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Abstract

GPU kernel optimization has long been a central challenge at the intersection of1

high-performance computing and machine learning. Efficient kernels are crucial2

for accelerating large language model (LLM) training and serving, yet attaining3

high performance typically requires extensive manual tuning. Compiler-based4

systems reduce some of this burden, but still demand substantial manual design5

and engineering effort. Recently, researchers have explored using LLMs for GPU6

kernel generation, though prior work has largely focused on translating high-level7

PyTorch modules into CUDA code. In this work, we introduce Astra, the first8

LLM-based multi-agent system for GPU kernel optimization. Unlike previous9

approaches, Astra starts from existing CUDA implementations extracted from10

SGLang, a widely deployed framework for serving LLMs, rather than treating11

PyTorch modules as the specification. Within Astra, specialized LLM agents12

collaborate through iterative code generation, testing, profiling, and planning to13

produce kernels that are both correct and high-performance. On kernels from14

SGLang, Astra achieves an average speedup of 1.32× using zero-shot prompting15

with OpenAI o4-mini. A detailed case study further demonstrates that LLMs16

can autonomously apply loop transformations, optimize memory access patterns,17

exploit CUDA intrinsics, and leverage fast math operations to yield substantial18

performance gains. Our work highlights multi-agent LLM systems as a promising19

new paradigm for GPU kernel optimization.20

1 Introduction21

Recent advances in large language models (LLMs) have led to state-of-the-art performance on a22

wide range of tasks, including reasoning and code generation [1–6]. Building on these capabilities,23

autonomous agents powered by LLMs have begun to automate parts of the software development24

pipeline [7–9]. In this work, we investigate the application of LLM-powered agents to GPU kernel25

optimization, a long-standing challenge at the intersection of high-performance computing and26

machine learning that requires generating code that is both correct and highly optimized.27

GPU kernel optimization is essential for improving the efficiency of LLM serving and training, which28

is critical for the successful deployment of LLMs. However, even with decades of advances in29

GPU programming, kernel development remains a fundamentally difficult real-world engineering30

problem. Rapid hardware evolution often requires extensive manual tuning and reimplementation. For31

example, FlashAttention-2 [10] suffered a 47% performance drop when first ported to NVIDIA’s H10032

GPUs, and it was only after more than two years that FlashAttention-3 [11] introduced substantial33

new optimizations to recover performance. In addition, emerging model architectures [12–15] and34

dynamic workloads with variable input lengths [16] further complicate kernel optimization. As a35
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#include <cuda_runtime.h>
__global__ void silu(...)
{
  int bx = blockIdx.x;
  int tx = threadIdx.x;
  int bd = blockDim.x;
  int i = bx * bd + tx;
  ...
}

Figure 1: Overview of Astra. Given an existing GPU kernel extracted from SGLang, Astra employs a
multi-agent approach for kernel optimization, where specialized LLM agents collaborate through
iterative code generation, testing, profiling, and planning to produce correct and high-performance
kernels.

result, many available kernel implementations operate well below hardware peak. Closing this gap is36

vital for advancing performance, reducing costs, and improving energy efficiency.37

From a systems perspective, there are two dominant paradigms for GPU kernel optimization. The38

first is fully manual tuning, exemplified by libraries such as NVIDIA cuDNN [17]. This approach39

demands extensive manual effort, involves time-consuming engineering cycles, and can still leave op-40

timization opportunities untapped. The second paradigm is compiler-based optimization, represented41

by systems such as TVM [18], Triton [19], Mirage [20], ThunderKittens [21], and others [22, 23].42

For instance, Triton introduces a tile-level intermediate representation combined with autotuning to43

deliver performance close to hand-optimized kernels, significantly reducing the engineering burden44

for end users. Nevertheless, these compiler-based systems themselves require substantial engineering45

effort to develop and must be continuously adapted as hardware evolves.46

Given the significant potential of LLMs, researchers have actively explored their use for GPU kernel47

optimization. KernelBench [24] is a pioneering work that first formulates the task for LLMs and48

introduces a corresponding benchmark. Other studies have explored single-agent approaches [25–27]49

as well as training-based methods for improving LLMs [28, 29].50

In this work, we introduce Astra, the first LLM-based multi-agent system for GPU kernel optimization.51

Our key observation is that kernel optimization is inherently a multi-stage process that includes code52

generation, testing, profiling, and planning, and a single LLM agent is unlikely to excel at all of these53

tasks. As shown in Figure 1, Astra addresses this challenge by decomposing the task into specialized54

agents that collaborate iteratively. This coordinated workflow leverages complementary agent55

capabilities, enabling systematic exploration of the optimization space and consistently producing56

kernels that are both correct and high-performance.57

Our setting contrasts with KernelBench [30] in two important respects. Unlike KernelBench, which58

frames the task as generating CUDA kernels from high-level PyTorch models written in Python,59

we focus on optimizing existing CUDA implementations. This reflects the reality of production60

environments, where kernels are already available and the real challenge is squeezing out additional61

performance rather than generating CUDA code from scratch. KernelBench has already demonstrated62

that translation from Python to CUDA is non-trivial for LLMs; our work focuses squarely on63

performance optimization and avoids the additional burden of translation, which can introduce errors64

and degrade performance. In addition, our kernels are taken directly from SGLang [31] and can be65

seamlessly reintegrated into the system. As SGLang is a production-grade LLM serving framework66

deployed at scale and responsible for generating trillions of tokens per day across major enterprises67

and institutions, even modest kernel-level improvements can yield substantial real-world impact.68
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We evaluate Astra on three kernels extracted from SGLang [31] and observe an average speedup69

of 1.32× using zero-shot prompting with OpenAI o4-mini. Importantly, these results are achieved70

without any additional training, including supervised fine-tuning or reinforcement learning, which71

highlights the effectiveness of our approach in a pure prompting setting and suggests further potential72

when combined with training-based methods. To demonstrate the necessity of dedicated agent roles,73

we compare against a single-agent baseline, which attains only 1.08× speedup on average. Finally,74

we conduct an in-depth case analysis to investigate the source of performance gains. Our findings75

show that LLMs can autonomously apply loop transformations, restructure memory access patterns,76

make extensive use of CUDA intrinsics, and exploit fast math operations, all of which contribute to77

the observed speedups.78

In summary, our contributions are:79

• We design and implement Astra, a multi-agent system for GPU kernel optimization, in which80

specialized LLM agents collaborate through iterative code generation, testing, profiling, and81

planning to produce correct and high-performance kernels.82

• We demonstrate an average speedup of 1.32× on kernels from SGLang, a production-grade83

LLM serving framework, and our optimized kernels can be seamlessly reintegrated to deliver84

substantial real-world impact.85

• We conduct a detailed manual analysis of the kernels generated by Astra and identify the86

optimization strategies, including loop transformations, memory access improvements,87

extensive use of CUDA intrinsics, and faster math operations, that account for the observed88

speedups.89

2 Related Work90

Multi-Agent Systems Multi-agent systems (MAS) consist of multiple interacting agents that91

collaborate to solve complex, shared problems that exceed the capabilities of a single agent. This92

paradigm is particularly well-suited to programming, where intricate workflows can be naturally93

decomposed into sub-tasks such as planning, implementation, testing, and profiling. Recent work has94

explored multi-agent frameworks including AutoGen [32], Trace [33], and MetaGPT [34, 35], which95

have demonstrated strong performance on benchmarks in mathematics and code generation [36–39, 9].96

However, there has been little exploration of applying MAS to GPU kernel optimization, a domain97

where highly specialized performance considerations introduce unique challenges.98

Compiler and Learning-Based Approaches to GPU Kernel Optimization GPU kernel optimiza-99

tion has long been driven by compiler frameworks and domain-specific languages (DSLs). Systems100

such as Halide [40], TVM [18], MLIR [41], TensorFlow XLA [42], and NVIDIA CUTLASS [43],101

along with others [44–48], provide high-level abstractions for expressing tensor computations and102

support compiler-driven optimizations. To further improve performance, autotuning frameworks103

such as AutoTVM [18], Ansor [22], and AMOS [23] leverage search and machine learning to104

explore large optimization spaces. More recent systems, including Triton [19], Mirage [20], and105

ThunderKittens [21], expand on these ideas. For example, Triton introduces a tile-level intermediate106

representation and autotuning, achieving performance close to hand-optimized kernels. Nevertheless,107

compiler-based approaches often fall short of expert-level performance without extensive tuning, and108

generalization across hardware platforms remains difficult [21]. Despite their progress, these systems109

are still constrained by rigid compilation pipelines and require significant engineering effort to build.110

LLM-Driven Approaches to High-Performance Code Generation Early efforts in LLM-based111

code generation, such as AlphaCode [49], primarily targeted general-purpose programming tasks and112

demonstrated promising results. More recently, research has increasingly focused on domain-specific113

high-performance code generation, spanning tasks such as vectorization [50, 51], assembly-level114

optimization [52], parallel programming with domain-specific languages (DSLs) [53, 39, 54], and115

tensor program optimization [55]. A particularly active direction is the automatic generation of116

performant GPU kernels [24, 56]. Because code optimization provides verifiable rewards, iterative117

refinement has emerged as a natural paradigm: models generate candidate kernels and progressively118

improve them through feedback loops involving compilation checks, correctness validation, runtime119

profiling, or self-reflection [24, 57, 39]. Unlike general code generation tasks, a central challenge in120
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code optimization is to ensure that LLMs generate code that is both functionally correct and highly121

optimized, where correctness means equivalence to the original program for all inputs [58, 59]. To122

tackle this challenge, researchers have explored both prompt-based approaches [60, 61, 26, 27, 25,123

62] and training-based methods, including multi-turn reinforcement learning [28] and contrastive124

reinforcement learning [29]. Our work addresses this challenge by adopting a multi-agent system125

approach.126

3 Method127

3.1 Task Definition128

The goal of CUDA optimization is to produce an optimized kernel S′ that runs faster than the baseline129

kernel S while preserving its functional correctness. Below, we formally define the correctness and130

performance criteria, and then outline how our setup differs from prior work.131

Correctness. Let X be the input domain and Y the output space. The baseline and optimized132

kernels are functions S, S′ : X → Y . Ideally, we require133

∀x ∈ X : S′(x) = S(x),

or, allowing floating-point deviations,134

∀x ∈ X : d
(
S′(x), S(x)

)
≤ ε,

for a discrepancy metric d and tolerance ε ≥ 0. Since exact equivalence is undecidable in practice,135

we evaluate correctness on a finite test suite136

T = {(xi, yi)}mi=1, yi := S(xi),

where the xi are chosen to represent diverse tensor shapes and values. We deem S′ correct if137

max
1≤i≤m

d
(
S′(xi), yi

)
≤ ε.

Performance. Let τ(S, x) denote the runtime of kernel S on input x ∈ X . For each input x, the138

speedup is139

σ(x) =
τ(S, x)

τ(S′, x)
.

To summarize results over the test suite T , we report the geometric mean σT , which is the standard140

choice for averaging speedups because it correctly aggregates ratios, is symmetric between speedups141

and slowdowns, and reduces the influence of outliers:142

σT =

(
m∏
i=1

τ(S, xi)

τ(S′, xi)

)1/m

.

The optimization objective is to maximize this geometric-mean speedup while preserving correctness.143

3.2 Multi-Agent System144

Agent Roles. As shown in Figure 1, Astra is organized around four specialized agents, each145

responsible for a distinct stage of the CUDA optimization pipeline. The testing agent creates a suite146

of test cases from the baseline kernel and checks the correctness of candidate kernels. The profiling147

agent measures execution time on the test suite, providing performance feedback. The planning agent148

combines correctness and performance signals to propose targeted modifications. The coding agent149

applies these suggestions to generate new kernel implementations. Together, these agents form a150

feedback loop that supports iterative refinement while preserving correctness.151

Algorithm. Algorithm 1 outlines the multi-agent optimization procedure. The process begins with152

the construction of an initial test suite and profiling of the baseline kernel. The system then proceeds153

through R iterative rounds: in each round, the planning agent proposes modifications, the coding154

agent generates a new candidate kernel, and the testing and profiling agents re-evaluate correctness155

and performance. All results are recorded in a log of tuples (round, code, correctness, performance),156

where correctness is a binary indicator of whether the candidate passes the tests. This log enables157

systematic tracking of the optimization trajectory.158
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Algorithm 1 Multi-Agent CUDA Optimization

Input: Baseline CUDA code S0, number of rounds R
Define: TestingAgent ▷ Generate or run tests.

ProfilingAgent ▷ Measure performance.
PlanningAgent ▷ Propose suggestions given correctness and performance signals.
CodingAgent ▷ Apply suggestions to previous code Sprev
Log ▷ List of (round, code, correctness, performance) for all iterations.
Test suite T ▷ Tests generated by TestingAgent.

Output: Log
1: T ← TestingAgent.GenerateTests(S0) ▷ Initialization
2: perf0 ← ProfilingAgent.Profile(S0, T )
3: Log← [ ]
4: Append(Log, (0, S0,True, perf0))
5: Sprev ← S0

6: passprev ← True
7: perfprev ← perf0
8: for r ← 1 to R do ▷ Iterative optimization starts
9: suggestions← PlanningAgent.Suggest(Sprev, passprev, perfprev)

10: Snew ← CodingAgent.Apply(Sprev, suggestions)
11: passnew ← TestingAgent.Validate(Snew, T )
12: perfnew ← ProfilingAgent.Profile(Snew, T )
13: Append(Log, (r, Snew, passnew, perfnew))
14: Sprev ← Snew
15: passprev ← passnew
16: perfprev ← perfnew

17: return Log

Pre-Processing and Post-Processing. Allowing Astra to directly optimize the raw CUDA kernels159

in the SGLang framework [31] is difficult because these kernels have many internal dependencies.160

To address this, we perform a manual pre-processing step: extracting and simplifying the kernels161

into stand-alone versions that serve as the baseline inputs for Astra. After optimization, we apply a162

post-processing step that integrates the generated kernels back into SGLang and validates them against163

the original framework implementation (rather than only the extracted version). We report speedups164

relative to the original SGLang kernels, ensuring that the optimized kernels can be seamlessly165

integrated into the framework as drop-in replacements and that performance is measured within the166

full framework.167

4 Experimental Setup168

Metrics. Our evaluation focuses on both correctness and performance. Correctness is determined169

using test cases that we construct with diverse tensor input shapes. We compare the outputs of170

generated kernels against the execution results of the original SGlang implementation, which serves171

as the ground truth. For performance, we measure the execution time of both the original kernel172

and the optimized version on the same tensor shapes, and report speedup as the metric. While the173

multi-agent framework internally produces its own test cases through the testing agent, the final174

evaluation relies on manually designed test cases to ensure high confidence in functional validation.175

Kernels. We evaluate three kernels from the LLM serving framework SGLang [31]:176

silu_and_mul, fused_add_rmsnorm, and merge_attn_states_lse. Their computations are177

summarized in Table 1.178

Performance Measurement. We evaluate performance across a range of input shapes and report179

average results. For each input shape, we run 100 repetitions after 20 warm-up runs. The input180

shapes are selected based on the actual dimensions used in modern LLMs, including the LLaMA-7B,181

13B, and 70B models. A detailed analysis of how input shapes affect performance is provided in182

Section 6.1.183
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Index Kernel Name Computation

Kernel 1 merge_attn_states_lse Vout =
eSa Va + eSb Vb

eSa + eSb
,

Sout = log
(
eSa + eSb

)
Kernel 2 fused_add_rmsnorm y =

x+ r√
1
D
∥x+ r∥22 + ε

⊙w

Kernel 3 silu_and_mul
out = SiLU(x)⊙ g,

SiLU(z) = z
1+e−z

Table 1: Kernel names and computations.

Kernel LoC-Base LoC-Opt. ∆LoC Time-Base Time-Opt. Speedup Correct
Kernel 1 124 232 +87% 31.4 24.9 1.26× ✓
Kernel 2 108 163 +50% 41.3 33.1 1.25× ✓
Kernel 3 99 157 +59% 20.1 13.8 1.46× ✓

Average 110 184 +64% 30.9 23.9 1.32× ✓

Table 2: Baseline vs. optimized kernels: Lines of Code (LoC) and execution time (µs). All kernels
optimized by our multi-agent system are correct.

Implementation. We implement our multi-agent system with the OpenAI Agents SDK frame-184

work [63], which offers standardized abstractions for defining agents and integrating function tools.185

The agents are powered by OpenAI’s o4-mini model, and all experiments are conducted on a186

machine equipped with NVIDIA H100 GPUs. We set the number of rounds to optimize R to be 5.187

5 Results188

5.1 Main Results189

Correctness. As shown in the last column of Table 2, all three optimized kernels are validated190

against the original SGLang implementations and confirmed to be correct. As described in Section 4,191

we do not rely on test cases generated by the testing agent for functional validation. Instead, we192

manually construct test cases for the kernels produced by Astra and check their outputs against the193

original SGLang kernels.194

Performance. Table 2 summarizes the performance gains achieved by Astra across the three kernels.195

The results show that Astra can consistently improve performance while preserving correctness. For196

merge_attn_states_lse (Kernel 1), the optimized version has 87% more lines of code and delivers197

a 1.26× speedup. For fused_add_rmsnorm (Kernel 2), the optimized kernel contains 50% more198

lines and achieves a 1.25× speedup. For silu_and_mul (Kernel 3), the optimized kernel has 59%199

more lines and yields a 1.46× speedup. Overall, with only five optimization rounds, Astra achieves200

an average speedup of 1.32× and up to 1.46×, measured over a set of representative tensor shapes.201

We present detailed case studies in Section 5.3 and analyze how tensor shapes influence performance202

in Section 6.1.203

5.2 Comparison with Single-Agent Approach204

Setup of Single-Agent Method. In the single-agent setting, we continue to use the OpenAI Agents205

SDK framework but instantiate only one agent. This agent handles all tasks, including testing,206

profiling, planning, and code generation, and has access to the same set of tools as in the multi-agent207

setting. For fairness, we run the same number of optimization rounds, set to five, and the only208

difference lies in the number of agents involved.209
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Kernel Time-Base (µs) Correct - SA Speedup - SA Correct - MA Speedup - MA

Kernel 1 31.4 ✓ 0.73× ✓ 1.26×
Kernel 2 41.3 ✓ 1.18× ✓ 1.25×
Kernel 3 20.1 ✓ 1.48× ✓ 1.46×

Average 30.9 ✓ 1.08× ✓ 1.32×

Table 3: Single-Agent (SA) vs. Multi-Agent (MA) comparison: baseline runtime (Time-Base),
correctness, and speedup (×).

1 // two scalar scores
2 float sa = score_a, sb = score_b;
3 // inner loop
4 for (int d = 0; d < D; ++d)
5 {
6 float smax = fmaxf(sa, sb); // repeated
7 float wa = expf(sa - smax); // repeated
8 float wb = expf(sb - smax); // repeated
9 float inv = 1.0f / (wa + wb + 1e-12f);

10 float a = wa * inv, b = wb * inv;
11 out[d] = a * va[d] + b * vb[d];
12 }

(a) Baseline: recompute inside the inner loop

1 // compute once per output vector
2 float sa = score_a, sb = score_b;
3 float smax = fmaxf(sa, sb);
4 float wa = expf(sa - smax), wb = expf(sb - smax);
5 float inv = 1.0f / (wa + wb + 1e-12f);
6 float a = wa * inv;
7 float b = wb * inv;
8
9 // lightweight inner loop

10 for (int d = 0; d < D; ++d) {
11 out[d] = a * va[d] + b * vb[d];
12 }

(b) Optimized: hoist loop-invariant computations

Figure 2: Hoisting loop-invariant computation in merge_attn_states_lse.

Performance. As shown in Table 3, the multi-agent approach achieves higher performance speedup210

than the single-agent approach (1.32× vs. 1.08×), while both approaches consistently generate correct211

kernels. We observe that the advantages of the multi-agent setup become more pronounced as kernel212

complexity increases. For kernel 3, which is relatively simple, the performance of both approaches is213

comparable. In contrast, kernel 1 is the most complex and exposes the limitations of the single-agent214

setup, where certain tasks may not be carried out effectively enough to yield good overall results. In215

particular, the slowdown of Kernel 1 under the single-agent setting was due to unrepresentative test216

inputs generated during test construction, which biased the profiling results. This issue does not occur217

in the multi-agent approach, where one agent is dedicated to generating representative test inputs218

and another to conducting profiling. Overall, these findings demonstrate that Astra provides greater219

advantages over the single-agent setup when handling more complex kernels.220

5.3 Case Studies221

We compare the source code of the baseline and Astra-optimized kernels and conduct detailed per-222

formance profiling with NVIDIA Nsight Compute. Overall, the speedups stem from eliminating223

redundant computation, improving memory-access efficiency, and exploiting advanced CUDA fea-224

tures. Concretely, the optimized kernels apply loop transformations to enhance parallelism, adopt225

more aggressive memory-access strategies to maximize bandwidth, make extensive use of CUDA226

intrinsics for hardware-level efficiency, and leverage fast math operations. The following examples227

illustrate these optimization strategies.228

Kernel 1: merge_attn_states_lse A key optimization shown in Figure 2 is hoisting loop-229

invariant computations out of the inner element loop. In the baseline, the mixing weights and their230

normalization are recomputed for every element of the output vector, incurring repeated exponentials231

and a division within the hot loop. The optimized version computes these quantities once per output232

vector, leaving the inner loop with only memory loads, multiply–add, and a store. By removing233

expensive operations from the loop body, the optimized kernel lowers the instruction count and234

increases throughput without affecting correctness.235

Kernel 2: fused_add_rmsnorm This kernel contains a block-level reduction that dominates236

runtime. As shown in Figure 3, the baseline implements a tree-based reduction in on-chip shared237

memory, which already improves latency and bandwidth relative to a naive global-memory reduction,238
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1 /* tx = threadIdx.x, BS = BLOCK_SIZE */
2 __shared__ float sm[BS];
3
4 float s = ...; // per-thread sum
5 sm[tx] = s;
6 __syncthreads();
7
8 for (int off = BS/2; off > 0; off >>= 1) {
9 if (tx < off)

10 sm[tx] += sm[tx + off];
11 __syncthreads();
12 }
13 ...

(a) Baseline: shared-memory tree reduction

1 /* lane = tx & 31, warp = tx >> 5 */
2 float s = ...; // per-thread sum
3
4 unsigned m = 0xffffffffu; // intra-warp
5 for (int off = 16; off > 0; off >>= 1)
6 s += __shfl_down_sync(m, s, off);
7
8 __shared__ float ws[BS/32]; // one per warp
9 if (lane == 0)

10 ws[warp] = s;
11 __syncthreads();
12
13 ...

(b) Optimized: warp-level shuffle, brief shared-
memory finalize

Figure 3: Reduction strategies in fused_add_rmsnorm. Figure 3a: block-level tree reduction in
shared memory with synchronization each step. Figure 3b: intra-warp reduction in registers using
__shfl_down_sync, followed by a short inter-warp aggregation in shared memory.

1 ...
2 const __half* x_ptr = row_in;
3 __half xv = x_ptr[vec_idx];
4 ...

(a) Baseline: scalar half-precision

1 ...
2 __half2* x2 = reinterpret_cast<__half2*>(row_in);
3 __half2 xv2 = x2[vec_idx];
4 ...

(b) Optimized: half2 vectorized load

Figure 4: Comparison of global-memory loads in the baseline and optimized kernels. The baseline
uses a scalar half-precision load, while the optimized version employs a vectorized half2 load for
improved efficiency.

1 __device__ float silu_f(float x)
2 {
3 return x / (1.0f + expf(-x));
4 }

(a) Baseline: standard library math + division

1 __device__ float silu_fastf(float x) {
2 float y = __expf(-x);
3 float r = __frcp_rn(1.0f + y);
4 return __fmul_rn(x, r);
5 }

(b) Optimized: fast-math intrinsics

Figure 5: Side-by-side SiLU implementations. The optimized kernel replaces a division with a
reciprocal–multiply sequence and uses the fast exponential intrinsic, improving compute throughput.

but progressively disables threads as the reduction proceeds. The optimized version first performs an239

intra-warp reduction using warp-level intrinsics (__shfl_down_sync), which keeps partial sums in240

registers and reduces synchronization overhead. The remaining inter-warp reduction is then completed241

in shared memory. This register-resident intra-warp phase, followed by a short shared-memory phase,242

yields higher arithmetic throughput and lower memory traffic than the shared-memory-only approach.243

Kernel 3: silu_and_mul We highlight two key optimization strategies: vectorized memory access244

and the use of fast math intrinsics. As shown in Figure 4, the baseline kernel performs scalar loads,245

fetching each __half value individually from global memory. In contrast, the optimized kernel246

employs vectorized loads by grouping two contiguous FP16 values into a __half2 type, allowing247

each instruction to retrieve a pair of elements simultaneously. This reduces the number of memory248

transactions and increases effective memory bandwidth. Similar vectorized access patterns are also249

applied in Kernel 1 and Kernel 2.250

Beyond memory access, compute throughput is further improved through an optimized SiLU im-251

plementation. The baseline computes SiLU using standard math library calls and a floating-point252

division (Figure 5a). The optimized kernel (Figure 5b) instead uses CUDA device intrinsics: __expf253

for exponentiation, __frcp_rn for reciprocal, and __fmul_rn for multiplication. Replacing the254

division with a reciprocal–multiplication sequence reduces instruction latency, improves arithmetic255

pipeline utilization, and achieves faster execution while preserving numerical correctness.256
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Kernel Shapes Time-Base (µs) Time-Opt. (µs) Speedup

Kernel 1

[512, 32, 256] 32.9 22.6 1.46x
[512, 40, 128] 32.4 20.6 1.57x
[768, 32, 256] 32.5 32.5 1.00x
[512, 64, 128] 32.0 28.2 1.14x

Kernel 2

[256, 4096] 24.3 18.3 1.33x
[1024, 4096] 34.0 28.3 1.20x
[128, 11008] 25.0 19.4 1.28x
[512, 14336] 46.1 43.0 1.07x

Kernel 3

[16, 4096] 20.9 14.2 1.47
[32, 5120] 20.3 13.7 1.49
[64, 8192] 20.3 13.5 1.50
[16, 12288] 20.4 13.6 1.50

Table 4: Impact of tensor shapes on performance.

6 Discussion257

6.1 Impact of Tensor Shapes on Performance Speedup258

To study the effect of tensor shapes on performance, we report results for four representative shapes for259

each kernel. As shown in Table 4, the kernels optimized by Astra achieve consistent speedups across260

different shapes. For merge_attn_states_lse (kernel 1), we use shapes of the form [seq_len,261

number_of_heads, head_dim]; for fused_add_rmsnorm (kernel 2) and silu_and_mul (kernel 3),262

we use [batch_size, hidden_size]. Since performance speedup varies with tensor shape, in Section 5263

we report the average speedup for each kernel across a set of common shapes drawn from widely used264

open-source models, ensuring that the results generalize across diverse shapes and serving scenarios.265

Unlike tensor compiler optimization approaches [22, 23], which perform shape-specific tuning, Astra266

does not prompt agents to optimize for a particular shape. Instead, it aims to deliver performance267

improvements for general tensor computations.268

6.2 Limitations and Future Work269

Our evaluation currently focuses on three CUDA kernels, and the framework is tailored to270

SGLang [31]. In future work, we aim to extend support to a broader set of kernels and additional271

frameworks such as vLLM [64], PyTorch [65], and TorchTitan [66].272

A key limitation is that the pre-processing and post-processing steps (Section 3.2) are fully manual.273

Pre-processing requires extracting and simplifying kernels into stand-alone versions suitable as inputs274

to Astra, while post-processing involves monkey-patching the optimized kernels back into SGLang275

and validating them against the original implementation. These steps are non-trivial to automate due276

to the complexity of modern serving frameworks. Future research should explore how to make this277

process more automated, potentially with human-in-the-loop guidance, so that Astra can scale to278

larger sets of kernels.279

7 Conclusion280

GPU kernel optimization is a critical yet labor-intensive challenge in high-performance computing281

and machine learning. In this work, we introduced Astra, the first LLM-based multi-agent system282

designed specifically for GPU kernel optimization. Unlike prior approaches that translate high-level283

PyTorch modules into CUDA code, Astra operates directly on existing CUDA kernels from SGLang,284

a widely deployed LLM serving framework. By coordinating specialized agents for code generation,285

testing, profiling, and planning, Astra produces kernels that are both correct and high-performance.286

Our evaluation shows that Astra delivers an average speedup of 1.32×, with case studies highlighting287

how LLMs can autonomously apply loop transformations, restructure memory access, exploit CUDA288

intrinsics, and leverage fast math operations. These results underscore the promise of multi-agent289

LLM systems as a new paradigm for kernel performance optimization.290
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