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Abstract

Modern therapeutic antibody design often involves composing multi-part assem-
blages of individual functional domains, each of which may be derived from a
different source or engineered independently. While these complex formats can ex-
pand disease applicability and improve safety, they present a significant engineering
challenge: the function and stability of individual domains are not guaranteed in the
novel format, and the entire molecule may no longer be synthesizable. To address
these challenges, we develop a machine learning framework to predict reformatting
success — whether converting an antibody from one format to another will succeed
or not. Our framework incorporates both antibody sequence and structural context,
incorporating an evaluation protocol that reflects realistic deployment scenarios. In
experiments on a real-world antibody reformatting dataset, we find the surprising
result that large pretrained protein language models (PLMs) fail to outperform
simple, domain-tailored, multimodal representations. This is particularly evident
in the most difficult evaluation setting, where we test model generalization to a
new starting antibody. In this challenging “new antibody, no data” scenario, our
best multimodal model achieves high predictive accuracy, enabling prioritization
of promising candidates and reducing wasted experimental effort.

1 Introduction

Antibodies are multi-domain proteins whose architecture un-
derlies their diverse functional roles in the immune system as
well as their success as a modern drug modality. In natural
antibodies, the variable domains (VH and VL) at the tips
mediate target-specific binding, while the constant domains
provide structural stability and mediate effector functions
[24] 28]]. Due to their modularity, modern therapeutic anti-
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bodies have been designed in a variety of “formats” (Figure oty

Antibody)

that combine these domains in different configurations to

achieve specific functional or diagnostic goals [9} 5]. Figure I: Examples of natural and en-

gineered antibody formats.
“Reformatting” refers to converting an antibody from one

format to another to enable a novel drug modality or for high-throughput selection, screening, or
expression workflows [22]. In this work, we focus specifically on reformatting a natural multichain
IgG antibody into single chain variable fragment (scFv), which can allow the binding properties of
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IgGs to be assayed in high throughput via cell-free expression or phage display, or ease its integration
with other functions such as T-cell activation[ 11} 16} 25]].

Yet, while antibodies are conceptually modular, reformatting is far from trivial. Properties frequently
shift across formats, and binding may be lost upon conversion. The final molecule may also be
prone to instability or aggregation, or may not synthesize at all. As a result, reformatting is often a
trial-and-error process, with many potential final formats designed and assayed in the wet lab to find
workable designs [26} 23] 13} 27, [14} 2} 12].

One promising strategy to reduce the error rate in reformatting is to use a machine learning (ML)
model to predict whether a given IgG/scFv pair is likely to reformat successfully, and then reserving
in vitro validation for designs that are predicted to perform well. However, to the best of our
knowledge, no prior work has systematically modeled antibody reformatting at scale. Previous work
on antibody property prediction has ranged from developability prediction (focusing on antibody
stability, aggregation, or solubility, using physicochemical features [[13])) to supervised models on
IgG panels [8,12]. While some models are tailored for specific formats (e.g., scFvs or Fabs), they are
not designed to address the unique biophysical shifts introduced by reformatting, which can alter
stability, aggregation, and even binding [[7, 14].

In addition, from a machine learning perspective, a key difficulty in predicting reformatting success
is the pronounced distribution shift between antibody “parental families,”. Here we define a parental
family as the group of reformatted antibodies derived from a single starting antibody in the source
format. While antibodies within a parental family are highly similar, those in other families derived
from different starting antibodies can diverge substantially in their sequence-property relationships.

Here, our contribution is to benchmark different representations for predicting reformatting success
on a real-world dataset derived from multiple therapeutic development campaigns. We develop a
multimodal machine learning framework that predicts IgG—scFv reformatting success by combining
three types of information: sequence features, structure features, and biophysical features. We
evaluate models under three real-world deployment-motivated scenarios: (1) the scFv split, in which
the model predicts outcomes for unseen individual sequences within known families; (2) the target-
family split, which simulates fine-tuning on a small set of data from a new family before inference;
and (3) the parental-family split, a true zero-shot setting with no training data from a new antibody
family.

Our experiments reveal two central findings. First, predicting protein synthesis failure—the critical
gate that determines whether any downstream assays can even be run—is tractable with multimodal
features that integrate sequence, structure, and biophysical representations. In the most challenging
parental-family split, which evaluates generalization to entirely unseen antibody families, our linear
multimodal model achieves AUROC values above 88%. Second, we find that large pretrained protein
language models (PLMs) such as AbLang [[18]], ISM [[19]], and DPLM2 [29]] often underperform sim-
ple one-hot sequence baselines. This underscores that domain-specific, interpretable representations
remain competitive in low-data structural biology settings with strong distribution shifts.

2 Method
2.1 Problem Formulation and Notation

Let each antibody be represented by a set of input modalities X' = {xseq7 Xstruet, Xbio J» Where Xseq
encodes the VH and VL amino acid sequences (over the 20-amino acid alphabet), Xt uct €ncodes
structure-derived descriptors from predicted 3D structures, and xy,;, contains biophysical properties.
The target variable y corresponds either to a protein synthesis success or failure, y € {0,1}, or a
continuous synthesis yield value, y € R (where higher is better). Given a dataset D = {(X;,y;)}Y,,
the objective is to learn a mapping fy : X — ¥y that minimizes a task-appropriate loss £(y,y) and
generalizes to unseen antibody families, i.e., correctly predicting synthesis success for novel families
not observed during training.

2.2 Dataset Construction

Inputs and targets. Our dataset consists of [gG—scFv reformatting experiments, where full-length
immunoglobulin G (IgG) antibodies are converted into compact single-chain variable fragments
(scFvs). These experiments were conducted across multiple antibody optimization campaigns. Each



scFv is represented by: (i) VH and VL amino acid sequences, (ii) the linker sequence connecting
the domains, (iii) the domain ordering (VH-VL or VL-VH), and (iv) the parental family identifier
from which the VH and VL are derived. We train separate models for two primary tasks: (1)
protein synthesis outcome classification, where the target variable yqc € {0, 1} indicates whether
a reformatted scFv has synthesized adequately or not, and (2) yield regression, where yyic1q € R
measures synthesis yield in ng/uL.

scFv signature and aggregation. We define the scFv signature of an input scFv as the tuple:
S1G = (VH, VL, linker, orientation),

where VH and VL are the amino acid sequences of the heavy and light chain variable regions,
linker is the connecting peptide, and orientation specifies the domain order. scFvs sharing the same
signature are considered equivalent: their target values are averaged. After aggregation, the dataset
contains N = 1,477 unique scFv signatures drawn from 56 parental families across 7 independent
antibody optimization campaigns. Summary statistics are provided in Appendix [B]

Parental family generalization. Within a parental family, scFv sequences are often highly similar,
differing by only a few mutations. However, across families, divergence is much greater, creating
a strong distribution shift between families. This makes generalization to unseen families a central
challenge for our models. This motivates our evaluation strategy, discussed next.

2.3 Evaluation Protocol
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2.4 Feature Representations

Our modeling approach integrates three complementary feature modalities: sequence, structure, and
biophysical properties. Each modality captures distinct aspects of the scFv—parental IgG relationship,
and all features are precomputed and frozen prior to model training.

Sequence-based features. VH and VL amino acid sequences are AHo-aligned[10] to a fixed
length (L1, = 152, Lyy = 152) and one-hot encoded. Domain orientation (VH-VL or VL-VH)
and linker peptide type are represented as categorical one-hot variables and concatenated with the
sequence encodings. Given the potential of pretrained sequence models to encode rich information
about an input protein, we also evaluate predicting reformatting success using frozen embeddings
from two pLMs. First, we consider AbLang [17] (heavy/light encoders separately), which is an
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Figure 3: Overlay of predicted VH domain Figure 4: Overlay of predicted VL domain
structure between the starting IgG (Purple) structure between the starting IgG (blue) and
and reformatted to scFv (pink). In this ex- reformatted to scFv (yellow).

ample Boltz-2 predicts significant structural
alteration upon reformatting.

antibody-specific pLM trained on a large dataset of human antibody sequences. Secondly, we consider
ISM [6]], a fine-tuned ESM [21]] model that is trained to encode structural information in addition
to sequence. For both models, residue-level embeddings are computed once and then mean-pooled
across the sequence to yield a fixed-length representation. These are kept fixed during downstream
training. Our intuition is that such pretrained encoders capture general antibody sequence statistics
(e.g., conserved CDR motifs, germline variation) that may aid generalization across families.

Structure-based features. For each unique scFv and its corresponding parental IgG, we predict
full-atom 3D structures using Boltz-2 [20]], a structure prediction model with accuracy comparable
to AlphaFold3 across diverse proteins. Before computing RMSD or coordinate-level features, we
rigid-body align the parental IgG and scFv domains to a shared reference frame. We then compute
descriptors from these predictions: (i) the global RMSD of Ca atoms between VH/VL domains of
the parental IgG and its reformatted scFv, and (ii) per-residue concatenation of aligned parental and
scFv Ca coordinates with gap indicators, preserving spatial correspondence.

The motivation is grounded in structural biology, since the function of a protein is intimately related
to function, alterations of the structure of individual domains between formats may be related to
reformatting success. RMSD serves as a coarse global descriptor (A detailed analysis of RMSD
distributions across families is provided in Appendix [E.2). The per-residue coordinate features offer a
more fine-grained view, potentially capturing subtle local rearrangements that influence reformatting
outcomes. Representative overlays of VH and VL domains are shown in Figures [8|and[9]

To benchmark these domain-inspired descriptors against widely used pretrained structural models,
we also extract structure-derived embeddings using two models: (i) AbMPNN [6] (an antibody
inverse folding model that encodes sequences in the context of 3D backbones) and (ii)) DPLM2
[29] (a structure-augmented protein language model). Both provide residue-level embeddings that
are mean-pooled to fixed-length vectors for downstream tasks. Our rationale is that inverse folding
and structure-augmented pLMs may capture geometric constraints and stability signals that purely
sequence-based encoders miss, and thus could help with predicting reformatting success.

Biophysical features. From predicted scFv structures, we compute developability metrics using the
Natural Antibody [15] platform. Key features derived from the CDR regions include Patch Surface
Hydrophobicity (PSH), Patch Negative Charge (PNC), Patch Positive Charge (PPC), and scFv Charge
Separation Product (SFvCSP). These are metrics which could be expected to be associated with
general antibody stability and expressability. If a score cannot be computed due to modeling failure,
the dataset mean is imputed.



2.5 Model Architectures

Baseline models. We evaluate linear baselines for both protein synthesis outcome classification
and yield regression. For classification, we use logistic regression with either L1 or L2 regularization
(the choice of regularization is treated as one hyperparameter during tuning); for regression, we
use ordinary least squares with optional regularization. Two input configurations are compared: (i)
one-hot AHo-aligned VH and VL sequences concatenated with one-hot domain orientation and linker
encodings, and (ii) frozen pLM embeddings. All linear models are implemented in scikit-learn
and trained with default solvers.

Embedding-based models. We evaluate a fixed-architecture multilayer perceptron (MLP) on
frozen pLM embeddings (which outperformed linear models on pLM embeddings). VH and VL
embeddings are concatenated prior to the MLP, which contains two hidden layers with ReL.U
activations and dropout. Hyperparameters such as dropout and learning rate are tuned via grid search,
while architecture depth and width remain fixed. Models are trained with AdamW and early stopping.

Multimodal ML models. To assess com-
plementarity between modalities, we train

_Ig;G + scFv

1gG + scFv )

simple linear models using combinations VH+VL Sequence VH+VL Sequence
of sequence, structure, and biophysical

features (Figure [5). Hyperparameter tun- Boltz-2 NaturalAntibody
ing follows the same protocol as for the ¢ ¢

embedding-based models.
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. : Sequence Structure Biophysical
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in the main text, and accuracy in Appendix.
For yield regression, we report Pearson cor-
relation (), and Spearman rank correla-
tion (p) in Appendix. Each split type is
repeated over 10 random folds to reduce
variance from partitioning; all metrics are QC Failure, Yield, SEC
reported as mean =+ standard deviation over
folds. All experiments were conducted on
a Linux server equipped with 4 xNVIDIA
A10G GPUs (24 GB VRAM each) and 12

CPU cores, using CUDA 12.2 and NVIDIA
driver version 535.247.01. Hyperparameter search details can be found in Appendix [D}

Figure 5: Multimodal ML pipeline.

3.2 Simple sequence-only baselines outperform more complex encodings

First, we investigate whether simple baselines are sufficient to predict reformatting success, and
whether pretrained PLM embeddings offer an advantage over these baselines. In Table [I| we compare
a logistic regression model, LogisticReg, trained on either one-hot encoded protein sequences
or 3D structural coordinates (Section [C.4), to sequence-based pLMs (AbLang+MLP, ISM+MLP), a
structure-only GNN (AbMPNN+MLP), and a structure-augmented PLM (DPLM2+MLP). We highlight
key findings below.

@ Simple linear models on one-hot encodings outperform embeddings from pLMs and structure
encoders. We find the surprising result that on the scfv_signature split, the simple one-hot
LogisticReg significantly outperforms more complex embeddings: +3.1 AUROC and +5.3 AUPRC
over AbLang, and nearly +10 AUROC / +14 AUPRC over DPLM2. Structure-only AbMPNN
trails both. The same holds under Parental_Family, where LogisticReg remains best (e.g.



Table 1: A linear model with one-hot sequence encoding outperforms pLMs on predicting
reformatting synthesis failure. We compare a logistic regression baseline using either one-hot se-
quence features (vhvl_only) or per-residue 3D coordinate features (3D_coord), to PLM embeddings
with an MLP (AbLang+MLP, ISM+MLP), a structure GNN with an MLP (AbMPNN+MLP), a structure-
augmented PLM with an MLP (DPLM2+MLP). Best results per column are underlined in bold.

Model | Features | scfv_signature split | Parental_Family split
| | AUROC  AUPRC | AUROC  AUPRC

AbLang+MLP vhvl_only 86.35+1.39  82.15+226 | 62.58+1937 58.75+11.70
ISM+MLP vhvl_only 80.01+1.62 74.87+265 | 58.09+950  54.02+6.10
DPLM2+MLP vhvl+struct | 79.50+160 73.49+228 | 47914529 51.21+11.13
AbMPNN+MLP | struct_only | 73.38+2.11 65.89+389 | 54.30+569  54.67+6.67
LogisticReg vhvl_only 89.46+163 87.46+233 | 66.35+1073 59.21+15.65
LogisticReg 3D_coord 77.00+1.00 71.00+2.00 | 52.00+1200 48.00+8.00

Table 2: Multimodal features consistently outperform sequence-only, with the largest
gains under cross-family generalization. Protein synthesis failure classification using se-
quence+structure+biophysics features (multimodal) vs. sequence-only (seq_only) with a linear
classifier. Rows correspond to data splits; columns show head-to-head performance. Values are
mean=std across runs. Best per split/metric is underlined in bold.

AUROC AUPRC

Split
P multimodal seq_only multimodal seq_only

scfv_signature 92.93+361  89.46+1.63  91.18+459  87.46+2.33
Parental_Family 88.92+1493 66.35+10.73 85.684+2094 59.21+15.65

Faml 94.64+239  87.68+3.91 96.92+153  93.2342.15
Fam2 82.96+9.51 71.81+797  66.10+1357 54.87+9.28
Fam3 93.33+933  82.71+887 97.40+382  92.67+4.66

+3.8 AUROC over AbLang), although performance drops and variance grows substantially. This
suggests that the embeddings from these pretrained models do not adequately capture the information
required to predict reformatting success. Interestingly, we see that a linear model trained on structure
features alone does not outperform any model that also incorporates sequence information, but
does outperform AbMPNN, the other pure-structure model. This suggests that the 3D coordinate
representation might contain useful predictive signal for this task, but is not sufficient as an input
representation.

0 Cross-family generalization remains challenging. All unimodal models degrade substantially
under Parental_Family, highlighting the severity of distribution shift across antibody families. We
see again that pretrained pLMs and structure-based models underperform relative to the simple linear
model baseline. Appendix [E.2] provides additional per-family analysis, showing that the correlation
between global RMSD and protein synthesis yield varies widely across parental families, often
flipping sign. This heterogeneity helps explain why structure-only features do not generalize well.

3.3 Multimodal feature encodings improve generalization performance

Given the strong performance of the linear model on one-hot encoded features, and the fact that a
linear model on the simple 3D coordinate representation outperformed the more complex AbMPNN
encoding, we now evaluate whether combining these two modalities together with biophysical
descriptors yields improved models that generalize across families.

Tables [2] and Table [3] present results for linear models trained on multimodal features (se-
quence+structure+biophysics), for the classification and regression tasks respectively. Recall that the
Target Family split (Section [2.3)) mimics a practical setting where only a small batch of measurements
is available for a new antibody, and the goal is to extrapolate to the remaining scFvs. This scenario is
particularly relevant for antibody engineering pipelines, where limited pilot data are collected before
committing to large-scale experiments.



Table 3: Multimodal features also improve regression, yielding higher Pearson/Spearman corre-
lations in most splits, particularly under cross-family generalization. Protein yield regression
(ng/uL) using sequence+structure+biophysics features (multimodal) vs. sequence-only (seq_only)
with a linear regressor. Rows correspond to data splits; columns compare head-to-head results. Values
are mean=std across runs. Best per split/metric is underlined in bold.

Pearson Spearman

Split
P multimodal seq_only multimodal seq_only

scfv_signature  0.641+0.031 0.5314+0.044 0.7414+0.026 0.71440.032
Parental_Family 0.625+0.266 0.191+0.255 0.508+0264 0.035+0.283

Famil 0.567+0.035 0.550+0.061 0.630+0.039 0.646-+0.067
Fam2 0.288+0.128 0.14140.084 0.207+0.109 0.159+0.131
Fam3 0.2444+0.290 0.154+0.218 0.241+0220 0.243+0.202

Our key finding is that multimodal features enable generalization across parental families,
significantly boosting performance under distribution shift. We see that adding structural and
biophysical descriptors to sequence features consistently improves classification. Gains are modest
in-distribution (scfv_signature: +3.5 AUROC, +3.7 AUPRC) but dramatic under cross-family
generalization (Parental_Family: +22.6 AUROC, +26.5 AUPRC). Target families show similar
boosts (e.g., Fam2: +11.2 AUROC, +11.2 AUPRC).

Importantly, this result demonstrates that: a key factor in bridging the generalization gap is the use
of multimodal features. Despite the availability of large pretrained encoders, the strongest results
come from simple linear models on well-designed domain-specific features. Further supporting
evidence comes from our ablations (Appendix [E.I]), which show that the dominant synergy arises
between sequence and structure features, while global RMSD alone adds little once explicit structural
descriptors are included.

Generalization to SEC purity classification task. Finally, though we focus only on two tasks,
synthesis outcomes and yield in the main text, we also evaluated SEC (size-exclusion chromatography)
purity prediction as an orthogonal developability assay. As detailed in Appendix [E.4] our multimodal
models achieve strong performance across splits further underscoring the broad applicability of our
feature representations.

4 Conclusion and Discussion

In this work, we studied the problem of antibody reformatting: the problem of converting one
antibody format into another to enable its development as a therapeutic. Specifically, we focused on
the the case of reformatting IgG antibodies into single chain variable fragments (scFvs), a key step in
unlocking high-throughput antibody screening and optimization.

Typically reformatting is a process that involves significant trial-and-error, since a reformatted anti-
body may synthesize poorly and may have undesirable properties. Here, we proposed a multimodal
machine learning framework, combining sequence, structure, and biophysical representations of
antibodies, to be able to predict whether a given reformatting attempt is likely to be successful, and
thus reducing the failure rate of reformatting. An important component of our framework is the
evaluation methodology, where we carefully designed evaluation splits that mirror real-world use
cases.

In experiments on real-world antibody reformatting data, the consistent finding is that mulitmodal
sequence-structure-+biophysical features together result in the most generalizable models. For
protein synthesis failure detection, a model trained on these features achieves an AUROC of over
88% in the most challenging evaluation scenario. Deploying this model could enable prioritization
of the most promising candidates during reformatting, resulting in significant cost and time savings.

A key finding from our experiments is that contrary to recent trends, models trained on embeddings
from large, pretrained protein language models (PLMs) do not result in the best performance on
this task. Instead, simple domain-tailored features paired with lightweight predictors perform the
best. This highlights an important takeaway: for specialized biophysical prediction problems, careful



feature design grounded in domain knowledge can outperform large pretrained models, and should
remain central in data-limited settings.
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A Summary of Notation

Table 4: Extended notation used throughout the paper.

Symbol Description

D Full dataset of NV scFv and IgG antibody pairs
(X, y:) Input—label pair for the i-th scFv and IgG antibody pairs
X Set of input modalities for a construct

Xseq Sequence features from VH and VL domains
Svir,Svy VL and VH amino acid sequences

Lvy,Lyvy Sequence lengths of VL. and VH

Eprm(+) Pretrained protein language model encoder
hyr, hyy Sequence embeddings for VL and VH

Xstruct Structure-derived features

Cyvr,Cvy Predicted Ca coordinates for VL and VH

RMSDy 7, RMSDy i

Root mean square deviation per domain

Xbio Biophysical property features derived from CDRs
PSH Patch Surface Hydrophobicity

PNC Patch Negative Charge

PPC Patch Positive Charge

SEvCSP scFv Charge Separation Product

yaQc Binary Protein Synthesis failure label, {0, 1}
Yyield Continuous Protein Synthesis yield label

0 Model parameters

fo(¥) Prediction model mapping inputs to y

y Predicted label

L(-") Task-appropriate loss function

Dirains Dvals Drest Train/validation/test subsets

SCFv split Random partition over unique scFv signatures

TARGET-FAMILY split
PARENTAL-FAMILY split

Hold-out of target family with few-shot fine-tuning
Zero-shot hold-out of parental family

B Dataset Statistics

Dataset Overview

Our scFv—IgG Reformatting Dataset comprises 1,477 unique scFv signatures, spanning 52 parental
families. Figure[6]shows exploratory data analysis of input features.

Input Features

Sequence length is consistent over scFv—IgG pairs. VH domains average 118.9 + 4.8 amino
acids, VL domains average 108.1 4 2.2 amino acids, and the combined sequence length averages
227.0 £ 5.6 amino acids. The dataset includes 8 linker types, 2 domain orderings, and covers 52
distinct parental families, providing diversity across scFv construct designs while maintaining tight
length distributions.

Target Variables

The primary regression target, yield, has a mean of 31.33 £ 51.44 ng/uL with a wide dynamic range
from 3.50 to 513.58 ng/uL. For classification tasks, 40.9% of constructs failed protein synthesis,
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Input Feature Analysis
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Figure 6: Exploratory data analysis of input features.

ML Considerations

With n = 1,477 observations, the dataset is limited for modern machine learning and would benefit
from additional data for higher-capacity models. The protein synthesis failure outcome exhibits
moderate class imbalance (40.9% failure vs. 59.1% pass), which is addressed with appropriate metrics
(AUROC and AUPRC). The broad yield range is suitable for regression, while the rich sequence-based
inputs (VH and VL) provide strong signal for representation learning and featurization.

C Details of Method Section

C.1 Problem Formulation and Notation

Let each antibody be represented by a set of input modalities X' = {Xgeqs Xstructs Xbio }» Where Xgeq
encodes the VH and VL amino acid sequences (over the 20-amino acid alphabet), Xt yct €ncodes
structure-derived descriptors from predicted 3D structures, and xy,;, contains biophysical properties.
The target variable y corresponds either to a protein synthesis success or failure, y € {0,1}, or a
continuous synthesis yield value, y € R (where higher is better). Given a dataset D = {(X;, yl) o,
the objective is to learn a mapping fy : X — ¥y that minimizes a task-appropriate loss £(y,y) and
generalizes to unseen antibody families, i.e., correctly predicting synthesis success for novel families
not observed during training.

C.2 Dataset Construction

Inputs and targets. Our dataset consists of [gG—scFv reformatting experiments, where full-length
immunoglobulin G (IgG) antibodies are converted into compact single-chain variable fragments
(scFvs). These experiments were conducted across multiple antibody optimization campaigns. Each
scFv is represented by: (i) VH and VL amino acid sequences, (ii) the linker sequence connecting
the domains, (iii) the domain ordering (VH-VL or VL-VH), and (iv) the parental family identifier
from which the VH and VL are derived. We train separate models for two primary tasks: (1)
protein synthesis outcome classification, where the target variable yoc € {0, 1} indicates whether
a reformatted scFv has synthesized adequately or not, and (2) yield regression, where yyicia € R
measures synthesis yield in ng/pL.

scFv signature and aggregation. We define the scFv signature of an input scFv as the tuple:

S1G6 = (VH, VL, linker, orientation),

12



where VH and VL are the amino acid sequences of the heavy and light chain variable regions,
linker is the connecting peptide, and orientation specifies the domain order. scFvs sharing the same
signature are considered equivalent: their target values are averaged. After aggregation, the dataset
contains N = 1,477 unique scFv signatures drawn from 56 parental families across 7 independent
antibody optimization campaigns. Summary statistics are provided in Appendix [B]

Parental family generalization. Within a parental family, scFv sequences are often highly similar,
differing by only a few mutations. However, across families, divergence is much greater, creating
a strong distribution shift between families. This makes generalization to unseen families a central
challenge for our models. This motivates our evaluation strategy, discussed next.

C.3 Evaluation Protocol

Train val Test

We evaluate model generalization . I'Fam”y‘ | i ) [so | .Fam"y" | i l;a”’”y" |
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C.4 Feature Representations

Our modeling approach integrates three complementary feature modalities: sequence, structure, and
biophysical properties. Each modality captures distinct aspects of the scFv—parental IgG relationship,
and all features are precomputed and frozen prior to model training.

Sequence-based features. VH and VL amino acid sequences are AHo-aligned[10] to a fixed
length (L1, = 152, Lyy = 152) and one-hot encoded. Domain orientation (VH-VL or VL-VH)
and linker peptide type are represented as categorical one-hot variables and concatenated with the
sequence encodings. Given the potential of pretrained sequence models to encode rich information
about an input protein, we also evaluate predicting reformatting success using frozen embeddings
from two pLMs. First, we consider AbLang [17] (heavy/light encoders separately), which is an
antibody-specific pLM trained on a large dataset of human antibody sequences. Secondly, we consider
ISM [6], a fine-tuned ESM [21]] model that is trained to encode structural information in addition
to sequence. For both models, residue-level embeddings are computed once and then mean-pooled
across the sequence to yield a fixed-length representation. These are kept fixed during downstream
training. Our intuition is that such pretrained encoders capture general antibody sequence statistics
(e.g., conserved CDR motifs, germline variation) that may aid generalization across families.

Structure-based features. For each unique scFv and its corresponding parental IgG, we predict
full-atom 3D structures using Boltz-2 [20]], a structure prediction model with accuracy comparable
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Figure 8: Overlay of predicted VH domain Figure 9: Overlay of predicted VL domain
structure between the starting IgG (Purple) structure between the starting IgG (blue) and
and reformatted to scFv (pink). In this ex- reformatted to scFv (yellow).

ample Boltz-2 predicts significant structural
alteration upon reformatting.

to AlphaFold3 across diverse proteins. Before computing RMSD or coordinate-level features, we
rigid-body align the parental IgG and scFv domains to a shared reference frame. We then compute
descriptors from these predictions: (i) the global RMSD of Ca atoms between VH/VL domains of
the parental IgG and its reformatted scFv, and (ii) per-residue concatenation of aligned parental and
scFv Ca coordinates with gap indicators, preserving spatial correspondence.

The motivation is grounded in structural biology, since the function of a protein is intimately related
to function, alterations of the structure of individual domains between formats may be related to
reformatting success. RMSD serves as a coarse global descriptor (A detailed analysis of RMSD
distributions across families is provided in Appendix [E.2). The per-residue coordinate features offer a
more fine-grained view, potentially capturing subtle local rearrangements that influence reformatting
outcomes. Representative overlays of VH and VL domains are shown in Figures [8|and[9]

To benchmark these domain-inspired descriptors against widely used pretrained structural models,
we also extract structure-derived embeddings using two models: (i) AbMPNN [6] (an antibody
inverse folding model that encodes sequences in the context of 3D backbones) and (ii)) DPLM2
[29] (a structure-augmented protein language model). Both provide residue-level embeddings that
are mean-pooled to fixed-length vectors for downstream tasks. Our rationale is that inverse folding
and structure-augmented pLMs may capture geometric constraints and stability signals that purely
sequence-based encoders miss, and thus could help with predicting reformatting success.

Biophysical features. From predicted scFv structures, we compute developability metrics using the
Natural Antibody [[15] platform. Key features derived from the CDR regions include Patch Surface
Hydrophobicity (PSH), Patch Negative Charge (PNC), Patch Positive Charge (PPC), and scFv Charge
Separation Product (SFvCSP). These are metrics which could be expected to be associated with
general antibody stability and expressability. If a score cannot be computed due to modeling failure,
the dataset mean is imputed.

C.5 Model Architectures

Baseline models. We evaluate linear baselines for both protein synthesis outcome classification
and yield regression. For classification, we use logistic regression with either L1 or L2 regularization
(the choice of regularization is treated as one hyperparameter during tuning); for regression, we
use ordinary least squares with optional regularization. Two input configurations are compared: (i)
one-hot AHo-aligned VH and VL sequences concatenated with one-hot domain orientation and linker
encodings, and (ii) frozen pLM embeddings. All linear models are implemented in scikit-learn
and trained with default solvers.

14



Classification: Failed Assay QC Flag Classification: Failed Assay QC Flag Classification: Failed Assay QC Flag
Ablation Study - Accuracy Ablation Study - AUROC Ablation Study - AUPRC

ki {z I TE T ] ] } ] ] ]

(%)

UROC
AUPRC (%)

Al

& & r
Modality Combinations Modality Combinations Modality Combinations

Figure 10: Ablation study on different modality combination on QC classification task.

Embedding-based models. We evaluate a fixed-architecture multilayer perceptron (MLP) on
frozen pLM embeddings (which outperformed linear models on pLM embeddings). VH and VL.
embeddings are concatenated prior to the MLP, which contains two hidden layers with ReLLU
activations and dropout. Hyperparameters such as dropout and learning rate are tuned via grid search,
while architecture depth and width remain fixed. Models are trained with AdamW and early stopping.

Multimodal ML models. To assess complementarity between modalities, we train simple linear
models using combinations of sequence, structure, and biophysical features. Hyperparameter tuning
follows the same protocol as for the embedding-based models.

D Hyperparameter Details

We summarize the hyperparameters used for all models evaluated in this work. Unless otherwise
noted, all models were trained with the AdamW optimizer and early stopping on the validation loss.
Hyperparameters were selected via grid or Optuna [1]] search on the validation set. Below we report
both the search ranges and the final values used in our experiments.

Linear models. Search space: regularization strength C' € {0.01,0.1, 1,10}, penalty € {¢1, (2}
Final choice: for linear regression, 5 penalty with C' = 0.01; for logistic regression, {5 penalty with
C = 10.

Pretrained embeddings + MLP. Search space: hidden dimension € {64, 128,256}, dropout
€ {0.1,0.2,0.3}, learning rate € {1073,10*}, batch size € {32, 64}, and a binary flag for using a
linear head. Final choice: a two-layer MLP with hidden dimension 128 or 256, ReLU activations,
dropout 0.2, learning rate 1 x 10~%, and batch size 32 or 64.

1D CNNs.  Search space (Optuna): number of dilated convolutional layers [1, 5], expansion fac-
tor [1.0,4.0], representation dimension {16, 32,64, 128}, batch normalization € {true,false},
learning rate [10~%, 10~2] (log-uniform), batch size {16, 32, 64}, and training epochs [10, 50]. Final
choice: for classification, 5 dilated conv layers, representation dimension 32, expansion factor 1.4, no
batch normalization, learning rate 3.8 x 10~4, batch size 32, and training for 13 epochs. For regres-
sion, 1 dilated conv layer, representation dimension 16, expansion factor 2.7, no batch normalization,
learning rate 1.8 x 104, batch size 32, and training for 10 epochs.

E Ablation Studies and In-depth Analysis

E.1 Ablation studies of different modality combinations
We ablate seven modality configurations on the Failed Assay QC classifier—seq, struct, rmsd,

all pairwise combinations, and seq+struct+rmsd. Figure[T0]summarizes Accuracy, AUROC, and
AUPRC (mean with standard-deviation bars; red dashed line denotes the random baseline).
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Across all metrics, seq+struct is uniformly strongest, reaching 85.5 Acec, 89.2 AUROC, and
86.3 AUPRC. This reflects clear complementarity: relative to the best single-modality baselines,
seqg+struct gains +5.3/+4.2/4-5.3 points over seq and +5.9/4-5.2/4-8.7 over struct on Accu-
racy/AUROC/AUPRC, respectively. In contrast, rmsd alone carries little predictive signal (AUROC
~ 50.0, AUPRC 39.8), and adding it to either seq or struct yields at most marginal changes
(seqtrmsd: 85.3 AUROC, 81.4 AUPRC; struct+rmsd: 84.1 AUROC, 77.9 AUPRC). Notably, the
full tri-modal model seq+struct+rmsd does not improve over seq+struct (89.0 vs. 89.2 AUROC;
85.8 vs. 86.3 AUPRC), suggesting that global RMSD largely overlaps with information already
captured by explicit structural descriptors and can introduce redundant or noisy signal.

Takeaway. The dominant synergy is between sequence and structure: residue-level biochemical con-
straints from seq and geometric compatibility from struct combine to drive the best generalization,
while RMSD—being a coarse, global deviation measure—adds little once structural features are
explicitly modeled.

E.2 Different structure—feature distributions across parental families

To probe why RMSD features offer inconsistent gains, we quantify the within—parental-family
association between structural deviation and protein yield. For each family, we compute the Pearson
correlation between yield and (i) VH RMSD, (ii)) VL RMSD, and (iii) their sum. Figureﬂl'lreveals
pronounced heterogeneity: several families exhibit a positive RMSD-yield relationship (larger
deviations correlate with higher yield), whereas others show the opposite trend, and many lie near
zero. These sign flips persist across VH, VL, and combined RMSD, and are not explained by sample
size alone (family-wise n is indicated atop each bar).

This family-specific behavior implies non-stationarity in the mapping from global structural deviation
to expression outcome. A model trained on pooled data with only global structure descriptors faces a
conflicting supervision signal and will tend to regress toward a weak average effect, limiting the utility
of RMSD as a standalone predictor and explaining its marginal contribution once richer structural
descriptors are already present. The absence of explicit parental-family information further prevents
the learner from capturing divergent RMSD-yield regimes.

Implication. Incorporating family context—e.g., parental-family identifiers, sequence backbones,
or a conditional/mixture-of-experts gate—should allow the model to adapt its structural-to-yield
mapping across families. This aligns with our ablation in Section[ET} the strongest performance
arises when sequence (a proxy for family identity and local biophysics) is fused with structure, while
global RMSD alone is insufficient.
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Figure 11: Family-specific RMSD-yield relationships. Pearson correlations between yield and
VH RMSD (left), VL RMSD (middle), and VH+VL RMSD (right), computed within each parental
family (families sorted by correlation magnitude). The wide dispersion and sign changes indicate
heterogeneous, family-dependent structure—yield trends.
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Figure 12: Linear model performance on multimodal feature input for SEC purity (y =
1[% area under the main peak 280nm > 90%]).
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E.3 Case study of the Fam! parental family

We analyze the model’s behavior on a single parental family (Fam/) to understand operational impact
on protein synthesis failure screening. On the held-out test set of 55 variants, the classifier attains
Recall = 100% (no good scFv missed), Precision = 87.2% (five bad scFvs flagged as “pass”), and
Accuracy = 90.9%. In other words, the model screens out almost all low-quality candidates while
retaining every high-quality one, eliminating wasted experiments from false negatives and confining
errors to a small number of false positives.

From an operational perspective, we evaluate an actionable screen-then-confirm policy that only
advances candidates predicted to successful protein synthesis. Under this policy, the fraction of
executed experiments that yield a true pass equals the classifier’s positive predictive value,

TP
Efficiency = TPLTFP Precision.

Relative to a trial-and-error baseline efficiency of 61.8 %, our multimodal model would raise efficiency
to 87.2%, an absolute gain of +-25.4 points and a 1.4 x multiplicative improvement. Practically,
this means more assays are spent confirming genuinely promising variants rather than testing poor
candidates.

Takeaway. Within this family, the model provides a high-recall triage mechanism—no good scFv
is missed—while substantially improving experimental efficiency. We note, however, that this is a
single-family case study and results can vary with stochastic training and family-specific covariate
shift; broader prospective evaluation and calibration across families remain important.

E.4 SEC classification

We formulate SEC (size-exclusion chromatography) purity prediction as a binary classification
task with label y = 1[% area under main peak 280 nm > 90%)] and evaluate generalization across
several realistic data partitions that vary in sequence and family composition. The model attains
strong and stable performance across splits, with mean AUCs of 97.0 on the scFv split, 91.4 on the
Parental Family split, and a perfect 100.0 on Faml. Performance is lower but still competitive
for more distributionally shifted families, achieving 79.8 on Fam2 and 84.6 on Fam_102. Error bars
(standard deviation across runs) are narrow on scFv and Fam1, but widen on family-held-out splits,
indicating increased variance when the model is asked to extrapolate to unseen parental backbones.
Taken together, these results suggest that the learned representation captures robust determinants of
SEC purity and transfers well, with degradation primarily attributable to family-specific covariate
shift.
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Table 5: Classification (protein synthesis failure) with sequence and/or structural features. We
compare PLM embeddings with an MLP (AbLang+MLP, ISM+MLP), a structure GNN with an MLP
(AbMPNN+MLP), a structure-augmented PLM with an MLP (DPLM2+MLP), and a one-hot logistic
regression baseline (LogisticReg). Best results per column are underlined in bold.

Model (Acc. in %) | Features | scfv_signature split | Parental_Family split
AbLang+MLP vhvl_only 80.00+1.83 59.64+16.89
ISM+MLP vhvl_only 71.4241.85 56.64+12.07
DPLM2+MLP vhvl+struct 72.84+2.06 48.67+9.02
AbMPNN+MLP struct_only 60.47+1.23 49.85+7.98
LogisticReg vhvl_only 83.58+1.69 60.98-+12.53

Table 6: Protein synthesis failure classification using per-residue 3D coordinate features (3D_coord).
Rows correspond to data splits; columns compare LogisticReg vs. 1DCNN head-to-head. Values are
mean=std across runs. Best per split is underlined in bold.

Accuracy AUROC AUPRC

Split LogisticReg 1DCNN  LogisticReg 1DCNN LogisticReg 1DCNN

scfv_signature 72.00+£2.00  76.00+200 77.00+£1.00 82.00+2.00 71.00+£2.00  79.00-2.00
Parental_Family 52.00+9.00 54.00+12.00 52.00£12.00 57.00+13.00 48.00+£8.00 52.00+13.00

Faml 56.00+5.00 46.00+13.00 58.00+6.00 49.00+22.00 70.00+5.00 64.00+15.00
Fam2 70.00+3.00 74.004+0.00 59.00+800 49.00+7.00  39.00+6.00 28.00+2.00
Fam3 79.00+5.00 38.00+8.00  79.00+8.00 73.00+1000 90.00+5.00  89.00+4.00

Table 7: Protein synthesis failure classification using sequence+structure+biophysics features
(multimodal) vs. sequence-only (seq_only) with a linear classifier. Rows correspond to data
splits; values are mean=+std across runs. Best per split is underlined in bold.

Split (Acc. in %) multimodal seq_only

scfv_signature 85.24+433 83.58+1.69
Parental_Family 85.67+7.60 60.98+12.53

Fami 86.55+4.61 80.18+4.91
Fam2 77.78+476  75.1943.43
Fam3 84.81+1079  79.2643.78

F Extended Experiment Results for Protein Synthesis Failure Classification

We present the accuracy metrics for protein synthesis failure classification in the following tables.
Table 5| shows the accuracy for linear model compare to PLM embeddings with sequence features
only. Table [f] shows the accuracy for structure input with Logistic Regression and 1D-CNN. Table
shows the accuracy for multimodal input.

G Extended Experiment Results for Protein Synthesis Yield Regression

We present the Pearson correlation and Spearman correlation metrics for protein synthesis yield
regression in the following tables. Table [§]shows the Pearson correlation and Spearman correlation for
linear model compare to PLM embeddings with sequence features only. Table[9]shows the Pearson
correlation and Spearman correlation for structure input with Logistic Regression and 1D-CNN.
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Table 8: Regression (protein yield) with sequence and/or structural features. We report mean=-std
across runs. Best results per column are underlined in bold.

Model | Features |  scfv_signature split | Parental_Family split

\ | Pearson Spearman | Pearson Spearman
AbLang+MLP vhvl_only 0.562+0.018  0.610+0.012 | 0.014+0.161  0.05240331
ISM+MLP vhvl_only 0.173+0.019  0.368+0.037 | -0.110+0.142  -0.104+0.178
DPLM2+MLP vhvl+struct | 0.464+0037  0.514+0027 | 0.125+0111  0.132+0.184
AbMPNN+MLP | struct_only | -0.092+0055 0.001+0075 | 0.120+0103  0.002+0.228
LinearReg vhvl_only 0.531+0.044  0.714+0032 | 0.191+0255  0.035+0.283

Table 9: Protein yield regression using per-residue 3D coordinate features (3D_coord). Rows
correspond to data splits; columns compare LinearReg vs. 1DCNN head-to-head for Pearson and
Spearman correlations. Values are mean=std across runs. Best per split/metric is underlined in bold.

Split Pearson Spearman
LinearReg  1DCNN LinearReg 1DCNN
scfv_signature 0.495+0.034 0.529+0.034 0.5124+0.037 0.546-+0.039
Parental_Family 0.007+0.167 0.027+0.133 0.002+0.114  0.088-+-0.157
Faml 0.138+0.106 0.070+0.252  0.22140.134 0.176+0.417
Fam2 0.006+0.038  0.020+0.075 -0.00140.035 0.01540.071
Fam3 0.18740.290 0.114+0.243 0.0224+0.246 -0.00240.203
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