the lens
of gradient alignment. Yu et al. (2020a) tackles it by projecting the gradient of a task to the or-
thogonal direction of all the other tasks, while Hessel et al. (2019) addresses it via synchronizing
the gradient magnitude across tasks. Numerous methods in the literature aim to address task inter-
ference issues from a representation learning perspective. Sodhani et al. (2021) learn a mixture of
state encoders shared across tasks, that helps generate diverse representations through an attention
mechanism. Lan et al. (2024) introduce the Contrastive Modules with Temporal Attention (CMTA)
framework, which leverages contrastive learning to ensure the modules are distinct from one an-
other and integrates shared modules at a finer granularity than the task level using temporal atten-
tion. Recently, Hendawy et al. (2023) proposed an approach called Mixture of Orthogonal Experts
(MOORE) that captures common structures among tasks by employing orthogonal representations
to enhance diversity. MOORE utilizes a Gram-Schmidt process to create a shared subspace of rep-
resentations derived from a mixture of experts. While all these previous MTRL approaches focus on
learning a policy to efficiently address a predefined set of tasks, our focus is to learn a set of policies
such that at least one policy in the set is near-optimal for most previously unseen tasks.

Personalized-RL: Recently, Ivanov & Ben-Porat (2024) introduced personalized RL, to accommo-
date a diverse user population, each with distinct preferences, through interaction with a small set
of representative policies. Although the personalized RL framework has some similarities to our
approach, we adopt a broader setup allowing for variations both in rewards and transition dynamics,
since many real-world scenarios warrant mastering a diverse set of tasks that comprise different dy-
namics. Moreover, we empirically show that PACMAN significantly outperforms the state-of-the-art
personalized RL method across diverse evaluation settings even when only rewards vary.

Meta-RL: Meta-RL methods can be categorized broadly into two categories, (i) context-based; and
(ii) gradient-based. Context-based methods primarily rely on learning a context (Bing et al., 2023;
Gupta et al., 2018; Duan et al., 2017; Lee et al., 2020a;b; 2023; Rakelly et al., 2019) by employing
RNN or LSTM-based neural networks to encode collected experiences into a latent context embed-
ding, and then act by conditioning the policy on the learned context. However, they are susceptible
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to distribution shifts at inference time, as the encoded context and the policy derived from that con-
text often struggle to generalize to out-of-distribution tasks. Additionally, the parameters of the
latent context encoder are trained to predict reward and/or transition dynamics based on the con-
text, typically involving the minimization of a KL divergence-based loss. Consequently, the learned
context tends to exhibit mode-seeking behavior, which poses a significant limitation in situations
that require capturing diverse, multi-modal context (such as in Meta-World). Recently, Bing et al.
(2023) attempt to address this issue in non-parametric tasks by using task-specific detailed natu-
ral language instructions. Several gradient-based methods (Finn et al., 2017b; Stadie et al., 2018;
Mendonca et al., 2019; Zintgraf et al., 2019) have been developed to address the few-shot adapta-
tion challenge. These approaches focus on learning a shared initialization of a model across tasks,
allowing the agent to achieve strong performance on unseen target tasks with only a few gradient
updates. These approaches are not well-suited for zero-shot generalization problems, as they typ-
ically require numerous gradient steps through the policy to learn an effective policy for a given
task. Finally, since meta-RL methods prioritize rapid adaptation, they often fall short of state-of-
the-art MTRL performance on in-sample (training) tasks. In this work, we aim to close this gap by
developing a framework that excels in both in-sample and out-of-sample tasks.

2 MODEL

We consider the following general model of multi-task MDPs (MT-MDP). Suppose we have a dy-
namic environment E = (S,A, h, γ, ρ) where S is a state space, A an action space, h the decision
horizon, γ the discount factor, and ρ the initial state distribution. Let a task τ = (T , r) in which T
is the transition model where T (s, a) is a probability distribution over next state s′ as a function of
current state-action pair (s, a) and r(s, a) the reward function. A Markov decision process (MDP)
is thus a composition of the dynamic environment and task, (E , τ).
Let Γ be a distribution over tasks τ . We define a MT-MDP M as the tuple (E ,Γ), as in typical
meta-RL models (Beck et al., 2023; Wang et al., 2024). Additionally, we define a finite-sample
variant of MT-MDP, FS-MT-MDP, asMn = (E , τ1, . . . , τn), where τi ∼ Γ. An FS-MT-MDP thus
corresponds to multi-task RL (Zhang & Yang, 2021).

At the high level, our goal is to learn a committee of policies Π = {π1, . . . , πK} such that for most
tasks, there exists at least one policy π ∈ Π that is effective. Next, we formalize this problem. Let
V π
τ be the value of a policy π for a given task τ , i.e.,

V π
τ = E

[
h∑

t=0

γtrτ (st, at)|at = π(st)

]
,

where the expectation is with respect to Tτ and ρ. Let V ∗
τ denote an optimal policy for a task τ .

Define V Π
τ = maxπ∈Π V

π
τ , that is, we let the value of a committee Π to a task τ be the value of

the best policy in the committee for this task. There are a number of reasons why this evaluation
of a committee is reasonable. As an example, if a policy implements responses to prompts for con-
versational agents and Π is small, we can present multiple responses if there is significant semantic
disagreement among them, and let the user choose the most appropriate. In control settings, we can
rely on domain experts who can use additional semantic information associated with each π ∈ Π and
the tasks, such as the descriptions of tasks π was effective for at training time, and similar descrip-
tions to test-time tasks, to choose a policy. Moreover, as we show in Section 4, this framework leads
naturally to effective few-shot adaptation, which requires neither user nor expert input to determine
the best policy.

One way to define the value of a policy committee Π with respect to a given MT-MDP and FS-MT-
MDP is, respectively, as V Π

M = Eτ∼Γ

[
V Π
τ

]
and V Π

Mn
= 1

n

∑n
i=1 V

Π
τi . The key problem with these

learning goals is that when the set of tasks is highly diverse, different tasks can confound learning
efficacy for one another. For example, if we have several groups of tasks such that within-group tasks
are quite similar to one another, but with tasks differing significantly (e.g., requiring fundamentally
different skills) across groups, learning a single policy that is effective for all tasks will be extremely
challenging, with tasks from different groups sending conflicting reward signals.

We address this limitation by defining the goal of policy committee learning differently. First, we
formalize what it means for a committee Π to have a good policy for most of the tasks.
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Definition 1. A policy committee Π is an (ϵ, 1− δ)-cover for a task distribution Γ if V Π
τ ≥ V ∗

τ − ϵ
with probability at least 1−δ with respect to Γ. Π is an (ϵ, 1−δ)-cover for a set of tasks {τ1, . . . , τn}
if V Π

τ ≥ V ∗
τ − ϵ for at least a fraction 1− δ of tasks.

Clearly, an (ϵ, 1−δ) cover need not exist for an arbitrary committee Π (if the committee is too small
to cover enough tasks sufficiently well). There are, however, three knobs that we can adjust: K, ϵ,
and δ. Next, we fix ϵ as exogenous, treating it effectively as a domain-specific hyperparameter, and
suppose that K is a pre-specified bound on the maximum size of the committee.

Problem 1. Fix the maximum committee size K and ϵ. Our goal is to find Π which is a (ϵ, 1 − δ)-
cover for the smallest δ ∈ [0, 1].

Next, we present algorithmic approaches for this problem. Subsequently, Section 4, as well as our
experimental results, vindicate this choice of the objective.

3 ALGORITHMS FOR LEARNING A POLICY COMMITTEE

In this section, we present algorithmic approaches for computing policy committees Π to solve
Problems 1. We consider the special case of the problem in which the tasks have a structure rep-
resentation. Specifically, we assume that each task can be represented using a parametric model
ψθ(s, a), where the parameters θ ∈ Rd comprise both of the parameters of the transition distribution
T and reward function r. Often, parametric task representation is given or direct; in cases when tasks
are non-parametric, such as the Meta-World (Yu et al., 2020b), we can often use approaches for task
embedding, such as LLM-based task representations (see Section 3.4). Consequently, we identify
tasks τ with their representation parameters θ throughout, and overload Γ to mean the distribution
over task parameters, i.e., θ ∼ Γ.

3.1 A HIGH-LEVEL ALGORITHMIC FRAMEWORK

Even conventional RL presents a practical challenge in complex problems, as learning is typically
time consuming and requires extensive hyperparameter tuning. Consequently, a crucial considera-
tion in algorithm design is to minimize the number of RL runs we need to obtain a policy committee.
To this end, we propose the following high-level algorithmic framework in which we only need K
independent (and, thus, entirely parallelizable) RL runs. This framework involves three steps:

1. SAMPLE n tasks i.i.d. from Γ, obtaining T = {θ1, . . . , θn} (parameters of associated tasks
{τ1, . . . , τn}). In MTRL settings, T is given.

2. CLUSTER the task set T into K subsets, each with an associated representative θk, and

3. TRAIN policies πk for each cluster k represented by θk.

As we shall see presently (and demonstrate experimentally in both Subsection 5.3 and Ap-
pendix G.2), conventional clustering approaches are not ideally suited for our problem. We thus
propose several alternative approaches which yield theoretical guarantees on the quality of Π under
mild conditions if all tasks share the transition dynamics and only differ in reward function. Empir-
ically, we show that the proposed framework outperforms state of the art even when tasks also have
distinct transition distributions.

3.2 CLUSTERING

The key aspect of our algorithmic design is clustering. We begin by providing a formal connection
between the clustering step (step (2) of the framework above) and efficacy of optimal policies learned
for each cluster (step (3) of the framework) using a variant of the simulation lemma (Lobel & Parr,
2024). This, in turn, provides us with a clustering objective that would yield formal guarantees about
the efficacy of the policy committee we thereby obtain. For this result, we assume that each task
has a shared dynamics, and a parametric reward function rθ(s, a) where θ identifies a task-specific
reward. While this is a theoretical limitation, we note that our subsequent clustering and training
algorithms do not in themselves require this assumption, and our experimental results demonstrate
that the overall approach is effective generally.
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Let π∗
i denote the optimal policy for task πi. We use V

π∗
j

i to denote the value of task τi using a
policy that is optimal for task τj .
Lemma 1. Suppose that rθ(s, a) is L-Lipschitz in L∞ norm, that is, for all θ, θ′, sups,a |rθ(s, a)−
rθ′(s, a)| ≤ L∥θ − θ′∥∞. Then, for any two tasks τi and τj with respective θi and θj that satisfy

∥θi − θj∥∞ ≤ ϵ, V
π∗
j

i ≥ V π∗
i

i − 2L 1−γh+1

1−γ ϵ if γ < 1 and V
π∗
j

i ≥ V π∗
i

i − 2Lhϵ if γ = 1.

Lipschitz continuity is a mild assumption; for example, it is satisfied by ReLU neural networks.

Next, we connect this to our ultimate goal as expressed in Problem 1.
Definition 2. A set of representatives C = {θ1, . . . , θK} is an (ϵ, 1− δ)-parameter-cover for a task
distribution Γ if minθ′∈C ∥θ − θ′∥∞ ≤ ϵ with probability at least 1− δ with respect to θ ∼ Γ.

The following result then follows directly from Lemma 1.
Theorem 2. Suppose C is an (ϵ, 1 − δ)-parameter-cover for Γ and rθ(s, a) is L-Lipschitz in L∞,
and let Π contain a set of optimal policies to each θ ∈ C. Then Π is a (2L 1−γh+1

1−γ ϵ, 1 − δ)-cover
for Γ when γ < 1 and (2Lhϵ, 1− δ)-cover when γ = 1.1

This result enables us to focus on obtaining (ϵ, 1−δ)-parameter-cover guarantees solely in the space
of policy parameters, at least when policies all share dynamics and differ only in reward functions.
In particular, we consider the following clustering counterpart to the original problem:
Problem 2. Fix K and ϵ. Our goal is to find C with |C| ≤ K which is a (ϵ, 1− δ)-parameter-cover
for the smallest δ ∈ [0, 1].

Notably, while conventional clustering techniques, such as k-means, can be viewed as proxies for
these objectives, there are clear differences insofar as the typical goal is to minimize sum of shortest
distances of all vectors from cluster representatives, whereas our goal, essentially, is to “cover” as
many vectors as we can. In Appendix G.2, we provide a histogram to illustrate the difference.
Indeed, we show next that our problems are strongly inapproximable, even if we restrict attention to
K = 1.
Definition 3 (MAX-1-COVER). Let T = {θ1, . . . , θn} ⊆ Rd. Find θ ∈ Rd which maximizes the
size of S ⊆ T with maxθ′∈S ∥θ − θ′∥∞ ≤ ϵ.
Theorem 3. For any ϵ > 0 MAX-1-COVER does not admit an n1−ϵ -approximation unless P = NP.

We prove this in Appendix B via an approximation-preserving reduction from the Maximum Clique
problem (Engebretsen & Holmerin, 2000).

Despite this strong negative result, we next design two effective algorithmic approaches. The first
method runs in polynomial time and provides a constant-factor approximation, but it requires the
dimension d to be constant. The second is a general gradient-based approach.

Greedy Elimination Algorithm Before we discuss our main algorithmic approaches, we begin with
an approach that provides a useful building block, but not theoretical guarantees. Consider a set T
of task parameter vectors, fix K, and suppose we wish to identify an (ϵ, 1 − δ)-parameter-cover
with the smallest δ (Problem 2), but restrict attention to θ ∈ T in constructing such a cover. This
problem is an instance of a MAX-K-COVER problem (where subsets correspond to sets covered by
each θ ∈ T ), and can be approximated using a greedy algorithm which iteratively adds one θ ∈ T
to C that maximizes the most uncovered vectors in T . Its fixed-δ variant, on the other hand, is a
set cover problem if δ = 0, and a similar greedy algorithm approximates the minimum-K cover
C for any δ. However, neither of these algorithms achieves a reasonable approximation guarantee
(as we can anticipate from Theorem 3), although our experiments show that greedy elimination is
nevertheless an effective heuristic. But, as we show next, we can do better.

Greedy Intersection Algorithm

The key intuition for our contributed algorithm is that for any θ, a ϵ-hybercube centered at θ charac-
terizes all possible θ′ that can cover θ in the sense of Definition 2. Thus, if any pair of ϵ-hypercubes
centered at θ and θ′ intersects, any point at the intersection covers both.

1We note that this and other results also work for the FS-MT-MDP setting with a finite set of tasks T . We
omit this from the results for easier readability.
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To see it more clearly, we provide the following example in the one-dimensional setting:

[x1] x1 − ϵ x1 + ϵ
[x1, x2] x2 − ϵ x2 + ϵ
[x1, x2, x3] x3 − ϵ x3 + ϵ
[x3, x4] x4 − ϵ x4 + ϵ

Each cross represents a parameter we aim to cover, while each line segment indicates the possible
locations of the ϵ-close representative for that parameter. By selecting a point within the overlapping
region of these intervals, we can effectively cover their parameters simultaneously .

This may lead to a naive idea of iteratively constructing an intersection tree for all θ ∈ T . Unfor-
tunately, the size of such a tree is exponential in n in the worst case because we need to check the
intersection between every subset of parameters. Instead, we propose a GREEDY INTERSECTION
algorithm, which is polynomial in n that gets around this issue. The first stage of the algorithm is to
create an intersection tree for each dimension independently. For s-th dimension, we sort the data-
points’ s-th coordinates in ascending order. We refer to the sorted coordinates as x1 < x2 · · · < xn,
and create a list for each point xi to remember how many other points can be covered together with
it with initialization being [xi] itself.

Starting from the second smallest datapoint x2, we check if x2 − ϵ ≤ x1 + ϵ, i.e. if x2 ≤ x1 + 2ϵ.
Since x2 − ϵ > x1 − ϵ due to our sorting, any point inside [x2 − ϵ, x1 + ϵ] can cover both x1, x2.
Therefore if this interval is valid, we add x1 to the list [x2] to indicate the existence of a simultaneous
coverage for x1, x2. In general, for xi, we check if xi ≤ xj + 2ϵ with a descending j = i − 1 to
1 or until the condition no longer holds. If the inequality is satisfied, we add xj to xi’s list. Then
since we have ordered the set, for every index j′ less than j, xi > xj +2ϵ > xj′ +2ϵ. The coverage
for all the x in xi’s list would be the interval [xi − ϵ, xj + ϵ], where j is the smallest index in xi’s
list. There are 1 + 2 + · · ·+ n− 1 = O(n2) comparisons in total. We form a set of these lists, and
call it As for the s-th dimension. The figure above illustrates how the algorithm works to find out
A1 = {[x1], [x1, x2], [x1, x2, x3], [x4, x5]}.
The second stage is to find a hypercube covering the most points, consisting of an axis from each
dimension. Due to the geometry of the Euclidean space, we know that two points θ1, θ2 are within
ϵ in ℓ∞-distance iff they appear inside one’s list together for each dimension. Therefore, in order to
find the maximum coverage with one hypercube such that its center is within ℓ∞-distance to the most
points, we wonder which combination of lists, l1 . . . ld each from the sets A1 . . .Ad produces an
intersection of the maximum cardinality. In our example, we can conclude that [x1, x2, x3], [x4, x5]
need to be covered separately by two points between the blue or red vertical lines. The full algorithm
is provided in the Appendix C.

Next, we show that GREED INTERSECTION yields provable coverage guarantees. We defer the
proofs to Appendix D. For these results we use GI(K) to refer to the solution (setC = {θ1, . . . , θK})
returned GREEDY INTERSECTION algorithm.

Theorem 4. Suppose T contains n ≥ 9 log(5/α)
2β2 i.i.d. samples from Γ. Let 1 − δ∗(K, ϵ) be the

optimal (ϵ, 1 − δ)-parameter-coverage of Γ achievable given K. Then with probability at least
1− α, GI(K) is a (ϵ, (1− 1

e )(1− δ
∗(K, ϵ)−Kβ))-parameter-cover of Γ.

The key limitation of GREEDY INTERSECTION is that it is exponential in d, and thus requires the
dimension to be constant. This is a reasonable assumption in some settings, such as low-dimensional
control. However, in many other settings, both n and d can be large. Our next algorithm addresses
this issue.

Gradient-Based Coverage Consider Problem 2. For a finite set T , we can formalize this as the
following optimization problem:

max
{θ1,...,θK}

∑
θ∈T

1( min
k∈[K]

∥θk − θ∥∞ ≤ ϵ), (1)

6
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where 1(·) is 1 whenever the condition is true and 0 otherwise. However, objective equation 1 is
non-convex and discontinuous. To address this, we propose the following differentiable proxy:

min
{θ1,...,θK};
α∈RnK

∑
i

ReLU

({
K∑

k=1

σk(αi)∥θk − θi∥∞

}
− ϵ

)
, (2)

where σ(·) is a softmax function. Next, we demonstrate that this is a principled proxy by showing
that when full coverage of T is possible, solutions of objectives equation 1 and equation 2 coincide.

Theorem 5. Fix K and suppose ∃θ ∈ {θ1, . . . , θK} such that ∥θ − θi∥ ≤ ϵ for all i. Then the sets
of optimal solutions to equation 1 and equation 2 are equivalent.

Thus, we can use gradient-based methods with objective in equation 2 to approximate solutions to
Problem 2. Because the objective is still non-convex, we can improve performance by initializing
with the solution obtained using GREEDY ELIMINATION or GREEDY INTERSECTION when d is
low.

3.3 TRAINING

The output of the CLUSTERING step above is a set of representative task parameters C =
{θ1, . . . , θK}. The simplest way to use these to obtain a policy committee Π is to train a policy
πk optimized for each θk ∈ C. However, this ignores the set of tasks that comprise each cluster
k associated with a representative θk (i.e., the set of tasks closest to θk). As demonstrated empiri-
cally in the multi-task RL literature, using multiple tasks to learn a shared representation facilitates
generalization (effectively enabling the model to learn features that are beneficial to all tasks in the
cluster) (Sodhani et al., 2021; Sun et al., 2022; Yang et al., 2020b).

To address this, we propose an alternative which trains a policy πk to maximize the sum of rewards of
the tasks in cluster k. Notably, our approach can use any RL algorithm to learn a policy associated
with a cluster of tasks; in the experiments below, we use the most effective MTRL or meta-RL
baseline for this purpose.

3.4 DEALING WITH NON-PARAMETRIC TASKS

Our approach assumes that tasks are parametric, so that we can reason (particularly in the clustering
step) about parameter similarity. Many practical multi-task settings, however, are non-parametric,
so that our algorithmic framework cannot be applied directly. In such cases, our approach can make
use of any available method for extracting a parametric representation of an arbitrary task τ . For
example, it is often the case that tasks can be either described in natural language. We propose
to leverage this property and use text embedding (e.g., from pretrained LLMs) as the parametric
representation of otherwise non-parametric tasks, where this is feasible. Our hypothesis is that this
embedding captures the most relevant semantic aspects of many tasks in practice, a hypothesis that
our results below validate in the context of the Meta-World benchmark. This is analogous to what
was done by Bing et al. (2023), with the main difference being that our task descriptions are with
respect to higher-level goals, whereas Bing et al. (2023) describe tasks in terms of associated plans.
We provide the full list of task descriptions for the Meta-World environment in Appendix H.

4 FEW-SHOT ADAPTATION

One application of learning a policy committee Π that is a (ϵ, 1− δ)-cover is that we can leverage it
in meta-learning for few-shot adaptation. In particular, suppose that γ = 1. We now show that this
translates into a few-shot sample complexity on a previously unseen task τ that is linear in K (the
size of the committee).

Definition 4. The average expected reward for a given policy π is measured per time step as

µπ(s) = lim
h→∞

1

h
E

[
h∑

t=1

r(st, π(st)) | s0 = s

]
.
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Define the empirical average reward of π over p episodes as µ̂π = 1
ph

∑p
i=0

∑h
t=0 rt. The bias of

policy π in state s is defined as λπ(s) = E[r(s, π(s)) + λπ(s′)] − µπ(s), and the span of the bias
function is sp(λπ) = maxs λ

π(s)−mins λ
π(s).

Assumption 1. Suppose that each π ∈ Π induces on the MDP M a single recurrent class with
some additional transient states, i.e., µπ(s) = µπ for all s ∈ S, and sp(λπ) ≤ H for some finite H .

The algorithmic idea is straightforward: evaluate each of K policies in Π by computing a sample
average sum of rewards over N randomly initialized episodes, and choose the best policy π ∈ Π in
terms of empirical average reward. This yields the following sample complexity bound.

Theorem 6. Suppose Π is a (ϵ, 1 − δ)-cover for Γ and let τ ∼ Γ. Then if we run at least p ≥
32h(H+1)2 log(4/α)

(β−2H)2 episodes for each policy π ∈ Π, the policy maximizing µ̂π achieves V π
τ ≥ V ∗

τ −
ϵ− β with probability at least 1− δ − α, where V ∗

τ is the optimal reward for τ .

5 EXPERIMENTS

We study the effectiveness of our approach—PACMAN—in two environments, MuJoCo (Todorov
et al., 2012) and Meta-World (Yu et al., 2020b). In the former, the tasks are low-dimensional and
parametric, and we only vary the reward functions, whereas the latter has non-parametric robotic
manipulation tasks with varying reward and transition dynamics.

MuJoCo We selected two commonly used MuJoCo environments. The first is HalfCheetahVel
where the agent has to run at different velocities, and rewards are based on the distance to a target
velocity. The second is HumanoidDir where the agent has to move along the preferred direction, and
the reward is the distance to the target direction. In both, we generate diverse rewards by randomly
generating target velocity and direction, respectively, and use 100 tasks for training and another 100
for testing (in both zero-shot and few-shot settings), with parameters generated from a Gaussian
mixture model with 5 Gaussians. In few-shot cases, we draw a single task for fine-tuning, and
average the result over 10 tasks. For clustering, we use K = 3, ϵ = .6, and use the gradient-based
approach initialized with the result of the Greedy Intersection algorithm. For few-shot learning, we
fine-tune all methods for 100 epochs.

Meta-World It is a well-known multitask and meta-learning benchmark (Yu et al., 2020b). We
focus on the set of robotic manipulation tasks in MT50, of which we use 30 for training and 20 for
testing. This makes the learning problem significantly more challenging than typical in prior MTRL
and meta-RL work, where training sets are much larger compared to test sets (5 tests and 40 trains
in the traditional MT45 setting). We leverage an LLM to generate a parameterization (Section 3.4)
of the task. Specifically, text descriptions are fed to “Phi-3 Mini-128k Instruct” (Microsoft, 2024)
and we compute the channel-wise mean over the features of penultimate layer as a 50 dimensional
parameterization for each task. We use K = 3 and ϵ = .7, which allows us to obtain an (ϵ, 1)-
parameter-cover for the set of training tasks in terms of ℓ∞ norm with respect to the LLM-based
task embedding.

5.1 BASELINES AND EVALUATION

We compare our approaches to 10 state-of-the-art baselines. Five of these are designed for MTRL:
1) CMTA (Lan et al., 2024), 2) MOORE Hendawy et al. (2023), 3) CARE (Sodhani et al., 2021), 4)
soft modulation (Soft) (Yang et al., 2020a), and 5) Multi task SAC (Yu et al., 2020b). Four more are
meta-RL algorithms: 1) MAML (Finn et al., 2017a), 2) RL2 (Duan et al., 2017), 3) PEARL (Rakelly
et al., 2019), 4) VariBAD (Zintgraf et al., 2020), and AMAGO (Grigsby et al., 2024). Finally, we
also compare to the personalized RL approach using EM to learn a policy committee (EM) (Ivanov
& Ben-Porat, 2024).

Our evaluation involves three settings: training, zero-shot test, and few-shot test. The training eval-
uation corresponds to standard MTRL. The zero-shot test evaluation uses the test set to evaluate
all approaches but with no fine-tuning. Finally, our few-shot test evaluation allows a short round
of fine-tuning on the test data. For PACMAN we select the best-performing policy for training and
zero-shot test and use the proposed few-shot approach to learn the best policy through empirical
policy evaluation for the few-shot test setting (see Section 4).
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5.2 RESULTS

Figure 1: Left: Training and zero-shot test for HalfcheetahVel. Red, blue, green, yellow curves
stand for PACMAN, VariBAD, EM, and RL2. Right: Training and zero-shot test for Meta-World.

MuJoCo In the MuJoCo environment, we focus on personalization, varying only reward functions
and focusing on the ability to generalize to a diverse set of rewards. Consequently, our baselines
here include meta-RL approaches (RL2, VariBAD) and EM (personalized RL, which requires the
dynamics to be shared across tasks), and PACMAN uses VariBAD as the within-cluster RL method.

The first two plots in Figure 1 presents the MuJoCo results for the training and zero-shot test eval-
uations in HalfCheetahVel environment. We can see that PACMAN consistently and significantly
outperforms the baselines, in both evaluations, with VariBAD the only competitive baseline. The
advantage of PACMAN is also pronounced in HumanoidDir, whose results are deferred to G.

Table 1: Few-shot learning effectiveness (MuJoCo).
Halfcheetah Humanoid

RL2 -314.37 ± 1.15 946.17 ± 0.73
VariBAD -137.99 ± 1.14 1706.38 ± 0.75

EM -325.29 ± 1.84 947.06 ± 0.84
PACMAN -54.03 ± 1.34 2086.50 ± 0.89

What is of particular interest is the few-shot
comparison, which is provided in Table 1,
where the advantage of PACMAN is espe-
cially notable. In Halfcheetah, the improve-
ment over the best baseline (VariBAD) is by
a factor of more than 2.5, while in Humanoid
it is over 22%. From this, we can see the sig-
nificant value of the PACMAN committee learning approach for few-shot adaptation.

Table 2: Meta-World performance on 30 in-sample training tasks (left) and 20 out-of-sample test
tasks (right). Performance is a moving average success rate for the last 2000 evaluation episodes
over 3 seeds. Error bound is 1 sample standard deviation.

Train
Method 500K Steps 1M Steps

Soft 0.20 ± 0.08 0.28 ± 0.08
MTTE 0.29 ± 0.09 0.46 ± 0.11
CARE 0.43 ± 0.08 0.52 ± 0.09
CMTA 0.43 ± 0.09 0.53 ± 0.08

MOORE 0.44 ± 0.06 0.55 ± 0.01
PACMAN 0.55 ± 0.04 0.60 ± 0.05

Test (zero-shot)
Method 500K Steps 1M Steps

Soft 0.24 ± 0.10 0.29 ± 0.08
MTTE 0.30 ± 0.09 0.45 ± 0.11
CARE 0.43 ± 0.08 0.49 ± 0.08
CMTA 0.40 ± 0.08 0.51 ± 0.07

MOORE 0.42 ± 0.07 0.58 ± 0.00
PACMAN 0.53 ± 0.05 0.61 ± 0.05

Table 3: Few-Shot Learning Results.
Method 6K Updates 12K Updates
MAML 0.0025 ± 0.006 0.01 ± 0.03
PEARL 0.03 ± 0.03 0.27 ± 0.07

RL2 0.007 ± 0.01 0.02 ± 0.02
VariBAD 0.025 ± 0.06 0.027 ± 0.07
AMAGO 0.08 ± 0.09 .093 ± 0.09

Soft 0.27 ± 0.07 0.26 ± 0.08
MTTE 0.37 ± 0.08 0.40 ± 0.10
CARE 0.39 ± 0.05 0.40 ± 0.06
CMTA 0.45 ± 0.07 0.34 ± 0.08

MOORE 0.41 ± 0.08 0.44 ± 0.11
PACMAN 0.53 ± 0.02 0.60 ± 0.02

Meta-World Next, we turn to the complex multi-task Meta-
World environment. In this environment, our approach uses
MOORE for within-cluster training. Table 2 presents the
results for training (standard MTRL setting) and zero-shot
test evaluations, where we compare to the MTRL baselines
(all meta-RL baselines are significantly worse on these met-
rics, likely because the goals of these algorithms are primar-
ily efficacy in few-shot settings).

We observe that PACMAN again significantly outperforms
all baselines after 500K training steps in both train and test
cases (∼25% improvement over the best baseline), though
the gap is bridged somewhat after 1M steps. This shows that PACMAN trains considerably faster in
this setting.
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Considering next the few-shot learning problem, the advantage of PACMAN over both MTRL and
meta-RL baselines is particularly notable. The results are provided in Table 3. Performance is a
moving average success rate for the last 2000 evaluation episodes over 3 seeds.

Error bound is 1 sample standard deviation. First, somewhat surprisingly, the meta-RL baselines,
with the exception of PEARL, underperform MTRL baselines in this setting. This is because our
evaluation is significantly more challenging, with only 30 training tasks but with 20 diverse test
tasks, and the adaptation phase has a very short (6-12K updates) time horizon for few-shot training,
than typical in prior work. In contrast, MTRL methods fare reasonably well. The proposed PACMAN
approach, however, significantly outperforms all the baselines. For example, only 12K updates
suffice to reliably identify the best policy (comparing with zero-shot results in Table 3), with the
result outperforming the best baseline by >36%.

5.3 FURTHER EMPIRICAL INVESTIGATION OF OUR ALGORITHM

We investigate our algorithmic contribution in two ways. First we compare the difference between
our method with both the popular clustering methods and the random clustering. Then we show how
changing the number of policies in the committee influences its performance.

Figure 2: From left to right: (a) PACMAN ablation with different clustering methods (K = 1, 2, 3, 4;
MuJoCo), (b) and (c) varying K (training and zero-shot test, respectively, Meta-World).

Table 4: Few-shot in Meta-World, varying K.
Method 6K Updates 12K Updates
MOORE 0.42± 0.06 0.43± 0.05
PACMAN (K = 1) 0.32± 0.05 0.31± 0.04
PACMAN (K = 2) 0.50± 0.05 0.50± 0.05
PACMAN (K = 3) 0.61± 0.04 0.62± 0.05
PACMAN (K = 4) 0.32± 0.05 0.35± 0.05

First, Figure 2(a) shows that our clustering
method indeed has the best performance. We
emphasis that our improvement compared to
KMeans is non-trivial, and a more detailed ex-
planation is provided in G.2. Second, Table 4
demonstrates a clear advantage of utilizing a
policy committee. Here, in few-shot settings,
even using K = 2 already results in con-
siderable improvement over the best baseline
(MOORE), with K = 3 a significant further
boost. Another thing to note is that increasingK is not always better. The results in both Figure 2(b)
and (c), and Table 4 show that as the number of tasks becomes increasingly partitioned, the general-
ization ability of each committee member may weaken. Hence the performance for K = 4 is worse
than K = 3. We also conducted the same experiments for Mujoco, the details are in G.2.

6 CONCLUSION AND LIMITATIONS

We developed a general algorithmic framework for learning policy committees for effective gen-
eralization and few-shot learning in multi-task settings with diverse tasks that may be unknown at
training time. We showed that our approach is theoretically grounded, and outperforms MTRL,
meta-RL, and personalized RL baselines in both training, and zero-shot and few-shot test evalua-
tions, often by a large margin. Nevertheless, our approach exhibits several important limitations.
First, it requires tasks to be parametric, and while we demonstrate how LLMs can be used to effec-
tively obtain task embeddings in the Meta-World environments, it is not clear how to do so generally.
Second, it includes a scalar hyperparameter, ϵ, which determines how we evaluate the quality of task
coverage and needs to be adjusted separately for each environment, although this hyperparameter is
easily tunable in practice.
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APPENDIX

A PROOF OF LEMMA 1
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If the discount factor γ = 1, the argument is as follows:
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B PROOF OF THEOREM 3

Definition 5 (Gap preserving reduction for a maximization problem). Assume Π1 and Π2 are some
maximization problems. A gap-preserving reduction from Π1 to Π2 comes with four parameters
(functions) f1, α, f2 and β. Given an instance x of Π1, the reduction computes in polynomial time
an instance y of Π2 such that: OPT (x) ≥ f1(x) =⇒ OPT (y) ≥ f2(y) and OPT (x) <
α|x|f1(x) =⇒ OPT (y) < β|y|f2(y).

Proof. Let G = (V,E) be an undirected graph with n vertices and m edges. We create an
instance of Max-coverage for a set of θs in Rn by filling out their coordinate matrix Aij =
0 if i = j

1.5ϵ if i, j are adjacent
2.5ϵ if i, j are not adjacent

For example in the graph below x3, x4 are x5’s neighbors, but x1, x2 are not.
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dim θ1 θ2 θ3 θ4 θ5
1 0 2.5 2.5 2.5 2.5
2 2.5 0 2.5 2.5 2.5
3 2.5 2.5 0 2.5 1.5
4 2.5 2.5 2.5 0 1.5
5 2.5 2.5 1.5 1.5 0

Let θ1 = [0, 2.5, 2.5, 2.5, 2.5], θ2 = [2.5, 0, 2.5, 2.5, 2.5], θ3 = [2.5, 2.5, 0, 2.5, 1.5], θ4 =
[2.5, 2.5, 2.5, 0, 2.5], θ5 = [2.5, 2.5, 1.5, 1.5, 0].

1

2

3

4

5

Projected onto the fifth axis, our thetas look like:

x4 − ϵ x4 + ϵ
x3 − ϵ x3 + ϵ

x2 − ϵ x2 + ϵ
x1 − ϵ x1 + ϵ

x5 − ϵ x5 + ϵ

And similarly, onto the third axis:

x5 − ϵ x5 + ϵ
x4 − ϵ x4 + ϵ
x2 − ϵ x2 + ϵ
x1 − ϵ x1 + ϵ

x3 − ϵ x3 + ϵ

We claim that we have constructed a gap-preserving reduction for any t > 0

OPT (A) = n =⇒ OPT (B) = n

OPT (A) < n1−t =⇒ OPT (B) < n1−t.

To begin with, if the Max-Clique instance consists of a complete graph, then the θs we created
have coordinates equal to 1.5ϵ everywhere except i-th coordinate, which is zero. So they can all be
covered by one θ̃ = [0.7ϵ, 0.7ϵ, . . . , 0.7ϵ], the coverage size is n. Therefore, the first implication is
true.

Then for the second statement, we argue with the contrapositive: assume that one of the maximum
coverage sets is S = {i1, . . . , ik} and k ≥ n1−t. We have to prove that the maximum clique has
size greater than or equal to k ≥ n1−t.

Specifically, we prove that the vertices corresponding to the elements from S form a clique.

If θi, θj are from the set S, then they should be covered on each dimension since the ||θi − θj ||∞ =
max |θdi − θdj | ≤ ϵ. So θi, θj have to be adjacent, because otherwise their corresponding coordinates
on the i-th and j-th dimension are more than ϵ away. For example, we have theta θ33 = 0 and θ55 = 0,
so θ35 and θ35 must be 1.5ϵ rather than 2.5ϵ, which indicates that 3, 5 are neighbors in the graph.

Therefore, the points in S correspond to a clique of size k ≥ n1−t in the graph. Thus, if the graph
G has a clique of size less than n1−t, then the maximum coverage set has size less than n1−t.
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C PSEUDOCODE OF GREEDY INTERSECTION

The full pseudocode for the Greedy Intersection algorithm is provided as Algorithm 1.

Algorithm 1 Greedy Intersection
Input: T = {θi}Ni=1, ϵ > 0, K ≥ 1
Output: Parameter cover C

1: C ← []
2: for round k = 1 to K do
3: for dimension m = 1 to d do
4: Sort T in ascending order based on their m-th coordinates
5: listsm ← []
6: for indiviual i = 2 to N do
7: Si ← [θi]
8: for j = i− 1 to 1 do
9: if θi’s m-th coordinate < θj’s m-th coordinate +2ϵ then

10: Add θj to Si

11: else
12: if listsm[−1] ⊆ Si then
13: listsm[−1]← Si

14: else
15: Add Si to listsm
16: end if
17: break
18: end if
19: end for
20: end for
21: end for
22: S1∗, . . . , Sm∗ ← argmaxS1∈lists1,...,Sm∈listsm

|S1 ∩ · · · ∩ Sm|
23: covered← S1∗ ∩ · · · ∩ Sm∗

24: θ̂k ← average of the covered
25: T ← T − covered
26: C.adds(θ̂k)
27: end for
28: return C

D PROOF OF THEOREM 4

Based on the proof of maxmizing monotone submodular functions by Nemhauser et al. (1978).
Lemma 7. Suppose 1 − δ∗(K) is the optimal (ϵ, 1 − δ)-parameter-cover of Γ achievable with
fixed K. With probability at least 1 − α , the probability of θ from Γ getting covered by the first i
representatives generated by Algorithm 1 is greater than 1−δ∗(K)−Kβ

K

∑i−1
j=0(1− 1/K)j .

Proof. We will prove the lemma through induction. We begin by defining the coverage region of
each of the K committee member in the optimal parameter-cover as S∗

i . Furthermore, let Π∗ denote
the region covered by this optimal parameter-cover. Thus, Π∗ =

⋃
S∗
i . Next, let Ai denote the

region covered by the representative selected on the i-th iteration. And let Ci denote the set of θs
from the dataset T that are covered after i-th iteration.

First of all, we want to show at i = 1, the probability for θ ∼ Γ getting covered is greater than
1−δ∗(K)−Kβ

K

∑0
j=0(1− 1/K)0 = 1−δ∗(K)−Kβ

K .

By Hoeffding’s theorem, Prθ∼Γ[Eθ∼Γ[1(θ ∈
⋃i−1

j=1Aj)] −
∑

i 1(θi∈
⋃i−1

j=1 Aj)

N ) ≥ β
3 ] ≤

exp(−2Nβ2/9) = α
5 . Hence, with probability at least 1− α

5 , Prθ∼Γ[θ ∈
⋃i−1

j=1Aj ] = Eθ∼Γ[1(θ ∈⋃i−1
j=1Aj)] ≤

∑
i 1(θi∈

⋃i−1
j=1 Aj)

N + β
3 = |Ci−1|

N + β
3 .
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Now the union bound first gives that Prθ∼Γ[θ ∈ Π∗∧θ /∈
⋃i−1

j=1Aj ] ≥ Prθ∼Γ[θ ∈ Π∗]−Prθ∼Γ[θ ∈⋃i−1
j=1Aj ] = 1− δ∗(K)− Prθ∼Γ[θ ∈

⋃i−1
j=1Aj ]. Applying union bound again, we obtain that with

probability at least 1−α1,
∑K

i=1 Prθ∼Γ[θ ∈ S∗
i ∧θ /∈

⋃i−1
j=1Aj ] ≥ Prθ∼Γ[θ ∈ Π∗∧θ /∈

⋃i−1
j=1Aj ] ≥

1−δ∗(K)−( |Ci−1|
N + β

3 ). Hence, maxi∈[K] Prθ∼Γ[θ ∈ S∗
i ∧θ /∈

⋃i−1
j=1Aj ] ≥

1−δ∗(K)−(
|Ci−1|

N + β
3 )

K .

Let us call this maximising S∗
i Ŝ.

According to our Algorithm 1, Ai covers the most θs from T that were not covered in the previous
rounds by

⋃i−1
j=1Aj . In particular, |Ci| − |Ci−1| is greater or equal to the number of θs from T

covered in Ŝ but not
⋃i−1

j=1Aj . Let us denote the latter as s1, and the former as s2, then s1− s2 ≤ 0.

Hoeffding’s theorem gives us Prθ∼Γ(Eθ∼Γ[1[θ ∈ Ŝ ∧ θ /∈
⋃i−1

j=1Aj ]] − s1/N) ≥ β
6 ) ≤ (α5 )

4 and
Prθ∼Γ(s2/N − Eθ∼Γ[1[θ ∈ Ai ∧ θ /∈

⋃i−1
j=1Aj ]] ≥ β

6 ) ≤ (α5 )
4. Hence with probability at least

1 − 2(α5 )
4, Eθ∼Γ[1[θ ∈ Ŝ ∧ θ /∈

⋃i−1
j=1Aj ]] − Eθ∼Γ[1[θ ∈ Ai ∧ θ /∈

⋃i−1
j=1Aj ]] = (Eθ∼Γ[1[θ ∈

Ŝ∧θ /∈
⋃i−1

j=1Aj ]]−s1/N)+(s1−s2)/N+(s2/N−Eθ∼Γ[1[θ ∈ Ai∧θ /∈
⋃i−1

j=1Aj ]] ≤ β
6+

β
6 = β

3 .

Applying the result we obtained at the beginning of the proof, we have with probability at least
1− α

5 − 2(α5 )
4,

Pr
θ∼Γ

[θ ∈ Ai ∧ θ /∈
i−1⋃
j=1

Aj ] ≥ Pr
θ∼Γ

[θ ∈ Ŝ ∧ θ /∈
i−1⋃
j=1

Aj ]−
β

3
≥

1− δ∗(K)− ( |Ci−1|
N + β

3 )

K
− β

3
.

(3)

Since nothing is covered before the first iteration, we can use equation 3 with |C0| = 0 to prove the

base condition for the claim. Because K ≥ 1, we have 1−δ∗(K)− β
3

K − β
3 =

1−δ∗(K)− (1+K)β/3
K

K ≥
1−δ∗(K)−Kβ

K .

The induction hypothesis is that for all i ≤ K − 1, we have Prθ∼Γ[θ ∈
⋃i

j=1Aj ] ≥
1−δ∗(K)−Kβ

K

∑i
j=0(1− 1/K)j .

By Hoeffding, Prθ∼Γ[|Prθ∼Γ[θ ∈
⋃i−1

j=1Aj ]− |Ci−1|
N | ≥ β/3] ≤ 2 exp(−2Nβ2/9). In other words,

with probability at least 1 − 2α
5 , Prθ∼Γ[θ ∈

⋃i−1
j=1Aj ] ≥ |Ci−1|

N − β/3 and |Ci−1|
N ≥ Prθ∼Γ[θ ∈⋃i−1

j=1Aj ]− β/3.

Then at the step i = K, since for α
5 ∈ (0, 1), (α5 )

4 < α
5 , we have with probability at least 1− 2α

5 −
α
5 − 2(α5 )

4 ≥ 1− 5α
5 = 1− α,

Pr
θ∼Γ

[θ ∈
i⋃

j=1

Aj ] = Pr
θ∼Γ

[θ ∈
i−1⋃
j=1

Aj ] + Pr
θ∼Γ

[θ ∈ Ai ∧ θ /∈
i−1⋃
j=1

Aj ]

≥|Ci−1|
N

− β

3
+

1− δ∗(K)− ( |Ci−1|
N + β/3)

K
− β

3

=
1− δ∗(K)

K
+ (1− 1/K)

|Ci−1|
N

− (2K + 1)β

3K

≥1− δ∗(K)

K
+ (1− 1/K)( Pr

θ∼Γ
[θ ∈

i−1⋃
j=1

Aj ]− β/3)−
(2K + 1)β

3K

≥1− δ∗(K)

K
+ (1− 1/K)(

1− δ∗(K)−Kβ
K

i−1∑
j=0

(1− 1/K)j)− (1− 1/K)β/3− (2K + 1)β

3K

=
1− δ∗(K)

K
− (2K + 1 +K − 1)β

3K
+

1− δ∗(K)−Kβ
K

i∑
j=1

(1− 1/K)j
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=
1− δ∗(K)−Kβ

K

i∑
j=0

(1− 1/K)j

Proof of Theorem 4. We can directly apply lemma 7 to i = K. Call the region defined by the cover
generated by Algorithm 1 ΠK =

⋃K
j=1Aj . Using the inequality (1 − 1/K)K ≥ 1 − 1/e for all

K ≥ 0, we have

Pr
θ∼Γ

[θ ∈ ΠK ] ≥1− δ∗(K)−Kβ
K

K∑
j=0

(1− 1/K)j =
1− δ∗(K)−Kβ

K

1− (1− 1/K)K

1− (1− 1/K)

=(1− δ∗(K)−Kβ)(1− (1− 1/K)K) ≥ (1− 1/e)(1− δ∗(K)−Kβ).

E PROOF OF THEOREM 5

Proof. Let us call the optimal solutions set to equation 1 A1, and the optimal solutions set to equa-
tion 2 A2.

We first show A1 ⊂ A2. Pick any {θ1, . . . , θK} ∈ A1. Due to the premise, for each
i, since mink∈[K] ∥θk − θi∥∞ − ϵ ≤ 0 , there exists θk∗ such that ∥θk∗ − θi∥∞ − ϵ ≤
0. Thus, we can have αk∗(i) = 1, and αk(i) = 0 for all the other k ̸= k∗. Then
ReLU

({∑
k∈[K] softmaxk(αi)∥θk − θi∥∞

}
− ϵ
)
= ReLU(∥θk∗ − θi∥∞ − ϵ) = 0. By setting

α this way, we could achieve the zero loss for the relaxation problem. Hence {θ1, . . . , θK} ∈ A2.

Now to show A2 ⊂ A1, suppose {θ1, . . . , θK}, α is a optimal solution. Due to the premise, we must
have that ReLU

({∑
k∈[K] softmaxk(αi)∥θk − θi∥∞

}
− ϵ
)

= 0 for each i. Now fix i, since
softmax(α) is nonegative and sums to 1, there must be some positive coordinate softmaxk′(αi).
Hence for all such k′, ReLU(∥θk′ − θi∥∞ − ϵ) = 0, i.e., ∥θk′ − θi∥∞ ≤ ϵ. Thus, mink∈[K] ∥θk −
θi∥∞ ≤ ∥θk′ − θi∥∞ ≤ ϵ also holds, and {θ1, . . . , θK}

∑
i 1(mink∈[K] ∥θk − θi∥∞ ≤ ϵ) = n.

Consequently, {θ1, . . . , θK} ∈ A1.

F PROOF OF THEOREM 6

We prove this by leveraging the following lemma by Azar et al. (2013).

Lemma 8. (Azar et al., 2013, Lemma 1) Under Assumption 1, |µ̂π−µπ| ≤ 2(H+1)
√

2 log(2/α)
ph +H

h

with probability at least 1− α.

Proof. Let p = 32h(H+1)2 log(4/α)
(β−2H)2 . Denote the average rewards of the best and second best policy in

the committee as µ+, µ−. If µ+−µ− > β/h, by ensuring the difference between the estimation and
the true average reward is small than β/2h. We can make sure we have picked the best policy. From

Lemma 8, we know Pr[µ̂− ≤ µ−+2(H+1)
√

2 log(4/α)
ph + H

h ] = Pr[µ̂− ≤ µ−+β/2h] ≥ 1−α/2.

And Pr[µ̂+ ≥ µ+ − 2(H + 1)
√

2 log(4/α)
ph + H

h ] = Pr[µ̂+ ≤ µ+ − β/2h] ≥ 1− α/2. Hence with
probability at least 1− α, µ̂+ > µ+ − β/2h ≥ µ− + β/h− β/2h = µ− + β/2h > µ̂−. Thus the
empirically best policy we have picked is also the best in expectation. Now if µ+ − µ− < β/h, no
matter which one we pick, we have the difference bound by β/h. The same holds for all pairs of
policies ordered based on their expected values. Either way, with probability 1 − α, we could find
the best policy in the committee. Since our committee is a (ϵ, 1 − δ) cover, we are able to pick the
policy with suboptimality β + ϵ with probability 1− δ − α.
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G ADDITIONAL EMPIRICAL RESULTS

G.1 RESULTS ON HUMANOID DIRECTION

Figure 3: Left: Humanoid (direction) training. Right: Humanoid (direction) zero-shot.

Humanoid’s few shot result has been listed in Table 1.

G.2 ADDITIONAL RESULTS FOR EMPIRICAL INVESTIGATION OF OUR METHOD

G.2.1 ABLATIONS OVER CLUSTERING METHODS

Figure 4: Histogram comparison of two clustering methods for zero-shot individual task rewards in
Half-Cheetah (velocity).

While the performance of the KMeans algorithm appears relatively close to our method due to the
significant gap between it and the other three clustering methods (DBSCAN, GMM, and Random),
we emphasize that this result considers one hundred percent of the population.

The advantage of our algorithm becomes even more apparent when focusing on the welfare of the
majority. To illustrate this, we present a histogram of rewards for individual test tasks during zero-
shot testing using policies trained with our algorithm versus KMeans on the Half-Cheetah (velocity)
benchmark.

The results vividly highlight a significantly greater density of high-performing tasks (red regions
on the right) with our method. This suggests that our approach effectively promotes superior task
performance while minimizing underperformance. In contrast, the KMeans method yields a more
uniform but mediocre distribution of task performance. There is an ideological difference between
these two clustering methods.

G.2.2 HYPERPARAMETER ABLATIONS

We consider here additional ablations varying K and ϵ omitted from the main body.
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First, we present the results of ablations on K on Mujoco (Halfcheetah-Velocity).

Figure 5: Varying K from 1 to 3 for Halfcheetah-Velocity.

Next, we show the effect of the ϵ hyperparmater in the Meta-World zero shot setting. These results
are reported for success rate across all tasks.

ϵ = .4 ϵ = .7 ϵ = 1
500K Steps 0.05 0.28 0.29
1M Steps 0.05 0.31 0.40

Table 5: Performance metrics for different ϵ values at 500K and 1M steps.

We find that increasing ϵ to cover more tasks can also improve performance (for a similar reason
that increasing K may not, as higher ϵ can ensure that we do not end up with clusters with too few
tasks). Of course, for sufficiently high ϵ, only a single cluster will emerge, so this, too induces an
interesting tradeoff.
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H META-WORLD TASK DESCRIPTIONS

Task Name Objective Environment Details
Reach-v1 Move the robot’s end-effector to a

target position.
The task is set on a flat surface with
random goal positions. The target
position is marked by a small sphere
or point in space.

Push-v1 Push a puck to a specified goal posi-
tion.

The puck starts in a random position
on a flat surface. The goal position
is marked on the surface.

Pick-Place-v1 Pick up a puck and place it at a des-
ignated goal position.

The puck is placed randomly on the
surface. The goal position is marked
by a target area.

Door-Open-v1 Open a door with a revolving joint. The door can be opened by rotating
it around the joint. Door positions
are randomized.

Drawer-Open-v1 Open a drawer by pulling it. The drawer is initially closed and
can slide out on rails.

Drawer-Close-v1 Close an open drawer by pushing it. The drawer starts in an open posi-
tion.

Button-Press-
Topdown-v1

Press a button from the top. The button is mounted on a panel or
flat surface.

Peg-Insert-Side-
v1

Insert a peg into a hole from the side. The peg and hole are aligned hori-
zontally.

Window-Open-v1 Slide a window open. The window is set within a frame
and can slide horizontally.

Window-Close-
v1

Slide a window closed. The window starts in an open posi-
tion.

Door-Close-v1 Close a door with a revolving joint. The door can be closed by rotating it
around the joint.

Reach-Wall-v1 Bypass a wall and reach a goal posi-
tion.

The goal is positioned behind a wall.

Pick-Place-Wall-
v1

Pick a puck, bypass a wall, and place
it at a goal position.

The puck and goal are positioned
with a wall in between.

Push-Wall-v1 Bypass a wall and push a puck to a
goal position.

The puck and goal are positioned
with a wall in between.

Button-Press-v1 Press a button. The button is mounted on a panel or
surface.

Button-Press-
Topdown-Wall-
v1

Bypass a wall and press a button
from the top.

The button is positioned behind a
wall on a panel.

Button-Press-
Wall-v1

Bypass a wall and press a button. The button is positioned behind a
wall.

Peg-Unplug-
Side-v1

Unplug a peg sideways. The peg is inserted horizontally and
needs to be unplugged.

Disassemble-v1 Pick a nut out of a peg. The nut is attached to a peg.
Hammer-v1 Hammer a nail on the wall. The robot must use a hammer to

drive a nail into the wall.
Plate-Slide-v1 Slide a plate from a cabinet. The plate is located within a cabinet.
Plate-Slide-Side-
v1

Slide a plate from a cabinet side-
ways.

The plate is within a cabinet and
must be removed sideways.

Plate-Slide-Back-
v1

Slide a plate into a cabinet. The robot must place the plate back
into a cabinet.

Plate-Slide-Back-
Side-v1

Slide a plate into a cabinet sideways. The plate is positioned for a side-
ways entry into the cabinet.

Handle-Press-v1 Press a handle down. The handle is positioned above the
robot’s end-effector.
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Handle-Pull-v1 Pull a handle up. The handle is positioned above the
robot’s end-effector.

Handle-Press-
Side-v1

Press a handle down sideways. The handle is positioned for side-
ways pressing.

Handle-Pull-
Side-v1

Pull a handle up sideways. The handle is positioned for side-
ways pulling.

Stick-Push-v1 Grasp a stick and push a box using
the stick.

The stick and box are positioned
randomly.

Stick-Pull-v1 Grasp a stick and pull a box with the
stick.

The stick and box are positioned
randomly.

Basketball-v1 Dunk the basketball into the basket. The basketball and basket are posi-
tioned randomly.

Soccer-v1 Kick a soccer ball into the goal. The soccer ball and goal are posi-
tioned randomly.

Faucet-Open-v1 Rotate the faucet counter-clockwise. The faucet is positioned randomly.
Faucet-Close-v1 Rotate the faucet clockwise. The faucet is positioned randomly.
Coffee-Push-v1 Push a mug under a coffee machine. The mug and coffee machine are po-

sitioned randomly.
Coffee-Pull-v1 Pull a mug from a coffee machine. The mug and coffee machine are po-

sitioned randomly.
Coffee-Button-v1 Push a button on the coffee machine. The coffee machine’s button is posi-

tioned randomly.
Sweep-v1 Sweep a puck off the table. The puck is positioned randomly on

the table.
Sweep-Into-v1 Sweep a puck into a hole. The puck is positioned randomly on

the table near a hole.
Pick-Out-Of-
Hole-v1

Pick up a puck from a hole. The puck is positioned within a hole.

Assembly-v1 Pick up a nut and place it onto a peg. The nut and peg are positioned ran-
domly.

Shelf-Place-v1 Pick and place a puck onto a shelf. The puck and shelf are positioned
randomly.

Push-Back-v1 Pull a puck to a goal. The puck and goal are positioned
randomly.

Lever-Pull-v1 Pull a lever down 90 degrees. The lever is positioned randomly.
Dial-Turn-v1 Rotate a dial 180 degrees. The dial is positioned randomly.
Bin-Picking-v1 Grasp the puck from one bin and

place it into another bin.
The puck and bins are positioned
randomly.

Box-Close-v1 Grasp the cover and close the box
with it.

The box cover is positioned ran-
domly.

Hand-Insert-v1 Insert the gripper into a hole. The hole is positioned randomly.
Door-Lock-v1 Lock the door by rotating the lock

clockwise.
The lock is positioned randomly.

Door-Unlock-v1 Unlock the door by rotating the lock
counter-clockwise.

The lock is positioned randomly.

Our test tasks are the following: assembly, basketball, bin picking, box close, button press topdown,
button press topdown-wall, button press, button press wall, coffee button, coffee pull, coffee push,
dial turn, disassemble, door close, door lock, door open, door unlock, drawer close, drawer open ,
and faucet close.

I META-WORLD CLUSTERING ANALYSIS AND DISCUSSION

Simply put, our method works by having committee members which are innately specialized to
specific tasks, as illustrated below. Here committee member 2 is specialized to door open and
committee member 3 is specialized to door close. At the same time, committee member 2 performs
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Figure 6: Performance on a single task across committee members compared to a
MTRL policy.

door close poorly and committee member 2 performs door open poorly. A MTRL policy in trying
to perform all tasks doesn’t perform any particular task well. Our method will select committee
member 2 for door open and committee member 3 for door close.

To understand if the parametrization discussed in section 3.4 produces suitable clusters we have
applied PCA to PCA to a clustering of 10 tasks. We note that the window tasks and drawer tasks are
close in task space. Additionally, the dynamics and goals of the push and pick-place tasks are nearly
identical. Window close is close to door open as both these tasks have the agent needing to move to
the horizontally to begin the task.

Figure 7: PCA for our parametrization described in 3.4.
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