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Figure 1: We introduce the Neural Rodrigues Operator, a learnable extension of the classical
Rodrigues’ Rotation Formula from robot control, where the original coefficients are replaced with
trainable weights and joint angles are generalized to abstract features. Built upon this operator,
the Rodrigues Network leverages the kinematic structure of articulated systems to advance a wide
range of action-learning tasks.

ABSTRACT

Understanding and predicting articulated actions is important in robot learning.
However, common architectures such as MLPs and Transformers lack inductive
biases that reflect the underlying kinematic structure of articulated systems. To
this end, we propose the Neural Rodrigues Operator, a learnable generalization
of the classical forward kinematics operation, designed to inject kinematics-aware
inductive bias into neural computation. Building on this operator, we design the
Rodrigues Network (RodriNet), a novel neural architecture specialized for pro-
cessing actions. We evaluate the expressivity of our network on two synthetic tasks
on kinematic and motion prediction, showing significant improvements compared
to standard backbones. We further demonstrate its effectiveness in two realis-
tic applications: (i) imitation learning on robotic benchmarks with the Diffusion
Policy, and (ii) single-image 3D hand reconstruction. Our results suggest that inte-
grating structured kinematic priors into the network architecture improves action
learning in various domains.

1 INTRODUCTION

We study the problem of understanding and predicting the actions of articulated actors. Articulated
actors (e.g. robots (Shaw et al., 2023) and animated characters (Romero et al., 2022; Loper et al.,
2023)) are systems that use multiple rotational joints to connect moving links. Their actions, includ-
ing poses, motions, or control commands, are usually represented as values associated with all joints.
Learning with articulated actors usually involves predicting their actions while processing diverse
sensory inputs. Such a problem lies in a wide spectrum of intelligent systems, from whole-body
controllers (Moro & Sentis, 2019; Kuang et al., 2025; Geng et al., 2025), to dexterous grasp detec-
tors (Duan et al., 2021; Xu et al., 2023; Wan et al., 2023; Zhang et al., 2024), to motion retargeting
networks (Aberman et al., 2020).

1
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These action data are inherently structured by articulated kinematics. This motivates us to design a
neural network that leverages this structure as an inductive bias for better understanding and infer-
ence of actions. However, general architectures, such as MLPs and Transformers (Vaswani et al.,
2017), treat actions as unstructured tokens, ignoring the kinematic relationships between joints. Pre-
vious works have exploited the connectivity of robot links through graph convolutions (Yan et al.,
2018; Ci et al., 2019; Aberman et al., 2020) or masked attention (Sferrazza et al., 2024). Yet,
architectures that directly exploit the computational patterns of articulated kinematics remain under-
explored. This gap raises our central question: Can we design a neural network for action learning
that embeds articulated kinematics as an inductive bias?

To answer this question, we draw an analogy to convolutional neural networks for images. Low-level
2D image features are spatially local and translation equivariant. Traditional pattern recognition
exploits this structure using hand-crafted filters to detect edges (Canny, 1986) and corners (Harris
et al., 1988). CNNs (LeCun et al., 2002) build on this idea by making filters learnable, adding non-
linearities, and using high-dimensional channels. This creates a deep learning framework that learns
high-level semantic features while preserving the structural properties of classical image filters.

In a similar vein, we identify Rodrigues’ rotation formula as the fundamental operator in articulated
forward kinematics and transform it into a learnable form, which we call the Neural Rodrigues Op-
erator. Specifically, we separate the entries in the Rodrigues’ rotation formula into state-dependent
parameters conditioned on the joint angles, and state-independent coefficients that only rely on the
articulated structure. We then convert it into a neural operator by treating the state-dependent pa-
rameters as input features, and relaxing the state-independent coefficients into optimizable weights.
We further extend it into a multi-channel operator that applies to higher-dimensional features rather
than just 1D joint angles.

With our neural operator as the key component, we construct a complete network architecture,
named the Rodrigues Network (RodriNet), for encoding, understanding, and predicting articu-
lated actions. It comprises three key components: a Rodrigues Layer for passing information from
joints to links, built up our neural operator; a Joint Layer for passing information from links to
joints; and finally, a Self-Attention Layer for global information exchange. We also introduce a
global token for processing other task variables, such as perception inputs. Although starting with
an operator in classical robotic theory, we end up with a deep neural network with modern designs
while maintaining the structural bias in articulated kinematics, as illustrated in Figure 1.

We evaluate our approach through three sets of experiments: First, we demonstrate the strong ex-
pressivity of our network in representing forward kinematics and motions through toy experiments.
Second, we showcase our effectiveness in realistic robot-learning scenarios with imitation learning
on 5 robot manipulation tasks. Additionally, we show our network achieving state-of-the-art re-
sults in human hand pose estimation from images, where the articulated actor is no longer a robot,
highlighting its applications in computer vision and graphics.

2 RELATED WORK: ARTICULATION-AWARE ROBOT LEARNING

Articulated robots can be naturally modeled as graphs, making graph convolution (Bruna et al., 2013;
Niepert et al., 2016) a popular approach for processing articulated data. This has been widely applied
in character animation for tasks like skeleton-based action recognition (Yan et al., 2018; Cheng et al.,
2020; Song et al., 2022; Chen et al., 2021b), pose estimation (Ci et al., 2019; Choi et al., 2020; Zeng
et al., 2021), and motion retargeting (Aberman et al., 2020). Graph convolution effectively captures
link connectivity and spatial locality, but it does not explicitly incorporate articulated kinematics,
which is an essential aspect of articulated action understanding. In contrast, our work introduces
a novel operator derived from forward kinematics, providing networks with kinematics-informed
inductive bias.

Transformer-based architectures (Vaswani et al., 2017) are widely used in policy learning (Brohan
et al., 2022; Zhao et al., 2023; Shridhar et al., 2023), and recent work has explored incorporating
structural bias via graph-aware positional embeddings (Hong et al., 2021) or masked attention (Sfer-
razza et al., 2024). However, these modifications do not fundamentally adapt the self-attention
mechanism to suit kinematics. We instead use standard self-attention layers for network capacity,
but rely on our kinematics-inspired operator for inductive bias.

2
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Forward kinematics provides a deterministic mapping from joint space to Cartesian space, but inte-
grating it into neural networks remains non-trivial. Prior methods have inserted analytical forward
kinematics as a differentiable layer in neural networks (Villegas et al., 2018) to help them reason
about the Cartesian results of the robot action. While this introduces kinematic awareness, it con-
strains the model’s flexibility. Other methods apply Cartesian-space loss functions after computing
forward kinematics on network outputs (Pavllo et al., 2020; Jiang et al., 2021; Liu et al., 2020), but
these approaches do not alter the network architecture and are thus orthogonal to our focus. In con-
trast, our method derive a learnable operator from forward kinematics, thereby making the network
kinematics-aware while maintaining the flexibility to learn high-level features.

3 NEURAL RODRIGUES OPERATOR

In this section, we derive the Neural Rodrigues Operator by making the Rodrigues’ rotation for-
mula learnable and more generalized.

3.1 BACKGROUND

Articulated robots In this paper’s context, an articulated robot has a loop-free kinematic tree
structure, with D + 1 rigid links L0, · · · , LD connected by D one-DoF revolute joints J1, · · · , JD.
This definition encompasses a wide range of platforms such as robotic arms, dexterous hands,
quadrupeds, and humanoids. The kinematic tree has a root, denoted as the base link L0, which
can be either fixed or free-floating. All links and joints have their local 3D frames. Each joint
Jj connects a parent link Lpj with a child link Lcj , where a rotation axis ω̂j ∈ R3 in the joint
frame defines the rotational motion of the child link relative to the parent link, as well as a fixed
transformation from the parent link’s frame to the joint’s frame Tj ∈ SE(3).

Given the kinematic structure, the configuration of the robot is then determined by the joint angles
θ = [θ1, · · · , θD] ∈ RD, as well as the root pose P0 ∈ SE(3) if its base link is free-floating (not
required for fixed-base robots). In most classical control systems, control commands are sent to the
joints, specifying their joint angles, velocities, or torques, depending on the control modes.

Forward kinematics To obtain the position and orientation of all links, including the end-effector,
given a set of joint angles, we apply forward kinematics. Below, we briefly outline its computation
using homogeneous coordinates. We represent the pose of link Li as a homogeneous matrix Pi

describing the transformation from the world frame to the link’s frame:

Pi =

[
Ri ti
01×3 1

]
∈ R4×4 (1)

where ti ∈ R3×1 is the position and Ri ∈ R3×3 is the orientation. Given the pose of the base link
P0, the poses of the descendant links can be computed recursively from parents to children. More
concretely, at joint Jj , using Tj , ω̂j , θj , we can compute the child-link pose Pcj from the parent-
link pose Ppj through two transformations: (i) a fixed coordinate change Tj from the parent frame
to the joint frame; (ii) a dynamic rotation R(ω̂j , θj) ∈ R3×3 around axis ω̂j of angle θj in the joint
frame. Putting these together, the parent-to-children pose transformation is:[

Rcj tcj
01×3 1

]
=

[
Rpj tpj
01×3 1

]
Tj

[
R(ω̂j , θj) 03×1

01×3 1

]
. (2)

Here, transformation (i) only depends on the robot’s articulated structure and thus is fixed, and
transformation (ii) is state-dependent with variable θj . Therefore, we can abbreviate Equation 2 as
Pcj = Ppj (TjR̃(ω̂j , θj)), where R̃(ω̂j , θj) ∈ R4×4 is the homogeneous matrix of the rotation.
Essentially, forward kinematics is a hierarchical composition of fixed coordinate transformations
and dynamic rotations in the axis-angle representation with variables θ1, · · · , θD.

Rodrigues’ rotation formula The Rodrigues’ rotation formula tells how to compute the rotation
matrix R(ω̂, θ) ∈ R3×3 from the axis-angle representation:

R(ω̂, θ) = I3 + sin θ[ω̂] + (1− cos θ)[ω̂] (3)
where [ω̂] ∈ R3×3 is the skew-symmetric cross-product matrix of the rotation axis ω̂ =
(ω̂x, ω̂y, ω̂z).

3
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3.2 NEURAL RODRIGUES OPERATOR WITH LEARNABLE PARAMETERS

Observe from Equation 3 that every entry in R(ω̂, θ) is essentially a linear combination of 1,
cos θ, and sin θ, with fixed coefficients determined by the rotation axis ω̂. Therefore, every en-
try in P(ω̂j , θj) and thereby TjP(ω̂j , θj) are linear combinations of 1, cos θj , and sin θj , with
constant coefficients defined by the state-independent parameters Tj , ω̂j of joint Jj . Thus, we can
re-parameterize Equation 2 as:

Pcj = Ppj (Aj +Bj cos θj +Cj sin θj) (4)

where Aj ,Bj ,Cj ∈ R4×4 are coefficient matrices that only depend on the robot’s articulated struc-
ture. Based on this, we construct our Neural Rodrigues Operator for one single joint by replacing
these fixed coefficients with learnable weights W bias,W cos,W sin ∈ R4×4, resulting in:

F out = F in(W bias +W cos cosΘ +W sin sinΘ) (5)
where Θ ∈ R is a scaler feature of joint, F in ∈ R4×4 and F out ∈ R4×4 are the input and output link
features, corresponding to the parent and child links.

This operator generalizes the classical transformation in Equation 2. When applied recursively, it
defines a hierarchical message passing along the robot’s kinematic tree. On one hand, in the special
case when Θ = θj and all parameters in Equation 5 are identical to those in Equation 2, this learnable
operator degenerate to the forward kinematics of the robot. On the other hand, this generalization
also provides a more expressive function space that can be potentially used to encode richer, high-
level features beyond joint angles and link poses. These properties enable the operator to combine
the inductive bias of kinematic awareness with representational flexibility, making it well-suited for
robot learning tasks involving complex actions and motions governed by articulated structures.

3.3 MULTI-CHANNEL NEURAL RODRIGUES OPERATOR

Derived from the Rodrigues’ rotation formula, the neural operator defined in Equation 5 only applies
to 1D joint features and 4 × 4 link features. We now extend it to a multi-channel operator to learn
higher-dimensional features for a single joint. Specifically, we extend the link features from 4 × 4

matrices to F in ∈ RCL×4×4, F out ∈ RC′
L×4×4, and similarily, the joint features Θ ∈ RCJ . Here

CL, C
′
L, CJ are the channel numbers. Accordingly, the learnable weights are extended to W bias ∈

RCL×C′
L×4×4 and W cos,W sin ∈ RCL×C′

L×CJ×4×4, giving a multi-channel extension of Equation 5:

U [i, j] = W bias[i, j] +

CJ∑
c=1

(
W cos[i, j, c] cos(Θ[c]) +W sin[i, j, c] sin(Θ[c])

)
(6)

F out[j] =

CL∑
i=1

F in[i]U [i, j], where U [i, j] ∈ R4×4 (7)

For better expressivity of the network, we further learn another conjugate Ū [i, j] following Equa-
tion 6 and extend Equation 7 to include both left and right multiplications:

F out[j] =

CL∑
i=1

(
F in[i]U [i, j] + Ū [i, j]F in[i]

)
. (8)

Equation 6, 8 together define our Multi-Channel Neural Rodrigues Operator with learnable parame-
ters W ∗ = {W bias,W sin,W cos, (W̄ )bias, (W̄ )sin, (W̄ )cos}, where W, W̄ are the parameters for learn-
ing U, Ū respectively. We abbreviate Equation 8 as F out = Rodrigues

(
F in,W ∗,Θ

)
and will use it

in the following sections.

4 RODRIGUES NETWORK

Given the Rodrigues Operator, we are interested in building a complete neural network that lever-
ages this operator while being versatile and expressive. To achieve that, we propose a basic building
block called Rodrigues Block (Figure 2), which comprises the following three components: (1) a
Rodrigues Layer for passing information from joints to links, constructed with our Multi-Channel
Neural Rodrigues Operator (Section 4.1); (2) a Joint Layer for passing information from links to
joints (Section 4.2); (3) and a Self-Attention Layer (Section 4.3) for global information exchange.

4
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Figure 2: Rodrigues Block. It comprises three components: a Rodrigues Layer for passing infor-
mation from joints to links, constructed with our Multi-Channel Neural Rodrigues Operator; a Joint
Layer for passing information from links to joints; and a Self-Attention Layer for global information
exchange with all the links and the global token.

4.1 RODRIGUES LAYER

With the Multi-Channel Rodrigues Operator being the core component operating on a single joint,
we construct the Rodrigues Layer, which extends this operator to the full tree structure of an ar-
ticulated robot. We define the feature graph of an articulated robot as the collection of all link
and joint features: {Fl}Dl=0 for links and {Θj}Dj=1 for joints. The Rodrigues Layer maintains a set
of Rodrigues Kernels {W ∗

j }Dj=1, one for each joint, and computes the output link features {F out
l }

from the input link features {F in
l } and joint features {Θin

j }. For each joint Jj , we retrieve its Ro-
drigues Kernels W ∗

j , its joint feature Θin
j , and the feature of its parent link F in

pj
. We then apply the

Multi-Channel Neural Rodrigues Operator (Equation 8) to compute the transformed feature:

F trans
j = Rodrigues

(
F in

pj
,W ∗

j ,Θ
in
j

)
(9)

This transformed feature is added to the child link Lcj ’s input feature F in
cj , and normalized:

F out
cj = LayerNorm

(
F in

cj + F trans
j

)
(10)

For the root link, its output feature is defined as its layer-normalized input. This layer updates the
link features and leaves the joint features unchanged.

4.2 JOINT LAYER

While the Rodrigues Layer updates the link features, we still need a learnable mechanism to update
the joint features. The Joint Layer computes its output joint features {Θout

j } from its own input joint
features {Θin

j } and link features {F in
l }. For each joint Jj , we retrieve the feature of its child link

F in
cj , apply a joint-specific linear transformation, and add it to the joint’s existing feature:

Θout
j = Linearj

(
Flatten

(
F in

cj

))
+Θin

j (11)

The transformations Linearj : RCL×4×4 → RCJ are independently learned for each joint, allowing
the model to capture joint-specific information. This layer updates the joint features and leaves the
link features unchanged.

4.3 OTHER COMPONENTS AND OVERALL ARCHITECTURE

Self-attention layer While the Rodrigues Layer and Joint Layer leverage the spatial locality inher-
ent in articulated structures, they restrict information flow to consecutive links and joints. To enable
direct communication across all links, we incorporate a Self-attention Layer. In this layer, each
link feature is first projected into a token using a linear transformation. These tokens then interact
through multi-head self-attention, allowing the model to aggregate information from all links regard-
less of their spatial distance. The attended tokens are subsequently projected back to the link feature
space, followed by residual addition and layer normalization. Joint features are left unchanged.

5
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(a) MSE vs. backbones.
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(b) MSE vs. training iters.

Figure 3: Fitting forward kinematics with different network backbones (MSE↓). The Rodrigues
network achieves significantly lower error (left) with faster convergence during training (right).

MLP GCN BoT Transformer Rodrigues Ground Truth

Figure 4: Visualization of forward kinematics prediction on an example configuration. Errors
are plotted on each link with color scales, with darker colors indicating larger errors.

Global token To capture and utilize global context, we optionally introduce a global token G.
This token represents a learnable global feature and only participates in self-attention alongside the
link tokens. It is processed through its own projection, residual, and normalization steps, and joins
the link tokens during multi-head self-attention. The global token enables the network to store and
propagate task-wide information that is not tied to any specific joint or link. We optionally enable
the global token in tasks that require predicting global outputs, such as base link pose estimation.

Overall architecture We combine the above three components into a unified module called the
Rodrigues Block. Each Rodrigues Block takes as input the link features, joint features, and an
optional global token. It sequentially applies the Rodrigues Layer, Joint Layer, and Self-attention
Layer to produce updated link features, joint features, and a global token, where each layer’s outputs
serves as the next layer’s inputs. By stacking multiple such blocks sequentially, we construct the full
Rodrigues Network (RodriNet), enabling deep, hierarchical reasoning over articulated structures.
The overall architecture is drawn in Figure 2. Refer to Section B of the supplementary for details on
computing the first-layer features and task-specific outputs.

5 EXPERIMENTS

We evaluate our Rodrigues Network on a set of different tasks, ranging from forward kinematics
and motion prediction (Section 5.1), to imitation learning in robotics (Section 5.2), to hand pose
estimation for vision and graphics (Section 5.3). The experiments focus on two main questions on
action learning: (i) Does the structural prior of articulated kinematics make the Rodrigues Network
better at representing robot actions? (ii) Can this inductive bias improve the understanding and
prediction of robot actions in realistic task scenarios?

5.1 TOY EXPERIMENTS ON KINEMATICS AND MOTION

We begin by studying whether our neural operators help networks better represent the motions and
actions of articulated actors with two synthetic tasks: forward kinematics fitting and (Cartesian-
space) motion prediction. These synthetic tasks provide a clean environment to directly evaluate
network expressivity without other factors.

6
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Table 1: Motion prediction in Cartesian space with trainset size = 105.

Backbone ErrorT (mm) ErrorR (◦) Errorθ (◦) MSE (1e−6) Train MSE (1e−6)

MLP 3.49 ±0.05 0.46 ±0.05 0.17 ±0.00 22.52 ±0.95 12.47 ±0.73

GCN 3.55 ±0.05 0.48 ±0.05 0.17 ±0.01 18.52 ±1.74 13.68 ±1.87

BoT 2.92 ±0.04 0.46 ±0.04 0.15 ±0.01 15.72 ±1.21 13.04 ±1.41

Transformer 2.89 ±0.06 0.41 ±0.06 0.14 ±0.01 12.86 ±1.25 10.50 ±1.21

Rodrigues 1.21 ±0.04 0.16 ±0.04 0.06 ±0.00 2.56 ±0.39 1.93 ±0.34

Frame index

0 4 7 8 12 15

Frames 0 ~ 7: observed Frames 8 ~ 15: to predict with models

End-effector positions    predicted by different models (visualized from top-down view and interpolated)

… … ……

(a) Trajectory visualization. We visualize the trajectories of the end-
point (marked in red) predicted by each model from the top-down view,
interpolated with B-spline curves.

103 104 105 106

Trainset size

10 5

10 4

10 3

Te
st

 M
SE

Test error vs trainset size
MLP
GCN
BoT
Transformer
Rodrigues

(b) Testset performance (MSE↓)
under different amounts of training
data.

Figure 5: Results for motion prediction in Cartesian space.

Forward kinematics fitting As discussed in Section 3.1, forward kinematics maps the configura-
tion of an articulated robot (including the root pose and joint angles) to the pose of each link. To
effectively control a robot, a neural network should, at a minimum, be capable of learning this map-
ping. To evaluate whether the Neural Rodrigues Operator possesses strong representational capacity
for kinematic modeling, we construct a specialized Rodrigues Network consisting solely of Ro-
drigues Layers and compare it to other neural backbones in their ability to fit the forward kinematics
of a single robot. We conduct this experiment on the LEAP Hand (Shaw et al., 2023), a free-floating
dexterous robotic hand with 16 joints and 17 links. The network takes as input the configuration
(T,R, θ) and predicts the pose matrices for all 17 links. For model hyperparameters and training
settings, please refer to Sections C.1 and D.1 of the supplementary material.

As shown in Figure 3a, the Rodrigues Network achieves significantly lower prediction error than
competing architectures, indicating superior precision in modeling forward kinematics. Moreover,
its training loss decreases much faster (Figure 3b), demonstrating better data efficiency. We further
visualize the networks’ predictions on a single robot configuration in Figure 4. Notably, MLP and
GCN baselines produce visible artifacts, and all four baseline methods accumulate substantial error
near the fingertips. These findings suggest that fitting forward kinematics is not a trivial task; it
requires modeling a structured function with spatial and hierarchical dependencies. In contrast, our
network closely matches the ground truth across all links, with minimal error, indicating that it ef-
fectively captures the underlying structure of the kinematic mapping. We attribute this performance
to the inductive bias introduced by the Neural Rodrigues Operator. Its structural prior equips the
network with an inherent advantage in learning kinematic functions.

Motion prediction in Cartesian space Although fitting forward kinematics highlights the our
operator’s representation capacity for kinematics, the task itself has limited practical value. In
real-world robot learning scenarios, neural backbones typically process observations in 3D Carte-
sian space (e.g., point clouds) and output control commands as target joint angles. To evaluate a
network’s ability to bridge these modalities, we propose a Cartesian motion prediction task that
challenges the model to reason about structured motion in Cartesian space while expressing its pre-
dictions in joint angle space. This task uses a 6-DoF UR5 robotic arm. We begin by randomly
sampling two end-effector poses in 3D space and interpolating between them (linearly for transla-
tion and spherically for rotation) to generate a 16-frame Cartesian trajectory. Then, we use inverse
kinematics to convert this trajectory into corresponding joint configurations. The network is given

7
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Table 2: Baseline comparisons on the imitation learning benchmark. Simulated success rate.

Method PushCube PickCube StackCube PegInsertionSide PlugCharger Average

Transformer-DP 0.98 ±0.02 0.63 ±0.05 0.38 ±0.02 0.18 ±0.05 0.04 ±0.02 0.44
UNet-DP 1.00 ±0.00 0.85 ±0.03 0.37 ±0.04 0.56 ±0.06 0.13 ±0.06 0.58
Rodrigues-DP 1.00 ±0.00 0.94 ±0.02 0.44 ±0.05 0.58 ±0.04 0.10 ±0.02 0.61

the first 8 frames of joint angles and tasked with predicting the remaining 8, also in joint space.
Refer to Sections C.2 and D.2 of the supplementary for details on training, model parameter count
control, and runtime comparisons.

As shown in Table 1, the Rodrigues Network achieves the lowest training loss and test errors when
trained on a pre-collected dataset of 105 trajectories. Notably, its test MSE is lower than the train
MSE of all baseline models, indicating that the Rodrigues Network not only fits the data more
effectively but also generalizes better without overfitting. Figure 5b further shows that our model
consistently outperforms baselines across different training set sizes. In Figure 5a, we visualize
the end-effector trajectories predicted by each network for a single example; our model’s trajectory
aligns most closely with the ground truth. These results confirm that the Rodrigues Network is more
effective at bridging Cartesian space and joint angle space than conventional architectures. Please
refer to Section C.2 of the supplementary for metric definitions.

5.2 ROBOTIC MANIPULATION WITH IMITATION LEARNING

Next, we evaluate whether our method benefits realistic robotic applications. We integrate the Ro-
drigues Network as a backbone into the Diffusion Policy (Chi et al., 2023), one of the state-of-the-art
imitation learning frameworks, and test on a manipulation benchmark in simulation.

Benchmark We construct a suite of five manipulation tasks from ManiSkill (Mu et al., 2021) using a
7-DoF Franka arm with a 1-DoF Panda gripper, simulated in SAPIEN (Xiang et al., 2020). For each
task, we collect 100–500 demonstration trajectories using motion planning, with each trajectory
spanning 200 steps. During training, the network receives proprioception and object state as input
and outputs relative joint offsets used for PD control. Performance is measured by running 100
evaluation rollouts in simulation, and all models are trained with 5 random seeds to report the mean
and standard deviation of success rates.

Methods We adopt Diffusion Policy (Chi et al., 2023) as our learning framework, using a 2-frame
observation history and predicting 16 future steps, of which 8 are executed during deployment.
To isolate the impact of the neural backbone, we keep the outer framework and all other compo-
nents fixed, modifying only the denoising network. Baseline architectures include the U-Net and
Transformer designs from the original Diffusion Policy paper. Our method replaces these with the
Rodrigues Network, which takes the current observation, denoising timestep, and a noisy action as
inputs and predicts the corresponding action noise. The gripper output is handled via the global
token. All models are tuned to have approximately 17 million parameters for a fair comparison.
Implementation details are provided in Section D.3 of the supplementary material.

Results and analysis As shown in Table 2, Diffusion Policy (Chi et al., 2023) with the Rodrigues
Network backbone achieves overall state-of-the-art performance, demonstrating that our kinematics-
inspired inductive bias improves imitation learning in realistic robotic tasks. In particular, we ob-
serve substantial gains in PickCube and StackCube, and comparable or slightly better performance
in PushCube, PegInsertionSide, and PlugCharger. These results suggest that the benefits of the Ro-
drigues Decoder are task-dependent. PushCube is relatively simple, leading all backbones to achieve
near-perfect success. In contrast, PegInsertionSide and PlugCharger involve complex contact dy-
namics, such as inserting a peg into a hole, that likely require tactile or force feedback, making the
neural backbone less of a limiting factor. In summary, enhancing the backbone architecture with our
neural operator can yield significant gains when the network is the performance bottleneck.

5.3 3D HAND RECONSTRUCTION

Finally, we show that Rodrigues Networks extend beyond robots to animated characters. Specifi-
cally, we apply our method to 3D hand reconstruction from single-view RGB images, which involves
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Table 3: Baseline comparisons on the FreiHAND dataset. We use the standard protocol and report
metrics on 3D joint and 3D mesh accuracy. PA-MPVPE and PA-MPJPE numbers are in mm.

Method PA-MPJPE ↓ PA-MPVPE ↓ F@5 ↑ F@15 ↑
I2L-MeshNet (Moon & Lee, 2020) 7.4 7.6 0.681 0.973
Pose2Mesh (Choi et al., 2020) 7.7 7.8 0.674 0.969
I2UV-HandNet (Chen et al., 2021a) 6.7 6.9 0.707 0.977
METRO (Lin et al., 2021a) 6.5 6.3 0.731 0.984
Tang et al. (Tang et al., 2021) 6.7 6.7 0.724 0.981
Mesh Graphormer (Lin et al., 2021b) 5.9 6.0 0.764 0.986
MobRecon (Chen et al., 2022) 5.7 5.8 0.784 0.986
AMVUR (Jiang et al., 2023) 6.2 6.1 0.767 0.987

HaMeR (Pavlakos et al., 2024) 6.0 5.7 0.785 0.990
HaMeR (Reproduced) 6.2 5.9 0.774 0.989

Ours 5.9 5.6 0.793 0.991

predicting the rotations and positions of hand joints based on the kinematic structure defined by the
MANO (Romero et al., 2022) hand kinematics.

Our network builds upon HaMeR (Pavlakos et al., 2024) by replacing its vanilla transformer with
the proposed Rodrigues Network (with modifications to suit MANO’s configuration representation).
Additionally, we introduce a cross-attention layer following the self-attention layer to enable inter-
actions between joint and link features and the input image tokens. Our network achieves a notable
performance improvement while significantly reducing the number of parameters (39.5M vs. ours:
10.7M). Further architectural details are provided in Section A of the supplementary material.

Table 3 presents the quantitative results. We follow the evaluation protocol and metrics established
by HaMeR (Pavlakos et al., 2024), and report performance on the FreiHand (Zimmermann et al.,
2019) dataset. For reference, results of our reproduced HaMeR model are also included.

As shown in Table 3, our method achieves superior quantitative performance, surpassing the previ-
ous state-of-the-art. Compared to the strongest baseline, HaMeR, our approach outperforms both
the results reported in the original paper and our reproduced implementation. This underscores
the effectiveness of incorporating hand joint kinematics into the network, resulting in substantial
improvements on kinematics-related tasks. Therefore, our approach is not limited to robotic appli-
cations, demonstrating its versatility and applicability to graphics-related tasks as well.

6 CONCLUSIONS AND DISCUSSIONS

In this work, we design a neural network that addresses the kinematic structural priors in articulated
robot action learning. Core to it is the Neural Rodrigues Operator that extends the Rodrigues’ rota-
tion formula into a learnable operator of more flexible forms, providing networks with an inductive
bias that can better model kinematics-related features. With this neural operator as a key compo-
nent, we build the Rodrigues Network with additional layer designs, resulting in a powerful and
embodiment-aware network architecture applicable to diverse action-learning tasks.

Many state-of-the-art networks in robot learning build upon architectural designs originally devel-
oped for other domains, such as vision and language. With this work, we aim to encourage the
exploration of action-centric neural network architectures that are tailored to the unique characteris-
tics of robot learning, particularly those aspects that are underexplored in other fields.

Limitations and future work First, while Rodrigues Networks successfully incorporate articu-
lated kinematics as an inductive bias, they do not yet account for the geometry of individual links.
In many settings, this information is available and could improve performance on tasks that require
precise contact reasoning. Second, the current Neural Rodrigues Operator is restricted to rotational
joints. Extending it to also handle translational joints would broaden its applicability. Third, our
robot learning experiments focused on imitation learning. Exploring reinforcement learning (RL)
scenarios could further test the network’s generality and effectiveness in closed-loop settings.
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Supplementary Material
This supplementary material provides additional details to support the experiments presented in the
main paper. Section A describes how we adapt the Neural Rodrigues Operator for animated charac-
ters, as used in the 3D hand reconstruction experiment. Section C outlines our experimental settings,
including data collection, training procedures, evaluation protocols, and all training hyperparame-
ters. Section D details the architecture and configurations of both baseline models and our proposed
method across all experiments. These details are provided to facilitate reproducibility of our results.
We will release our code, datasets, and pretrained checkpoints upon acceptance to further support
the community in reproducing and building upon our work.

Additionally, Section E presents further experiments designed to investigate the properties of our
model and provide additional support for the claims made in the main paper. Finally, Section F
describes our CUDA implementation of the Multi-Channel Rodrigues Operator, which accelerates
training and inference.

A RODRIGUES NETWORK FOR ANIMATED CHARACTERS

Beyond articulated robots, animated characters such as MANO (Romero et al., 2022) and
SMPL (Loper et al., 2023) also exhibit articulated structures and employ forward kinematics, which
can similarly serve as inductive biases for neural networks. However, a fundamental distinction ex-
ists between these models and articulated robots: each joint in MANO and SMPL is a free rotational
joint with three degrees of freedom, as opposed to the single-axis, 1-DoF rotational joints typically
found in robots. As a result, adapting our approach to animated characters requires a fundamental
modification of the Rodrigues Operator to accommodate unconstrained 3-DoF rotations. We need
to identify the basic operation in forward kinematics for animated characters, and develop a neural
operator by turning that operation learnable.

Forward kinematics At each 3-DoF joint, we can parameterize its configuration as a unit quater-
nion q = (qw, qi, qj , qk) where ∥q∥ = 1. Following this, forward kinematics for animated char-
acters is similar to articulated robots. There are also two transformations at each joint Jj : (i) a
fixed coordinate change Tj from the parent link frame to the joint frame; (ii) a dynamic rotation
Rq2mat(q) ∈ R3×3 in the joint frame. The parent-to-children pose transformation can also be writ-
ten as: [

Rcj tcj
01×3 1

]
=

[
Rpj tpj
01×3 1

]
Tj

[
Rq2mat(q) 03×1

01×3 1

]
. (12)

Forward kinematics for animated characters is essentially a hierarchical combination of Equation 12.

Quaternions to matrix conversion The key difference of computing forward kinematics for ani-
mated characters lies in converting a joint’s unit quaternions into a 3 by 3 rotation matrix. This can
be done using the following formula:

Rq2mat(q) =

1− 2(q2j + q2k) 2(qiqj − qkqw) 2(qiqk + qjqw)
2(qiqj + qkqw) 1− 2(q2i + q2k) 2(qjqk − qiqw)
2(qiqk − qjqw) 2(qjqk + qiqw) 1− 2(q2i + q2j )

 (13)

Neural Rodrigues Operator for quaternions Observe from Equation 13 every entry in Rq2mat(q)
is a linear combination of ones and all 10 quadratic terms of qw, qi, qj , qk, with constant coefficients.
Thus, we can mimic what we have done for the Rodrigues’ rotation formula and re-parameterize
Equation 12 as:

Pcj = Ppj

A+
∑

x,y∈{w,i,j,k},x ̸=y

Axyqxqy +
∑

x∈{w,i,j,k}

Axxq
2
x

 (14)

where A,Axy,Axx ∈ R4×4 are coefficient matrices that only depend on the joint’s structure.
Similar to what we have done for axis angles, we construct our Neural Rodrigues Operator for
quaternions by replacing these fixed coefficient with learnable weights W bias,W xy,W xx ∈ R4×4,
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resulting in:

F out = F in

W bias +
∑

x,y∈{w,i,j,k},x ̸=y

W xyqxqy +
∑

x∈{w,i,j,k}

W xxq2x

 (15)

where F in ∈ R4×4 and F out ∈ R4×4 are the input and output link features, corresponding to
the parent and child links. Similar to the original Neural Rodrigues Operator, we also extend this
operator to support multi link feature channels and left multiplication. But since there are already
four feature channels for each joint, we do not extend it further. We also add learnable weights
W x ∈ R4×4 to Equation 15 to support representing linear terms of qw, qi, qj , qk.

B ADDITIONAL DETAILS ON NETWORK ARCHITECTURE

This section describes how task observations are mapped to the Rodrigues Network’s inputs and
how the network’s outputs are mapped to task actions.

Input embeddings In all experiments except 3D hand reconstruction, task inputs are low-
dimensional vectors. We use a linear input embedding layer to map the input observation feature
to the Rodrigues Network’s input. Specifically, given an observation feature of dimension dobs,
we apply separate linear transformations to produce the initial link features, joint features, and, if
applicable, a global token. These serve as inputs to the first Rodrigues Block of the Rodrigues
Network. After processing through the stacked Rodrigues Blocks, we obtain output features for all
links, joints, and the global token.

For 3D hand reconstruction, the inputs are RGB images. We first apply a ViT encoder to transform
the image into visual tokens, then insert a cross-attention layer into each Rodrigues Block so that
link features and the global token can attend to these tokens. As for the input to the first Rodrigues
Block in this case, learnable embeddings are used.

Output heads For joint-level outputs, each joint’s final output feature is concatenated with the
output feature of its child link, then passed through a joint-specific linear transformation to produce
the final output. For global outputs (those not associated with a specific joint), we apply a separate
linear transformation to the final global token.

C EXPERIMENT SETTINGS

C.1 FORWARD KINEMATICS FITTING

Data preparation In this experiment, the models learn to fit the forward kinematics mapping of
a robot. Therefore, we do not need to generate a fixed-size training set. However, we do create a
fixed-size validation set for selecting the best checkpoint, and a separate test set for evaluation. We
conduct this experiment on the LEAP hand, which is a fully-actuated robotic hand with four fingers,
16 rotational joints, and 17 links. Each data point includes the input: the root link position T ∈ R3,
the root link orientation matrix R ∈ R3×3, and joint angles θ ∈ R16. The output is the position
vectors and orientation matrices of all 17 links. We sample T uniformly in [−0.05 cm, 0.05 cm]3, R
uniformly from SO(3), and θ uniformly within the joint limits. We then compute all link poses using
forward kinematics. The validation and test sets each contain 10,000 input-output pairs, generated
using different random seeds.

Training details We use the Adam optimizer with lr = 0.0003 and without weight decay and
train each model for 10,000 steps. In each training step, we generate a new batch of 1024 input-
output pairs using the same method as for the validation and test sets, instead of sampling from a
fixed-size training set. The model takes the input and predicts 17 position vectors and 17 orientation
matrices, totaling 17 × (3 + 9) values. We compute the mean squared error (MSE) loss between the
predicted and ground truth outputs. The loss is averaged over the batch and all output values, and
then used to update the model through gradient descent. We evaluate the model on the validation
set for every 500 steps, and pick the model with the lowest validation loss for final evaluation. We
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also save a checkpoint every 1,000 iterations for plotting the training curve. All hyperparameters are
summarized in Table 4.

Table 4: Training hyperparameters for forward kinematics fitting experiment.

Parameter name Value Parameter name Value Parameter Value

Training iterations 100,000 Optimizer Adam Learning rate 0.0003
Batch size 1024 Validate every 500 iterations Weight decay 0

C.2 MOTION PREDICTION IN CARTESIAN SPACE

Data preparation This experiment is conducted on a fixed-base 6-DoF UR5 robotic arm. To
make the inverse kinematics solution unique for all reachable end-effector poses, we limit the six
joint ranges to [0, π/2], [−π/2, 0], [0, π/2], [0, π/4], [0, π/4], and [0, π/4]. We sample two joint
configurations θstart,θend ∈ R6 within these limits, which serve as the start and end poses. We then
use forward kinematics to compute the corresponding 3D end-effector poses Pstart,Pend ∈ SE(3).
Next, we interpolate 16− 2 intermediate 3D poses between the start and end to form a trajectory of
16 poses: P1, · · · ,P16. Positions are interpolated linearly, and orientations are interpolated using
spherical linear interpolation (slerp). Finally, we apply inverse kinematics to get the corresponding
joint configurations θ1, · · · ,θ16 for the 3D pose trajectory. The first 8 frames of joint configurations
are used as input, and the models are asked to predict the last 8 frames. In Cartesian space, the
motion pattern is clear: positions follow a straight line, and orientations change smoothly with slerp.
However, this pattern is not obvious in joint space. The model needs to learn to reason about this
motion pattern from the joint configurations. We generated four training sets with 103, 104, 105,
and 106 input-output pairs. The validation and test sets each contain 104 input-output pairs.

Training details We use the Adam optimizer with a learning rate of 0.0001 and no weight decay,
and train each model for 10,000 steps. Each training session uses a fixed training set. In each
step, we randomly sample a batch of 1,024 input-output pairs from this set. The model takes the
input and predicts 8 × 6 values, which represent the joint configurations for the last 8 frames. We
compute the mean squared error (MSE) loss between the predicted and ground truth outputs, and
use it to perform gradient descent. We evaluate the model on the validation set every 500 steps, and
select the checkpoint with the lowest validation loss for final testing. Unlike the forward kinematics
fitting experiment, this experiment trains models on a fixed-size training set and evaluates them on
a separate test set drawn from the same distribution. Therefore, it evaluates not only the model’s
ability to fit the training data, but also its generalization performance. All training hyperparameters
are listed in Table 5.

Table 5: Training hyperparameters for motion prediction in Cartesian space experiment.

Parameter name Value Parameter name Value Parameter Value

Training iterations 100,000 Optimizer Adam Learning rate 0.0001
Batch size 1024 Validate every 500 iterations Weight decay 0

Input frames 8 Output frames 8 DoFs 6

Evaluation We apply forward kinematics to the predicted joint configurations to obtain the pre-
dicted end-effector 3D poses. Then, we compare both the predicted joint configurations and the
predicted end-effector poses with the ground truth. We report the following evaluation metrics: 1)
ErrorT (mm): End-effector position error on the test set, averaged over the 8 predicted frames. 2)
ErrorR (◦): End-effector orientation error on the test set, averaged over the 8 predicted frames. We
compute the relative rotation between the predicted and ground truth orientations, convert it to axis-
angle representation, and take the angle. 3) Errorθ (◦): Absolute joint configuration error on the test
set, averaged over the 8 predicted frames and 6 joints. 4) MSE (×10−6): Mean squared error on the
test set, multiplied by 10−6 for better readability. 5) Train MSE (×10−6): Mean squared error on the
training set, also scaled by 10−6. The first four metrics measure the model’s generalization ability,
while the last one reflects its fitting ability. For all metrics, lower values indicate better performance.
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C.3 ROBOTIC MANIPULATION WITH IMITATION LEARNING

Data generation We evaluate on five representative manipulation tasks from the ManiSkill Bench-
mark (Mu et al., 2021): PushCube, PickCube, StackCube, PegInsertionSide, and PlugCharger. For
each task, we collect expert demonstration trajectories using the ManiSkill data collection API.
These trajectories are generated via motion planning algorithms and are limited to a maximum of
200 simulation steps per episode. The number of demonstrations collected per task is listed in
Table 7. During testing, the initial scene configurations are randomized using the same distribu-
tion employed during training data collection. For additional details, please refer to the ManiSkill
benchmark (Mu et al., 2021).

Training details We follow the training setup in Chi et al. (2023), including optimizer choice,
learning rate scheduling, and exponential moving average (EMA) for network stabilization. Specif-
ically, we use the AdamW optimizer with a learning rate of 0.0001, β = (0.95, 0.999), and a weight
decay of 1× 10−6. A cosine learning rate scheduler with 500 warm-up steps is applied. To enhance
training speed and stability, we maintain an EMA of the model weights with a decay factor of 0.75.
During training, we sample a batch of 1024 expert observation-action pairs from the demonstra-
tion dataset in each iteration and perform a gradient update using the diffusion loss. All training
hyperparameters are summarized in Table 6. The number of training iterations and demonstration
trajectories varies across tasks, depending on task complexity; see Table 7 for details. For further
implementation details, please refer to Chi et al. (2023).

Table 6: Training hyperparameters for imitation learning experiment (following Chi et al.
(2023)’s settings).

Parameter name Value Parameter name Value Parameter Value

Optimizer AdamW Learning rate 0.0001 Weight decay 1e-6
LR scheduler Cosine scheduler Batch size 1024 Episode steps 200

Table 7: Demo trajectories and training iterations for each task in imitation learning experi-
ment.

Task name PushCube PickCube StackCube PegInsertionSide PlugCharger

Demo trajectories 100 100 100 500 500
Training iterations 30k 30k 60k 100k 300k

C.4 3D HAND RECONSTRUCTION

Dataset preparation Following Hamer, we train our model on a large number of datasets that
provide 2D or 3D hand annotations. Specifically, we use FreiHAND (Zimmermann et al., 2019),
HO3D (Hampali et al., 2020), MTC (Xiang et al., 2019), RHD (Zimmermann & Brox, 2017), In-
terHand2.6M (Moon et al., 2020), H2O3D (Hampali et al., 2020), DEX YCB (Chao et al., 2021),
COCO WholeBody (Jin et al., 2020), Halpe (Fang et al., 2022) and MPII NZSL (Simon et al., 2017).

Training Details We follow the training protocol described in HaMeR (Pavlakos et al., 2024).
We use the AdamW optimizer with learning rate 1e-5 and weight decay 1e-4, and train the model
for 1,000,000 steps. The batch size is set to 64. Our model takes in a square image around the
target hand, resized to 256 x 256, and output the 58 MANO (Romero et al., 2022) parameters of
the human hand, specifically 48 pose parameters and the 10 shape parameters. We evaluate the
model on the validation set for every 1,000 steps, and pick the model with the lowest validation
loss for final evaluation. Similar to Hamer, we additionally estimate the camera parameters π. The
camara π corresponds to a translation t ∈ R3 that projects the 3D mesh and joints into the image.
Hyperparameters are summarized in Table 8.
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Table 8: Training hyperparameters for 3D hand reconstruction experiment.

Parameter Value Parameter Value Parameter Value

Training iterations 1,000,000 Optimizer AdamW Learning rate 1e-5
Batch size 64 Validate every 1,000 iterations Weight decay 1e-4

D METHOD AND IMPLEMENTATION DETAILS

D.1 FORWARD KINEMATICS FITTING

We construct four baseline methods using existing neural network backbones for comparison: MLP,
Graph Convolution Network (GCN), Transformer, and Body Transformer (BoT) (Sferrazza et al.,
2024).

MLP The MLP baseline concatenates the input root position, root orientation, and joint angles
into a (3 + 9+ DoF)-dimensional vector (DoF = 16 for the LEAP hand), and feeds it into a 7-layer
MLP with the following shape: [28, 768, 768, 768, 768, 768, 768, 204]. The output represents the
positions and orientations of all DoF+1 = 17 links. All hidden layers use ReLU activation, and no
normalization layers are applied.

GCN The GCN baseline uses 1 + DoF separate linear transformations to encode the root pose
and each joint angle into 1 + DoF feature embeddings, each with 512 dimensions. Each embedding
corresponds to one robot link: the one derived from the root pose represents the root link, and
each joint’s embedding corresponds to its child link. We represent the robot as an undirected tree
graph with 1 + DoF nodes (links) and DoF edges (joints). The GCN applies 11 layers of graph
convolution to update the link features. All hidden layers have 512 dimensions. Finally, separate
linear transformations are used to predict the pose (position and orientation) of each link.

Transformer The Transformer baseline uses the same approach as the GCN baseline to encode
the input root pose and joint angles into 1 + DoF link feature embeddings, each with 256 dimen-
sions. After applying positional encoding, these embeddings are passed through a Transformer
backbone consisting of 8 Transformer blocks. Each block includes a feed-forward layer with a 256-
dimensional hidden layer. The Transformer outputs 1 + DoF updated link features. As in the GCN
baseline, separate linear transformations are used to predict the pose of each link from these features.

Body Transformer (BoT) (Sferrazza et al., 2024) The BoT baseline shares a similar architecture
with the Transformer baseline but replaces the Transformer backbone with a Body Transformer
backbone. It uses the same robot connectivity graph as in the GCN baseline to capture the structural
relationships between links.

Rodrigues Network (ours) Our method uses a specially customized Rodrigues Network as the
neural backbone. The network consists of 12 Rodrigues Blocks, and each block contains only a
single Rodrigues Layer. No Joint Layers, Self-Attention Layers, or Global Tokens are used. Each
Rodrigues Layer has 1 joint channel (CJ = 1) and 3 link channels (CL = 3). We first concatenate
the input root position, root orientation, and joint angles into a (3 + 9 + DoF)-dimensional vector.
This vector is passed through DoF separate linear transformations to produce the input joint fea-
tures, and through 1 + DoF separate linear transformations to produce the input link features. The
Rodrigues Network updates the joint and link features through its 12 Rodrigues Blocks, resulting in
the output joint and link features. Finally, we concatenate all output link features and apply 1+DoF
separate linear transformations to predict the pose of each link.

Parameter count comparison All baseline networks have around 3 million parameters, while
our network has only 0.2 million parameters. Since this experiment focuses only on fitting ability
and not generalization, this setup gives an advantage to the baseline methods with more parameters.
Even so, our network still performs better.
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Compute resources We train each model on a single Quadro RTX 6000 graphics card, and the
approximate training time for 100,000 training iterations are listed in Table 9.

Table 9: Approximate training time of different methods for fitting forward kinematics

Method MLP GCN Transformer BoT Rodrigues (ours)

Time 17min 1h 50min 2h 20min 2h 20min 1h 18min

D.2 MOTION PREDICTION IN CARTESIAN SPACE

This experiment uses the same four neural backbones as in the forward kinematics fitting experi-
ment: MLP, Graph Convolution Network (GCN), Transformer, and Body Transformer (BoT).

MLP The MLP baseline takes all 8 × 6 = 48 input values from the 8 input frames as input and
feeds them into a 7-layer MLP with the following layer sizes: [48, 768, 768, 768, 768, 768, 768, 48].
The output represents the joint configurations of the 8 predicted frames. All hidden layers use ReLU
activation, and no normalization layers are applied.

GCN The GCN baseline uses 1 + DoF separate linear transformations to encode the input into
1 + DoF feature embeddings, each with 512 dimensions. As in the forward kinematics fitting ex-
periment, each embedding corresponds to one robot link, and the robot is modeled as an undirected
tree graph with 1 + DoF nodes (links) and DoF edges (joints). The GCN applies 11 layers of graph
convolution to update the link features. Finally, for each joint, we extract the output feature of its
corresponding child link and apply a separate linear transformation to predict the joint’s angles for
all 8 output frames.

Transformer The Transformer baseline follows the same procedure as the GCN baseline to en-
code the input into 1+DoF link feature embeddings, each with 250 dimensions. Positional encoding
is then applied to these embeddings, which are processed by a Transformer backbone consisting of 8
Transformer blocks. Each block contains a feed-forward layer with a 250-dimensional hidden layer.
The Transformer outputs 1 + DoF updated link features. As in the GCN baseline, we extract the
output feature corresponding to each joint’s child link and apply a separate linear transformation to
predict the joint’s 8 output angles.

Body Transformer (BoT) (Sferrazza et al., 2024) The BoT baseline replaces the Transformer
backbone of the Transformer baseline with a Body Transformer backbone, using the same number
of blocks and hidden dimensions.

Rodrigues Network (ours) Our method uses a full Rodrigues Network as the neural backbone,
consisting of 12 Rodrigues Blocks. Each block contains a Rodrigues Layer, a Joint Layer, and a
Self-attention Layer. In this experiment, Global Tokens are also not used. Each Rodrigues Layer
is configured with 4 joint channels (CJ = 4) and 8 link channels (CL = 8). Each Self-attention
Layer operates on 256-dimensional embeddings with 8 attention heads. To prepare the input, we
apply DoF separate linear transformations to produce the input joint features, and 1 + DoF separate
linear transformations to generate the input link features. These features are then processed by the
Rodrigues Network, which updates them through all 12 blocks to produce the final joint and link
features. For each joint, we concatenate its output joint feature with the output link feature of its
child link, and apply a separate linear transformation to predict the joint’s 8-frame output angles.

Parameter count comparison All baseline methods and our approach have approximately 3 mil-
lion parameters. This ensures a fair comparison of both fitting and generalization abilities.

Compute resources We train each model on a single Quadro RTX 6000 graphics card, and the
approximate training time for 100,000 training iterations are listed in Table 10.
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Table 10: Approximate training time of different methods for motion prediction experiment

Method MLP GCN Transformer BoT Rodrigues (ours)

Time 27min 1h 12min 1h 20min 1h 20min 2h 22min

D.3 ROBOTIC MANIPULATION WITH IMITATION LEARNING

This experiment follows the Diffusion Policy (DP) framework proposed in Chi et al. (2023), and
evaluates different neural backbones for denoising action samples. The original paper (Chi et al.,
2023) provides two backbone options, convolutional UNet and Transformer, which we directly adopt
as baselines. In the DP framework, the policy observes a history of 2 prior time steps, predicts a
sequence of 16 future actions, and executes the first 8 during deployment. Each action vector consists
of 8 values: 7 for joint position control of the 7-DoF Franka arm and 1 for the 1-DoF Panda gripper.

UNet-DP The UNet-DP baseline uses a convolutional UNet architecture that performs temporal
convolution over the 16-step action sequence. We follow the default structure, with the hidden
dimensions of the downsampling layers set to [320, 320, 344]. For further implementation details,
please refer to Chi et al. (2023).

Transformer-DP The Transformer-DP baseline applies causal self-attention to the 16 action-step
tokens. We use an embedding dimension of 320, feed-forward hidden dimension of 1280, and a
total of 10 Transformer blocks. Additional details are available in Chi et al. (2023).

Rodrigues-DP (ours) Our method adopts a Rodrigues Network as the denoising backbone, com-
posed of 12 Rodrigues Blocks with 16 link feature channels (CL = 16), 8 joint feature channels
(CJ = 8), and a self-attention embedding dimension of 256. We also introduce Global Tokens of
dimension 128 to model gripper actions. The denoising network takes three inputs: a time step, a
noisy action, and an observation vector. We first embed the time step and concatenate it with the
observation and noisy action to form an input feature vector. This vector is then passed through
DoF separate linear transformations to generate the input joint features, 1 + DoF separate linear
transformations to generate the input link features, and one additional linear transformation to pro-
duce the input global token. The Rodrigues Network updates all features through its 12 Rodrigues
Blocks, resulting in output joint features, output link features, and output global token. For each
joint, we concatenate its output joint feature with the output link feature of its corresponding child
link, and apply a separate linear transformation to predict the joint’s 16-frame denoised action tra-
jectory. For the gripper, we use a linear transformation on the output global token to predict the
16-frame denoised gripper actions.

Parameter count comparison All baseline networks and our network have approximately 17
million parameters to make comparisons fair.

D.4 3D HAND RECONSTRUCTION

Architecture-wise, we employ a Vision Transformer (Dosovitskiy et al., 2020) as the image-
processing backbone, followed by our Rodrigues Network (RodriNet) head to regress both hand and
camera parameters. Since there are 17 links and 16 joints in the MANO parameter model, to make
the information pass through the entire kinematic chain, our RodriNet head comprises 18 Rodrigues
blocks, each of which sequentially applies a Rodrigues Layer, a Joint Layer, and a Self-attention
Layer to update the link features, joint features. The Rodrigues Layer uses 4 link channels, and the
Self-attention Layer uses 64 embed dimensions. We enable Global Tokens in this experiment to
model the MANO’s shape parameters.

In addition to the standard components, we append a Cross-Attention Layer at the end of each block.
This layer processes the link features and the input image tokens through a standard cross-attention
transformer module, enriching the link features with visual information from the input image.

The training takes approximately 7 days on a single Quadro RTX 6000 graphics card.
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Table 11: Ablation studies for motion prediction in Cartesian space with trainset size = 105.
We remove the Rodrigues Layer (R Layer), Joint Layer (J Layer), or Self-attention Layer (S Layer)
respectively from the original Rodrigues Network, and evaluate the MSE on train/test sets.

R Layer J Layer S Layer Params (M) Train MSE (1e−6) Test MSE (1e−6)

✓ ✓ ✓ 3.04 1.93 ±0.34 2.56 ±0.39

✓ ✓ 1.44 1.94 ±0.26 2.33 ±0.26

✓ ✓ 3.01 2.33 ±0.56 2.80 ±0.62

✓ ✓ 1.69 5.57 ±0.55 6.19 ±0.57

E ADDITIONAL RESULTS

We conduct additional experiments to further support the claims made in the main paper.

E.1 ABLATION STUDIES

In the main paper, we benchmark the Rodrigues Network against several baselines for motion pre-
diction in Cartesian space using a fixed training set of 105 trajectories. Our method demonstrates
a significant performance advantage over all baselines. To investigate the contributions of different
components of our model, we perform an ablation study by individually removing the Rodrigues
Layer, Joint Layer, or Self-attention Layer from the original architecture, and evaluate the resulting
performance changes.

The results are presented in Table 11. First, we observe that the Self-attention Layers comprise more
than half of the model parameters. However, removing them results in only a slight increase in train-
ing error and even a slight decrease in test error. This suggests that while the Self-attention Layer
enhances the model’s ability to fit the training data, it may slightly hinder generalization. Nonethe-
less, we retain this component in our default architecture to ensure sufficient model capacity for
more complex tasks. Second, the Joint Layers contribute negligibly to the overall parameter count,
yet their removal consistently degrades both training and test performance. This highlights their
critical role in the effectiveness of the Rodrigues Network. Third, the Rodrigues Layers constitute
a substantial portion of the model’s parameters. Removing them causes the greatest drop in both
training and test performance among all ablation settings. This indicates that the Rodrigues Layer
is the most critical component for the model’s success. Since the Rodrigues Layer encodes the
core inductive bias of our architecture, these findings strongly support our central claim: embedding
structural prior of articulated kinematics directly into the network architecture improves learning the
actions and motions of articulated actors.

E.2 TUNING THE BASELINES FOR MOTION PREDICTION

While our method outperforms all baselines on the motion prediction task under the 3-million-
parameter setting, we further investigate whether these baselines have been sufficiently tuned.
Therefore, we construct three additional configurations for each of the four baselines (GCN, MLP,
BoT, and Transformer) with approximately 1M, 10M, and 30M parameters.

The results are shown in Figure 6. For all baselines, the training error consistently decreases as
model size increases. However, both GCN and MLP begin to overfit with larger models, as in-
dicated by rising test errors. In contrast, BoT and Transformer exhibit test error saturation, but
not overfitting, as parameter count increases to 30M. Importantly, across all parameter scales, our
3M-parameter model outperforms all baseline configurations on both training and test errors. This
confirms that the benchmark results reported in the main paper are reliable and that the baselines
have been appropriately tuned. Furthermore, even the best-performing baseline (Transformer) with
30M parameters yields a training error that remains higher than the test error of our 3M model. This
highlights the superior fitting capability, generalization performance, and parameter efficiency of
our proposed approach.
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Figure 6: Comparing our method to different baseline configurations in motion prediction with
trainset size = 105.

Table 12: Hyperparameter sensitivity analysis for the Rodrigues Network on motion prediction
in Cartesian space with trainset size = 105.

Variation CJ CL B Params (M) Train MSE (1e-6) Test MSE (1e-6)

Default 4 8 12 3.04 1.93 2.56
Joint channels 2 2.43 2.18 3.00
Joint channels 8 4.26 1.32 1.96
Link channels 4 1.19 3.64 4.35
Link channels 16 8.73 1.51 2.18
Num blocks 6 1.55 2.24 2.76
Num blocks 24 6.03 3.47 4.15

E.3 HYPERPARAMETER SENSITIVITY ANALYSIS FOR THE RODRIGUES NETWORK

We investigate the robustness of our network’s performance with respect to variations in key archi-
tectural hyperparameters. Specifically, we focus on three core components of the Rodrigues Net-
work: the number of joint channels (CJ ), link channels (CL), and the number of Rodrigues Blocks
(B). Starting from the default configuration used in the main paper, we create six variants by either
halving or doubling the value of each hyperparameter. We then evaluate these configurations on the
motion prediction task to determine whether the network maintains stable performance across these
variations. This analysis helps assess the sensitivity of our model to design choices and the general
robustness of its architecture.

The results, summarized in Table 12, show that increasing the number of joint channels from 2 to
8 consistently improves both training and test errors. A similar trend is observed for link channels,
where increasing from 4 to 16 leads to better performance. In contrast, increasing the number of Ro-
drigues Blocks from 6 to 24 initially improves train and test errors, but further depth degrades them
both, indicating optimization challenges in deeper configurations. Overall, across all hyperparam-
eter variations (up to 4× changes), performance remains within a reasonable range, demonstrating
the robustness of our architecture. Furthermore, all variants significantly outperform the strongest
baseline from the main paper, suggesting that our method is not only robust but also easily tunable
for high performance.
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F ACCELERATING THE MULTI-CHANNEL RODRIGUES OPERATOR WITH
CUDA

The Multi-Channel Rodrigues Operator is a novel component in our architecture, and we found that
implementing it directly in PyTorch led to suboptimal speed and memory efficiency. To address this,
we developed a custom CUDA kernel that significantly accelerates both the forward and backward
passes while reducing memory overhead.

In the forward pass, we assign each CUDA thread block to compute a single output channel over
a sub-batch of link features. Each thread accumulates contributions from all input joint and link
channels to produce the output feature. This design eliminates the need to explicitly compute and
store intermediate tensors such as U and Ū (see Equation 6 in the main paper), thereby saving
memory bandwidth and improving runtime performance.

The backward pass adopts a similar strategy of accumulation to avoid intermediate computations.
However, it additionally requires explicit gradient computations for both the input joint features and
the Rodrigues Kernels, which we handle within the same memory-efficient framework.

This CUDA implementation significantly improves the efficiency of our experiments. For instance,
training a 12-block, 16-DoF Rodrigues Network composed solely of Rodrigues Layers, with 16
joint channels and 16 link channels (approximately 52 million parameters), for 100,000 iterations at
a batch size of 1024, would take over 100 hours using our PyTorch implementation on a Quadro RTX
6000 GPU. In contrast, using our CUDA kernel to compute the Multi-Channel Rodrigues Operator
reduces the training time to approximately 15 hours (over 6x speed-up).

Nonetheless, we acknowledge that existing operators (such as graph convolutions, temporal convo-
lutions, and multi-head attention) have benefited from extensive optimization over the years. Our
current implementation does not yet reach that level of maturity. We will release the CUDA source
code upon acceptance and hope it serves as a foundation for further research into optimized imple-
mentations of the Multi-Channel Rodrigues Operator.
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