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ABSTRACT

While machine learning excels at learning predictive models from observational
data, learning the causal mechanisms behind the observed phenomena presents the
significant challenge of distinguishing true causal relationships from confounding
and other potential sources of spurious correlations. Many existing algorithms for
the discovery of causal structure from observational data rely on evaluating the
conditional independence relationships among features to account for the effects
of confounding. However, the choice of independence tests for these algorithms
often rely on assumptions regarding the data distributions and type of causal
relationships. To avoid these assumptions, we develop a novel deep learning
approach, dubbed the Hokey Pokey model, to indirectly explore the conditional
dependencies among a set of variables by rapidly comparing predictive errors
given different combinations of input variables. We then use the results of this
comparison as a predictive signal for causal relationships among the variables. We
conduct rigorous experiments to evaluate model robustness and generalizability
using generated datasets with known underlying causal relationships and analyze
the capacity of model error comparisons to provide a predictive signal for causal
structure. Our model outperforms commonly used baseline models (PC and GES)
and is capable of discovering causal relationships of different complexity (graph
size, density and structure) in both binary and continuous data.

1 INTRODUCTION

The ability to learn causality is considered a significant component of human-level intelligence and
can serve as one of the foundations of AI (Pearl, 2018; Bengio, 2019). Understanding the causal
relationships among variables is a fundamental task that spans a broad range of disciplines including
social science (Wu et al., 2010), economics (Chen et al., 2007), medicine (Cheek et al., 2018; Shen
et al., 2020), and biology (Zhang et al., 2014). While properly controlled experimentation represents
the most robust method of determining such relationships (Pearl, 2009), such methods can not always
be applied due to cost, time, ethical considerations, or other constraints. Therefore, significant effort
has been directed towards the task of causal discovery, where such relationships are inferred from
observational datasets in the absence of experimental interventions. Many algorithms have been
developed to address the challenges of this task, including those which rely on observations of condi-
tional independence relationships, an approach designed to account for the effects of confounding
among the observed variables (Spirtes et al., 2000). However, these algorithms often need to make
assumptions about the generative causal structure and relational functions of the underlying dataset,
which are impossible to know a priori, and the choice of independence test can require significant
domain knowledge (Shah & Peters, 2018). To work toward the development of a more general
method, we aim to leverage the flexibility of deep learning models to explore conditional relationships
within observational data. In particular, we aim to observe which input variables improve predictive
performance conditioned on the inclusion of other input variables. However, to directly discover all
such conditional relationships would require training multiple different models to cover all possible
feature combinations, which becomes intractable for large numbers of features.

In this work, we develop a novel approach for causal discovery which indirectly explores the
conditional relationships in observational data without having to separately train models for each
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combination of features or each possible causal structure. To do this, we develop a two stage
procedure which we refer to as the Hokey Pokey (HP) approach. In the first stage, we randomly
obscure information from different features in the input data during model training by applying
a form of dropout to the input layer. This allows the model to learn how to predict each variable
with multiple different combinations of the other variables. However, the model performance will
differ depending on which inputs are obscured. We compare the performance of the model under
different masking conditions to determine whether additional knowledge of a specific feature aids the
predictive performance. In the second stage of the approach, we train a second model to infer causal
relationships among the variables by interpreting the error patterns produced by the first model.

2 CAUSAL DISCOVERY FROM OBSERVATIONAL DATA

There are a wide variety of different methods which have been developed to address the task of
causal discovery. The approaches can be broadly categorized into constraint-based methods (Spirtes
et al., 2000; Yu et al., 2016), score-based methods (Chickering, 2002), and hybrid methods which
incorporate aspects of both (Tsamardinos et al., 2006). Constraint-based models restrict the space of
possible causal structures by placing constraints on the relationships using conditional dependencies
among the variables, while score-based methods infer causal relationships based on optimization of
a scoring function. Many traditional causal discovery algorithms rely on theoretical assumptions
regarding the relationship of the data and the corresponding causal graph structure. Common
assumptions include the Causal Faithfulness Assumption, the Causal Markov Assumption, and
the Causal Sufficiency Assumption (Pearl, 2009). In addition, many methods rely on assumptions
about the generative processes and functional forms of the observational dataset. For example, the
CCDr (Aragam & Zhou, 2015) algorithm assumes the relationships between variables are linear and
the variables are Gaussian distributed, while the LiNGAM (Shimizu, 2014) algorithm assumes linear
relationships and non-Gaussian distributions. Due to their flexibility, deep learning models have the
potential to generalize across different types of data without relying on these restrictive assumptions.

There have been previous deep learning-based approaches to determine causal relationships between
pairs of variables (Louizos et al., 2017). Recent efforts have also applied deep learning to the
problem of causal discovery among a set of variables. Goudet et al. (2018) leverage a score-based
approach using Causal Generative Neural Networks (CGNN) to learn functional causal models, while
Kalainathan et al. (2018) also use a generative approach but trains the model in an adversarial setting.
Zhu & Chen (2019) leverage reinforcement learning to search the space of possible causal structures.
Recent efforts have used deep learning to address specific challenges of causal discovery including
applying attention-based convolutional neural networks for observational time-series data (Nauta et al.,
2019), dealing with missing data by simultaneously imputing and learning the causal structure (Wang
et al., 2020), and discovering causal signal in images (Lopez-Paz et al., 2017). Distributional shifts
due to interventions have been used to infer causal relationships with Ke et al. (2019) using a learned
dropout rate to represent the inferred causal relationships among input variables and Bengio et al.
(2019) observing the adaptation rate of the model to interventional shifts.

To our knowledge our approach is the first to use comparisons of model errors to infer causal
relationships. Additionally, most existing methods that use predictive deep learning models leverage
individual models to predict each variable in the data. In contrast, we develop an approach where a
single model is used to explore the prediction performance variation among all variables as a potential
indicator of causal relationships which provides a potential efficiency benefit.

3 APPROACH

Our approach is inspired by constraint-based approaches which aim to establish causal relationships
by observing the correlations among variables conditional on other variables. However, rather than
explicitly evaluating the conditional independence relationships among variables, we develop a
deep learning model training procedure designed to indirectly rely on such relationships among the
variables in order to predict the existence of causal relationships. This method consists of two stages.
In the first stage, we train a model to reconstruct an observation from itself when certain input features
are randomly obscured. In the second stage, we observe the errors that are made by the first model
when different sets of input features are obscured and train a second model to use these patterns to
predict which edges are present in the causal graph which generated the data.
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Figure 1: (Left) An illustrative schematic of the first stage HP model architecture, which uses the
observational instances as both inputs and outputs with random sets of input variables obscured
(crosses) during training using a dropout approach. (Right) An example learning curve for the HP
model showing how the model adapts as the dropout rate on the input layer in increased step-wise
during training.

3.1 HOKEY POKEY MODEL

� You put some features in, you take some features out �

In the first stage, we apply a feed forward network to predict a data observation given a partially
obscured version of that same observation as input, with different feature randomly obscured during
training. This predictive setup, shown in the left panel of Figure 1, is designed to encourage the
model to learn a flexible predictive approach that can adapt to the available inputs. In order to obscure
the input information during training, we apply a mask to the variables that replaces the actual
value of the masked variable with an obscured value. For binary variables, we replace the value of
obscured variable with a value of 0.5. For continuous variables, we first standardize each variable (by
subtracting the mean and scaling to unit variance) and then we replace each masked value with zero.

During training we apply a ramped dropout approach, starting without obscuring any features. During
this phase, the model should learn to predict each output directly from its corresponding input feature.
This is followed by the phase of training where each feature in the input has a probability p of being
obscured where p is sampled from a uniform distribution from pmin to pmax. pmin is fixed to 0.1,
while pmax is increased in a step-wise fashion through training until it reaches 0.9. During this phase,
the model should learn that when certain features are not available, as indicated by their assignment
to the masking value, it needs to rely on other features for prediction.

While the model should become flexible to the available inputs, its performance should be reduced
when information about causally relevant variables is removed. We aim to exploit the information
about this reduction in performance to infer the causal relationships in the dataset. Therefore, once
the model is fully trained, we generate a dataset of its predictive errors under a range of different
masking conditions. During inference for this step, the feature masks are selected randomly from all
possible masks with an equal probability for each mask. Multiple such masks are sampled for each
observational instance in the test data such that direct comparisons can be made between the errors
for a given instance under different masking conditions.

3.2 CAUSAL RELATIONSHIP PREDICTION

� Then you shake it all about �

We hypothesize that information about how the errors change under different masking conditions
contains signal related to which variables are causally related to which other variables. However,
determining the causal relationships directly from a large of set of observed error differences is not
straightforward. In order to leverage this information for causal discovery, we develop a supervised
fully connected deep learning model which takes pairs of input masks and the corresponding pairs
of predictive errors as input and uses this information to predict the causal relationships among the
variables. Because this model relies on supervised training, we generate a large collection of synthetic
datasets using known causal graphs, which is described in detail in Section 4.1.

The structure of the inputs and outputs for this edge prediction model can be seen in Figure 2. Because
a single pair of masks is unlikely to contain enough information to infer the full causal graph, we
perform this prediction at the level of one causal relationship at a time. For example, we aim to
predict whether an causal relationship exists between variables A and B given observations of how
the error in B changes when the value of A is obscured or unobscured.
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Figure 2: An illustration of the predictive signals and the batch structure used for the edge prediction
model for a three node DAG example (with variables A, B, and C). The input features include the
original observational variable values, a pair of input masks and their corresponding errors, and cause
and effect indicators to specify the edge for which to make a prediction. Multiple mask-pair instances
for the same edge of the same DAG are batched together, with the final prediction being a weighted
mean across the multiple instances using learned attention weights.

The input features for the edge prediction model include a pair of masks and the corresponding
predictive errors from the first-stage model. The features also include the original instance values
from the observational dataset, which may provide a useful signal depending on the strategy used to
obscure the inputs. If the masked value is set to the mean of the variable, as we do for the continuous,
then the data instances further from the mean can likely be used more reliably to make inferences
about the causal relationships. Finally, we include a set of one-hot-encoded features indicating the
edge for which to make a prediction, e.g. from A to B. To train on datasets with different numbers of
variables, we set values corresponding to variables that don’t exist in a given dataset to zero.

In order to correctly predict whether one variable has a causal impact on another, the model needs to
observe that the removal of the input variable increases the predictive error regardless of which other
input variables are present. This corresponds to the detection of the conditional dependence of the
variables. Therefore, rather than asking the model to predict the existence of a causal relationship
based only on one observation, we provide the model with a set of multiple observations with differing
mask configurations. We generate these batches by grouping together multiple mask-pair instances for
the same causal edge of the same graph but which may differ in the original observational instance and
the specific masks applied. The predictions for these multiple mask-pair observations are averaged to
generate the final prediction. We explore the use of an attention mechanism to generate a weighted
average that allows the model to focus more on certain mask-pair examples.

In order to select the mask-pairs to include as inputs for the prediction of a given causal relationship
(e.g. A causes B), we include all pairs such that B is never included in the input (because predicting
B from B is a trivial task) and such that A is obscured in one mask but not the other. This allows
the model to observe the change in the predictive error for B when A is added or removed as a
signal. The final trained model can output a prediction of the existence of a given edge for a batch of
observations of mask-pair error differences. To construct a final prediction for the full causal structure
of the observational dataset we must aggregate these multiple predictions. Therefore, we average the
predicted probabilities of an edge across all batches that contained predictions of that edge.

4 EVALUATION

We aim to evaluate the performance of the proposed approach on its ability to infer the existence of
causal relationships among the variables in observational data. We evaluate the approach on two tasks
of different complexities - the prediction of the causal skeleton and the prediction of the causal graph.
The causal skeleton only describes whether two variables are causally linked but not the direction of
that relationship, while the causal graph incorporates the direction of the causal relationships. We
compare the performance of the HP method to established baseline algorithms for causal discovery
including both a constraint-based approach, the PC algorithm (Spirtes et al., 2000) using a Gaussian
independence test and a score-based approach, greedy equivalence search (GES) (Chickering, 2002).
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4.1 DATA

To train the model and evaluate the robustness of our approach we generate a large collection of
synthetic datasets with known causal structure. The use of synthetic data is common in causal
discovery algorithm evaluation (Bengio et al., 2019; Kalainathan et al., 2018; Ke et al., 2019) due
to the difficulty of establishing the ground truth causal structure for real-world data. To encourage
generalizability, we generate 1974 random directed acyclic graphs (DAGs) with different properties
using the randDAG function of the R pcalg library (Kalisch et al., 2012). We use DAGs ranging
from 5 to 9 nodes, with 1 through 5 expected edges per node, and 8 different generation methods
designed to target different graph topological properties. For each combination of DAG properties,
we randomly generate 10 different individual graphs. Additionally, for each graph size we add every
possible graph with only a single edge, as well as ten empty graphs with no edges. We divide these
DAGs into training, validation, and test sets, respectively used to train the edge prediction model,
perform hyper-parameter tuning, and evaluate edge prediction performance.

We use each randomly generated DAG to simulate a set of observational data that follows the given
causal structure. To generate these simulations, we explore two different data types and corresponding
functional forms for the causal relationships. Firstly, we generate a collection of datasets using linear
Gaussian models with the edge weight and noise parameters drawn from uniform distributions for
each individual edge. Secondly, we generate datasets of binary variables using Bayesian network
models with the conditional probability tables randomly generated from a uniform distribution. For
each observational simulation, we sample 1000 data points. Of these, 800 data points are used to
train the first-stage models while the remaining 200 data points are used as the test set to generate the
paired masks and errors for inputs into the edge prediction model. We apply 20 different input masks
to each test instance to generate comparative pairs.

4.2 PARAMETER OPTIMIZATION

Because the approach uses a two stage procedure, the optimization of hyper-parameters for the
first stage would ideally be based on the final performance in the edge prediction stage. However,
performing this full optimization across many hyper-parameters would be prohibitively time and
resource intensive. Therefore, we develop several heuristics for the hyper-parameter optimization of
the first stage. This allows us to first optimize the parameters of the first-stage model, then generate
the predictive error data for all input datasets, and finally optimize the edge prediction model on
predictive error results generated from only a single dataset of errors.

To optimize the parameters of the first stage we focus on achieving models that have low average
error for input masks that represent the true causal structure compared with the error for other input
masks. We hypothesize that such models will provide the best predictive signal for the second stage
model to infer the correct causal structure from the errors. We calculate the average level of error
for each unique input mask and output variable across all predictions in the test set. Then we rank
the input masks in order of average error to calculate four metrics - the ranking of the true casual
mask, the correlation of a mask’s ranking with the Euclidean difference of that mask to the true causal
mask, the mean relative error of the true causal mask to the error of the best performing mask, and the
correlation of the mask’s relative error with the Euclidean difference of the mask to the true causal
mask. We aim to identify model hyper-parameters that lead to better rankings and relative errors for
the true causal mask and higher correlations of error and ranking with similarity to the true causal
mask. We identify the model hyper-parameters that lead to the highest average value of these four
metrics. This optimization is performed on a small representative sample of the input datasets.

For the edge prediction model, given a dataset of mask-pair errors spanning many different ob-
servational datasets, we perform hyper-parameter optimization using grid search, with parameters
including the size of the hidden layers (128 or 256), the number of hidden layers (4 or 8), and the
learning rate (0.001 or 0.0001). All edge prediction models used the Adam optimizer. The final edge
prediction thresholds are selected by maximizing the F1 score on the validation data.

4.3 RESULTS

We evaluate the performance of the edge prediction task with the AUC score and F1 score, based on
the binary edge existence labels for all possible causal relationships for test set DAGs. We calculate
these scores both for each DAG individually as well as jointly for the full collection of edges for all
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Table 1: Edge prediction F1 scores compared with several baseline approaches for the entire set of
edges in the test set (Overall) and the average and standard deviation over each DAG individually for
both directed and undirected edge prediction.

Data Type Model Undirected Directed
Overall F1 DAG F1 Overall F1 DAG F1

Binary PC 0.724 0.713 ± 0.261 0.479 0.477 ± 0.208
Binary GES 0.503 0.457 ± 0.278 0.282 0.267 ± 0.187
Binary HP 0.810 0.844 ± 0.139 0.603 0.649 ± 0.149

Continuous PC 0.747 0.813 ± 0.200 0.534 0.571 ± 0.174
Continuous GES 0.637 0.562 ± 0.265 0.344 0.317 ± 0.191
Continuous HP 0.773 0.842 ± 0.145 0.497 0.622 ± 0.216

Figure 3: (left) ROC curve for the edge prediction model across all edges in the test set for binary and
continuous data including the undirected and directed prediction tasks. The kernel density estimated
distribution of DAG level AUC scores (middle) and F1 scores (right) across all test DAGs.

DAGs in the test set. In Table 1 we show the resulting overall and mean DAG-level F1 scores for
both the binary and the continuous data in comparison with the baseline approaches. We find that the
HP approach significantly outperforms the baseline approaches for the binary data for both the causal
skeleton prediction (undirected) and the full DAG (directed) prediction. For continuous data, we find
that HP outperforms the baselines for undirected and for the DAG-level directed predictions.

In the left panel of Figure 3, we show the overall ROC curves and corresponding AUC for each of the
predictive tasks. These results show that the observed error difference patterns of the first-stage model
provide a predictive signal for the existence of causal relationships among the observational variables.
This figure also shows the kernel-density-estimated distributions of AUC scores and F1 scores across
the DAGs in the test set. These results show that the binary datasets are a strong point for the HP
approach, with high average AUC and F1 scores as well as a relatively tight distribution across DAGs.
For the continuous data, the results show more variability with high average performance but with
some DAGs on which the approach performs less well.

The advantage of the approach on the binary data compared with the continuous data may be related
to the different methods used for masking the input variables for the two data types. For binary data
we were able to use a mask value (0.5) that did not occur naturally within the actual values, while
for the continuous data we replace the obscured input with the variable mean, which is likely to be
similar to many observed values in the dataset. To mitigate this factor, we also explored using an
extreme mask value that was outside the range of the variable distribution for the continuous data,
but this leads to significantly reduced performance. We will perform further study on alternative
approaches to address this issue.

To better understand model robustness and generalizability, we study model performance on datasets
with different properties. In Figure 4, we show the performance of the approach as a function of
properties of the causal structure and properties of the data, including the number of nodes in the
underlying generative DAG, the density of the DAG, and the size of the causal effect of individual
edges. For the continuous data, the causal effect size is defined as the ratio of the linear edge weight
to the noise level, while for the binary data it is defined as the average difference in probability for
the effect variable when the value of the cause variable is flipped. We find that the models perform
slightly better on smaller DAGs compared with larger ones, but the trend is very shallow providing a
hopeful indicator on the potential scalability of the method. We also find very strong performance
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Table 2: Mean DAG-level edge prediction performance under ablation experiments with the change
from the original model shown in parentheses and the largest performance reduction in bold.

Model Variant Undirected Undirected Directed Directed
DAG AUC DAG F1 DAG AUC DAG F1

Binary Original model 0.868 0.844 0.821 0.649
(a) Remove value features 0.867 (-0.001) 0.851 (+0.007) 0.828 (+0.007) 0.651 (+0.002)
(b) Remove attention 0.865 (-0.003) 0.844 (+0.000) 0.798 (-0.023) 0.631 (-0.018)
(c) Use error delta 0.867 (-0.001) 0.841 (-0.003) 0.782 (-0.039) 0.620 (-0.029)
(d) Use error sign 0.740 (-0.128) 0.638 (-0.206) 0.654 (-0.167) 0.431 (-0.218)

Continuous Original model 0.833 0.842 0.767 0.622
(a) Remove value features 0.828 (-0.005) 0.839 (-0.003) 0.764 (-0.003) 0.629 (+0.007)
(b) Remove attention 0.819 (-0.014) 0.831 (-0.011) 0.758 (-0.009) 0.620 (-0.002)
(c) Use error delta 0.800 (-0.033) 0.796 (-0.046) 0.715 (-0.052) 0.554 (-0.066)
(d) Use error sign 0.788 (-0.045) 0.800 (-0.042) 0.703 (-0.064) 0.551 (-0.071)

Figure 4: DAG-level F1 scores for DAGs with different numbers of nodes (left) and densities (center)
and the edge-level recall values for edges with different effect sizes (right). The line shows the mean
in each bin, while the band shows the standard deviation.

on the lowest density DAGs, which may be the easiest to infer due to lower levels of confounding.
However, we also find that performance increases slightly on the highest density DAGs as well.
Finally, for the binary data we observe the intuitive relationship that edges with larger effect sizes are
more likely to be detected by the model, while the trend is less strong for the continuous datasets.

For the first-stage models, we observe a mean training time of 22 seconds for each DAG when running
on CPU. To train the edge prediction models takes around 4 hours on a Tesla P100-PCIE-16GB GPU,
while using the trained edge prediction model to infer the causal structure of a new dataset takes
approximately 3.5 seconds.

4.4 ABLATION STUDY

To understand the important features of the modeling approach, we perform an ablation study. The
modeling decisions that we evaluate are (a) the inclusion of the observational values as features, (b)
the use of the attention mechanism, (c) replacing the pair of observed errors with the difference in
error, and (d) replacing the pair of observed errors with the sign of the error difference.

Consistently across both the binary and the continuous datasets, the inclusion of the original ob-
servational values (a) were not a useful predictor of the causal relationships. While this would be
expected for the binary data, it is somewhat surprising for the continuous data where the difference
of the variable from mean (which is used as the mask value) could be an indicator of the amount of
evidence that instance can provide for a causal relationship. It is possible that the model learns to rely
on the raw values of the errors as a proxy, with instances further from the mean likely having larger
errors when relevant inputs are obscured. We find that the use of the attention mechanism (b) has an
inconsistent level of effect across the different models, but does tend to improve the performance
especially for the directed binary predictions and the undirected continuous predictions. We study the
way the models leverage attention in the next section. Finally, we find that removing the individual
values of the errors for each mask, either by using the difference (c) or the sign of the difference (d)
as a feature, has a significant harmful impact on most of the models. This indicates that the model is
relying on knowledge of the whether the individual instance is "easy" or "hard" to predict in order to
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Figure 5: Mean attention weights for mask-pair observations with different properties.

interpret the evidence that the instance provides for the existence of a causal relationship rather than
just focusing on whether the prediction improves or gets worse.

4.5 ATTENTION ANALYSIS

While we have shown that the attention mechanism has a fairly small benefit for model performance,
it does have the benefit of providing a mechanism to probe the types of instances that are found to
be informative by the model. To identify which mask-pair examples the model focuses on when
aggregating the predictions across multiple instances, we analyze the learned attention weights for
instances with different properties. Figure 5 shows how the mean attention weight varies with several
instance properties for different models. Among the features we explore, we find that the number of
unobscured inputs has the strongest effect on the learned attention. For the directed edge prediction,
the models learn to up-weight the predictions for mask-pairs with low numbers of unobscured inputs,
while for undirected prediction the models focus more evenly. We find that the models learn to
up-weight instances with a larger observed difference in the errors, which likely provide larger
evidence of a causal effect, especially for continuous data. Finally, we find that for continuous data
the models also up-weight observations with larger mean error values between the two masks, which
shows that "harder" instances are more important for inferring causal relationships.

5 CONCLUSIONS AND FUTURE WORK

We propose a novel approach that uses deep learning model errors as a predictive signal to discover
causal relationships among the variables from observational data. We first develop an efficient method
to probe the model for differing errors when provided different sets of inputs. We then develop a
predictive modeling approach to interpret the patterns in these observed errors for the inference of
causal relationships. We find that the observed error differences for different input feature maps are
predictive of causal edge existence for both binary and continuous datasets, outperforming commonly
used causal discovery baselines. Through these results we demonstrate the feasibility of using model
errors for causal structure inference.

Future efforts will focus on two key directions to enable practical application - generalizability and
scalability. The supervised edge prediction model will need to be tested on data from outside the
training distribution to explore whether the learned patterns generalize. We expect the deep learning
based approach has the potential to generalize well to multiple data types and functional relationships
among variables compared with traditional causal discovery algorithms. Therefore, future work will
prioritize the application and evaluation of the approach to more mixed-type real-world datasets
and will prioritize increasing the diversity of the edge prediction training set to encourage such
generalizability. We will also explore the scalability of the approach to larger causal graphs which
are more challenging for many causal discovery algorithms but are often encountered in real world
applications. Among the questions that will need to be addressed for this is the number of mask-
pair samples that will need to be generated to explore the space of the conditional dependence
relationships. Finally, while the current approach relies on a two stage training procedure to generate
the predictive error comparisons and then interpret them, future work will be targeted to develop a
single step integrated training procedure to simultaneously explore the error patterns and infer the
causal relationships.

� And that’s what it’s all about �
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