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Abstract

The ability to recognize patterns from examples and apply them to new ones is a
primal ability for general intelligence, and is widely studied by psychology and
Al researchers. Many benchmarks have been proposed to measure such ability for
Large Language Models (LLMs); however, they focus on few-shot (usually <10)
setting and lack evaluation for aggregating many pieces of information from long
contexts. On the other hand, the ever-growing context length of LLMs have brought
forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses
new tasks with hundreds to thousands of examples without expensive and inefficient
fine-tuning. However, many-shot evaluations often focus on classification, and
popular long-context LLLM tasks such as Needle-In-A-Haystack (NIAH) seldom
require complicated intelligence for integrating many pieces of information. To fix
the issues from both worlds, we propose MIR-Bench, the first many-shot in-context
reasoning benchmark for pattern recognition that asks LLM to predict output via
input-output examples from underlying functions with diverse data format. Based
on MIR-Bench, we study many novel problems for many-shot in-context reasoning,
and acquired many insightful findings including scaling effect, robustness, inductive
vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for
inductive reasoning, cross-domain generalizability, etc. Our dataset is available at
https://huggingface.co/datasets/kaiyan289/MIR-Bench.

1 Introduction

The tremendous success of Large Language Models (LLMs) in recent years [60, |27, 28] has brought
the prospect of human-level Artificial General Intelligence (AGI) into sharper focus [28]. With such
success, researchers have shifted their focus from syntax- and word-level traditional Natural Language
Processing (NLP) tasks such as named entity recognition [56, 42]], sentiment classification [[74,[79]]
and translation [50, [76] onto abilities once considered unique to humans, such as the ability to
recognize patterns and apply them to new examples across diverse contexts (instead of only in
predefined domains such as those mentioned above). Such ability, including inductive reasoning [23]]
(explicit recognition of abstract rules) and transductive reasoning [63] (implicit recognition from
local examples), measures the generalization power of an intelligence [[11]] and are considered as very
important mental abilities [33]]. Thus, they are long studied by the cognitive science community [7,24],
adopted in 1Q tests for human [[18], and is recently used as a measurement for the state-of-the-art
LLMs such as ol [28] and 03 [S9] to show their level of intelligence. Such abilities are also vital for
future LLM generalist agents [67]], where the agents must perceive and summarize the inherent logic
of the environment and act according to past successful experiences.

*Corresponding author; work done during internship at ByteDance Seed.
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Figure 1: A high-level illustration of our data generation pipeline. We first collect functions from
existing coding benchmarks, then let GPT-40-0806 write data generator for each function; we then run
the data generator to produce input shots, and combine them with ground truth function to produce
output shots. With input and output shots, we concatenate them and build MIR-extended; then, with
initial tests on several models, we study the factor for what makes a pattern recognition problem
benefit from many-shot, and build MIR-core based on selection with the factors.

While many pattern recognition benchmarks [5 51} 43]] for LLMs have been proposed, such as ARC
variants [11}[32, 88]] and inductive reasoning benchmarks such as WILT [5] and DEER [91], they
all focused on few-shot In-Context Learning (ICL) with typically <10 examples. While pattern
recognition from fewer examples may imply stronger reasoning ability, some underlying rules in
real-world problems are inherently too complicated or ambiguous for a few examples. For instance,
consider a quadratic curve with clipping. With three examples, it is unknown whether the curve is
sampled from a circle or a quadratic curve, let alone a clipped one; however, with 300 examples, not
only the quadratic function is clear, but the special clipping rule are also very likely to be retrieved.
LLM should handle such long-context, many-example cases as well as few-shot reasoning.

In fact, the scaling of the amount of ICL data is in line with the trend of the LLM community striving
to expand the context length [62} [77] for super-human problem-solving efficiency. It is with this trend
that a new paradigm emerged recently: Many-Shot ICL, which typically uses hundreds to thousands
of examples for test-time task learning without using expensive and relatively data-inefficient fine-
tuning [[L]. However, many-shot evaluations are mostly focused on classifications [45} 16} 99,46l [101]],
which is a very limited area of pattern recognitiorﬂ Other standard long-context LLM tasks, such
as needle-in-a-haystack (NIAH) [31], are more of a retrieval problem than gathering understanding
from many pieces of clues. With all these blanks in LLM evaluation (see Tab. [I] for a comparison
with the most related benchmarks, and Tab. [3]in Appendix [B]for a more complete version), we must
ask: How to evaluate the LLM’s ability to aggregate many pieces of information from many examples
to perform pattern recognition on various complicated problems?

To address the problem above and fix the limitation of existing LLM evaluation from both pattern
recognition and the many-shot/long-context community, we propose MIR-Bench, a large and diverse
Many-shot In-Context Reasoning benchmark, where LLMs are given examples of input-output
examples generated by an underlying unknown function with diverse input-output forms, and need to
recognize the patterns for predicting the output for new input.

The benchmark is generated by the following pipeline as illustrated in Fig.[I} 1) we collect functions
from introductory-level coding benchmarks including HumanEval+ [49], MBPP+ [49] and APPS [25];
2) we use GPT-40-0806 to write code as data generators that produces input-output pairs, and execute
them to generate ICL shots and test input; 3) run ground truth function with generated inputs for
ground-truth outputs; 4) use scripts to build prompts for target problem, and filter out problems with
too long shot length or insufficient input-output diversity. With such procedure, we propose two
sets of problems: MIR-Core and MIR-Extended, which contains 3000 problems (300 functions
x 10 test cases), and 6930 problems (693 functions x 10 test cases) respectively, and can be easily
supplemented by generating more test cases. The former is selected from the latter and contains the
problems that LLM benefits the most from many-shot (see Sec. @for details).

*Mostly transductive reasoning in these works.



Table 1: The topic, validity and reproducibility comparison between our work and prior benchmarks.
See Tab. [3]in Appendix [B]for a complete comparison. To save space, we abbreviate “Many Shot”
as MS, “Pattern Recognition” as PR (/\ for “classification only”), “Prob.” as problems, and “I/O
Div.” as “Input/Output Diversity” (> 2 different input-output types, e.g., given an array and
output an integer, or given a pair of strings and output a choice). “Gen.” means “Generative”,
which means whether new test cases can be easily created without much human effort. “LB” means
available leaderboard, and “EE” means “Easy Evaluation”, i.e., whether a pipeline for evaluating
any given new model exists. “New Data” means if the input-output data never appears in existing
benchmarks and thus is secured against data contamination; benchmarks with “New Data” being x is
a compilation of existing benchmarks. Note, the counting of #PR Problems and “Gen.” take different
target input-output for the same function into account, but not different sets of shots.

Benchmarks MS PR #PRProb. I/ODiv. Max#Shots Gen. LB EE New Data
HELMET [92] 500 ~10K X X X
LongICLBench [46] 3000 X ~2000 X X
ManyICLBench [101] 1000 7252 X X X
LMAct [67] N/A x 256 x

LongBench [4] 400 600 X

KORBench [51] X 50 3 X

ARC [11]] X 800 X 3 X

WILT [5] X 50 X 30 X

LogicVista [87] X 107 10 X X

MIRAGE [43]] X 2000 8 X X
MIR-Bench (Ours) 6930 2048

* LMAct has only a few tasks, but it is interactive and thus hard to count the number of problems.

To evaluate the long-context intelligence level of different LLMs, we test a variety of the cutting-edge
LLMs on our benchmark, and find our benchmark to be both challenging and discriminative, as
model performance vary greatly, but none saturates on our benchmark. We have also conducted the
following important and extensive empirical studies with our benchmark:

. What are the factors for ICL performance change with the number of shots (Sec. 4.2 [.3))?
. Is LLM a better inductive reasoner or transductive reasoner? (Sec. [4.4)
. How robust is LLM’s pattern recognition ability against errorneous examples (Sec. [C.1)?

. Does the inductive paradigm of first coding, then executing code for results [[10] work for
many-shot in-context reasoning (Sec. [C.2))?

. Does Retrieval-Augmented Generation (RAG) [19] help many-shot reasoning (Sec.|[C.3)?
6. Can LLMs generalize from “meta-shots”, i.e., other inductive reasoning examples (Sec.[C.4)?

A W N =

W

In conclusion, our key contributions are: 1) We propose MIR-Bench, the first large-scale, diverse,
non-compilation many-shot pattern recognition reasoning benchmark, which fills in the blank for
both many-shot and inductive / transductive community; 2) We build a novel automatic pipeline for
generating new tasks from existing coding benchmarks without using existing corpus as input/output
(i.e., no data leakage issues); 3) We perform empirical study on many important problems overlooked
by previous works and gained important insights on LLM’s many-shot / long-context intelligence.

2 Related Work

Long context LL.Ms. Recent remarkable success of LLMs have given rise to expectations for LLMs
to complete more difficult tasks, such as summarization of a whole book [§], modification over a
complex code repository [30]], test-time improvement [[100] and journey learning [64]. To make
sufficient room for related context and meet such demands, researchers have scaled up LLM models
and data [95| 61], and proposed novel encoding methods such as Rotational Position Embedding
(RoPE) [[77]], YaRN [62] and LongRoPE [15]]. With such designs, LLMs have entered the long-context
era where the LLM context lengths can reach 128K [27,190, [17], 2M [80], or even an infinite number
of tokens [57]], enabling the novel many-shot ICL [1]] paradigm. To evaluate such models, many



benchmarks have been proposed to evaluate LLM’s long-context ability [83} 44,197, such as Question-
Answering 69! 144], coding [97, [16], math [3}97], retrieval [31} 26} 83] and summarization [69, [3].
However, very few long-context benchmarks consider inductive/transductive reasoning tasks. Among
them, LongBench [4] only contains two many-shot classification tasks and few-shot summarization
/ QA tasks with existing dataset, while BABILong [36] only considers simple inductive reasoning
from a few examples scattering in the long context. In contrast, our benchmark is a more diverse and
large-scale evaluation for long-context, many-shot inductive/transductive reasoning.

Many-Shot In-Context Learning (ICL). Many-Shot ICL [1] is an emerging ICL paradigm where
LLMs learn to complete new tasks with hundreds to thousands of examples (instead of the usual < 10
examples [43 11} 188]]) given in its context. Compared to Supervised Fine-Tuning (SFT), many-shot
ICL makes full use of the current models’ long-context capability, is much more flexible with higher
computational and data efficiency [1]], and is inherently immune to catastrophic forgetting [35]]. There
are a large number of many-shot ICL empirical studies [6,/99, 75/ 98] with several benchmarks [[92} 46|
1014167]] containing many-shot ICL tasks; however, most of them only focused on classification [99}
46\ 1451 291 16]], a very limited type of problems. While there are several works that studies decision-
making [67], math [[L], instruction following [98] and LLM judges [75], none of the existing works
has studied general inductive/transductive reasoning, the important measurement of intelligence
level [11]]. Also, most of the existing many-shot ICL evaluations are not diverse enough, which means
they only have one pair of input-output types [67,[29]]. Our work, on the contrary, measures LLM’s
intelligence level using pattern recognition with diverse input-output types.

Inductive reasoning and transductive reasoning. Inductive reasoning [23] is the ability to explicitly
summarize general rules from examples, while transductive reasoning [63]] implicitly generalizes
from existing examples to new instances in a “K-nearest neighbor” manner. Both abilities feature
recognizing patterns from examples, which are very important for humans (and future LLM generalist
agents) to perceive the world via experiences [[67]. Thus, both abilities have been widely studied as
primal mental abilities of human intelligence [33 134]] in IQ tests [[18] and cognitive science [7} 124]
long before LLMs existed. As LLMs approach human-level intelligence recently, pattern recognition
also becomes an important task in analyzing LLM’s intelligence, especially for theoretical and
empirical studies on ICL [20, 2} [82]. Thus, many inductive [65}84] / transductive [48]] reasoning-
based approaches and benchmarks have been proposed [[11} 151} 4387} 15]]. The most representative
one is the Abstract Reasoning Corpus (ARC) [[11] and its variants 32} [88], which is recently used
to demonstrate the intelligence level of OpenAl 03 models [59]. The most similar work to ours is
FIND [68]], which tests LLM’s ability to induce and interpret underlying functions composed by
atomic functions; the LLMs interactively probes input-output pairs during evaluation. However,
almost none of them are designed for many-shot scenario (except for mini-SCAN [65] 137]] dataset
appearing in Qiu et al. [65]]). By filling in this gap, our many-shot in-context reasoning benchmark not
only enables the LLM inductive/transductive reasoning community to catch up with the long-context
era, but also tests the ability of LLMs to gather information from thousands of pieces of data, much
more than existing pattern recognition problems [[11} 43].

3 MIR-Bench

In this section, we will introduce our MIR-Bench in details, with Sec. @] discussing the formulation
of the problems evaluated and Sec. introducing the pipeline with which we build our benchmark.

3.1 Problem Formulation

The goal of the problems in our benchmark is for LLMs to predict the output for a new input
given a list of examples. More specifically, assume we have an underlying function y = f(x),
where x and y can be arbitrary data. E] Assume for f we have a set of n known example input-
output pairs (x1,v1), (T2,92),- .-, (Tn,Yn), and a new input x,e,; then, the LLMs’ input will
be [c1, str(xy), str(yy), str(za), str(ya), . . ., str(xy,), str(yn ), €2, Tnew), Where [, -, ..., -] is a string
concatenation, c¢; and cg are general context prompts (e.g. “You are an expert in reasoning”, or “Here
is the target input”; see Appendix @for details), and str(+) is the string representation plus an “Input: ”
prefix for x and “Output: ” prefix for y. LLMs can output arbitrary rationale; however, they must

3In our implementation,  is a dictionary with key being string (variable names) and values being arbitrary
Python list, tuple, dictionary or/and number, while y can be any Python list, tuple, dictionary or/and number.



end their answer with str(Ynew), Where Ynew = f(Znew). The answer is extracted with rule-based
scripts, and exact match will be performed to determine the LLM’s performance in accuracy. See
Appendix [F.6] for details on answer extraction.

3.2 Benchmark Construction

The construction of our benchmark can be decomposed into four steps: function collection, input
generation, output generation, and prompt building.

Function collection. We begin by collecting introductory-level coding problems from three coding
benchmarks: Humaneval+ [49], MBPP+ [49], and APPS [25]]. We use the whole Humaneval+ and
MBPP+ dataset (164 and 378 problems respectively); for APPS dataset, we select problems from
its training dataset with difficulty level “introductory” (2640 problems). We choose the solution for
coding tasks as the underlying patterns for input-output. This is because we intend to involve as little
prior knowledge as possible and separately test the pattern recognition ability. While having diverse
data source such as math and text-based logical reasoning problems can be beneficial for evaluating
LLMs’ real-world reasoning ability, it may also introduce unexpected involvement of LLM’s other
abilities (e.g. math). With such a source of data, the questions in our benchmark have highly diverse
difficulty level and input-output modalities; see Appendix. [E]for dataset statistics.

Note, solution functions for introductory-level coding problems are not necessarily easy to induce.
For example, consider the following problem: Given an input string and let ‘a’=1, ‘b’=2, ...,
‘2’=26. If we see strings as the product of alphabets, output the last digit of the result; e.g., f(bab) =
(2 x1x2)mod10 =4, f(zc) = (26 x 3) mod 10 = 8. The solution function f is a one-liner:

def f(s): return reduce(lambda x, y: (x * (ord(y) - 96)) % 10, s, 1)

. However, it is highly non-trivial to induce with only input-output pairs. A non-introductory level
problem, such as dynamic programming with multiple functions and arrays of input, could be almost
impossible to guess with input-output pairs even for humans. In our experiments, we find that
introductory-level problems are already sufficiently challenging.

We ensure that each solution code is a single function without wrapping solution class or test
statement; for codes in APPS that do not conform to this standard, we ask GPT-40-0806 to rewrite
the code given problem input and the solution code (See Appendix [F.3|for prompts).

Input generation. We use GPT-40-0806 to automatically generate inputs for each function acquired
in the last step, for which prior works [70, 47] usually directly generate input data. However,
such method is not only non-scalable, but also prone to errors such as input format mismatch. To
address this issue, we prompt GPT-40-0806 to first generate “data generators” for each problem (See
Appendix [F.4] for prompts), then run each generator in Python interpreter for data. We generate 20000
shots and 10 test cases for each problem, which is impossible to acquire with prior methods. We
wrote the prompt such that the test case is supposed to be slightly harder (e.g. with larger numbers /
longer lists) than the shots. In this step, we filter out problems with the generated input too identical
(< 4096 different shots out of 20000), duplicate test cases, or test cases appearing in the shots.

Output generation. With input generated, we write a script to stitch generated input and ground
truth function f in the same Python script, and run them in the intepreter to acquire ground-truth
output. In this step, we filter out problems with floating number output, unless the precision is fixed
across all shots by rounding, given by input, or unimportant for exact matching (e.g. the function is
to output absolute value). We also filter out problems with too low output diversity (> 50% of the
shots having the same answer), and problems with invalid output due to code error.

Prompt building. In this step, we use Python scripts to automatically stitch input-output pairs
with task description to generate final input for LLMs. Finally, we also filter out problems that are
unsolvable (either too difficult or data coverage are insufficient) for LLMs, which are the problems
that have 0 accuracy for all five models { GPT-40-0806, GPT-40-mini-0718, Gemini-Pro 1.5-002,
Gemini-Flash 1.5-002, Mistral-Large-2} across {4, 8,16, 32, 64, 128, 256, 512, 1024, 2048} shots in
10 test cases. We choose 2048 as the maximum number of shots as most LLMs reaches its context
limit at this point (see Tab. E] for details). After this step, we have 693 valid functions, each with
10 test cases; these problems are the content of our benchmark version MIR-Extended. Within this
version, we select 300 problems that are challenging and can largely benefit from many-shot; See
Sec.[d.2 for details.



4 Experiments

In this section, we will introduce general performance of existing models on our benchmark and a
series of exploratory experiments which gives novel insights. We first introduce the main results on
our MIR-Extended benchmark in Sec. then, we explore factors that indicate whether a problem
can benefit from many-shot, and build MIR-Core in Sec.#.2] We further conduct more in-depth
analysis on important properties of LLM’s many-shot intelligence in several aspects on MIR-Core in
Sec.[4.3]and Sec. .4, We defer more empirical ablation and analysis to Appendix [C.1|to[C.4]

4.1 MIR-Extended

Evaluation setup. We evaluate a set of 15 LLMs with context window > 128K tokens on our
MIR-Extended benchmark with 693 different function and 10 test cases per function (6930 problems
in total). The evaluated LLMs are: {OpenAl-ol-preview-0912, OpenAl-o1-mini-0912, GPT-40-0806,
GPT-40-mini-0708, Gemini-Pro 1.5-002, Gemini-Flash 1.5-002, Gemini-Flash 2.0, Claude-3.5-
Sonnet, Claude-3.5-Haiku, Claude-3-Haiku, Claude-3-Sonnet, Qwen2-72B-Instruct, Mistral-Large-2,
Moonshot-128K, GLM-4-Plus} by invoking official APIs; see Appendix for detailed prompts.
We use greedy decoding (with temperature 0) for evaluation (See Appendix [D.]I|for ablations on the
robustness of evaluation), and use exact match accuracy as the metric with rule-based extraction of the
answer from LLM’s response (See Appendix . Each model is evaluated with {4, 8,16, . .., 2048}-
shot with shots uniformly randomly sampled from 20000 shots generated in Sec.[3.2] Importantly, to
avoid possible difficulty fluctuation among different number of shots due to sampling, we ensure the
examples in test cases with more shots are supersets of those with less shots (except for errorneous
shots in Appendix [F.7). Thus, the information given in the input is strictly increasing with more shots.

Results. Fig.2Ja) illustrates the performance of all 15 LLMs on our MIR-Extended benchmark. The
performance of the LLMs varies greatly; among all models, 01-mini-0912 and ol-preview-0912
clearly outperform all other models, followed by Claude-3.5-Sonnet and GPT-40-0806. However, all
LLMs evaluated are far from addressing our pattern recognition task; the best model, 01-mini-0912,
only reaches an accuracy of less than 0.7, while most models such as GPT-40-0806 only achieve
less than 0.4 accuracy. Such performance indicates that the pattern recognition task still poses a
significant challenge for most LLMs’ in complicated tasks. Claude-3.5-Haiku achieves surprisingly
low accuracy; upon checking examples, we find that the model often do not understand our prompt
and see the target input as part of an incomplete data, thus refusing to answer the problem.

Interestingly, scaling up the number of shots is not always beneficial, similar to many tasks in Agarwal
et al. [1]]. For models other than Gemini, the performance drop over 512 shots can be partly attributed
to exceeding the 128K context limitE]; however, for most language models evaluated (including ol
series), the performance growth often stops at no more than 256 shots, where the context limit is
not reached. Such issue stems from attention dispersion as stated in Yuan et al. [93]]; as the number
of examples increases, the attention weights which should be cast on the most informative shots is
distracted by the less informative ones instead of lack of information retrieval ability. We validate
this via ablation in Sec.

4.2 MIR-Core: Problems Requiring Many-Shot

Ablation on possible factors. While we have obtained many pattern recognition problems, not all of
them necessarily benefit from many-shot ICL; for example, a simple function such as adding two
numbers or absolute value can be induced in a few shots. To study the inductive reasoning problems
whose difficulties are distinctive between few-shot and many-shot, and curate a high-quality many-
shot benchmark, we perform a detailed ablation study on possible factors for such distinctiveness. To
better study such property, we define the following metric D:

D + Dy acc@64 + acc@128 acc@16 + acc@32
D = —— where D; = - )
2 2 2 )
D acc@32 + acc@64 + acc@128] [acc@él + acc@S8 + acc@lG}
2 = - ,
3 3

*Which only happens in < 1% case for 1024 shots but more common for 2048 shots. See Tab. for details.
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Figure 2: The performance of LLMs on MIR-Extended (panel (a)) and MIR-Core (panel (b)). For
better readability, we only show the most representative models; see Fig. [8|in Appendix for the
rest. The benchmark poses challenge to all models tested. Most models will “saturate” at a particular
number of shots, i.e., their performances stop to improve when more shots are given due to attention
dispersion (See Sec. [1;’5] for ablation).

where accQz, © € {4, 8,16, 32,64, 128} is the average accuracy of { GPT-40-0806, GPT-40-mini-
0718, Gemini-Pro 1.5-002, Gemini-Flash 1.5-002, Mistral-Large-2} at z-shot over 10 test cases.

Intuitively, D is a combination of two components D and D, each measures average performance
growth from different few-shot to many-shot ranges; The range of x is based on prior inductive
reasoning work [[11] and the number of shots where performances saturate on MIR-Extended. Ideally,
we want to identify the factors which are positively related to D, and curate MIR-Core with problems
having higher values of D.

With such metric D, we consider the following fac-

tors that are potentially relevant to the distinctiveness Quadratic Coefficients Heatmap
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Appendix [E.4] for ablation on problem topics). For the o et O e s

rest of the factors, we fit the ground-truth metric D using

a quadratic function with these factors (after normaliza-  Figure 3: The coefficients of the quadratic
tion) as self-variables. We use quadratic function as  function fitting D with the aforementioned
we found some factors (e.g. # different answers), are  factors normalized between [0,1]. The
roughly raised at both ends and concave in the middle, blank row and column are for constant fac-
while others are roughly monotonic (e.g. code length); tors. LLM-labeled difficulty is the leading
see Fig. [[T]in Appendix [E.5|for details. factor for D, while answer diversity and

The coefficients are illustrated as Fig.[3] as the result shot length are less important.

shows, ground truth function complexity is the dom-

inating factor for distinctiveness between few-shot and many-shot performance, among which
LLM-labeled difficulty is a leading, positive factor (i.e. more difficult problem will require more
shots). Answer diversity and input complexity are relatively less important. See Appendix [E.5|for
single-factor analysis, and Appendix for qualitative analysis on how difficulty affects D.

Another finding worth noting is that we find it highly non-trivial to get a reliable problem difficulty
estimation from LLM: LLM tend to underestimate inductive reasoning difficulty when given a simple
underlying function. For example, consider the one-line function that filters an interger list:

lambda 1: return [1[i] for i in range(l, len(1l)) if 1[i] % i == 0],

which gives [-4, 16, -63, -32, -5] as output when given input [48, -4, 16, -63, -32, -5, -32, -45].
GPT-40-0806 gives difficulty score of 5 out of 10, indicating that this is a moderate question. However,



this question is so difficult that we have to exclude it from our benchmark, i.e. have 0 accuracy across
all models for all numbers of shots mentioned in Sec.[3.2] To avoid LLM being tricked by the simple
underlying function, we propose a multi-round conversation framework with self-reflection. In this
framework, We first let the LLM to try to solve the problem without code by itself, and then reveal the
ground-truth answer and let LLM to score the difficulty based on self-reflection. We found that with
such framework, the evaluation from LLMs are much more accurate; see Appendix E] for details.

Selection of data for MIR-Core. We adopt the quadratic function’s fitting result and select the
300 problems with the highest predicted D-value as MIR-Core, each has 10 test cases. To achieve
a balance between achieving higher D-value for MIR-Core and unbiased evaluation for the LLMs
involved in computing D-value, we do not use the problems with the highest ground truth D.

Results on MIR-Core. The evaluation results on MIR-Core are illustrated in Fig.[2(b). We again
evaluate all 15 LLMs in Sec. on MIR-Core. While the performance difference between few-shot
and many-shot are more distinctive as expected, the relative performance and many-shot saturation
phenomenon remain unchanged. We also evaluate the following six more cutting-edge LLMs:
{OpenAI-01-1217, OpenAl-03-mini-high, DeepSeek-R1, DeepSeek-V3-0325, GPT-4.5-Preview,
Gemini-2.0 Pro 0325}, many of which are models with long Chain-of-Thought (CoT) [86]] process,
i.e., “thinking” modelsE] Interestingly, while stronger models such as OpenAl-01-1217 generally
have higher performance, the saturation phenomenon persists.

4.3 Results with Duplicated Few-shots

To study whether the saturation of many-shot in Sec. 4.1] and [.2] comes from the inability of
retrieving the most useful shots for induction or the inability of aggregating many pieces of dif-
ferent, useful information, we conduct an ablation where we test { GPT-40-0806, GPT-40-mini-
0718, Gemini-Pro 1.5-002, Gemini-Flash 1.5-002, Mistral-Large-2} on MIR-Core with 16-shot,
but with the following two settings: 1) one shot duplicated until total shots number of reach
{16, 32, 64,128,256, 512, 1024, 2048}, while other 15 shots only appear once; and 2) all 16 shots
duplicated for {1, 2,4, 8,16, 32,64, 128} times.

The result is shown in Fig. ] where solid lines are for original results on MIR-Core from Sec.
dashed lines are for scenario 1 (one shot duplicate), and dotted lines are for scenario 2 (all shots
duplicate). When the number of shots increase, as shown in panel (b), the performance difference
between normal many-shot and both scenario 1 and 2 increases, which indicates that LLMs can
indeed aggregate many pieces of information from more shots and acquire performance gain (which
is almost not the case for Mistral-Large-2, and thus its “saturation point” of performance with more
shots is the lowest). However, the difference diminishes when there are more than 512 shots (note
this also applies for Gemini with 2M context length, thus this is not a problem of hard context limit).
Such result indicates that too many pieces of information may actually harm LLMs’ performance by
distraction. Also, the performance of the dotted line (all shots duplicate) is in general not higher than
that of the dashed line (one shot duplicate), which indicates that the saturation problem is not in
information retrieval, but from distraction when aggregating too many information, as the two
scenarios contain the same amount of information but the latter has higher difficulty for information
retrieval.

4.4 Inductive Reasoning vs. Transductive Reasoning

In our previous results in Sec. ] we did not instruct the model to include Chain-of-Thought (CoT) [86];
thus, the models can either conduct inductive learning with CoT or transductive learning by directly
outputting solution for the target input. In this section, we study the performance difference between
inductive and transductive performance of LLMs.

Statistics in main results. We first count the number of answers with and without CoTf|in MIR-Core
results (Sec.[4.2)) and their respective correct rate; surprisingly, we find that in all 21 models, including
long thinking models such as o1, answers without CoT (i.e. transductive results) have unanimously
and significantly higher accuracy than those with CoT (i.e. inductive results). Tab. 2] shows the result
for the most representative models; see Appendix [D.4]for full results.

SDue to cost limit, we did not evaluate them in many of our other experiments.
5We count answers with > 20 characters before the final “Output:” as the ones with CoT.
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Figure 4: Results of duplicating shots. For panel (a), solid lines are for results on MIR-Core from
Sec. dashed lines are for scenario 1 (one shot duplicate), and dotted lines are for scenario 2 (all
shots duplicate). Panel (b) is the result of dashed and dotted line subtracting solid line in panel (a).

Table 2: The results on MIR-Core of each model with CoT (inductive) and without CoT (transductive).
See Tab.@]for full results. Results are averaged over {4, 8, 16,32, ..., 2048}-shot. The ratio of answer
with and without CoT does not add up to 100%, as we did not count results where we are unable to
extract answer. The result shows that while the preference of inductive vs. transductive varies, the
performance of transductive reasoning is unanimously higher.

Model Answer w./ CoT (%) Accuracy w./ CoT Answer w./o. CoT (%) Accuracy w./o. CoT
Claude-3.5-Sonnet 98.73 0.585 1.08 0.775
Gemini 1.5-Flash-002 20.11 0.306 79.75 0.539
Gemini 1.5-Pro-002 20.96 0.339 78.90 0.561
Gemini 2.0-Flash 2443 0.363 74.59 0.498
GPT-40-0806 10.85 0.488 88.34 0.540
GPT-40-mini-0718 37.21 0.279 61.77 0.414
Mistral-Large-2 75.66 0.306 21.64 0.403
01-mini-0912 2.54 0.334 93.63 0.696
ol-preview-0912 56.71 0.588 40.88 0.797
DeepSeek-R1 9.69 0.298 85.85 0.757

Are LLMs better transductive reasoners or better inductive reasoners? To further validate
whether the performance difference comes from inductive reasoning or from problems with different
difficulty levels (e.g. LLMs only apply inductive reasoning on difficult problems), we further test
MIR-Core with different prompts under two settings: 1) forced CoT, where the models are forced to
write CoT; 2) no CoT, where the models are required to not write CoT and directly give answer. We
evaluate all 15 models in Sec.[4.T]and DeepSeek-R1. See Appendix [F2]for prompts.

Fig.[5(a) shows the result of the most representative models on MIR-Core; see Appendix for
other LLMs. For long CoT models such as ol series and DeepSeek-R1, the performance of forced
CoT is similar or slightly better than no CoT, indicating that such models prefer to present CoT
for more difficult questions and hide CoT in the final answer for easier questions. However, for all
other models (except GPT-40-mini-0718), forced CoT indeed works worse than no CoT, and such
performance gap increases with the number of shots (See Fig. [0]in Appendix [D.4]for more results).
That being said, the performance gap is smaller than those reported in Tab. [2] indicating that these
models also prefer inductive reasoning for more difficult questions.

Is CoT harmful for most LLMs in pattern recognition tasks? The performance gap between
no CoT and forced CoT for most LLMs seemingly leads to a counter-intuitive conclusion that CoT
harms LLMs’ performance in many-shot pattern recognition tasks. To verify whether this is the case,
we conduct another ablation where compare the forced CoT results with another setting: forced
nonsense, where the model is asked to first output a random paragraph of 700 characters E], then
conduct transductive reasoning and directly give its answer. We test { GPT-40-0806, GPT-40-mini-
0718, Gemini-1.5 Flash-002, Gemini-1.5 Pro-002, Gemini-2.0 Flash, Mistral-Large-2} on MIR-Core
for this experiment. The result is illustrated in Fig. [5(b). Unsurprisingly, CoT indeed helps LLMs’
performance as forced CoT results are generally much better than forced nonsense results, and
stronger models benefit more from CoT. However, such benefit weakens with more shots, indicating
that CoT have yet to scale with many-shots to integrate thousands of pieces of information together.

"Average CoT length in forced CoT for models tested in this experiment.
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Figure 5: Panel (a) shows the accuracy difference of forced CoT and no CoT on MIR-Core, and
panel (b) shows the difference between forced nonsense and forced CoT. The result shows that for
most LLMs, the structural coherence between input-output pairs preserved during normal transductive
reasoning prevails. CoT indeed helps reasoning, but its effect weakens with many shots and cannot
compensate for breaking input-output format, especially with more shots.

Conclusion. To explain why CoT helps reasoning but LLMs still do better in transductive reasoning
(no CoT) than inductive reasoning (forced CoT), we hypothesize such phenomenon comes from CoT
breaking the structural coherence between input-output pairs. For example, consider a problem
with two integers a and b as input and max(a, b) as output; transformers can easily duplicate the
mapping relation between the three sets of tokens a, b and max(a, b) as if going through a gradient
descent with regression loss on examples as the training set, as suggested by many theoretical works
in ICL [14} 182} 52]. However, a mapping from input to CoT makes the equivalent of gradient descent
much more opaque, thus breaking the structural coherence that allows LLMs to “implicitly regress”
through its attention matrix. The benefit of keeping structure coherence outweighs CoT, which
explains why “forced nonsense” as transductive learning but without structural coherence works the
worst, and why the performance gap between forced CoT and no CoT widens with more shots - the
implicit regression effect gets stronger with more shots and consistent format.

5 Discussion and Conclusion

In this paper, we propose MIR-Bench, a novel, large-scale many-shot in-context pattern recognition
reasoning benchmark and poses a difficult challenge for LLMs. We test 21 LLMs from 4-shot to
2048-shot on our benchmark, and conduct extensive ablations on many aspects such as CoT, inductive
vs. transductive, robustness, coding, RAG and meta-shot paradigm in addressing inductive reasoning
problems. With many important insights concluded from our experiments, we believe our work
provides a unique way of understanding LLM’s intelligence level under long-context scenario.

Downstream tasks of interest. Beyond better understanding of LLM intelligence in general, our
work is also more directly beneficial for several downstream tasks. Here we list two examples:

Decision-making agents. When making-decisions, online interaction can be costly and dangerous (e.g.
controlling a robotic arm, or navigating Amazon and buy items). A good LLM agent should be able
to learn from the past interactive experiences in the environment, either by building the back-ground
dynamics model (e.g. model-based reinforcement learning [S5]) or imitating past expert behavior
(e.g. imitation learning [94]). Our benchmark fits into this type of application as the input can be
seen as state-action pairs and the output can be seen as the outcome (utility gained and new states).
See LMAct [67] for an example application.

Programming-by-Example (PbE). PbE is a long-studied program synthesis paradigm where the LLM
needs to write code based on input-output examples, which is widely used in coding assistant [[13]
and Excel sheets autofill [21]]. While our main evaluation does not involve writing code, we evaluate
such application in Appendix [C.2} with minor modification, our benchmark can serve as a solid basis
for the downstream PbE works, such as Wei et al. [83]].
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Appendix: MIR-Bench: Can Your LLLM Recognize Complicated Patterns via
Many-Shot In-Context Reasoning?

The appendix is organized as follows. First, we state limitations, future work and broader impact in
Sec. @ Then, we discuss more related fields to our work, and conduct an extended comparison to
all related many-shot ICL or inductive reasoning works to further illustrate the position of our work
in Sec.[B] After this, we provide additional empirical study results in Sec. [C|(which are also main
results of this paper but postponed to the appendix due to page limit), then extra results and auxiliary
ablations in Sec. @} Then, we provide statistical features of MIR-Bench in Sec. E} Finally, in Sec. [E
we introduce more details in our experiments, including the prompts we adopted in our curation of
dataset and ablation experiments and the regex rule we used for extracting the answer.

We hereby summarize the important novel insights obtained from experiments in the appendix:

1. LLMs are quite robust against errorneous shots in many-shot inductive reasoning tasks.
(Sec.[CT)

2. The first-coding, then-running paradigm are not always scalable to many-shot case. Many-
shot in-context pattern recognition remains an open problem. (Sec.[C.2)

3. RAG is not a effective solution for addressing saturation issue of the many-shot pattern
recognition task. (Sec.[C.3)

4. Tt still remains an open challenge for LLMs to learn “meta-skills” of inductive reasoning
from out-of-domain demonstrations. (Sec. |C.4)

5. The evaluation on our benchmark is robust across different random seeds; i.e., the standard
deviation of the performance is low. (Sec.[D.)

6. The performance of LLMs against erroneous shot largely depends on the ratio of errorneous
shots; under the same ratio, the total number of shots does not change much. (Sec. @])

7. While generally adding more shots increases LLM’s inductive performance, the performance
change varies with problem types. LLMs improve the most on string manipulation tasks
where each character in the input serves as a “shot” inside each example, and will not
improve if the functions are too straightforward or too difficult. (Sec.[E.4)

8. LLM:s tend to underestimate inductive reasoning difficulty during evaluation given a concise
ground truth. A better choice is to do a multi-round evaluation where LLLMs can better
evaluate difficulty by self-reflection on its attempt for solving the problem. (Sec.[F5)

A Limitations, Future Works and Broader Impact

Limitations and future works. First, to curate MIR-Core with problems that requires many-shot
ICL, we studied many related factors such as types of problem and difficulty of the problems; however,
they are not decisive enough. A more explainable rule for determining whether a problem needs
many-shot would be an interesting avenue for future many-shot ICL works. Second, our test of pattern
recognition is limited to text; it would be interesting for future work to explore the intelligence of
multimodal models [78},153}[12]. Third, while we have largely reduced the ambiguity of the underlying
functions by filtering out those with insufficiently diverse input-output patterns and unsolvable by
LLMs, some underlying functions could still be non-unique given our input-output pairs. Finally, our
empirical studies have disproved some possible fixes to the saturation issue of many-shot ICL such as
RAG, but do not provide a panecea. According to prior work [45]], we hypothesize that supervised
finetuning and/or reinforcement learning with in-context learning data would be a promising avenue
to explore.

Broader Impact. Our work proposes an interesting and useful challange for LLM’s long-context
reasoning ability, and summarized many useful insights for future LLM studies. As we mentioned in
the paper, our work is a step towards generalist Al agents that perceive the world from interaction
examples and make decisions from demonstrations. Thus, our work inherently shares the societal
impact with all other LLM papers: while LLMs could significantly boost human’s working efficiency
and production power of the society, the misuse of LLMs could cause harm to humans such as
displacement of human workers.
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B Extended Related Work

Programming-by-Examples (PbE). PbE [58.|13] is a classic programming paradigm where pro-
grams are automatically written with user-provided input-output pairs as examples; it can be seen as
an application of inductive reasoning in coding, and has wide application in sheet processing [21]],
data parsing [40], and systematic drawing [9]]. It is traditionally addressed by symbolic-based
approaches, such as heuristic search [21} 9], version space algebra [38]] and learning weights for
rule probabilities [54]; this symbolic formulation has largely limited the generalizability of PbE.
Recently, as LLMs have proved themselves to be strong coders [22], several works tried to address
general-purpose PbE with LLMs [71} [72, [70, 47]. None of them, however, considers many-shot
scenario with more than 10 shots. Compared to existing works, Our benchmark is organized in a way
that resembles many-shot PbE paradigm, but for most of the evaluations, the LLMs we tested are not
required to write code; instead, they only need to directly predict output for new input. That being
said, with minimal adaptation, our proposed benchmark can fill in the blank of many-shot PbE study
(and we explored this in Sec. [C.2).

Extended comparison with literature. Tab. [3|shows a detailed comparison of our work with existing
works (including empirical study and benchmarks) in the field of many-shot and pattern recognition
task. As shown in the table, our work is indeed unique among all the many-shot ICL and inductive
reasoning works.

C More Empirical Studies on MIR-Bench

C.1 Robustness of LLM Inductive Intelligence

While many works [[1] have studied LLM’s many-shot ICL performance, the robustness of LLM’s
many-shot ICL ability [98]], i.e. the accuracy given incorrect examples, is still largely underexplored.
In this section, we explore the performance change with increasing number of shots with incorrect
answers.

Evaluation Setup. We test all 15 models in Sec. d.1) on MIR-Core with 3 different settings: 1)
the “unaware” setting, where the models do not know there are incorrect answers in the provided
examples; 2) the “aware-error” setting, where the models know that some (unknown number of)
examples are incorrect; and 3) the “aware-ratio” setting, where the models know exactly how
many shots are incorrect out of all given shots. The three settings are mostly the same, with slight
difference in prompt; see Appendix |F.2|for details. We test {64,256, 1024} shots x error ratio of
{1/64,1/32,1/16,1/8,1/4,1/2, 3/4} respectively. See Appendix [F.7]for data generation details.
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Figure 6: The accuracy of representative models with erroneous shots under different prompt settings
with 64 shots (see Fig.[10]in Appendix [D.5]for full results). The result shows LLMs are generally
quite robust against erroneous shots.

Results. The results for 64-shot are illustrated in Fig. [] (see Appendix for the rest). Surprisingly,
we found that LLMs are generally quite robust against errorneous shots; their performance are only
slightly harmed below 1/8, and can maintain decent performance even with 3/4 error rate. We find
that generally, there is generally no significant performance difference in different awareness level
of erroneous shots; some exceptions are Gemini-2.0 Flash and Claude-3.5-Haiku (see Fig. in
Appendix [D.5), where the answering paradigm of the former remains the same, and the latter accepts
the target input as part of the “incomplete” data and rejects answering questions less frequently.
Overall, LLMs are quite robust against errorneous shots in many-shot inductive reasoning
tasks.
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Table 3: The topic, validity and reproducibility comparison between our benchmark and the most
related prior many-shot / long-context benchmarks in the first part, and pattern recognition (inductive
and transductive) reasoning benchmarks in the second part. To save space, we abbreviate “Many
Shot” as MS, “Pattern Recognition” as PR (/\ represents “classification only”), “Prob.” as problems,
and “I/O Div.” as “Input/Output Diversity” (having at least 2 different input-output types, e.g.,
given an array and output an integer, or given a pair of strings and output a choice). “Gen.”
means “Generative”, which means whether new test cases can be easily generated without much
human effort. “LLB” means whether a leaderboard is available, and “EE” means “Easy Evaluation”,
i.e., whether a pipeline for evaluating any given new model exists. “New Data” means whether the
input-output data never appears in existing benchmarks; if so, the benchmark is not a compilation of
existing dataset and is secured against data contamination. Note, the counting of #PR Problems and
“Gen.” take different target input-output for the same function into account, but do not take different
sets of shots into account.

Evaluations MS PR #PR Prob. I/0 Div. Max # Shots Gen. LB EE New Data
Classifications [45]] ~25K X 2000 X X X X
Many-Shot ICL [1] 450 2048 X X
Classifications [6]] 1250 X 2000 X X X
Visual Classifications [29] 4010 X ~2000 X X X
Instruction Following [98]] X 0 300 X X
2D Classifications [99] 100 X 256 X

LLM Judge [75]] X 0 X 512 X X
HELMET [92] 500 ~10K X X X
LongICLBench [46] 3000 X ~2000 X X
ManyICLBench [101]] 1000 7252 X X X
LMAct [67] X N/A* X 256

LongBench [4] 400 600 X

BABILong [36] X unknown unknown

KORBench [51]] X 50 3 X

SolverLearner [[10]] X 1300 16 X X
Case2Code [70] X 1.3M 10 X X X

DEER [91] X 1250 X 3 X X X

List functions [66]] X 4000 X 5 X

SyGus [84] X 89 3 X X

ARC [1]] X 800 X 3 X

1D-ARC [88]] X 900 X 3 X

Mini-ARC [32] X 150 X 3 X

WILT [5] X 50 X 30 X

LogicVista [87]] X 107 10 X X

CLUTRR [73]] X 70K X N/A X

MIRAGE [43] X 2000 8 X X

ACRE [96] X 30K X 10 X X
Mini-SCAN [65]] 400 X 100 X

Ours 6930 2048

* LMAct has only a few tasks, but it is interactive and thus hard to count the number of problems.
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C.2 SolverLearner: Is “First-Coding, Then-Running” the Cure?

For better inductive reasoning ability, Cheng et al. [[LO] proposed SolverLearner, an inductive rea-
soning framework where LL.Ms write code first for inductive reasoning problems and then generate
answers with python interpreter. With such framework, the authors claim that LLMs demonstrate
remarkable inductive reasoning capabilities under their framework. However, their study is limited to
a few relatively weak LLMs, (GPT-3.5, GPT-3), limited amount of inductive reasoning problems and
few-shot; to check whether such solution also works for the many-shot pattern recognition task, we
re-implement their method on MIR-Core (see Appendix [F.8|for prompts).

We test SolverLearner with {DeepSeek-R1, Claude-3.5 Sonnet, GPT-40-0806, GPT-40-mini-
0718, Gemini-Flash 2.0, Gemini-Pro 1.5-002, Gemini-Flash 1.5-002, Mistral-Large-2} for
{16, 64, 256, 1024} shots respectively on MIR-Core. For each code snippet generated by LLMs, we
set a limit of 1 second for execution, as we need to run 300 functions x 10 test cases x 4 different
number of shots x 8 models = 96000 code snippets.

Table 4: The accuracy at 16, 64, 256 and 1024 shots respectively for SolverLearner on MIR-Core, and
its performance difference from results reported in Sec. We plot improvements with > 0.02 blue
and < —0.02 red. We find that the performance of SolverLearner varies from model to model, and
does not necessarily perform better than normal inductive reasoning paradigm. Also, SolverLearner
curves under many-shot are more “flat”; i.e., it does not seem to make good use of extra information
from a large number of shots. Such result indicates that LLM many-shot inductive reasoning is still
an open problem, and straightforward solutions such as SolverLearner are not suffice yet.

Model Acc.@16 Acc.@64 Acc.@256 Acc.@1024
DeepSeek-R1 0.756(+0.022) 0.762(+0.007) 0.748(+0.018) 0.640(+0.003)
Claude-3.5 Sonnet 0.577(-0.009)  0.604(-0.015)  0.605(-0.017)  0.603(+0.04)
GPT40-0806 0.530(+0.012)  0.534(-0.033)  0.538(-0.029)  0.556(+0.004)
GPT40-mini-0718 0.350(-0.006)  0.375(+0.003) 0.386(+0.008) 0.370(+0.014)
Gemini-2.0 Flash 0.469(+0.066)  0.487(+0.003) 0.493(+0.006) 0.487(+0.026)
Gemini-1.5 Pro-002 0.469(-0.029)  0.495(-0.055)  0.483(-0.067) 0.491(-0.04)
Gemini-1.5 Flash-002  0.473(-0.009) 0.484(-0.03) 0.479(-0.038) 0.486(-0.03)
Mistral-Large-2 0.420(+0.057) 0.430(+0.028) 0.428(+0.078) 0.356(+0.102)

Tab. 4 demonstrates the accuracy of each model (with difference from the standard results reported in
Sec.[4.2) on MIR-Core, and Tab. [5|demonstrates the error rate when writing code. We found that
the effect of SolverLearner varies from model to model; i.e., SolverLearner does not necessarily
improve performance on our benchmark. Also, SolverLearner does not seem to utilize many-shot
well; the performance increase from 16-shot to 1024-shot is much smaller than that of standard
performance reported in Sec. [4.2] We hypothesize such issue, similar to that in Sec. #.4] stems
from the complicated nature of the code. Moreover, models with relatively weaker long-context
ability, such as Mistral-Large-2, has much higher error rate with many-shot as the context length goes
beyond its “effective” [26] context length; DeepSeek-R1 as a long CoT model also struggles with
high runtime error rate from many-shot inductive reasoning. Thus, many-shot pattern recognition is
still an open problem and not yet solved by straightforward solutions such as SolverLearner. The
insight can be summarized as follows:

C.3 Can RAG Help Many-Shot Pattern Recognition?

One possible way to bypass the problem of many-shot saturation is Retrieval Augmented Generation
(RAG) [19]; i.e., instead of feeding every given shot into the LLM and disperses the model’s attention,
we only select a few shots that are the most related to the target input, thus forcing the model to
concentrate on the few but useful shots in its context. Usually, there are two prevalent ways to select
such shots: selected by LLM [39] or selected by embedding [41, 89]. The former is infeasible in our
many-shot pattern recognition task, as each of our shot is already very precise and hard be further
compressed by LLM as in other RAG works [39]; also, selection of shots with over 2000 candidates
for each of the 3000 test cases in MIR-Core will be prohibitively expensive and/or error-prone for
LLMs. Thus, we will focus on embedding-based RAG for this part.
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Table 5: The Do-Not-Finish (i.e., no solution function generated) and Runtime Error (RE, including
timeout and exception during running) rate at 16, 64, 256 and 1024 shots respectively for Solver-
Learner on MIR-Core. Generally, with more shots, the error rate of LLMs will increase. Some
models such as DeepSeek-R1 and Mistral-Large-2 has high error rate under long context scenario.

Model DNF@16 RE@16 DNF@64 RE@64 DNF@256 RE@256 DNF@1024 RE@1024
DeepSeek-R1 0 0.0303 0.0003 0.0689 0.0003 0.1010 0.057 0.2061
Claude-3.5-Sonnet 0 0.0027 0 0.0063 0 0.0007 0 0.0037
GPT40-0806 0 0.009 0 0.0103 0 0.0157 0.0033 0.0137
GPT40-mini-0718 0 0.0103 0 0.0147 0 0.0167 0.0033 0.017
Gemini-2.0 Flash 0 0.0023 0 0.007 0 0.007 0 0.0068
Gemini-1.5 Flash-002 0 0.0093 0 0.0117 0 0.0087 0 0.011
Gemini-1.5 Pro-002 0 0.0093 0 0.008 0 0.009 0 0.0107
Mistral-Large-2 0 0.008 0 0.0077 0.0047 0.012 0.1163 0.0473

Evaluation setup. We evaluate GPT-40-0806, GPT-40-mini-0718, Gemini-1.5 Pro, Gemini-1.5
Flash, Mistral-Large-2 on MIR-Core. To generate embedding vectors effectively, we choose a small
but recognized sentence encoder, all-MiniLM-L6-v2 [81]], to generate vectors for each shot. We test
128 to 2048 shots by selecting 64 shots with the closest (cosine similarity) vector representation to
the target input, and compare it with 64 shots that are randomly sampled from the same 128 to 2048
shots.

Results. The result is illustrated in Tab.[6] The result shows no significant performance difference
between RAG and randomly selecting shots, thus disproving the effectiveness of embedding-based
RAG.

Table 6: The performance comparison between selecting 64 shots using RAG and random selection
for many-shot pattern recognition. There is no significant performance difference between the two
strategies for selecting shots.

# Shots  Selection GPT-40 GPT-40-mini  Gemini-1.5-Pro  Gemini-1.5 Flash ~ Mistral

128 RAG 51.77 38.50 51.53 46.33 27.20

random 50.40 37.10 51.20 46.43 26.03

256 RAG 49.83 37.33 50.40 44.73 27.00

random 50.17 37.27 50.83 45.63 27.37

512 RAG 49.33 37.17 50.33 45.20 27.53

random 50.90 36.93 51.27 45.23 27.10

1024 RAG 49.60 37.60 50.77 45.67 26.67
random 51.03 37.63 50.77 45.67 27.23

2048 RAG 50.53 39.27 51.75 46.67 26.67
random 51.63 37.23 51.37 45.83 27.03

C.4 Can LLMs Learn Inductive Skills from Out-of-Domain Meta-Shots?

Till now, we have mostly limited our many-shot experiments within in-distribution learning, which
means all the given shots indicates the same function as the target input. A more desirable ability,
however, is to learn from out-of-domain inductive reasoning traces: by given successful demonstra-
tions on extracting rules from other examples, we hope LLMs to learn the “meta-skills” for pattern
recognition (inductive reasoning in this case), e.g., to pick up a few examples, propose an assumption,
and then verify with other examples (as explored by Wang et al. [84] with training).

Evaluation Setup. We test Gemini-1.5 Pro-002 and Gemini-1.5 Flash-002 on MIR-Core. For each
problem, we select correct (test case, LLM answer)-pairs from GPT-40-0806’s output in Sec. [4.4]
with 8-shot forced CoT, and filter out problems with invalid CoT by GPT-40-0806. For each test
case, we sample 4, 8, 16, 32 different (test case, LLM answer)-pairs, and put them before the original
MIR-Core problem as meta-shots; each meta-shot is separated by a line of ‘===". See Appendix [F.9]
for details on prompts. We test the result of {4, 16, 64, 256, 1024} in-distribution shots.

Results. The result is illustrated in Tab. [/} The result gives two insights: 1) the effect of meta-shots
varies across models. For models like Gemini-1.5 Pro, meta-shots will slightly benefit CoT perfor-
mance, but cannot fully bridge the gap between forced CoT (inductive) and no CoT (transductive); 2)
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Figure 7: The performance of 5 cutting-edge LLM models on MIR-Extended with temperature 0.7

across 5 runs. The result clearly shows that the standard deviation of accuracy is always below 0.01,
and thus the evaluation is highly stable.

the effect of meta-shot CoT slightly increases when given meta-shot CoT examples, but decreases
when given more shots in the current problem, which is consistent with our finding in Sec. .4 that
CoT struggles with more shots. In general, LLMs have still yet to learn the “meta-skills” from
out-of-domain demonstrations, which poses an interesting research topic for future.

Table 7: The results of Gemini models with out-of-distribution meta-shots for inductive reasoning.
Overall, more meta-shots leads to slightly better performance, but such effect weakens with more
in-distribution shots and is not necessarily better than no meta-shots. Such result indicates that the
models are yet to summarize and apply useful reasoning skills from in-context demonstrations.

In-distribution #shots ~ O(-meta-shots) 4 8 16 32
Gemini-1.5 Pro-002 4 38.67 39.17 4133 4197 4297
16 45.73 47.63 4790 48.63 48.53
64 49.97 48.10 49.67 50.57 49.80
256 49.43 49.17 49.53 4943 50.27
1024 49.60 4777 4850 49.60 49.60
Gemini-1.5 Flash-002 4 37.93 3477 3533 37.60 40.74
16 45.50 4220 4257 4147 4287
64 47.80 4290 42.83 4417 45.17
256 48.70 42.63 4433 4423 4580
1024 46.10 40.23 4140 42.07 43.90

D Complete Results and Auxiliary Ablations

D.1 Analysis on the Stability of Evaluation

As we use 0 temperature in the evaluations in our main papers, it is possible that the performance
vary across LLM inferences with different random seeds, hence making our evaluation unreli-
able. To address such concern, we report the mean and standard deviation of the performance
across 5 models {GPT-40-0806, GPT-40-mini-0718, Gemini-Pro 1.5-002, Gemini-Flash 1.5-002,
Mistral-Large-2} over 5 different inferences with temperature 0.7 in Fig. [7/jon MIR-Extended with
4,8,16,32,64, 128,256, 512 shots. The result clearly shows that the standard deviation for all models
are very small, and thus our evaluation is reliable.

D.2 Complete Results on MIR-Extended and MIR-Core (Sec.

For better readability, we only put the performance of part of the models for MIR-Extended and
MIR-Core in the main paper; Fig.|3|demonstrates the performance of all models.
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Figure 8: The performance of all LLMs on MIR-Extended (panel (a)) and MIR-Core (panel (b)). As
shown in Fig. [2]in the main paper, the benchmark poses challenge to almost all models tested. All
models, including OpenAl-o1-1217, “saturate” at a particular number of shots, i.e., their performances
stop to improve when more shots are given due to limited information integration capability.

D.3  Out-of-Context Rate for 1024 and 2048 shot in MIR-Extended and MIR-Core
Tab. 8] shows the rate of out-of-context error we received when invoking APIs for MIR-Extended and

MIR-Core. Some models other than Gemini (which has > 1M context length) have an error rate of
0, which could due to its internal truncation.

Table 8: Out-of-context rate for model API calls on MIR-Core and MIR-Extended.

MIR-Core MIR-Core MIR-Extended MIR-Extended
Model 1024-shot (%)  2048-shot (%) 1024-shot(%) 2048-shot (%)
Claude-3-Haiku 0 1.67 0 0.98
Claude-3-Sonnet 0 1.67 0 0.87
Claude-3.5-Haiku 0.96 2.4 0.65 1.37
Claude-3.5-Sonnet 0 1.77 0 0.97
Gemini-1.5 Flash-002 0 0 0 0
Gemini-1.5 Pro-002 0 0 0 0
Gemini-2.0 Flash 0 0 0 0
GLM-4-Plus 0 0 0 0
GPT-40-0806 0.33 5.67 0.14 4.47
GPT-40-mini-0718 0.33 5.67 0.17 4.47
Mistral-Large-2 0.67 10.67 0.29 8.66
Moonshot-128K 0 0 0.19 0.14
OpenAl-01-mini-0912 1 11 0.58 8.80
OpenAl-ol-preview-0912 1 11 0.58 8.80
Qwen2-72B-Instruct 0 0 0.37 8.29
DeepSeek-R1 0 0 N/A N/A
DeepSeek-v3-0324 0 0 N/A N/A
Gemini-2.0 Pro-0325 0 0 N/A N/A
GPT4.5-Preview 0.33 6.67 N/A N/A
OpenAl-01-1217 0 2.67 N/A N/A
OpenAl-03-mini-high 0.37 6.67 N/A N/A

D.4 More Results on Many-Shot Inductive Reasoning vs. Deductive Reasoning

Tab. [ lists the ratio of forced CoT (inductive reasoning) / no CoT (transductive reasoning) and their
respective performance for more models on MIR-Core using original prompt. While the preference for
inductive or transductive reasoning varies wildly across different models, the accuracy of transdutive
reasoning is unanimously and significantly higher.

Fig. [0 illustrates the performance difference for more models between forced CoT and no CoT.
The result shows that transductive reasoning results (with no CoT) are indeed better than inductive
reasoning results (with forced CoT), and such gap increases with the number of shots.
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Table 9: The results on MIR-Core of each model with and without CoT. Results are averaged over
{4, 8,16, 32,64, 128, 256, 512, 1024, 2048}-shot. Error rate include cases where answer cannot be
extracted and API error for exceeding context length. Claude-3.5-Haiku often refuses to answer the
question due to “incomplete data”.

Model Answer w./ CoT (%) Accuracy w./ CoT Answer w./o. CoT (%) Accuracy w./o. CoT Error (%)
Claude-3-Haiku 51.03 0.278 47.66 0.441 1.31
Claude-3-Sonnet 20.46 0.233 76.98 0.475 2.56
Claude-3.5-Haiku 65.11 0.317 1.32 0.823 33.57
Claude-3.5-Sonnet 98.73 0.585 1.08 0.775 0.19
Gemini 1.5-Flash-002 20.11 0.306 79.75 0.539 0.14
Gemini 1.5-Pro-002 20.96 0.339 78.90 0.561 0.14
Gemini 2.0-Flash 24.43 0.363 74.59 0.498 0.98
GLM-4-Plus 19.70 0.248 79.33 0.388 0.97
GPT-40-0806 10.85 0.488 88.34 0.540 0.81
GPT-40-mini-0718 37.21 0.279 61.77 0.414 1.02
Mistral-Large-2 75.66 0.306 21.64 0.403 2.70
Moonshot-128K 43.40 0.242 53.11 0.398 3.50
0l-mini-0912 2.54 0.334 93.63 0.696 241
ol-preview-0912 56.71 0.588 40.88 0.797 3.82
Qwen2-72B-Instruct 1.85 0.130 97.05 0.349 1.10
DeepSeek-R1 9.69 0.298 85.85 0.757 4.46
DeepSeek-v3-0324 10.40 0.329 84.54 0.570 5.06
Gemini-2.0 Pro-0325 78.95 0.691 20.63 0.872 041
GPT-Preview-4.5 35.94 0.543 63.29 0.669 0.77
OpenAl-o0l-1217 3.55 0.469 96.12 0.811 0.33
OpenAl-03-mini-high 85.48 0.697 13.42 0.806 1.10
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Figure 9: Performance difference for 16 LLMs on MIR-Core between forced CoT and no CoT. For
long-CoT models (ol series and DeepSeek-R1), forced CoT works similar or slightly better than no
CoT, but the gain diminishes with more shots. For the rest of the models, forced CoT almost always
works worse (with the exception of GPT40-mini-0718), and such gap increases with the number of
shots. Mistral-Large-2’s gap decreases dramatically at 2048-shot as such setting often exceeds its
context length and the performance is low under both settings.

D.5 Complete Results on Robustness of LLM Inductive Intelligence

Fig. |'1;G| shows the results of models on 64-shot, 256-shot and 1024-shot with different error rate for
the shots, where the solid lines are 256-shot or 1024-shot accuracy respectively. We find that there
are no significant performance difference across the same error rate with different number of shots
(with the exception of 01-mini-0912 with 1024 shots), and the robustness persists across different
number of shots.
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Figure 10: The accuracy of models with erroneous shots under different prompt settings. The
performance of the same error rate with different numbers of total shots are similar.

E Statistical Features of MIR-Bench

E.1 Data Source

Tab. [T0]shows that out of 693 functions in MIR-Extended and 300 functions in MIR-Core, how many
problems are extracted from each coding benchmark (HumanEval+, MBPP+ and APPS). The former
two have Apache-2.0 licenses, and the latter has a MIT license.

Table 10: Number of functions extracted from each coding benchmark.
HumanEval+ MBPP+ APPS Total

MIR-Core 26 35 239 300
MIR-Extended 53 89 551 693

E.2 Input-Output Form

One advantage of MIR-Bench over existing works is that our curated problems have much more
diverse input-output forms. To quantitatively illustrate this, we use GPT-40-0806 to label the input-
output forms. The result is illustrated in Tab.[T2] which clearly shows the diversity of problems in our
benchmark.
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Table 11: Number of input-output forms (input -> output) in MIR-Extended and MIR-Core, sorted by
instances. All data types (e.g. str, int) are in python format.

Input-Output Form (MIR-Extended) Count\ Input-Output Form (MIR-Core) Count

str -> str 158 str -> str 86

str -> int 40 int -> int 18

int -> int 37 list[float] -> list[float] 11
list[float] -> float 24 int, int -> int 9
int, int -> int 24 int -> str 8

str, str -> str 22 str, Str -> str 8
list[int] -> int 19 str -> int 8
list[float] -> list[float] 18 list[int] -> int 5
list[float] -> int 17 str -> list[str] 5
int -> str 13 list[str] -> list[str] 4

str, int -> str 10 list[int] -> list[int] 4
float, float -> float 10 float -> int 3
list[int] -> list[int] 10 float -> float 3
str -> list[str] 8 list[float], list[float] -> list[float] 3
int, int -> list[int] 6 int, int, int -> int 3
float, float, float -> float 6 int, int, int -> str 3
int, int -> str 6 str, str -> int 3
str, str -> int 5 str -> list[int] 3

int, int, int -> int 5 list[float] -> float 2
float -> int 5 int, int -> str 2
list[float], float -> list[float] 5 list[str] -> int 2
float -> str 5 float -> str 2

others 240 others 103

Table 12: Number of problems for each difficulty level labeled by LLLM, normalized from O to 1.
Difficulty Level # MIR-Extended # MIR-Core

0.05 1 0
0.1 81 21
0.2 103 53
0.3 118 50
0.35 1 1
0.4 51 27
0.45 2 0
0.5 75 33
0.55 10 5
0.6 7 2
0.65 8 4
0.7 163 77
0.75 25 8
0.8 32 13
0.85 16 6

E.3 Difficulty Level
E.3.1 Problem Counts for Difficulty Levels

Tab. [TT] shows the number of problems for each LLM-labeled difficulty level (see Sec. [F.3]for details),
which shows that the problems in MIR-Bench has diverse difficulty levels.
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E.3.2 Qualitative Analysis on the Effect of Difficulty Levels

In general, we find that the difficulty is positively correlated with the benefit of many-shot ICL (see
Sec. [E.5|for detailed numbers). Here, we append some examples of difficult and easy questions in
our benchmark and analysis on whether they could be benefited from many-shot ICL:

def add(x: int, y: int): # Normalized difficulty level 0.1
Add two numbers x and y
» add(2, 3)
5
» add(5, 7)
12

nn

return X +y

Apparently, such a function is extremely easy to induce, and thus few-shot ICL is sufficient; LLMs
will not benefit much from many-shot ICL.

Here, we show a slightly harder question:

def find_sum(arr): # normalized difficulty level 0.4
return sum(set(arr))

This question is slightly harder as it involves two operations: first remove all duplicate elements in a
list, then get the sum. The model will need to look at multiple examples with and without duplicated
elements to rule out other possible functions, e.g. sum of the array, fraction of the sum of array, etc.
Thus, many-shot ICL will help more than the last function.

Finally, we give an example of a more difficult question:

@f vowels_count(s): # normalized difficulty level 0.7 \

nn

Write a function vowels_count which takes a string representing a word as input and returns the
number of vowels in the string. Vowels in this case are ’a’, ’e’, ’i’, ’0’, 'u’. Here, 'y’ is also a vowel, but
only when it is at the end of the given word.

Example:

» vowels_count("abcde")

2

» vowels_count("ACEDY")

3

nn

nn,

if s=="": return 0
cnt = len(list(filter(lambda ch: ch in "aciouAEIOU", s)))
if s[-1]in "yY": cnt +=1

\ return cnt J

This is a typical example where many-shot ICL benefits: with only a few input-output examples, the
model might not be able to rule out the possibility of string length calculation, upper or lower case
count, or judging whether there is a vowel (if all examples have only zero or one vowel). The special
case of y is even trickier; the model can get a decent accuracy if it ignores y, but to achieve perfect
reasoning, the model needs to find sufficient examples where y is at the end of the word and where y
is not at the end of the word to eventually determine this special rule.

E.4 Problem Types in Sec.d.2]

To study the effect on the topic of the problems for whether the problem benefits from many-shot, we
first try to cluster the 693 problems in MIR-Extended using GPT-40-0806. More specifically, we first
prompt the LLM to generate python-style tags for each problem with the following prompt:
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# prompt for tags

You are an expert in coding. You will now be given a function that solves some problems and some example
input-output pairs. You need to briefly summarize what the function is about in a tag in high-level, with no
more than 5 words connected with ’_’. DO NOT OUTPUT ANYTHING ELSE. Here are some examples:
<some examples>

[[Code]]

[[Input-Output Pairs]]

Q&nswer]] J

after acquiring tags for each problem, we prompt the LLM to merge all different tags down to 30
different tags with 6 major types: {List Analysis, List Manipulation, Mathematical Computations,
String Analaysis, String Manipulations, Other}. Tab. [13|shows the number of problems, detailed tags
and metric D (defined in Eq. (I)) for each problem type.

Based on the results, we find that generally adding more problem will have a positive effect on
performance; however, for some types of problem such as geometric calculation and summation,
the performance will decrease with more shots included. Upon checking those problems, we found
them mostly fall into two categories: 1) the function is relatively straightforward, but the LLM gets
confused with more shots due to over-complicated guesses; 2) the function is too hard to guess, and
the LLM cannot make reasonable guesses when aggregating many pieces of information. The boxes
below give examples for case 1) and 2) respectively:

ﬁCase 1: Straightforward Problems \

[[Code]]
def solution(num: int) — int:
steps =0

while num > 0:
if num % 2 == 0: num /=2
else: num -=
steps +=1
return steps
[[Input-Output Pairs]]
Input: {’num’: 68037}
Output: 23

ﬁCase 2: Difficult Problems \

[[Code]]
def solution(boardSize, initPosition, initDirection, k):
yq, yr = divmod(initPosition[0] + k * initDirection[0], 2 * boardSize[0])
xq, xr = divmod(initPosition[1] + k * initDirection[1], 2 * boardSize[1])
# Calculate the final position considering reflections
return [min(yr, 2 * boardSize[0] - yr - 1), min(xr, 2 * boardSize[1] - xr - 1)]
[[Input-Output Pairs]]
Input: {’boardSize’: [10, 11], ’initPosition’: [5, 9], ’initDirection’: [1, -1], 'k’: 264}

Qtput: 9, 9] J

On the other hand, problems such as removing duplicates and string manipulation generally benefit
more from many-shot, probably because manipulation on each element / character can be considered
a shot by itself, and thus the effective number of “shots” in such types of problems are higher. Note,
“Others” problems have relatively high value of D because of one outlier; other than the outlier, it is
almost equal to average level of D across MIR-Extended.

E.5 Other Factors Studied in Sec.[4.2]

Fig.[TT]illustrates the relation between our metric D (see Eq. (I) for definition) for distinctiveness
between few-shot and many-shot performance.
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Table 13: The tags for problem topics and related statistics; D is the average metric (see Eq. (I)) for
definition) of the corresponding type of problems in MIR-Extended. We marked entries with D > 0.1
blue and D < —0.1 red. While increasing the number of shots generally brings better performance,
We find that string manipulation benefits the most from many-shot.

Major Tag Minor Tag # (MIR-Extended) # (MIR-Core) D

List Analysis Counting Elements 4 2 0.075

List Analysis Counting Occurences 25 9 0.017
List Analysis Maximum/Minimum Elements 30 5 -0.024

List Analysis Statistics 2 0 0.041

List Analysis 61 16 0.001

List Manipulation Filtering Elements 30 14 0.066

List Manipulation Generating Sequences 15 6 0.077
List Manipulation Mapping Elements 9 3 -0.022

List Manipulation Removing Duplicates 6 4 0.136

List Manipulation Sorting Elements 16 7 -0.041

List Manipulation 76 34 0.041
Mathematical Computations Basic Arithmetic 35 12 0.085
Mathematical Computations Boolean Determination 7 0 0.033
Mathematical Computations  Calculations Based on Formulas 98 32 0.051
Mathematical Computations Condition Checking 43 20 0.114
Mathematical Computations Geometric Calculation 4 2 -0.110
Mathematical Computations Number Base Conversions 12 5 0.038
Mathematical Computations Rounding 7 5 0.185
Mathematical Computations Summation 5 0 -0.128
Mathematical Computations 211 76 0.066
String Analysis Character Code Calculations 14 3 -0.004
String Analysis Comparison 13 6 0.255
String Analysis Counting Characters 29 10 0.050
String Analysis Pattern Matching 27 7 0.084
String Analysis 83 26 0.084
String Manipulation Case Transformation 19 7 0.089
String Manipulation Encryption/Decryption 8 4 0.061
String Manipulation Generating Substrings 8 4 -0.027
String Manipulation Rearranging Characters 48 22 0.105
String Manipulation Substitution 36 30 0.327
String Manipulation Substring Replacement 33 22 0.205
String Manipulation Swapping Parts 6 5 -0.053
String Manipulation Transformation 34 17 0.083
String Manipulation 192 111 0.160
Others 76 37 0.123

Total 693 300 0.092

F More Experiment Details

F.1 Prompts for Main Results

We provide the prompt for the main results in Sec. .1 and Sec. 2] in the box below (the first

commented line is not a part of the prompt):
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Figure 11: Single-factor analysis between each factor in Sec. and our distinctiveness metric
D. Each point represents one of the 693 functions in our benchmark. The black line is the linear
regression result of all functions in MIR-Extended; it is clearly shown that D is positively related to
difficulty level and code length. The 64-shot accuracy is an average of { GPT-40-0806, GPT-40-mini-
0718, Gemini-Pro 1.5-002, Gemini-Flash 1.5-002, Mistral-Large-2} over 10 test cases.

@rompt for main results \

You are given some function that takes something as input and output something. You need to predict the
output for the target input of that function. Remember always end your answer with ’Output: your answer’,
with your answer in strict python format. Here are some examples:

Input: <example input 1>

Output: <example output 1>

Input: <example input 2>

Output: <example output 2>

... (omitting more shots)

qut: <target input> j

F.2 Prompts for Ablations

Effectiveness of CoT. The following boxes demonstrate the prompt for the result used in Sec. [4.4]
with forced CoT and no CoT respectively (the first commented line is not a part of the prompt):
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@rompt for forced CoT \

You are given some function that takes something as input and output something. You need to predict the
output for the target input of that function. You need to first analyze it after *Analysis:’, then give your
answer after *Output:’. Remember always end your answer with *Output: your answer’, with your answer
in strict python format. Here are some examples:

Input: <example input 1>

Output: <example output 1>

Input: <example input 2>

Output: <example output 2>

... (omitting more shots)

@ut: <target input> J
ﬁprompt for no CoT \

You are given some function that takes something as input and output something. You need to predict
the output for the target input of that function. Your answer should always be *Output: your answer’,
with your answer in strict python format. DO NOT OUTPUT ANYTHING ELSE INCLUDING YOUR
THOUGHTS. Here are some examples:"

Input: <example input 1>

Output: <example output 1>

Input: <example input 2>

Output: <example output 2>

... (omitting more shots)

qut: <target input> J

Robustness of LLM intelligence. The following box demonstrates the prompt for the result used
in Sec.[C.I] For the “unaware” setting, we use the same prompt as that in the main results; for the
“aware error” and “aware ratio” setting, we use the following prompts respectively:

@rompt for “aware error” \

You are given some function that takes something as input and output something. You need to predict the
output for the target input of that function. Remember always end your answer with ’Output: your answer’,
with your answer in strict python format. Here are some examples. Note that not all shots are correct; there
are a small portion of shots that are incorrect:

Input: <example input 1>

Output: <example output 1>

Input: <example input 2>

Output: <example output 2>

... (omitting more shots)

Again, note that not all shots are correct; there are a small portion of shots that are incorrect. Use your
caution and think wisely.

@ut: <target input> J

@)rompt for “aware ratio”

You are given some function that takes something as input and output something. You need to predict the
output for the target input of that function. Remember always end your answer with ’Output: your answer’,
with your answer in strict python format. Here are some examples. Note that not all shots are correct; there
are <number of error shots> out of <total number> shots that are incorrect:

Input: <example input 1>

Output: <example output 1>

Input: <example input 2>

Output: <example output 2>

... (omitting more shots)

Again, note that not all shots are correct; <number of error shots> out of <total number> shots that are
incorrect. Use your caution and think wisely.

@ut: <target input> J
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F.3 Prompts for Reformatting APPS problems (Sec.

The following box demonstrates the prompt for reformatting APPS problems in the “function
collection” part of Sec.[3.2}

# prompt for reformatting
You are a coding expert. You will be given a problem and corresponding solution. Rewrite the solution
such that:
1. It becomes a single function named ’solution’, which takes parameters as input instead of reading from
input() function if there is any;
2. There is no code out of the solution function and no solution class. All auxiliary functions should be
defined inside the solution function, and all imports should also be in the function.
3. The solution function should not have any print() function. Instead, it should return the result of the
function. If you need to output any rationale, leave them in comments. Your output must be directly
runnable without any change.
4. Just output the rewritten function; do not test it with extra statements.
Here is an example:
[[Problem]]
problem: Given a string, you need to reverse the order of characters in each word within a sentence while
still preserving whitespace and initial word order.
Example 1:
Input: "Let’s take LeetCode contest"
Output: "s’teL ekat edoCteeL tsetnoc"
Note:
In the string, each word is separated by single space and there will not be any extra space in the string.
[[Solution]]
class Solution:
def reverseWords(self, s):
‘type s: str
:rtype: str
rev_str = s[::-1]
rev_arr = rev_str.split()
final = rev_arr[::-1]
return ’ ’.join(map(str, final))
[[Rewrite]]
def solution(s):
:type s: str
‘rtype: str
rev_str = s[::-1]
rev_arr = rev_str.split()
final = rev_arr[::-1]

K return ’ ’.join(map(str, final)) J

F.4 Prompt for The Generation of Data Generator

The following box demonstrates the prompt for generating data generator:
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# prompt for generating data generator
You are a coding expert. You will be provided a coding question and corresponding solution. Please write
two python function that randomly generates test case for the question. Specifically:
The first function’s name is genl, which generates random data (should be able to generate VERY
DIVERSE, i.e., at least 1000 different data points).
The second function’s name is gen2, which generates data that is slightly harder than those generated in
genl. (should be able to generate at least 100 different data points).
You shall not define any function outside genl or gen2. Should you use any helper function, make them
inner functions inside genl or gen2. You genl and gen2 function should have and only have one int
parameter, which is the number of cases.
Finally, the special cases should be designed as informative as possible that reveals the underlying function
when looking at the input and corresponding output from the solution.
Here is an example. Note the output of genl and gen2 should be a list of dicts describing the parameters,
and your special case input should be a dict describing the parameters. Please follow the format, and do
not generate cases that are too long. Do not output any other text; put all your thoughts after "# rationale:"
as shown in the example.
[[Problem]]
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
from typing import List
[[Solution]]
sorted_numbers = sorted(numbers)
for i in range(len(sorted_numbers) - 1):
if sorted_numbers[i + 1] - sorted_numbers[i] < threshold:
return True
return False
[[Genl]]
# rationale: none
import random
def genl(num_cases: int):
low, high = 5, 10 # generate lists between length 5 to 10
data =[]
for i in range(num_cases):
N = random.randint(low, high)
Ist = [round(random.random() * 10, 1) for _ in range(N)]
threshold = round(random.random(), 1) + 0.1
data.append(’numbers’: lst, "threshold’: threshold)
return data
[[Gen2]]
import random
def gen2(num_cases: int): # rationale: the data is slightly harder as the list is slightly longer
low, high = 10, 20 # generate lists between length 10 to 20
data =[]
for i in range(num_cases):
N = random.randint(low, high)
Ist = [round(random.random() * 10, 1) for _ in range(N)]
threshold = round(random.random(), 1) + 0.1

data.append(’numbers’: Ist, "threshold’: threshold)
K return data J

F.5 LLM Difficulty Labeling

In Sec. we discussed several factors for problems which leads to LLM’s few-shot and many-shot

performance difference, and one of them is LLM-evaluated function difficulty level. While seemingly
straightforward, a reliable evaluation of difficulty for LLM is highly non-trivial, as LLM tend to
underestimate inductive reasoning difficulty when given a simple ground truth function. We

provide an example below in the box with GPT-4o-latest as the prompted model:
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# Prompt
You are an expert in coding and inductive reasoning. You will now be given a function that solves some
problems in python and some example input-output pairs.
Please rate the difficulty of guessing the function through input-output pairs. You should judge the difficulty
NOT on whether the function itself is easy to write, but on whether it is easy to guess. You should first give
your rationale after [[Analysis]], then end your answer with *Overall Score: [[x]]’, where X is your score
from 1 to 10.
[[code]]
def solution(l):

return [[i] for i in range(1, len(l)) if 1[i] % i == 0]
[[data]]
Input: ’I’: [40, -13]
Output: [-13]
Input: ’I’: [-87, 29, -27, 90]
Output: [29, 90]
Input: ’I’: [48, -4, 16, -63, -32, -5, -32, -45]
Output: [-4, 16, -63, -32, -5]
Input: °1: [-75,77, 44, 10, 17, -71, -80, -11, -68, -41]
Output: [77, 44]
Input: 'I’: [87, 71]
Output: [71]
# LLM’s response
[[Analysis]] To solve this puzzle, the key is to identify the rule used to filter the input list ‘1. By observing
the given input-output pairs and the function definition, the pattern can be deduced as follows:
Function Logic. The function constructs a new list from the original list ‘1°, starting from index ‘1°‘. For
each element at index ‘i, it checks if the element is divisible by its **index** (using ‘I[i] % i == 0°). If
true, it includes the element in the resulting list.
Difficulty Analysis Based on Input-Output Pairs. **Clues that might help guess the function:** 1.
**The output never includes the first element of the input list.** This suggests that index-based filtering is
involved.
2. **QOnly specific elements from the input list appear in the output.** A guesser would likely try to find
what distinguishes the selected elements from the others. Given the presence of both positive and negative
numbers, divisibility by index is a plausible criterion.
3. **The divisibility condition isn’t obvious at a glance.** It isn’t immediately clear that elements are
being checked for divisibility by their **index**, as it’s somewhat unconventional. Most people would
initially look for a rule involving the values themselves, like even/odd checks, thresholds, or signs.
What Makes It Difficult to Guess?
1. The divisibility rule by index is **non-intuitive**. Divisibility by **element values** is a common
guess, but divisibility by **index** is not.
2. The function starts from index ‘1° instead of ‘0°. This subtle detail could mislead a guesser into thinking
it’s a filtering rule based on the **position** in the list rather than the index value.
3. The rule applies to **all elements**, regardless of their sign or magnitude. This broad applicability
makes it harder to pin down the exact condition.
What Makes It Easier to Guess?
1. **Simple filtering condition:** Despite the challenge, once a guesser considers index-based filtering,
the rule becomes easy to validate.
2. **The input-output pairs are consistent.** There are no exceptions or edge cases that would throw off a
guesser.
Overall Score: [[7]] (moderately difficult) /

GPT-40-latest gives an average difficulty score of 7.2 / 10 out of 5 evaluations (which indicates
moderate-to-high difficulty), while GPT-40-0806 gives much lower difficulty score (below 5). This
problem, however, is in fact so difficult that we have to exclude it from our benchmark, i.e., have 0
accuracy for all five models { GPT-40-0806, GPT-40-mini-0718, Gemini-Pro 1.5-002, Gemini-Flash
1.5-002, Mistral-Large-2} across {4, 8,16, 32, 64, 128, 256, 512, 1024, 2048} shots in 10 test cases.

To address such issue, we adopt a multi-round conversation approach with self-reflection. We first let
the LLM to try to solve the problem without code by itself, and then reveal the ground-truth answer
and let LLM to score the difficulty based on self-reflection. The box below demonstrates an example:
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# Round 1 prompt

You are an expert in inductive reasoning. You will now be given a function that solves some problems and
some example input-output pairs. You need to guess the answer for the one last input. After that, you will
be given the answer and the code, you need to do a self-reflection on your attempt, and rate a difficulty
level for future guessers. Here are some examples:

<few-shot examples of the whole conversation>

Here is the target problem:

[[Problem]]

Input: {’Ist’: ['V4’,°V10’,’V4’,’V0’,’V9’,’V4’,°V2’,°V14’,°V16’, 'V9’]}

Output: ['V0’,’V2’,’V4’,°V4’ °V4’,°V9’,°V9’,°V10’, °’V14’,°V16’]

Input: {’Ist’: ['V0’,’V13’,’V1’,’V4’,°V2’ "V10’,’V6’, V5, VB, ’VI']}

Output: ['VB’,’V0’,°V1’,°V1’,°V2’,°’V4*,°V5’,°V6’, "V10°, ’V13’]

Input: {’Ist’: ['VO+’,°V3’,°V14’,°V13’]}

Output: ['V0+’,°V3’,°V13’,’V14’]

Input: {’Ist’: ['V12’,°V6’,’V7’,’V2’,’VB’,°V2’,°V3’,°V(’,’V4’,’V6’]}

[[Solution]]

# Round 1 response

The solution appears to sort the elements in each list lexicographically, maintaining any duplicates in their
respective positions within the sorted order.

Following this rule, for the input “Ist’: ['V12’,°V6’,°V7’,’V2’,°VB’,’V2’,°V3’,’V(0’, °V4’,’V6’]*, the
output should be:

@utput:** ‘V0’,°V2’,°V2’,°V3’ °V4’ °V6’, V6, VT, ’V12’, VB’ j

# Round 2 prompt
[[Response]] Now, I will tell you the answer is ['VB’, "V0’, °V2’,°V2’,°’V3’, ’V4’ ’V6’, °V6’, VT,
’V12’]. Here is the code for the function:
def solution(lst):
def grade(v):

if v=="VB’: return -2

if v=="VO0’: return -1

if v=="VO0+’: return 0

return int(v[1:])

return sorted(lst, key=grade)

Based on the answer, your guess and the code, do a self-reflection on your attempt, and rate a difficulty
level between 1 to 10 inclusive for future guessers with different shots sampled for the same function. You
MUST always end your answer with "Difficulty: [[x]]" where x is 1 to 10.
# Round 2 response
In my initial attempt, I focused on lexicographical sorting but overlooked the specific priority handling
in the function for values like "VB" and "VO0." The code clarifies that "VB" should always appear first,
followed by "V0," and then "V0+," with all other values ordered by their numeric suffix. This customized
grading system is subtle, especially without the code, as it combines both conditional priorities and numeric
sorting.
Opverall, understanding the need for this specific grading logic adds some complexity, but it’s manageable
once recognized.

Qifﬁculty: ([4]] J

With such paradigm, we found that the evaluation from LLMs are much more accurate.

F.6 Answer Extraction
We use the following way to extract final answer:

1. find the last occurence of “utput:” in LLM’s response, which can be either “output” or
“Output”;

2. remove trailing “**” after “output:” for bold, “‘ and “‘python in the answer for python
format, and then remove all leading and trailing whitespaces and linebreaks;

3. conduct an exact match. If succeeds, the LLM is considered to be correct; otherwise, we try
to convert the output into a python object by using ast.literal_eval(). If the convertion fails,
the LLM is considered to be incorrect.
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4. If the output can be converted to a single-key dictionary or single-element set, we will do
an exact match between the value of the dictionary / element of the set to the ground truth
answer with both converted to string (This is to account for responses similar to {“ans”: 3}
with ground truth being 3); otherwise, we do an exact match between the whole output and
the ground truth answer converted to string.

F.7 Robustness Test: Erroneous Shots

We generate test cases with erroneous shot in the following way:

1. For n-shot with a given error rate E'R, randomly sample E'R X n indices to be the “erroneous
shots” with incorrect answer. 'R X n is guaranteed to be an integer.

2. for each “erroneous shot”, we randomly sample one unused shot as we generate 20000 shots
for each function, and substitute the original output with the selected shot’s output. We will

re-sample the unused shot if its answer is identical with the original shot.

F.8 SolverLearner

We use the following prompt for SolverLearner [10]:

ﬁPrompt for SolverLearner \
You are given some function that takes something as input and output something. You need to write a

python code of the function. You need to write your rationale after # (as if it is a python comment), and
give your answer after ’Code:’. DO NOT OUTPUT ANYTHING ELSE. Your function name should be
’solution’. You are not allowed to write other custom functions unless it is inside ’solution’. Use imports
before using package functions. You must strictly follow python format, especially input / output format
(e.g., if it is a dictionary, your param should also be a dictionary). DO NOT ADD ANY STATEMENT FOR
EVALUATION AFTER ’solution’. Here are the input-output pairs for the function, with input followed by
output:"

Input: <input 1>

Output: <output 1>

Input: <input n>

Output: <output n>

Here is your code. Again, do not output anything else; Your function name should be ’solution’. You are
not allowed to write other custom functions unless it is inside "solution’. Use imports before using package
functions. You must strictly follow python format, especially input / output format (e.g., if it is a dictionary,
your param should also be a dictionary). DO NOT ADD ANY STATEMENT FOR EVALUATION AFTER

’solution’.
Qde: J

F.9 Meta-Shots

We use the following prompt for the meta-shot experiments as illustrated in the box below:
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s

You will be provided with a list of inductive reasoning problems, separated by ’
Please answer the final problem as instructed by that problem, and refer to previous problems as examples.

Input: <problem 1 input 1>
Output: <problem 1 output 1>

Input: <problem 1 input 8>
Output: <problem 1 output 8>
Input: <problem 1 target input>
<LLM CoT demonstration>

Input: <problem 2 input 1>
Output: <problem 2 input 2>

Input: <problem 2 input 8>
Output: <problem 2 output 8>
Input: <problem 2 target input>
<LLM CoT demonstration>

Input: <target problem input 1>
Output: <target problem output 1>

@ut: <target input> J
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: the main claim accurately reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We describe our experiment details and prompts used in the appendix in detail.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See our links for code and dataset provided in the submission.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sec.[]and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Fig.[7]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Our experiments are done by calling APIs.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The reserach conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Appendix [E.T]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See our provided code and data link in the submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: See our declaration on the openreview submission.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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