
Under review as a conference paper at ICLR 2024

COMPLETION CONSISTENCY FOR POINT CLOUD COM-
PLETION ENHANCEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Point cloud completion networks are conventionally trained to minimize the dis-
parities between the completed point cloud and the ground-truth counterpart.
However, an incomplete object-level point cloud can have multiple valid comple-
tion solutions when it is examined in isolation. This one-to-many mapping issue
can cause contradictory supervision signals to the network, because the loss func-
tion may produce various values for identical input-output pairs of the network.
And in many cases, this issue could adversely impact the network optimization
process. In this work, we propose to enhance the conventional learning objec-
tive using a novel completion consistency loss to mitigate the one-to-many map-
ping problem. Specifically, the proposed consistency loss imposes a constraint
to ensure that a point cloud completion network generates a consistent comple-
tion solution for incomplete objects originating from the same source point cloud.
Experimental results across multiple well-established datasets and benchmarks
demonstrate the excellent capability of the proposed completion consistency loss
to enhance the completion performance of various existing networks without any
modification to the design of the networks.

1 INTRODUCTION

In recent years, numerous studies (Yang et al., 2018; Tchapmi et al., 2019; Huang et al., 2020; Wen
et al., 2021; Chen et al., 2023) have been conducted to leverage deep neural networks to complete
occluded object-level point clouds1. These point cloud completion networks (PCCNs) are often
designed to take locally-incomplete point clouds as input and generate complete point clouds as out-
put. Although recent developments in PCCNs have led to a steady improvement of the completion
performance, achieving accurate point cloud completion for a diverse set of objects remains chal-
lenging. This challenge is apparent when we compare the completion accuracy of state-of-the-art
PCCNs on two different benchmarks: PCN (Yuan et al., 2018) that consists of 30K point clouds
from 8 shape categories, and the more diverse Shapenet55 (Yu et al., 2021) benchmark that consists
of 52K point clouds from 55 shape categories. Given that objects in the real-world are often diverse,
it is important to bridge this gap and improve the completion accuracy of PCCNs for a diverse set of
objects.

Improvements of the completion performance of recent PCCNs can primarily be attributed to in-
novations in network architectures (Yuan et al., 2018; Yu et al., 2021; Zhang et al., 2022), point
generation strategies (Xiang et al., 2021; Tang et al., 2022; Wen et al., 2022), or representations
(Zhou et al., 2022). On the other hand, the training strategy employed by existing PCCNs has re-
mained relatively unchanged, that is, to minimize the dissimilarities between the predicted complete
point clouds and the ground truths (Fei et al., 2022), often measured using the computationally ef-
ficient Chamfer Distance metric (Fan et al., 2017). Unfortunately, the straightforwardness of such
a training strategy is not without a potential drawback: an incomplete point cloud, when inspected
independently without additional information, could have multiple valid solutions according to the
CD metric.

To illustrate, consider a simple scenario in which an incomplete point cloud has a partial cuboid
shape, shown in Figure 1. This incomplete point cloud can be obtained from various objects such as

1we use the terms ”object” and ”point cloud” interchangeably to refer to object-level point clouds
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a table, a bed, or other type of objects. We hypothesize that such scenarios can lead to contradictory
supervision signals during the training process, in which the loss function could yield various values
for the same input-output pairs. As a result, at the end of the training process, the network might
produce middle-ground-solutions for both inputs that are suboptimal in terms of completion quality.

PCCN

PCCN

low error

high error

contradictory 
supervision
signals

input prediction ground truth

input prediction ground truth

Figure 1: Contradictory supervision signals could
appear when an incomplete point cloud have mul-
tiple possible completion solutions, and could
lead the network to fall into suboptimal solution
regions. Point clouds are represented with solid
lines in the figure for clarity.

In this work, we investigate the effects of these
one-to-many mapping cases and obtain evi-
dence that support our hypothesis: the one-to-
many mapping problem can negatively affect
the training process of PCCNs. To address this,
we propose a novel completion consistency loss
that can be easily integrated into the commonly-
used training strategy, without any changes to
the design of the networks. The core idea of the
completion consistency loss is to examine mul-
tiple incomplete views of a source object at the
same time instead of inspecting them indepen-
dently. That is, at each forward-backward pass,
we sample a set of incomplete point clouds
originating from the same object, and take a
gradient descent step with considerations to the
fact that the completion solutions for each ele-
ment in this set should be identical. This is in
contrast to the conventional training strategy, in
which only one incomplete point cloud is con-
sidered for each source object at each forward-
backward pass.

To demonstrate the effectiveness of the completion consistency loss, we evaluate three existing
PCCNs, PCN (Yuan et al., 2018), AxFormNet (Zhang et al., 2022), and AdaPoinTr (Yu et al., 2023),
on well-established benchmarks (Yuan et al., 2018; Yu et al., 2021), without any modifications to
the original network architectures. In all three networks, the completion performance is improved
when the completion consistency loss is used during the training. Furthermore, we observe that
relatively fast but simple PCCNs (PCN and AxFormNet) that are trained with the consistency loss
can match the completion accuracy of more complex but slower PCCNs. In addition, experimental
results indicate that the consistency loss can improve the capability of the networks to generalize to
previously unseen shape categories. Therefore, the consistency loss could pave the way for accurate,
fast, and robust PCCNs, especially for completing a set of point clouds with diverse shapes.

2 BACKGROUND

2.1 RELATED WORK

Traditional approaches (Wu et al., 2015; Dai et al., 2017; Girdhar et al., 2016; Han et al., 2017)
for 3D shape completion task often use voxels as the data representation. However, the memory
requirement for voxel-based operations grows cubically with respect to the spatial resolution. In
contrast, point cloud representation is capable of preserving 3D structure details with low memory
requirement, and has become widely-used in many deep learning applications owing to the pioneer-
ing works of Qi et al. (2017a) and Qi et al. (2017b).

PCN (Yuan et al., 2018) is one of the first deep learning-based neural networks for point cloud com-
pletion. It utilizes an encoder-decoder-folding scheme to learn features from the partial point cloud,
and predicts the final reconstructed points with FoldingNet (Yang et al., 2018). Since then, numer-
ous network architectures for point cloud completion have been proposed. For example, TopNet
(Tchapmi et al., 2019) with softly-constrained decoder that is capable of generating point clouds
based on a hierarchical rooted tree structure and GRNet (Xie et al., 2020) that leverages gridding
operations to enable point cloud to 3D grids transformation without loss of structural information.
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Recently, attention-based architectures have grown in popularity as the go-to architecture for PCCN.
For example, PoinTr Yu et al. (2021) use a geometry-aware transformer architecture to estimate
coarse point predictions before performing refinement via FoldingNet (Yang et al., 2018), while
Seedformer (Zhou et al., 2022) introduces Patch Seeds as a new shape representation which contains
seed coordinates and features of a small region in the point cloud.

2.2 OPTIMAL TRAINING STRATEGY CAN IMPROVE COMPLETION PERFORMANCE

The works discussed in Subsection 2.1 mainly focus on architectural innovations to improve the
state-of-the-art point cloud completion performance. On the other hand, several works (Liu et al.,
2022; Qian et al., 2022; Steiner et al., 2022) have highlighted that a well-designed training strategy
can improve the performance of a neural network. As such, we posit that developing a good training
strategy could yield similar advantages for the completion performance of PCCNs.

Table 1: Completion performance on
ShapeNet55-hard where 75% of the original
points are missing. 1As reported in the
ShapeNet55 benchmark (Yu et al., 2021).

Model CDl2 × 103 ↓
PCN1 4.08
+ Improved Training 2.37
PoinTr1 1.79

A training strategy covers a wide array of aspects in-
cluding the choice of optimizer, learning rate sched-
ule, regularization techniques, data augmentations,
auxiliary tasks, and more. To emphasize the sig-
nificance of a well-designed training strategy, we
train a PCN (Yuan et al., 2018) model using the
AdamW (Loshchilov & Hutter, 2017) optimizer for
250 epochs, with a cosine annealing (Loshchilov &
Hutter, 2016) scheduler. We set the maximum and
minimum learning rates to 10−4 and 5 · 10−5, re-
spectively, and keep the network architecture and
other hyperparameters identical with those used by
Yu et al. (2021).

As shown in Table 1, the PCN model trained with this improved strategy achieved a CDl2 score of
2.37 ·10−3, a substantial improvement over the previously reported performance of 4.08 ·10−3, and
closer to the completion performance of more recent transformer-based models such as PoinTr (Yu
et al., 2021). This result clearly demonstrates the positive impacts of a good training strategy to the
completion performance of a PCCN.

2.3 LEARNING TO PREDICT ONLY THE MISSING POINTS CAN IMPROVE COMPLETION
PERFORMANCE

Another aspect of training strategy for PCCNs is the formulation of the point cloud completion
problem. In the literature, there are at least two major problem formulation for deep learning-based
point cloud completion. Let Pcom be a set of points pcom

i ∈ R3 sampled from an object O and Φ be
a neural network. We can obtain two disjoint sets from Pcom: the set of missing points Pmis and the
set of incomplete points Pinc, where Pcom = Pmis ∪ Pinc and Pmis ∩ Pinc = ∅.

Table 2: Completion performance on
ShapeNet55-hard where 75% of the original
points are missing. We use AxForm (Zhang et al.,
2022) as Φ.

Model CDl2 × 103 ↓

Φ(Pinc) = P̂mis 1.62
Φ(Pinc) = P̂com 1.80

In the first approach (Yuan et al., 2018; Zhang
et al., 2022), the goal is to estimate the en-
tire complete point cloud given an incomplete
point cloud, Φ(Pinc) = P̂com and minimize the
completion error as measured by the Chamfer
Distance, CD(P̂com,Pcom). In the second ap-
proach (Yu et al., 2021), the goal is to estimate
only the missing point cloud given an incom-
plete point cloud, Φ(Pinc) = P̂mis and minimize
CD(P̂mis,Pmis). The estimated complete point
cloud of the second approach is then the union
of the predicted missing points and the input in-
complete points, P̂com = P̂mis ∪ Pinc.

To compare the completion performance between the two approaches, we train two AxForm net-
works (Zhang et al., 2022), one for each approach. As shown in 2, the second approach (predicting
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only the missing points) yields better completion performance than the first approach (predicting
complete points). Therefore, the experiments in the following sections are based on the second
approach, for which the objective can be considered as a reconstruction loss,

Lrec
k = CD(P̂mis

k ,Pmis
k ), (1)

where CD is defined as,

CD(A,B) =
1

|A|
∑
a∈A

min
b∈B
||a− b||22 +

1

|B|
∑
b∈B

min
a∈A
||b− a||22. (2)

2.4 ONE-TO-MANY MAPPING ISSUE CAN WORSEN THE COMPLETION PERFORMANCE

Table 3: Completion performance on Toy
Datasets based on ShapeNet55-hard.

Model CDl2 × 103 ↓
AxForm on DA 2.81 ± 0.15
AxForm on DB 2.44 ± 0.10

To investigate the potential impact of the one-to-
many mapping issue on the completion performance
of PCCNs, we conduct experiments on toy datasets
that are derived from the Shapenet55 dataset. First,
we construct two types of toy datasets, DA =⋃5

i=1 DA
i and DB =

⋃5
i=1 DB

i , where DA
i and DB

i
each consists of 5,000 samples from ShapeNet55.
The samples in DA

i is selected in a way such that,
on average, the CD-score between Pinc

j ∈ DA
i and

Pinc
k ∈ DA

i , j ̸= k, is relatively low, but the CD-
score between Pmis

j ∈ DA
i and Pmis

k ∈ DA
i , j ̸= k, is relatively high. Further details regarding

the steps to generate DA can be found in Appendix A.1. Meanwhile, samples in DB
i are randomly

selected from Shapenet55 with uniform probabilities and therefore is statistically similar to the full
ShapeNet55 dataset.

We use 80% of the samples in each dataset for training, and hold the remaining 20% for evaluation.
In total, we train 10 AxForm networks (Zhang et al., 2022) on DA and DB , and report the average
and standard deviation of the CD-scores. As shown in Table 3, the CD-score of networks trained and
evaluated on DB is lower (better) than the CD-score of networks trained and evaluated on DA. These
results indicate that the one-to-many mapping issue negatively affects the completion performance
of the PCCNs.

3 MAINTAINING COMPLETION CONSISTENCY

view 1

view 2

source 
object

completion
solutions

Figure 2: Two different incomplete point
clouds that are obtained from one object
should have the same solutions.

In this section, we introduce the completion consis-
tency loss, which we refer to as the consistency loss
for brevity from here onward, to mitigate the afore-
mentioned issues. The core idea of the consistency
loss is to consider multiple incomplete point clouds
originating from the same source object before tak-
ing a gradient descent step (Figure 2). Recall that the
contradictory supervision signals exist when there
are multiple valid completion solutions for one in-
complete point cloud that is observed in isolation.
Therefore, intuitively, adding more incomplete point
clouds with the same completion solution at one ob-
servation can reduce the ambiguity and mitigate the
negative effects of the issue.

3.1 COMPLETION CONSISTENCY LOSS

We propose two ways to implement the consistency loss: self-guided consistency and target-guided
consistency.

Self-guided Consistency. In self-guided consistency loss, we leverage the fact that we can generate
multiple incomplete point clouds from the same object, and utilize these samples in the consistency
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loss. Given a complete point cloud Pcom
k representing the object k, we can generate a set of n

different incomplete point clouds Pinc
k = {Pinc

k,1,Pinc
k,2, ...,Pinc

k,n}. Since the source of all incomplete
point clouds is the same, that is, Pcom

k , the completion solutions for all Pinc
k,i should also be the same.

Therefore, given Φ(Pinc
k,i) = P̂mis

k,i and P̂com
k,i = P̂mis

k,i ∪ Pinc
k,i, we can guide the network to produce

similar completion solutions for any incomplete point clouds originating from Pcom
k through the

self-guided consistency,

Lc-sg
k =

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

CD(P̂com
k,i , P̂com

k,j )

Target-guided Consistency. For target-guided consistency, we utilize the original ground truth for
the consistency loss. As mentioned in Subsection 2.3, the commonly-used loss function is calculated
as either CD(Φ(Pinc),Pcom) or CD(Φ(Pinc),Pmis). While the latter formulation is found improve the
completion performance of PCCNs, it does not promote consistency between completions because
the supervision is only performed on Pmis instead of Pcom. In target-guided consistency, we propose
to keep the approach of predicting only the missing points, but we calculate the loss values based on
the full complete point clouds. Specifically, given a complete point cloud Pcom

k , Φ(Pinc
k,i) = P̂mis

k,i and
P̂com
k,i = P̂mis

k,i ∪ Pinc
k,i, the target-guided consistency is defined as,

Lc-tg
k =

1

n

n∑
i=1

CD(P̂com
k,i ,Pcom

k )

Complete Loss Function. The complete loss function for a complete point cloud Pcom
k with n

samples of incomplete point clouds is the combination of conventional reconstruction loss, self-
guided consistency loss, and target-guided consistency loss, with scaling factors α and β,

Ltotal
k = αLc-sg

k + βLc-tg
k +

1

n

n∑
i=1

Lrec
i,k, (3)

where Lrec
i,k is the reconstruction loss (Equation 1) for P̂mis

k,i .

We note that both consistency losses do not directly eliminate the one-to-many mapping issue, but
they can provide the network with additional information such that the network can mitigate the is-
sue. For a simple example, consider two inputs Pinc

a,1 and Pinc
b,1, and the corresponding completion so-

lutions Pcom
a and Pcom

b . Suppose that CD(Pinc
a,1,Pinc

b,1) ≈ 0, and CD(Pcom
a ,Pcom

b ) >> CD(Pinc
a,1,Pinc

b,1),
that is, the inputs are similar but the ground truths are dissimilar. Assuming that Φ(Pinc

a,1) is also
similar to Φ(Pinc

b,1), then a contradictory supervision signal could arise when we only use Lrec as the
loss function. On the other hand, suppose that we supplement the loss function with the consis-
tency loss with n = 3 such that the inputs become {Pinc

a,1,Pinc
a,2,Pinc

a,3} and {Pinc
b,1,Pinc

b,2,Pinc
b,3} for each

ground truth. The effect of the contradictory supervision signal to the gradient descent step can then
be suppressed by Lc-sg

k and Lc-tg
k .

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the consistency loss by comparing the comple-
tion performance of three existing PCCNs on three commonly-used datasets. First, we explain the
experimental setups that are needed to reproduce the results. Then, we report and discuss the com-
pletion performance of three existing PCCNs trained with and without the consistency loss. We also
conduct additional experiments to check the effects of each component in the consistency loss.
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4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

There are numerous object-level point clouds datasets, most of which are derived from the Shapenet
dataset Chang et al. (2015), for example, PCN Yuan et al. (2018), Completion3D Tchapmi et al.
(2019), and Shapenet55-34 Yu et al. (2021). We choose to evaluate the consistency loss on the PCN
and Shapenet55-34 datasets, following Yu et al. (2021); Zhou et al. (2022); Yu et al. (2023).

PCN consists of around 30K samples of point clouds, spanning over 8 categories: airplane, cabinet,
car, chair, lamp, sofa, table, and vessel. On the other hand, Shapenet55-34 consists of around
52K samples of point clouds from 55 categories, resulting in a considerably more diverse set of
objects compared with PCN. In Shapenet55, the dataset is split into 41,952 samples for training and
10,518 samples for evaluation, with samples from all 55 categories are present in both training and
evaluation splits. Meanwhile in Shapenet34, the dataset is split into 46,765 samples for training and
5,705 samples for evaluation, where the training split consists of samples from 34 categories, and the
evaluation split consists of samples from all 55 categories. Shapenet34 can be seen as an evaluation
on out-of-distribution data since the 21 extra categories on the evaluation split are withheld during
training.

4.1.2 IMPLEMENTATION DETAILS

The consistency loss is designed to improve a PCCN without any modification to the architecture of
the network. Therefore, we choose to evaluate the effectiveness of the consistency loss using three
existing PCCNs, PCN (Yuan et al., 2018), AxFormNet (Zhang et al., 2022), and AdaPoinTr (Yu
et al., 2023). For fairness, we train two versions of all three PCCNs from scratch using publicly-
available source codes and the same training strategy, e.g., identical problem formulation, optimizer,
number of iterations, batch size, and learning rate schedule. The only difference between the two
versions is that whether the consistency loss is incorporated into the loss function or not.

All PCCNs are implemented with PyTorch (Paszke et al., 2019) and trained on RTX 3090 GPUs.
The batch sizes are set to 64, 64, and 16 for PCN, AxFormNet, and AdaPoinTr, respectively. We
set the number of epochs to 200, 400, and 600 for PCN, AxFormNet, and AdaPoinTr, respectively,
utilize cosine annealing (Loshchilov & Hutter, 2016) for the learning rate schedule, and set n = 3
for the consistency loss. We use Open3D (Zhou et al., 2018) to visualize the point clouds.

4.2 MAIN RESULTS

4.2.1 QUANTITATIVE RESULTS

Following Yu et al. (2021), we report the CDl2 metric on three difficulty levels for Shapenet55 and
the CDl1 metric for PCN in Table 4. From the results, we can draw the following conclusions,

The consistency loss consistently improves the completion performance of the three PCCNs.
As shown in Table 4, the consistency loss significantly improves the completion performance of
PCN, AxFormNet, and AdaPoinTr on Shapenet55 that consists of objects with diverse geometrical
shapes. Specifically, the completion performance is improved by 27%, 25%, and 4.8% for PCN,
AxFormNet, and AdaPoinTr, respectively. Similar improvements can also be seen on Shapenet34
(Table 5), in which the mean CD of all three PCCNs trained with the consistency loss are lower
or equal to the mean CD of their original counterparts. Additionally, the consistency loss can, to
some extent, improve the completion performance of the PCCNs in datasets with less diversity
such as PCN. These results demonstrate the effectiveness of the consistency loss for improving
the completion performance of existing PCCNs, especially when we are interested in completing a
collection of point clouds with diverse geometrical shapes.

The consistency loss enables fast and accurate point cloud completion. Point cloud completion is
often used as an auxilliary task, therefore, the completion process should be fast to avoid unnecessary
overhead to the overall process. However, recent PCCNs such as PoinTr (Yu et al., 2021) and
SeedFormer (Zhou et al., 2022) achieve improved completion performance at the cost of inference
latency due to the complex design of the network.
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Table 4: Quantitative results on the ShapeNet55 (Yu et al., 2021) and PCN (Yuan et al., 2018)
benchmarks. We report the L2-norm Chamfer Distance (CDl2) and L1-norm Chamfer Disctance
(CDl1) for ShapeNet55 and PCN, respectively. S, M, and H represent the simple, moderate, and
hard setups, where the proportions of missing points are 25%, 50%, and 75%, respectively. ∗ and †

indicates that the models are trained from scratch based on source codes from Yu et al. (2021) and
Zhang et al. (2022), respectively.

ShapeNet55 PCN
S M H Avg. Avg.

CDl2 × 103 ↓ CDl1 × 103 ↓
FoldingNet (Yang et al., 2018) 2.67 2.66 4.05 3.12 14.31
PCN∗ (Yuan et al., 2018) 0.82 1.25 2.37 1.48 10.55

+ Consistency Loss 0.54 0.93 1.74 1.07 10.52
TopNet (Tchapmi et al., 2019) 2.26 2.16 4.30 2.91 12.15
GRNet (Xie et al., 2020) 1.35 1.71 2.85 1.97 8.83
SnowflakeNet (Wen et al., 2021) 0.70 1.06 1.96 1.24 7.21
PoinTr (Yu et al., 2021) 0.58 0.88 1.79 1.09 8.38
AXFormNet† (Zhang et al., 2022) 0.72 1.06 1.98 1.22

+ Consistency Loss 0.45 0.79 1.51 0.91
SeedFormer (Zhou et al., 2022) 0.50 0.77 1.49 0.92 6.74
AdaPoinTr∗ (Yu et al., 2023) 0.51 0.71 1.28 0.83 6.53

+ Consistency Loss 0.47 0.68 1.24 0.79 6.51

Table 5: Quantitative results on the ShapeNet34 benchmark. We report the L2-norm Chamfer Dis-
tance (CDl2). S, M, and H represent the simple, moderate, and hard setups, where the proportions
of missing points are 25%, 50%, and 75%, respectively. ∆ is the gap between the mean CDs of the
21 unseen categories and the 34 seen categories.

34 seen categories 21 unseen categories ∆

S M H Avg. S M H Avg.
CDl2 × 103 ↓

FoldingNet 1.86 1.81 3.38 2.35 2.76 2.74 5.36 3.62
PCN 0.84 1.26 2.37 1.49 1.41 2.28 4.63 2.77 1.28

+ Consistency Loss 0.57 0.96 1.76 1.09 1.07 1.84 3.70 2.20 1.11
TopNet 1.77 1.61 3.54 2.31 2.62 2.43 5.44 3.50
GRNet 1.26 1.39 2.57 1.74 1.85 2.25 4.87 2.99
SnowflakeNet 0.60 0.86 1.50 0.99 0.88 1.46 2.92 1.75
PoinTr 0.76 1.05 1.88 1.23 1.04 1.67 3.44 2.05
AXFormNet 0.76 1.14 2.11 1.33 1.30 2.06 4.36 2.57 1.24

+ Consistency Loss 0.48 0.84 1.57 0.96 0.92 1.67 3.50 2.03 1.07
SeedFormer 0.48 0.70 1.30 0.83 0.61 1.07 2.35 1.34
AdaPoinTr 0.51 0.68 1.09 0.76 0.63 1.06 2.23 1.30 0.54

+ Consistency Loss 0.46 0.62 1.09 0.72 0.63 1.03 2.25 1.30 0.58

On the other hand, the proposed consistency loss enables simpler networks to be as accurate as
more complex networks, thus improving the completion performance without sacrificing inference
latency. Specifically on the Shapenet55 dataset, PCN with consistency loss achieves a mean CD
of 1.07 · 10−3, which is better than the mean CD of PoinTr (1.09 · 10−3). Another example is the
AxFormNet with consistency loss that achieves a mean CD of 0.91 · 10−3, which is better than the
mean CD of SeedFormer (0.92 · 10−3). Considering that, when evaluated on a single RTX 3080Ti
GPU, the inference latency of PCN (1.9 ms) and AxFormNet (5.3 ms) are significantly lower than
PoinTr (11.8 ms) and SeedFormer (38.3 ms), the consistency loss is a promising training strategy
that can enable fast and accurate point cloud completion.
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AxFormNet
+ consistency

AxFormNet PCN
+ consistency

PCNInputGT

Figure 3: Compltetion results on the Shapenet55 dataset (test split).

The consistency loss could improve the generalization capability of PCCNs to previously-
unseen objects. It is desirable for a PCCN to produce accurate completed point clouds even for
objects from categories that are not available during training. To quantify the generalization capa-
bility of a PCCN, we can consider the gap between the evaluation results on Shapenet34-seen split
and Shapenet34-unseen split, which we refer to as ∆ in Table 5 From the table we can see that
incorporating the consistency loss results in a significant improvements in the gaps for PCN and
AxFormNet, while the gap for AdaPoinTr stays relatively similar. These results indicate that the
consistency loss can act as an additional regularizer for point cloud completion.

4.2.2 QUALITATIVE RESULTS ON SHAPENET55 AND SHAPENET34

We visualize the completion results of AxFormNet and PCN on point clouds from the Shapenet55-
test and the Shapenet34-unseen splits in Figure 3 and Figure 4, respectively. For each object, we
use 25% of the points in the point cloud as inputs, which is equivalent to the hard setup in Yu
et al. (2021). As shown in the figures, networks that are trained with the consistency loss (AxForm-
Net+con and PCN+con) predict completed point clouds with equal or better quality compared to the
networks that are trained without the consistency loss. For example, on row 1 in Figure 3, AxForm-
Net+con can predict the surface of a table with more consistent point density with respect to the
ground truth compared to AxFormNet. And PCN+con can predict the complete surface of a table,
whereas the surface of a table predicted by PCN contains a missing part on the left side.

4.3 ADDITIONAL RESULTS

In the following subsection we show additional results from experiments with AxFormNet to further
investigate the effects of the consistency loss. We limit the scope of the experiments to the hardest
setup of ShapeNet55 during training and evaluation.

Number of Training Samples. To implement the consistency loss, we sample n instances of in-
complete point clouds per object to be fed to the PCCN. This means that the network has access to
n times more number of samples during training. A natural question would raise: is the completion
accuracy gain simply a result of more training data? To answer this question, we train the original
AxFormNet on Shapenet55 with extra budgets, that is, increasing the number of training epochs to
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AxFormNet
+ consistency

AxFormNet PCN
+ consistency

PCNInputGT

Figure 4: Completion results on the Shapenet34 dataset (unseen split).

1200, a threefold increase. We find that the original AxFormNet trained with extra budgets achieves
a CDl2 × 103 score of 1.60, which is worse than AxFormNet trained with the consistency loss
(CDl2 × 103 = 1.48). This result indicates that the completion performance gains in networks
trained with the consistency loss are not simply the results of more training data.

Table 6: Completion performance of
various AxFormNet on ShapeNet55-hard
where 75% of the original points are
missing.

Lc-sg(α) Lc-tg(β) CDl2 · 103

0 0 1.62
0 1 1.51
1 0 1.60
1 1 1.54

0.1 1 1.48

Scaling Factors for Lc-sg and Lc-tg. We also investi-
gate the effect of scaling factors α and β in Equation 3.
As a baseline, we use the AxFormNet network trained
to predict the missing point clouds as in Table 2, this
is equivalent to α = β = 0. First, we investigate the
individual effect of each component in the consistency
loss. From the table we can see that both Lc-tg (β = 1)
and Lc-sg (α = 1) improve the completion accuracy,
with Lc-tg bringing more benefits compared with Lc-sg.
However, when both are used with the same scaling
factors (i.e., α = β = 1), the completion accuracy is
worse than when only Lc-tg is used. From experimen-
tal results, we see that setting α = 0.1 and β = 1 yield
the best completion accuracy.

5 CONCLUSION

We have proposed the completion consistency loss, a novel loss function for point cloud completion.
The completion consistency loss has been designed to reduce the adverse effects of contradictory
supervision signals by considering multiple incomplete views of a single object in one forward-
backward pass. We have demonstrated that the completion consistency loss can improve the comple-
tion performance and generalization capability of existing point cloud completion networks without
any modification to the design of the networks. Moreover, simple and fast point cloud completion
networks that have been trained with the proposed loss function can achieve completion performance
similar to more complex and slower networks. Therefore, the completion consistency loss can pave
the way for accurate, fast, and robust point cloud completion networks.
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A APPENDIX

A.1 GENERATING TOY DATASETS

The toy datasets that are used in Subsection 2.4 are generated by following Algorithm 1. CD is the
chamfer distance function defined in Equation 2.

Algorithm 1 Generating Toy Datasets
Input: Full dataset D
Initialize DA as an empty tensor, k1 ← 100, k2 ← 5, n← 5000
while len(DA) ≤ n do

Sample X from D
Initialize Dinc, Dmis, Dinc, Dmis as empty tensors.
for Y in D do

Append CD(X inc,Y inc) to Dinc

end for
Calculate k1-lowest CD-metric in Dinc

Append the k1 corresponding Y ∈ D to Dinc

for Z in Dinc do
Append CD(Xmis,Zmis) to Dmis

end for
Calculate k2-highest CD-metric in Dmis

Append the k2 corresponding Z ∈ D to Dmis

if X /∈ DA then
Append X ∈ D to DA

end if
for Z in Dmis do

if Z /∈ DA then
Append Z to DA

end if
end for

end while
Return the first n elements in DA
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