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ABSTRACT

Scene Graph Generation (SGG) is pivotal for structured visual understanding, yet
it remains hindered by a fundamental limitation: the reliance on fixed, frozen se-
mantic representations from pre-trained language models. These semantic pri-
ors, while beneficial in other domains, are inherently misaligned with the dy-
namic, context-sensitive nature of visual relationships, leading to biased and sub-
optimal performance. In this paper, we transcend the traditional one-stage v.s.
two-stage architectural debate and identify this representational bottleneck as the
core issue. We introduce Adaptive Prompt Tuning (APT), a universal paradigm
that converts frozen semantic features into dynamic, context-aware representa-
tions through lightweight, learnable prompts. APT acts as a plug-in module that
can be seamlessly integrated into existing SGG frameworks. Extensive experi-
ments demonstrate that APT achieves +2.7 improvement in mR@100 on Pred-
Cls, +3.6 gain in F@100 and up to +6.0 gain in mR@50 in open-vocabulary
novel splits. Notably, it achieves this with less than 0.5M additonal parame-
ters (<1.5% overhead) and reduced 7.8%-25% training time, establishing a new
state-of-the-art while offering a unified, efficient, and scalable solution for future
SGG research. The source code of APT is available at https://anonymous.
4open.science/r/APT-1D24.

1 INTRODUCTION

Scene Graph Generation (SGG) stands as a foundational pillar in visual understanding, aiming
to represent images as graphs of objects and their interrelationships in a structural manner. For
years, the field has been shaped by two competing paradigms: two-stage methods, which exploit
robust detector features but suffer from contextual fragmentation, and one-stage methods, which
enable end-to-end learning at the expense of computational cost and relation granularity. De-
spite their differences, both methods share a common practice: incorporating static, fixed semantic
representations—typically derived from pre-trained language models like GloVe (Pennington et al.,
2014) and BERT (Devlin et al., 2019)—as semantic priors.
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Figure 1: Performance comparison across dif-
ferent semantic features settings (including ours)
based on various SGG methods.

While such features have proven useful in
NLP Pennington et al. (2014); Devlin et al.
(2019); Brown et al. (2020) and certain vision-
language tasks Lu et al. (2019); Zhou et al.
(2022b;a), their non-adaptive nature fundamen-
tally limits their effectiveness in SGG, where
context sensitivity, relational nuance, and role-
specific semantics are paramount. As illustrated
in Figure 1, we systematically compare the per-
formance of various SGG methods under differ-
ent semantic feature settings. The results reveal
a consistent performance gap when models are
constrained to use frozen embeddings, under-
scoring their suboptimal adaptability to visual
relational reasoning.

The fundamental limitation lies in the rigidity of
these off-the-shelf representations. Whether in a
one-stage transformer or a two-stage detector, frozen word embeddings remain oblivious to visual
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context, incapable of distinguishing between fine-grained relations (e.g., "standing on" v.s. "walking
on"), and fail to capture the semantic asymmetry between subjects and objects. For instance, the
same "person" embedding remains identically frozen whether the person is riding a horse or holding
a phone, which highlights a clear misalignment with the dynamic visual world. More revealingly,
we visualize the feature space, as shown in Figure 2. The static semantic space collapses all ‘person’
instances into a single point, regardless of their diverse contexts. In contrast, the visual feature space
naturally separates ‘person’ into clusters based on their relational context (e.g., riding, walking,
etc.). This stark contrast visually demonstrates the inability of frozen representations to adapt to
visual contexts and the limitation of static word embeddings in capturing relational context.

riding

looking at

wearing

walking

holding

other

(a) Frozen GloVe Feature Space (b) Visual Context Feature Space

Figure 2: t-SNE visualization of person instances with visual con-
textual features and GloVe embeddings across different relations.

Figure 3 illustrates a two-
dimensional t-SNE projection of
embeddings from four mainstream
pre-trained models. It also displays
the distance from the central point
to the farthest point within each
semantic space, alongside the cu-
mulative distribution function of
pairwise distances. A progressive
loosening of the feature cluster is
observed when moving from GloVe
to BERT and further to CLIP-text.
Moreover, in Table 1, we report the
silhouette score, participation ratio,
the number of principal components required to explain 90% of the variance (PCA@90), and a
mutual information proxy I(embedding; predicate). This indicates that more powerful pre-trained
models encode richer substructures within their representation spaces. However, this internal
structure remains misaligned with the fine-grained visual-relational context required by the SGG
task. This suggests that simply replacing one frozen model with another does not address the core
issue of semantic rigidity. While one-stage models attempt to unify detection and relation modeling,
their heavy pre-trained backbones and dense attention mechanisms incur prohibitive training costs
without fundamentally solving the semantic adaptivity problem.

Table 1: Diagnostics across pre-trained models.

Embedding Silhouette Participation Ratio PCA@90% I(embedding; predicate) (bits)

GloVe 0.12 9.8 27 0.42
BERT 0.18 15.6 32 0.49
GPT 0.22 23.1 44 0.53
CLIP-text 0.29 48.7 125 0.57

In light of these observa-
tions, what the community
has overlooked is not the
architecture, but the repre-
sentation paradigm: the
need for a lightweight, uni-
versally applicable mecha-
nism that injects adaptive
semantics into any SGG framework. To this end, we transcend the one- v.s. two-stage dichotomy
and introduce a new unified representation paradigm for SGG: adaptive prompt tuning. Rather
than engineering another architecture, we propose a plug-in module that enables any existing SGG
model—whether one-stage and two-stage, which are transductive, or the inductive open vocabulary
setting—to dynamically modulate pre-trained semantic features in response to visual context and
relational roles. Our key idea is both simple and powerful: a set of lightweight, learnable prompts
that act as conditional adapters, transforming frozen language model features into context-aware
representations without backpropagation through the original pre-trained backbone.

Extensive experiments validate the generality and effectiveness of our approach. When plugged into
leading one- and two-stage models, our prompt module delivers consistent and significant improve-
ments, establishing new state-of-the-art results across multiple benchmarks. Importantly, it achieves
these improvements with reduced training time and minimal parameter overhead, making it highly
practical for compute-efficient research and applications. The main contributions of this paper are
summarized as follows:

• We identify and diagnose the representational limitation of frozen, fixed semantic representations
as a fundamental bottleneck in SGG, transcending architectural categories.

• We propose a lightweight, universal prompt-based representation paradigm that converts frozen
semantic representations into dynamic, context-aware features, compatible with both one- and
two-stage SGG frameworks.
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Figure 3: Two-dimensional feature distribution of four mainstream text feature models under t-SNE
dimensionality reduction. The number in (a), (b), (c), and (d) represent the distance between the
center point and the farthest point, while (e) shows the cumulative distribution function (CDF) of
pairwise distance.

• Extensive experiments are conducted on Visual Genome, Open Image V6, and GQA, demon-
strating that APT improves mean recall (mR@100) by up to +2.7 on PredCls and boosts harmonic
mean (F@100) by up to +3.6, while introducing less than 0.5M additional parameters (<1.5%
overhead) and reducing training time by 7.8%–25%. In open vocabulary settings, APT achieves
up to +6.0 gain on mR@50 in novel split.

2 RELATED WORK

Building on our diagnosis of frozen semantic representations as a fundamental bottleneck, we now
review how this issue manifests across different SGG paradigms.

Two-Stage SGG. Two-stage methods first detect objects and then predict relations between pro-
posed regions. Pioneering works like MOTIFS Zellers et al. (2018) built upon Faster R-CNN de-
tectors, leveraging visual features and spatial masks to predict predicates. Subsequent efforts Tang
et al. (2019) incorporated linguistic priors from pre-trained models (e.g., GloVe (Pennington et al.,
2014)) to enrich object representations, while others Yang et al. (2018); Li et al. (2021) employed
GNN to propagate contextual information between objects. Recent methods such as PE-Net (Zheng
et al., 2023), DRM (Li et al., 2024a), and RA-SGG (Yoon et al., 2025) further explore advanced
architectures to enhance relational reasoning. A key limitation is their reliance on frozen seman-
tic representations. Whether used in label initialization or feature fusion, these fixed embeddings
remain insensitive to visual context and relational nuance. Despite strong detectors, their represen-
tational capacity remains bottlenecked by non-adaptive semantic priors.

One-Stage SGG. In contrast, one-stage methods aim to unify detection and relation prediction
within an end-to-end framework. Models such as Qpic (Tamura et al., 2021), SGTR (Li et al., 2022),
EGTR (Im et al., 2024), ST-SGG (Kim et al., 2024b), LLM4SGG (Kim et al., 2024c), SpeaQ (Kim
et al., 2024a) and HydraSGG Chen et al. (2025) use transformer-based architectures to directly
predict relation triples from image features. These methods avoid error propagation and simplify
training pipelines by jointly optimizing all components. However, these methods often inherit—and
sometimes exacerbate—the problem of semantic rigidity. Many still initialize query embeddings
or semantic banks using static word vectors, which cannot adapt to visual context. Moreover, their
heavy reliance on self-attention over high-resolution feature maps leads to substantial computational
overhead, limiting their practicality for large-scale or resource-constrained applications. The pursuit
of architectural unity has thus come at the cost of both representational flexibility and efficiency.

Open Vocabulary SGG. Recent interest in open vocabulary SGG seeks to generalize to unseen
objects and predicates. OV-SGG He et al. (2022) proposed a two-stage, prompt-based method to
bridge the knowledge gap between base and novel object categories, but its prompt-template-based
fine-tuning makes it difficult to extend to other paradigms. Methods like Epic Yu et al. (2023),
PGSG Li et al. (2024b), SDSGG (Chen et al., 2024a), OvSGTR (Chen et al., 2024b), SpaceSGG Xu
et al. (2025), and RAHP (Liu et al., 2025) leverage large pre-trained vision-language models (e.g.,
CLIP (Radford et al., 2021)) for zero-shot alignment, while others employ probabilistic grounding
or knowledge distillation. Yet, these methods still largely depend on frozen backbones and semantic
spaces. While powerful, CLIP-based features remain generic and are not explicitly tailored to the
structured and context-dependent nature of relational prediction. As a result, they often struggle
with fine-grained relational reasoning and exhibit limited adaptability to downstream SGG contexts.
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Our work does not propose another architecture in the one- v.s. two-stage divide, nor does it simply
replace one frozen model with another. Instead, we introduce a universal plug-in module based
on lightweight prompt tuning that can be seamlessly integrated into any SGG framework—whether
one-stage, two-stage, or open-vocabulary.

3 ADAPTIVE PROMPT TUNING FRAMEWROK
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Figure 4: A comparative illustration of different SGG paradigms versus APT framework. (a) Two-
stage methods suffer from fragmented context propagation and reliance on static features. (b) One-
stage methods achieve end-to-end learning but at a high computational cost and with semantic rigid-
ity. (c) Open-Vocabulary methods leverage large VL models but struggle with fine-grained relational
reasoning due to generic representations. (d) Our APT framework introduces a universal plug-in
module that injects adaptive semantics into any SGG backbone, enabling dynamic, context-aware
feature modulation for superior performance and efficiency.

3.1 OVERVIEW

The Adaptive Prompt Tuning (APT) framework centers on lightweight, learnable prompts that
adapt frozen pre-trained semantic representations into context-aware, task-specific features. As
illustrated in Figure 4, APT is designed as a universal plugin that can be seamlessly integrated
into both two-stage and one-stage SGG paradigms. The prompts act as conditional adapters, trans-
forming frozen word embeddings into dynamic representations that are sensitive to visual context,
fine-grained relationships, and the semantic roles of subjects and objects.

Adaptive Prompt Tuning (APT) framework is grounded in the advanced research of continuous
prompt learning and model adaptation. Unlike traditional methods that discretely modify input
tokens, continuous prompts introduce a set of learnable vector parameters into the model’s em-
bedding space, acting as specific instructions to guide the model’s behavior Lester et al. (2021).
Formally, a pre-trained model can be viewed as a function Fθ whose parameters θ are fixed after
pre-training. Prompt learning aims to find an optimal prompt P ∗ that enables the frozen model Fθ

to perform best on a specific downstream task T :

P ∗ = argmin
P

LT (Fθ([P ;x])) (1)

APT innovatively adapts this paradigm to the multimodal context and structured prediction task of
SGG. The prompt P functions not as a direct prefix to a language model, but as a feature modu-
lator. It transforms generic, task-agnostic static semantic features estatic into dynamic features ẽ
tailored for the downstream SGG task. This process is analogous to the role of a modem in com-
munications: the prompt P , carrying task-specific information from the visual context, "modulates"
the original semantic signal, enabling it to convey information more effectively for SGG. From the
viewpoint of the Information Bottleneck principle Chi et al. (2022); Yang et al. (2023); Tishby et al.
(2000), APT aims to learn an optimal feature representation ẽ that preserves sufficient information
about the object identity c while maximally compressing redundant semantic information irrelevant
to the current visual relation, and simultaneously incorporating relevant visual contextual informa-
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tion v. The prompt P serves as the adapter achieving this "compression and injection." The objective
can be formulated as:

max I(ẽ; y)− βI(ẽ; estatic|v, y) (2)

In Eq. 2, I(·; ·) denotes mutual information, and y is the target relation class. The first term requires ẽ
to be informative for prediction, while the second term encourages ẽ to forget redundant information
in estatic given the visual context v and the target y. The learnable prompt P is optimized through
training data to balance this trade-off.

3.2 UNIFIED PLUG-IN PROMPTS

APT operates on a simple yet powerful principle: for a given semantic concept, it employs a
lightweight, learnable prompt P to condition the frozen, static embedding estatic(c) on the current
visual context. This process can be universally described by the following equation:

ẽ(c) = fθ
(
A(P (c), estatic(c), ϕ(v))

)
(3)

In Eq. 3, P (c) is the learnable prompt for concept c. A(·) is the aggregation function that reduces
the prompt sequence to a single vector. estatic(c) is the frozen pre-trained semantic embedding.
ϕ(v) is the visual feature projector, encoding relevant visual context v. fθ is a small fusion network
that generates the final adaptive representation ẽ(c)

The key is that only the prompt parameters P , the projector ϕ, and the fusion network fθ are learn-
able. The pre-trained semantic backbone remains entirely frozen, making APT highly parameter-
efficient and preventing catastrophic forgetting.

Detection Prompt Pd: This prompt is applied during the object detection phase. For each object
class c, learnable vector Pd(c) ∈ RLd×D is defined, where Ld is the prompt length and D is the
feature dimension. The prompt is fused with the pre-trained semantic embedding estatic(c) ∈ RD

through a dedicated Multi-Layer Perceptron (fθdet ) to generate an adaptive object representation for
the detection head.

Relation Prompt Pr: After objects are detected, relation prediction begins. Here, for each predicate
class r, learnable vector Pr(r) ∈ RLr×D is defined. This prompt is specifically designed to capture
the nuances of interactions. For a subject-object pair (s, o) with predicted visual features vs and vo,
their adaptive semantic features are generated and fused with visual evidence.

Unified Relation Prompt Pur: Since there is no separate detection stage for one-stage paradigm, a
single Relation Prompt Pur is sufficient and more efficient. This prompt operates on the semantic
queries or label embeddings that the model uses for final predicate classification. For a potential
relation with subject class s and object class o, the model dynamically modulates their semantic
embeddings. The adapted embeddings are then used by the transformer decoder for cross-attention
with visual features.

In both one- and two-stage cases, the pre-trained semantic embeddings estatic(·) remain frozen.
Only the prompt parameters Pd, Pr and the parameters of the light-weight MLPs (fθ) are learned
during training. This makes our APT framework highly parameter-efficient and prevents overfitting.
The same pre-trained language model can thus be shared across different SGG architectures, with
the prompts specializing its knowledge for the task at hand.

3.3 COMPOSITIONAL GENERALIZATION PROMPTER

The Open-Vocabulary (OV) setting demands that the model generalize to unseen object and pred-
icate compositions unseen during training. To equip APTframework with this capability, we in-
troduce a dedicated Compositional Generalization Prompter (CGP). This module is architected
to dynamically synthesize context-aware semantic representations for unseen categories through
a structured, multi-stage prompting process. The CGP operates through three specialized sub-
modules, which work in concert to achieve robust generalization:

Relational Context Gating (RCG): This component generates role-aware prompt weights by inte-
grating visual evidence with initial semantic cues. For a subject entity s with visual feature vs:

ws = σ(MLPgate(Concat(vs, estatic(s)))), (4)

5
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The gating vector ws determines the activation of prompt bases, ensuring the modulation is condi-
tioned on the immediate visual context of each entity.

Basis Prompt Synthesis (BPS): A set of learnable basis prompts B ∈ RN×Lov×D serves as a
repository of fundamental relational concepts. The final prompt for an entity is synthesized as a
weighted combination of these bases:

Pcgp(s) =

N∑
i=1

wi
s ·Bi, Pcgp(s) = MeanPool(Pcgp(s)) (5)

To obtain a compact pooled prompt we use a normalized, token-weighted pooling with normaliza-
tion (Lb the basis prompt length):

p̄ = LayerNorm
( 1

Lb

Lb∑
t=1

Pcgp(s)
)
∈ RD. (6)

This allows the model to generate a virtually unlimited variety of tailored prompts from a finite set
of bases, enabling compositional generalization.

Feature Refinement & Fusion (FRF): This sub-module performs the final integration of the syn-
thesized prompt, the frozen semantic embedding, and the projected visual feature:

ẽov(s) = fθfrf(Concat(Pcgp(s), estatic(s), ϕv(vs))) (7)

The refined feature ẽov(s) is context-sensitive, semantically grounded, and primed for relational
reasoning with unseen concepts.

The CGP module is designed as a plug-in component that can seamlessly augment the standard
Relation Prompt (Pr) in both two-stage and one-stage architectures. All pre-trained embeddings
remain frozen. Only the basis prompts B, the gating network, visual projectors ϕv , and the fusion
MLPs fθfrf are introduced as new learnable parameters, upholding the parameter-efficient nature of
the APT framework.

By integrating Relational Context Gating, Basis Prompt Synthesis, and Feature Refinement &
Fusion, our CGP module provides a principled and unified solution for open-vocabulary general-
ization, ensuring robust performance on both common and unseen compositional queries.

The overall training objective augments the loss L with several prompt and gating regularizers.
Formally, the empirical objective—expressed as an expectation over the data distribution D—is

L = E(x,y)∼D
[
Lcls(x, y)

]
(8)

+ λp∥B∥2F + λpd∥Pdet∥2F + λpr∥Prel∥2F (9)

+ λd E(x,y)∼D
[
∥ẽ− estatic∥22

]
(10)

+ λorth

∑
i<j

∥∥B⊤
i Bj

∥∥2
F

(11)

− β

N∑
i=1

wi logwi (12)

+ γKL
(
w ∥ uprior

)
+ λw∥Wv∥2F , (13)

where λ{·}, β, γ, and λorth are non-negative hyperparameters; uprior denotes an optional prior (e.g.,
uniform) over the gating distribution. The KL (entropy) terms serve to encourage sparsity and
diversity and to penalize deviations from the prior.

6
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4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets. Our experiments are carried out on three publicly available benchmarks: (1) Visual
Genome (VG) Krishna et al. (2017) comprises 150 object categories and 50 types of relations. The
dataset is partitioned into 57,723 images for training, 5,000 for validation, and 26,446 for testing.
(2) Open Images V6 Kuznetsova et al. (2020) includes 288 entity classes and 30 relation categories.
It provides 126,368 training images, 1,813 validation images, and 5,322 test images annotated with
relational triples. (3) GQA Hudson & Manning (2019) contains 200 distinct entity types and 100
kinds of relations. It offers 52,623 training samples, 5,000 validation images, and 8,209 test images
with scene graph annotations. We report only the results on VG due to the page limit.

on in has nea
r at

we
ars hol

ds
und
er
abo
ve
beh
ind
nex
t_t
o

in_
fro
nt_
of

atta
che
d_t
o

ove
rla
ppi
ng
aro
und

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AP
re

l

EGTR
EGTR+APT
Weight

0.00

0.05

0.10

0.15

0.20

0.25

W
ei
gh
t

Figure 5: APrel performance comparison per
class. The Weight (i.e., right y-axis) represents
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Evaluation Protocol. The evaluation is con-
ducted on three conventional SGG sub-tasks, in-
cluding Predicate Classification (PredCls), Scene
Graph Classification (SGCls), and Scene Graph
Detection (SGDet). PredCls predicts the predi-
cate classes given all ground-truth object bound-
ing boxes and the object classes. SGCls aims at
predicting the predicate classes given the ground-
truth object bounding boxes. SGDet detects all
entities and their pairwise predicates given an im-
age.

Evaluation Metrics. We evaluate SGG mod-
els on the three metrics: (1) Recall@K (R@K)
calculates the proportion of top-K predicted
triplets that are in ground truth. (2) Mean Re-
call@K (mR@K) calculates the average recall for
each predicate class, which is designed to mea-
sure the performance of SGG models under the
long-tailed predicate distribution Liu et al. (2019). (3) F@K calculates the harmonic average of
R@K and mR@K. ST-SGG (Kim et al., 2024b) suggests that there is a trade-off between R@K and
mR@K. Thus, recent works have focused on achieving greater F@K.

Baselines. APT is compared with methods from three categories: (1) Two-stage SGG methods,
including MOTIFS (Zellers et al., 2018), PE-Net (Zheng et al., 2023), DRM (Li et al., 2024a) and
RA-SGG (Yoon et al., 2025); (2) One-stage methods including SGTR (Li et al., 2022), EGTR (Im
et al., 2024),ST-SGG (Kim et al., 2024b), LLM4SGG (Kim et al., 2024c), SpeaQ (Kim et al., 2024a)
and HQSG (Fu et al., 2025); (3) Open Vocabulary methods including SDSGG (Chen et al., 2024a),
OvSGTR (Chen et al., 2024b) and RAHP (Liu et al., 2025).

Table 2: Performance (%) of state-of-the-art SGG models with & without APT on Visual
Genome Krishna et al. (2017). † denotes the results are produced using official code.

Methods Predicate Classification Scene Graph Classification Scene Graph Detection
R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100

Two-stage methods
Motif†Zellers et al. (2018)CVPR’18 64.6/66.0 15.2/16.2 24.6/26.0 38.0/38.9 8.7/9.3 14.2/15.0 31.0/35.1 6.7/7.7 11.0/12.6
Motif+APT 66.5/68.2 17.4/18.1 26.4/28.1 40.3/40.8 10.5/11.1 16.4/17.3 33.3/37.6 9.2/10.3 13.2/15.1
PE-Net†(Zheng et al., 2023)CVPR’23 65.8/67.6 17.7/19.2 27.9/29.9 36.7/37.4 9.4/10.0 15.0/15.8 27.1/29.8 6.4/7.3 10.4/11.7
PE-Net+APT 67.5/69.2 19.3/20.5 29.7/31.6 37.2/38.4 10.4/10.7 16.2/17.1 28.0/31.3 7.1/8.6 11.3/12.5
DRM†Li et al. (2024a)CVPR’24 65.8/67.6 17.7/19.2 27.9/29.9 36.7/37.4 9.4/10.0 15.0/15.8 27.1/29.8 6.4/7.3 10.4/11.7
DRM+APT 68.7/70.5 19.4/21.9 28.9/30.5 39.4/40.1 11.3/11.7 17.2/18.6 29.6/31.7 8.2/9.7 12.5/13.3
RA-SGG†Yoon et al. (2025)AAAI’25 66.1/68.0 18.2/19.8 28.4/30.5 37.3/37.9 9.8/10.6 15.4/16.1 27.5/30.2 6.8/7.4 10.6/12.2
RA-SGG+APT 66.7/69.4 18.5/20.2 29.0/30.2 37.7/38.1 10.1/11.3 16.1/17.4 28.8/29.8 8.2/8.9 11.3/12.5
One-stage methods
SGTR†Li et al. (2022)CVPR’22 59.2/61.3 30.4/32.9 40.2/42.8 37.4/38.5 14.3/16.5 20.7/23.1 31.0/35.8 10.7/12.6 15.9/18.6
SGTR+APT 62.3/63.5 32.7/35.3 43.5/45.9 39.8/40.3 17.1/18.7 22.9/25.4 33.5/36.8 12.9/14.8 18.4/20.3
EGTR†Im et al. (2024)CVPR’24 54.1/56.6 35.7/38.2 43.0/45.6 34.9/36.1 17.0/18.4 22.9/24.4 27.4/31.8 13.2/15.5 17.8/20.8
EGTR+APT 56.4/58.3 37.5/40.1 45.2/47.7 36.7/38.6 19.5/20.3 24.6/26.2 29.7/33.5 15.7/16.9 19.4/22.3
LLM4SSG†Kim et al. (2024c)CVPR’24 62.2/64.1 36.2/39.1 45.7/48.6 38.2/39.1 20.9/22.5 27.0/28.6 26.0/30.3 14.4/17.1 18.5/21.9
LLM4SSG+APT 65.1/66.9 38.1/42.2 47.9/50.3 40.1/41.8 22.7/24.8 29.5/30.3 28.8/32.4 16.7/19.8 20.3/23.6
ST-SGG†Kim et al. (2024b)ICLR’24 53.9/57.7 28.1/31.5 36.9/40.8 33.4/34.9 16.9/18.0 22.4/23.8 26.7/30.7 11.6/14.2 16.2/19.4
ST-SGG+APT 58.7/62.3 31.3/34.6 39.9/43.7 36.6/38.4 20.3/21.5 26.3/26.9 30.2/34.4 14.8/18.1 19.3/22.2
SpeaQ†Kim et al. (2024a)CVPR’24 55.7/57.9 30.9/33.4 39.7/42.4 33.1/34.4 17.5/18.8 22.9/24.3 24.5/28.9 14.1/16.5 17.9/21.0
SpeaQ+APT 57.8/60.8 34.2/36.8 42.5/45.3 36.5/37.6 20.3/21.7 26.3/27.5 27.5/31.9 18.0/19.5 20.2/23.3
HQSG†Fu et al. (2025)CVPR’25 57.6/58.9 32.7/34.6 41.5/43.2 35.2/36.1 19.2/20.4 25.4/27.2 34.1/38.3 16.0/20.5 21.8/26.7
HQSG+APT 58.7/61.2 35.1/37.3 43.3/45.4 37.7/38.3 21.9/22.7 26.9/28.7 36.5/39.9 18.2/21.7 22.6/28.2
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4.2 COMPARISON WITH BASELINES ON VISUAL GENOME

As comprehensively detailed in Table 2, we evaluate the effectiveness of APT by integrating it
into a diverse set of state-of-the-art SGG models, encompassing both two-stage and one-stage
paradigms. The integration of APT consistently enhances the performance of all base models across
the three canonical SGG tasks: PredCls, SGCls, and SGDet. This universal applicability solidifies
our method’s role as a powerful and general-purpose plugin for the SGG community.

The most notable improvements are observed on the mean recall (mR@K) metric, which is a more
robust measure of a model’s ability to predict a balanced set of predicates beyond the head classes.
For instance, APT elevates the mR@100 of EGTR Im et al. (2024) by +1.9 and +1.9 on PredCls
and SGCls, respectively. The striking improvement confirms that our adaptive prompts effectively
mitigate the inherent bias of static features towards frequent predicates, enabling the models to
perform more fairly and accurately on tail categories. This implication can be further explored
by referring to Figure 5, which displays the performance APrel for each class. Specifically, for
the head predicates, EGTR+APT achieves competitive results. For the tail predicates, EGTR+APT
significantly enhances the performance, particularly in the cases where EGTR struggles to make
accurate predictions, such as attached_to, overlapping predicates. Furthermore, the superior F@K
scores demonstrate that APT does not achieve gains in mR@K at the expense of R@K but instead
fosters a more comprehensive and balanced relational understanding.

APT yields substantial gains on both two-stage and one-stage methods. This validates our core
hypothesis that the limitation of frozen semantic priors is a fundamental bottleneck transcending
architectural choices. Our method successfully alleviates this bottleneck, empowering diverse archi-
tectures with adaptive semantic representations.

Table 3: Performance (%) of state-of-the-art Open Vocabulary SGG models with & without APT on
Visual Genome Krishna et al. (2017). † denotes that the results are produced using official code.

Methods Base Novel
R@20/50/100 mR@20/50/100 F@20/50/100 R@20/50/100 mR@20/50/100 F@20/50/100

SDSGG†Chen et al. (2024a)NeurIPS’24 18.7/26.5/31.6 9.2/12.4/14.8 12.3/16.9/20.2 18.4/25.4/29.6 17.1/25.2/31.2 17.7/25.3/30.4
SDSGG+APT 19.5/27.3/32.2 10.1/13.2/15.6 13.4/18.0/21.9 19.4/26.6/31.1 18.6/26.7/32.3 19.1/27.1/32.3
OvSGTR†Chen et al. (2024b)ECCV’24 19.0/22.9/26.7 12.6/16.4/19.7 15.7/19.1/22.7 17.0/20.5/23.9 10.9/13.5/16.2 13.4/16.3/19.3
OvSGTR+APT 20.0/24.0/27.9 13.4/17.3/20.1 16.8/20.1/23.4 17.8/21.2/25.0 11.6/14.3/17.2 14.1/17.1/20.4
SGTR+RAHP†Liu et al. (2025)AAAI’25 34.6/41.3/47.7 16.4/20.5/25.2 22.0/27.4/33.0 12.4/15.5/20.4 9.1/11.8/15.5 10.5/13.4/17.6
SGTR+RAHP+APT 35.4/42.0/48.4 17.0/21.1/26.0 22.7/28.1/33.8 13.1/16.1/21.1 9.7/12.4/16.3 11.2/14.0/18.4

4.3 COMPARISON WITH OPEN VOCABULARY SGG MODELS ON VISUAL GENOME

To evaluate the model’s capability to generalize to unseen relationships, we follow the common
practice Chen et al. (2024a;b) and partition the VG dataset into Base and Novel splits. The Base split
contains 70% of the relation categories for training, while the Novel split comprises the remaining
30% of categories that are held out from training. This setting tests the model’s true compositional
reasoning ability. The results are presented in Table 3.

APT improves performance on the Novel split across all base models, which is the core challenge of
OV-SGG. This demonstrates that our adaptive prompting mechanism and CGP module effectively
unlock the compositional knowledge embedded in pre-trained models, enabling them to generalize
to unseen predicate combinations. APT is compelling across different OV-SGG architectures, from
transformer-based one-stage models to methods incorporating external knowledge, substantiating
that the proposed adaptive prompting paradigm addresses a fundamental bottleneck in OV-SGG—
the inability of frozen representations to dynamically adapt to unseen compositional contexts.

Table 4: Ablation study of APT on VG. † denotes the results are produced using official code.

Model Predicate Classification Scene Graph Classification
R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100

Vanilla PE-Net† 64.9/67.2 31.5/33.8 42.4/45.0 37.7/38.7 17.8/18.9 24.5/25.8
+D-Prompt only 65.2/67.1 30.4/32.6 41.0/43.8 38.5/39.4 16.6/17.9 24.0/25.3
+R-Prompt only 64.6/66.7 33.4/36.4 43.6/46.0 38.6/39.5 19.6/20.8 25.1/26.3
+Full APT 62.2/64.1 36.2/39.1 45.7/48.6 38.2/39.1 20.9/22.5 27.0/28.6

4.4 ABLATION STUDY ON COMPONENTS OF APT

The ablation experiments are conducted based on the two-stage method PE-Net Zheng et al. (2023)
framework and open-vocabulary method SDSGG Chen et al. (2024a) on VG.
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As demonstrated in Table 4, introducing only the Detection Prompt (D-Prompt) improves the
model’s object classification accuracy (a slight increase in R@K), as it helps generate better context-
aware object representations. However, its impact on relational reasoning is limited. Conversely,
adding only the Relation Prompt (R-Prompt) yields a significant boost in mR@K, as it directly
addresses the core problem of predicate discrimination by dynamically modulating features based
on relational context. This confirms that the relational prompt is the key to mitigating predicate bias.
Though both prompts are beneficial, the R-Prompt is particularly critical for relational reasoning.
The complete APT, integrating both D-Prompt and R-Prompt with the MLP fusion, achieves the
best performance across all metrics, especially on mR@K. The synergistic effect between the two
prompts is evident, as they work in concert to provide adaptive semantics from object detection to
relation prediction.

Table 5: Ablation study of APT CGP module based on SDSGG Chen et al.
(2024a) on VG split. † denotes the results are produced using official code.

Model Base Novel
R@20/50/100 mR@20/50/100 F@20/50/100 R@20/50/100 mR@20/50/100 F@20/50/100

Vanilla SDSGG† 22.1 / 26.5 / 28.1 10.7 / 12.4 / 12.8 14.4 / 16.9 / 17.6 23.1 / 25.4 / 26.0 24.4 / 25.2 / 25.7 23.7 / 25.3 / 25.9

+RCG 22.4 / 26.7 / 28.2 12.2 / 13.1 / 13.6 15.8 / 17.6 / 18.4 23.4 / 25.6 / 26.3 25.5 / 26.7 / 26.8 24.4 / 26.1 / 26.6

+BPS 22.6 / 27.0 / 28.6 12.5 / 13.6 / 14.0 16.1 / 18.1 / 18.8 23.6 / 25.9 / 26.6 26.0 / 27.5 / 27.8 24.8 / 26.7 / 27.2

+RCG + BPS only 22.8 / 26.9 / 28.5 13.5 / 14.5 / 14.7 17.0 / 18.8 / 19.4 23.8 / 25.9 / 26.8 27.2 / 29.0 / 28.2 25.4 / 27.4 / 27.5

+Full CGP 23.3 / 27.2 / 28.8 14.9 / 15.9 / 15.5 18.2 / 20.1 / 20.2 24.1 / 26.3 / 27.2 28.8 / 31.2 / 30.7 26.2 / 28.6 / 28.8

In addition, we
perform a detailed
ablation study on
the SDSGG base
model to dissect the
contribution of each
proposed component
within our Composi-
tional Generalization
Prompter (CGP): the Relational Context Gating (RCG), the Basis Prompt Synthesis (BPS), and the
Feature Refinement & Fusion (FRF) modules. Experiments are conducted on the Open-Vocabulary
VG split, and results are presented in Table 5.

Table 6: Efficiency analysis of APT. Performance is reported as
mR@100 on PredCls.

Model Parameters (M) Time / Epoch (h) Performance (mR@100)
Orig. +APT ∆ Orig. +APT ∆ Orig. +APT

SGTR 41.2 41.4 +0.2 4.8 4.8 0.0% 24.6 27.3
EGTR 42.7 43.1 +0.4 5.1 4.7 -7.8% 28.2 30.9
ST-SGG 43.5 42.3 -1.2 5.3 4.7 -11.3% 25.7 28.2
LLM4SGG 45.8 43.7 -2.1 5.6 4.2 -25.0% 22.3 23.8
SpeaQ 42.1 41.6 -0.5 4.9 4.1 -16.3% 25.7 29.1
RA-SGG 48.3 48.7 +0.4 2.1 1.9 -9.5% 26.0 27.7
DRM 47.1 47.5 +0.4 2.3 2.0 -13.0% 19.0 22.2
PENET 46.8 47.2 +0.4 2.0 1.8 -10.0% 26.5 28.3

The baseline model achieves mod-
est performance, particularly strug-
gling on the Novel split as ex-
pected. The significant gap be-
tween Base and Novel mR@K
highlights the challenge of gener-
alizing to unseen predicate cate-
gories with static representations.
Introducing only the RCG module
brings a noticeable gain, especially
on the Novel split, which demonstrates that conditioning the model on visual context is a crucial
first step, allowing it to dynamically reweight its features based on the input image, which is vital
for generalizing to unseen compositions. Further incorporating the BPS module yields a substantial
performance jump, gaining the Novel mR@50 an increase of +3.8 over the baseline. The model’s
generalization ability is greatly enhanced by its capacity to synthesize new prompts from a basis
set, effectively generating tailored representations for unseen concepts. Full CGP achieves the best
results across all metrics. The FRF module provides a critical non-linear transformation, effectively
fusing the synthesized prompts, original semantics, and visual features into an adaptive representa-
tion. This results in the highest harmonic mean, indicating a balanced and robust improvement on
both Base and Novel splits.

4.5 QUANTITATIVE EFFICIENCY ANALYSIS

Beyond performance gains, we quantitatively evaluate the parameter and time efficiency of
APT across various SGG models. The results are summarized in Table 6.

APT introduces a negligible number of additional parameters, consistently less than 0.5M across all
models. This represents an increase of less than 1.5% even for larger models like LLM4SGG Kim
et al. (2024c). This minimal overhead confirms that our prompt-based paradigm is a highly
parameter-efficient strategy for enhancing model capability, avoiding the need for costly pre-trained
backbone fine-tuning. In addition, APT not only improves performance but also significantly re-
duces training time per epoch for nearly all models. This efficiency gain is particularly pronounced
for one-stage methods. We attribute this acceleration to the role of adaptive prompts. By providing
well-modulated, context-aware semantic features, the prompts appear to stabilize and accelerate the
convergence of the downstream relation prediction. The model requires fewer training iterations to
fit the data, as the adaptive representations are more informative and easier to optimize than fixed
ones. When considering the performance improvement per unit of computational cost, APT demon-
strates an overwhelmingly favorable trade-off. For instance, LLM4SGG+APT achieves a +1.49 gain
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in performance with a 25% reduction in training time and a 4.6% reduction in parameters. This es-
tablishes a new Pareto frontier in SGG, where our method delivers higher performance at a lower
computational cost.

5 DISCUSSION: WHY PROMPT TUNING WORKS IN SGG

The consistent and significant gains delivered by APT across diverse architectures and tasks prompt
a deeper inquiry into its theoretical foundation. We posit that the effectiveness of our method stems
from its ability to reconcile two fundamental principles in representation learning: acquiring task-
sufficient features while maintaining minimal complexity, as guided by the Information Bottle-
neck (IB) principle Yang et al. (2023); Chi et al. (2022); Tishby et al. (2000).

Table 7: APT vs. FROZEN (GloVe) embeddings IB proxy metrics

PCA@90% PCA@95% Linear CKA Discretized MI proxy

APT 23 28 0.877 1.96
FROZEN 26 35 — 1.49

Pre-trained semantic em-
beddings are compressed
representations of linguistic
knowledge, optimized for a
wide array of language tasks.
However, for the specific
task of SGG, they constitute an over-complete and noisy representation. The entire spectrum of
semantic information for a concept like "person"—from biographical to literary associations—is
encoded indistinguishably. Directly using these fixed priors forces the SGG model to contend with
this noise, as it must learn to ignore irrelevant facets of meaning while preserving those pertinent
to visual relationships. This violates the IB principle Kawaguchi et al. (2023), which seeks a
representation Z that is minimal (retaining only information relevant for predicting the predicate
Y ) and sufficient (preserving all information needed for prediction).

APT act as a lightweight, learnable information filter that dynamically modulates these frozen
representations. The prompts, conditioned implicitly on the visual context through training, learn
to perform a form of feature selection and re-weighting on the frozen embeddings. They sup-
press semantic dimensions that are irrelevant or detrimental to the current relational context (e.g.,
suppressing literary aspects of a person when the visual context suggests a riding relation) while
amplifying discriminative dimensions (e.g., amplifying anthropomorphic features). The MLP then
non-linearly transforms this modulated signal into the final adaptive representation.

Therefore, the resulting dynamic features can be viewed as closer approximations of the minimal
sufficient statistics for the SGG task. They are more sufficient because they are context-aware and
tailored for predicate discrimination. They are more minimal because they are stripped of generic
semantic noise that hinders generalization. This principled compression of irrelevant information
and enhancement of predictive signals explains APT’s efficacy in improving model performance
and generalization, transcending mere architectural improvements.

We added experiments to test whether an APT semantic representation can be more compact while
preserving discriminative power. As shown in Table 7, APT requires fewer principal components
to achieve an equivalent level of explained variance, indicating that semantic information is more
concentrated and that APT representations are more amenable to compression. Furthermore, the
mutual information proxy yields higher values for APT than for FROZEN embeddings, suggesting
superior retention of label-relevant information.

6 CONCLUSION

In this work, we diagnosed the pervasive but overlooked problem of static semantic representa-
tions as a fundamental bottleneck in Scene Graph Generation. We proposed Adaptive Prompt
Tuning (APT), a novel and unified paradigm that addresses this issue by dynamically modulat-
ing frozen features into context-aware representations through lightweight, learnable prompts. APT
is architecture-agnostic, serving as an efficient plug-in that enhances both one-stage and two-stage
models across standard, long-tailed, and open-vocabulary settings.

APT offers a practical and powerful path forward for SGG, moving beyond architectural redesign to
a more fundamental representational shift. We believe our work opens up new avenues for efficient,
scalable, and adaptable visual scene understanding. Future work will explore the application of APT
to other vision-and-language tasks that suffer from similar semantic rigidity.
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APPENDIX

For a better understanding of the main paper, we provide additional details in this supplementary
material, which is organized as follows:

• §A depicts the implementation details.

• §B and §C shows performance results and ablation study of APT on Open Image
V6 Kuznetsova et al. (2020) and GQA Hudson & Manning (2019).

• §D gives a formal mathematical specification of the Relational Context Gating (RCG),
Basis Prompt Synthesis (BPS), and Feature Refinement Fusion (FRF) components.

• §E provides the pseudo code of APT.

A IMPLEMENTATION DETAILS

All experiments are implemented in PyTorch and evaluated on a server equipped with 4 NVIDIA
A40 GPUs. APT is applicable to both one-stage and two-stage models, therefore we select repre-
sentative one-and two-stage methods to validate the generality and high adaptability of APT. The
length of all prompts (Ld, Lr) is set to 6. The basis prompt set B for the open-vocabulary CGP
module consists of N = 16 bases. These values were determined via a hyperparameter search on
the validation set. For all baseline models, we use their officially released code and rigorously fol-
low their recommended training protocols and hyperparameter settings to reproduce the results. To
ensure a fair and controlled comparison, we strictly isolate the variable of interest: the integration
of APT module. All other factors, including data preprocessing, augmentation, random seeds, and
evaluation metrics, are kept identical between the baseline and our APT-enhanced versions.

B ADDITIONAL EXPERIMENTS ON OPEN IMAGE V6

To further validate the generalization capability of APT across diverse data distributions, we conduct
extensive experiments on the Open Images (OI) V6 Kuznetsova et al. (2020) benchmark. Unlike
VG, OI-V6 features larger-scale real-world imagery with distinct relationship taxonomy, presenting
a rigorous testbed for evaluating model robustness.

Following the data processing of previous works (Li et al., 2021; Yoon et al., 2023; Kim et al.,
2024b), OI-V6 is split into 126,368 train images, 1,813 validation images, and 6,322 test images,
and contains 301 object classes, and 31 predicate classes. Similar to VG, OI-V6 is divided into two
splits: base and novel, with the same proportion as in Section 4.3.

B.1 COMPARISON WITH BASELINES ON OPEN IMAGE

Our evaluation on OI-V6 demonstrates that APT delivers consistent performance gains across all
model architectures and evaluation settings, reinforcing its generalizability beyond dataset-specific
characteristics. As summarized in Table 8, the integration of APT improves both conventional recall
(R@K) and, more significantly, mean recall (mR@K) across two-stage and one-stage paradigms.

The results on OI-V6, combined with our findings on VG, provide compelling evidence that APT
offers a universal and practical solution for enhancing SGG models in diverse real-world scenarios.

B.2 COMPARISON WITH OPEN VOCABULARY SGG MODELS ON OPEN IMAGE

We further evaluate APT’s capability in the more challenging Open Vocabulary setting on Open
Images V6, where models are required to generalize to unseen predicate compositions. Following
the standard protocol, we partition the relationship categories into Base (70%) and Novel (30%)
splits, testing the true compositional reasoning ability beyond mere pattern memorization. As shown
in Table 9, APT consistently enhances performance across all OV-SGG methods on both Base and
Novel splits, with particularly notable improvements on the challenging Novel categories. The cross-
architectural effectiveness—from transformer-based OvSGTR to graph-based SDSGG—confirms
that APT addresses a fundamental limitation in OV-SGG: the inability of frozen representations to
dynamically adapt to unseen compositional scenarios. This establishes APT as a universal solution
for advancing open-vocabulary visual reasoning.
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Table 8: Performance (%) of state-of-the-art SGG models with & without APT on Open Image
V6 Kuznetsova et al. (2020). F@K is the harmonic mean of mR@50/100 and R@50/100. † denotes
the results are produced using official code.

Methods Predicate Classification Scene Graph Classification Scene Graph Detection
R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100

Two-stage methods
Motif†Zellers et al. (2018)CVPR’18 65.2/66.7 15.5/16.6 25.0/26.5 38.3/39.1 8.9/9.5 14.5/15.2 31.5/35.6 6.9/7.9 11.3/12.9
Motif+APT 67.0/68.6 17.6/18.5 27.0/28.7 40.5/41.0 10.6/11.3 16.6/17.6 33.7/38.0 9.3/10.5 13.5/15.5
PE-Net†(Zheng et al., 2023)CVPR’23 66.1/67.8 17.9/19.5 28.1/30.1 36.9/37.6 9.6/10.2 15.2/16.0 27.4/30.1 6.5/7.4 10.6/11.9
PE-Net+APT 67.9/69.6 19.6/20.8 29.9/31.9 37.5/38.7 10.5/10.9 16.3/17.3 28.3/31.6 7.3/8.8 11.6/12.9
DRM†Li et al. (2024a)CVPR’24 66.2/68.0 18.1/19.7 28.3/30.3 37.0/37.8 9.7/10.3 15.3/16.1 27.6/30.3 6.6/7.5 10.7/12.0
DRM+APT 69.0/70.7 19.7/22.1 29.3/31.0 39.6/40.3 11.4/11.8 17.4/18.8 29.9/32.1 8.4/9.9 12.8/13.7
RA-SGG†Yoon et al. (2025)AAAI’25 65.9/67.7 17.8/19.3 28.0/30.0 36.8/37.5 9.5/10.1 15.1/15.9 27.2/30.0 6.4/7.4 10.5/11.8
RA-SGG+APT 66.9/69.6 18.7/20.4 29.1/30.4 37.8/38.2 10.2/11.4 16.2/17.5 28.9/30.0 8.3/9.1 11.5/12.7
One-stage methods
SGTR†Li et al. (2022)CVPR’22 59.5/61.6 30.7/33.2 40.5/43.1 37.6/38.7 14.5/16.7 21.0/23.3 31.2/36.0 10.9/12.8 16.1/18.8
SGTR+APT 62.6/63.8 33.0/35.6 43.8/46.1 40.0/40.5 17.3/18.9 23.1/25.6 33.7/37.0 13.1/15.0 18.6/20.6
EGTR†Im et al. (2024)CVPR’24 54.3/56.8 35.9/38.4 43.2/45.8 35.1/36.3 17.2/18.6 23.1/24.6 27.6/32.0 13.4/15.7 18.0/20.9
EGTR+APT 56.6/58.5 37.7/40.3 45.4/47.9 36.9/38.8 19.7/20.5 24.8/26.4 29.9/33.7 15.9/17.1 19.6/22.5
LLM4SSG†Kim et al. (2024c)CVPR’24 62.4/64.3 36.4/39.3 45.9/48.8 38.4/39.3 21.1/22.7 27.2/28.8 26.2/30.5 14.6/17.3 18.7/22.1
LLM4SSG+APT 65.3/67.1 38.3/42.4 48.1/50.5 40.3/42.0 22.9/25.0 29.7/30.5 29.0/32.6 16.9/20.0 20.5/23.8
ST-SGG†Kim et al. (2024b)ICLR’24 54.1/58.0 28.3/31.7 37.1/41.0 33.6/35.1 17.1/18.2 22.6/24.0 26.9/31.0 11.8/14.4 16.4/19.6
ST-SGG+APT 58.9/62.5 31.5/34.8 40.1/43.9 36.8/38.6 20.5/21.7 26.5/27.1 30.4/34.6 15.0/18.3 19.5/22.4
SpeaQ†Kim et al. (2024a)CVPR’24 55.9/58.1 31.1/33.6 39.9/42.6 33.3/34.6 17.7/19.0 23.1/24.5 24.7/29.1 14.3/16.7 18.1/21.2
SpeaQ+APT 58.0/61.0 34.4/37.0 42.7/45.5 36.7/37.8 20.5/21.9 26.5/27.7 27.7/32.1 18.2/19.7 20.4/23.5

Table 9: Performance (%) of state-of-the-art Open Vocabulary SGG models with & without APT on
Open Image V6 Kuznetsova et al. (2020). † denotes the results are produced using official code.

Methods Base Novel
R@20/50/100 mR@20/50/100 F@20/50/100 R@20/50/100 mR@20/50/100 F@20/50/100

SDSGG†Chen et al. (2024a)NeurIPS’24 25.1/32.4/36.8 10.2/14.1/16.5 14.5/19.9/23.0 22.3/28.6/32.1 13.4/18.7/21.9 17.1/23.0/26.2
SDSGG+APT 26.2/33.7/38.3 11.3/15.3/17.8 15.8/21.4/24.6 23.6/30.0/33.8 14.6/20.1/23.4 18.5/24.7/27.9
OvSGTR†Chen et al. (2024b)ECCV’24 21.5/29.0/33.2 14.0/18.2/20.9 16.9/22.7/26.0 19.2/25.4/29.1 11.8/15.3/17.9 14.9/19.8/22.9
OvSGTR+APT 22.4/30.2/34.6 15.1/19.4/22.3 18.1/24.1/27.5 20.1/26.6/30.5 12.7/16.5/18.9 16.0/21.3/24.3
SGTR+RAHP†Liu et al. (2025)AAAI’25 39.8/46.1/50.2 19.1/24.0/27.3 26.0/31.9/35.0 14.6/19.3/22.8 10.5/14.3/16.9 12.2/16.5/19.3
SGTR+RAHP+APT 40.7/47.2/51.4 20.0/25.1/28.6 27.1/33.1/36.3 15.4/20.2/23.9 11.3/15.3/18.0 13.1/17.5/20.5

B.3 ABLATION STUDY OF APT ON OPEN IMAGE

To dissect the individual contributions of APT’s components and their synergistic effects, we con-
duct comprehensive ablation studies on OI-V6.

As shown in Table 10, we systematically evaluate the impact of individual prompts within the PE-
Net backbone. The Detection Prompt alone slightly improves object classification accuracy but
shows limited benefits for relational reasoning. In contrast, the Relation Prompt significantly en-
hances predicate discrimination, boosting mR@100 by +2.6 (34.0→36.6), underscoring its piv-
otal role in addressing predicate bias. The full APT integration achieves the optimal balance, with
F@100 reaching 48.7, demonstrating the synergistic effect between object-level and relation-level
adaptation.

Further analyzing the Compositional Generalization Prompter (CGP) in Table 11, we observe pro-
gressive improvements. The Relational Context Gating (RCG) module establishes a foundation by
incorporating visual evidence, while Basis Prompt Synthesis (BPS) enables dynamic prompt gener-
ation for unseen concepts, increasing Novel mR@50 by +3.9 over the baseline. The complete CGP
achieves the highest harmonic mean (F@50: 30.6) on Novel categories, validating our multi-stage
prompting approach for open-vocabulary generalization.

Table 10: Ablation study of APT based on PE-Net on Open Image V6. † denotes the results are
produced using official code.

Model Predicate Classification Scene Graph Classification
R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100

Vanilla PE-Net† 65.1/67.4 31.7/34.0 42.6/45.2 37.8/38.8 17.9/19.0 24.6/25.9
+D-Prompt only 65.4/67.3 30.6/32.8 41.2/44.0 38.6/39.5 16.8/18.1 24.2/25.5
+R-Prompt only 64.8/66.9 33.6/36.6 43.8/46.3 38.7/39.6 19.8/21.0 25.3/26.5
+Full APT 62.4/64.3 36.4/39.2 45.8/48.7 38.4/39.3 21.1/22.7 27.2/28.8
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Table 11: Ablation study of APT CGP module based on SDSGG Chen et al. (2024a) on Open Image
V6 split. † denotes the results are produced using official code.

Model Base Novel
R@50 mR@50 F@50 R@50 mR@50 F@50

Vanilla SDSGG† 26.5 12.4 16.9 25.4 25.2 25.3
+RCG 26.8 13.2 17.7 25.7 26.9 26.7
+RCG + BPS only 27.0 14.6 19.2 26.0 29.1 28.9
+Full CGP 27.4 16.1 21.0 26.4 31.4 30.6

C ADDITIONAL EXPERIMENTS ON GQA

C.1 COMPARISON WITH BASELINES ON GQA

The evaluation on GQA Hudson & Manning (2019) shows that APT brings stable gains under both
two-stage and one-stage paradigms, with more significant improvements on the class-balanced met-
ric mR@K, indicating consistent benefits for long-tailed distribution and cross-scene generalization.
Table 12 summarizes the comparative results of each model under the three settings: Predicate Clas-
sification, Scene Graph Classification, and Scene Graph Detection.

Table 12: Performance (%) of state-of-the-art SGG models with & without APT on GQA Hudson &
Manning (2019). F@K is the harmonic mean of mR@50/100 and R@50/100. † denotes the results
are produced using official code.

Methods Predicate Classification Scene Graph Classification Scene Graph Detection
R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100

Two-stage methods
Motif†Zellers et al. (2018)CVPR’18 62.8/64.2 14.7/15.9 23.8/25.4 36.1/36.9 8.5/9.2 14.0/14.9 28.9/33.1 6.2/7.3 10.4/12.3
Motif+APT 64.6/66.1 16.6/17.9 26.2/27.9 38.0/39.0 10.2/11.0 16.2/17.1 31.1/35.4 8.5/9.8 13.2/15.0
PE-Net†(Zheng et al., 2023)CVPR’23 64.0/65.5 17.2/18.7 27.1/28.9 35.5/36.1 9.1/9.7 15.0/15.6 26.6/29.4 6.1/7.0 10.3/11.8
PE-Net+APT 65.9/67.3 19.0/20.4 29.0/30.9 36.6/37.8 10.1/10.8 16.1/17.0 27.8/31.1 7.2/8.6 11.7/13.5
DRM†Li et al. (2024a)CVPR’24 64.3/66.1 17.5/19.1 27.4/29.5 35.8/36.6 9.3/10.0 15.2/16.0 26.8/29.7 6.4/7.2 10.6/12.1
DRM+APT 67.0/68.7 19.3/21.6 29.6/31.8 38.4/39.1 11.0/11.6 17.2/18.1 29.4/31.8 8.2/9.6 12.7/14.2
RA-SGG†Yoon et al. (2025)AAAI’25 64.1/65.8 17.3/18.8 27.2/29.1 35.6/36.2 9.2/9.9 15.1/15.9 26.4/29.2 6.0/6.9 10.2/11.6
RA-SGG+APT 65.4/67.4 18.5/20.2 28.8/30.7 36.9/37.5 10.0/11.1 16.0/17.2 28.1/29.6 7.9/8.8 11.7/12.9
One-stage methods
SGTR†Li et al. (2022)CVPR’22 58.2/60.1 29.1/31.5 39.1/41.1 36.2/37.4 13.6/15.7 20.2/22.1 29.5/34.1 10.3/12.1 16.0/18.3
SGTR+APT 61.1/62.5 31.6/34.1 42.0/44.1 39.0/39.7 16.5/18.1 22.9/24.5 32.4/36.0 12.8/14.7 18.4/20.7
EGTR†Im et al. (2024)CVPR’24 53.6/55.9 34.7/37.0 42.0/44.5 34.2/35.4 16.4/18.1 22.0/23.6 26.8/31.3 12.6/14.8 17.2/20.0
EGTR+APT 55.8/57.7 36.8/39.2 44.0/46.4 36.0/37.9 18.7/19.6 24.3/26.0 29.1/33.2 15.1/16.4 19.1/21.7
LLM4SSG†Kim et al. (2024c)CVPR’24 61.2/63.1 35.1/38.1 45.4/48.3 37.1/38.2 20.5/22.1 26.0/27.7 25.2/29.6 13.7/16.1 18.3/21.3
LLM4SSG+APT 64.0/65.8 37.3/41.4 47.8/50.6 39.2/40.9 22.4/24.5 28.5/30.2 27.9/31.8 16.0/19.1 20.5/23.8
ST-SGG†Kim et al. (2024b)ICLR’24 53.0/56.7 27.4/30.8 36.2/40.0 33.1/34.5 16.0/17.2 22.3/23.9 25.9/30.1 11.1/13.7 16.4/19.2
ST-SGG+APT 58.0/61.6 30.6/33.9 39.5/43.3 36.2/37.9 19.4/20.6 25.6/26.9 29.5/33.5 14.4/17.7 19.2/22.2
SpeaQ†Kim et al. (2024a)CVPR’24 55.1/57.3 30.2/32.7 39.0/41.7 32.7/34.0 17.0/18.2 23.0/24.5 23.9/28.3 13.8/16.3 18.0/20.7
SpeaQ+APT 57.3/60.2 33.6/36.2 42.2/44.9 36.2/37.3 19.6/21.1 26.0/27.3 26.8/31.0 17.6/19.1 21.1/23.6

C.2 COMPARISON WITH OPEN VOCABULARY SGG MODELS ON GQA

We further examine APT’s effectiveness under the Open Vocabulary setting on GQA, where models
must generalize to unseen predicate compositions beyond the training taxonomy. Following com-
mon practice, we split relation categories into Base (70%) and Novel (30%) sets to probe true com-
positional generalization rather than memorization. As summarized in Table 13, APT consistently
improves all OV-SGG baselines across both Base and Novel splits, with more pronounced gains
on the challenging Novel categories. Its cross-architecture benefits indicate that APT alleviates a
key bottleneck in OV-SGG: the rigidity of frozen representations when facing unseen compositions.
These results establish APT as a general and plug-and-play solution for open-vocabulary visual
reasoning on GQA.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 13: Performance (%) of state-of-the-art Open Vocabulary SGG models with & without APT on
GQA Hudson & Manning (2019). † denotes the results are produced using official code.

Methods Base Novel
R@20/50/100 mR@20/50/100 F@20/50/100 R@20/50/100 mR@20/50/100 F@20/50/100

SDSGG†Chen et al. (2024a)NeurIPS’24 23.3/30.1/34.2 9.8/13.5/15.9 13.9/19.0/22.2 20.4/26.6/30.0 12.5/17.4/20.6 15.5/22.0/25.0
SDSGG+APT 24.4/31.4/35.6 10.9/14.7/17.2 15.2/20.6/23.7 21.8/28.1/31.7 13.8/18.9/22.1 16.9/23.8/26.9
OvSGTR†Chen et al. (2024b)ECCV’24 20.1/27.5/31.8 13.2/17.4/19.9 16.0/22.0/25.1 17.9/23.8/27.4 10.9/14.5/16.8 13.1/18.2/20.9
OvSGTR+APT 21.1/28.8/33.1 14.3/18.7/21.2 17.3/23.5/26.6 18.9/25.1/28.9 12.1/15.9/18.3 14.4/19.8/22.6
SGTR+RAHP†Liu et al. (2025)AAAI’25 37.9/44.1/48.2 18.3/23.0/26.1 25.1/30.6/33.7 13.7/18.3/21.5 9.9/13.7/16.1 11.5/15.9/18.6
SGTR+RAHP+APT 38.9/45.4/49.6 19.4/24.2/27.4 26.4/32.1/35.2 14.6/19.4/22.7 10.8/14.9/17.4 12.5/17.2/19.9

C.3 ABLATION STUDY OF APT ON GQA

To quantify the contribution of each component and their combined effects on GQA, we conduct
step-wise ablations in both closed- and open-vocabulary regimes.

As shown in Table 14, within the PE-Net backbone, the Detection Prompt slightly benefits object-
centric cues with marginal effects on relational reasoning. In contrast, the Relation Prompt is the
primary driver for predicate discrimination, yielding clear gains in mR@K and the harmonic mean
F@K. The full integration achieves the best balance between precision and coverage, delivering the
highest F@100.

We further ablate the Compositional Generalization Prompter (CGP) on SDSGG in Table 15. Re-
lational Context Gating (RCG) establishes a visual-evidence-aware baseline, while Basis Prompt
Synthesis (BPS) enables dynamic prompt composition for unseen relations, progressively improv-
ing Novel mR@50. The complete CGP attains the best F@50 on Novel, validating our multi-stage
prompting for open-vocabulary generalization on GQA.

Table 14: Ablation study of APT based on PE-Net on GQA. † denotes that the results are produced
using official code.

Model Predicate Classification Scene Graph Classification
R@50/100 mR@50/100 F@50/100 R@50/100 mR@50/100 F@50/100

Vanilla PE-Net† 63.4/65.2 16.8/18.2 26.6/28.4 35.2/36.0 9.0/9.6 14.8/15.5
+D-Prompt only 63.9/65.6 16.0/17.3 25.7/27.4 36.0/36.8 8.6/9.2 14.3/14.9
+R-Prompt only 63.2/65.0 18.7/20.9 28.6/30.9 36.1/37.0 10.7/11.6 16.8/17.6
+Full APT 62.0/63.8 20.0/22.5 30.1/32.7 36.4/37.3 12.2/13.5 18.4/19.7

Table 15: Ablation study of APT CGP module based on SDSGG Chen et al. (2024a) on the GQA
split. † denotes that the results are produced using official code.

Model Base Novel
R@50 mR@50 F@50 R@50 mR@50 F@50

Vanilla SDSGG† 30.1 13.5 19.0 26.6 17.4 22.0
+RCG 30.4 14.2 19.7 27.0 18.6 23.1
+RCG + BPS only 30.7 15.7 21.3 27.3 20.9 24.6
+Full CGP 31.1 17.2 23.0 27.7 22.5 26.2

D FORMALIZATION OF THE COMPOSITIONAL GENERALIZATION PROMPTER
(CGP)

This appendix provides a precise mathematical specification of the CGP module used in APT (Re-
lational Context Gating, Basis Prompt Synthesis, and Feature Refinement & Fusion).
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D.1 NOTATION AND SHAPES

Let D denote the semantic embedding dimension, Dv the visual feature dimension, Lb the basis
prompt length, and N the number of basis prompts. We use the following symbols:

estatic(c) ∈ RD (frozen class embedding for class c)

v ∈ RDv (visual/context vector)

B ∈ RN×Lb×D (basis prompts)

Wv ∈ RD×Dv (visual projector)

fϕ(·) : R3D → RD (fusion MLP)

MLPgate(·) : RD+Dv → RN

α ∈ R (residual scaling, learnable)

D.2 RELATIONAL CONTEXT GATING (RCG)

Given a visual vector v and static embedding estatic, the gate network produces N real-valued logits
followed by a softmax to obtain convex weights:

s = MLPgate
(
[v; estatic]

)
∈ RN , (14)

au > 0 (temperature, may be learned or fixed), (15)

π ∈ ∆N−1 , (16)

wi =
exp

(
(si + log πi)/τ

)∑N
j=1 exp

(
(sj + log πj)/τ

) for i = 1, . . . , N, (17)

w ∈ ∆N−1, wi ≥ 0,

N∑
i=1

wi = 1, (18)

We may also add an entropy regularizer on the gate distribution to control sparsity:

Rent = −β
N∑
i=1

wi logwi, β ≥ 0. (19)

Here [·; ·] denotes concatenation.

D.3 BASIS PROMPT SYNTHESIS (BPS)

The CGP synthesizes a prompt sequence as a convex combination of the basis prompts token-wise:

ext(optional_positional_biases) ut ∈ R, t = 1, . . . , Lb,

wi,t =
exp

(
(si + ut)/τ

)∑N
j=1 exp

(
(sj + ut)/τ

) for t = 1, . . . , Lb, (20)

Pseq
cgp[t] =

N∑
i=1

wi,t Bi[t] ∈ RD, t = 1, . . . , Lb, (21)

Pseq
cgp =

(
Pseq

cgp[1], . . . ,P
seq
cgp[Lb]

)
∈ RLb×D. (22)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

To obtain a compact pooled prompt we use a normalized, token-weighted pooling with normaliza-
tion:

p̄ = LayerNorm
( 1

Lb

Lb∑
t=1

Pseq
cgp[t]

)
∈ RD. (23)

The implementation in our experiments uses mean-pooling for compact fusion; the sequence-aware
variant is also supported via token-level fusion (e.g., cross-attention).

D.4 FEATURE REFINEMENT AND FUSION (FRF)

We project the visual vector to the semantic dimension:

v = Wvv + bv ∈ RD, (24)

h =
[
p̄; estatic; ṽ

]
∈ R3D, (25)

fϕ(h) = W2 GELU(W1h+ b1) + b2 ∈ RD, (26)
u = fϕ(h), (27)

g = σ(Wgh+ bg) ∈ (0, 1)D , (28)

e = LayerNorm
(
estatic + α (g ⊙ u)

)
∈ RD, (29)

where α is initialized small (e.g., α = 0.1), ⊙ denotes element-wise product.
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E PSEUDOCODE OF APT

The pseudo-code of APT is given in Algorithm 1 and 2. The pseudo-code of the CGP module is
given in Algorithm 3.

Algorithm 1 APT: Adaptive Prompt Tuning for SGG

Require: Image I ∈ RH×W×3; static semantic embeddings Estatic ∈ RC×Dp ; frozen backbone
Bfrozen

Ensure: Scene graph G
1: (V,B,Z)← Bfrozen(I) // V ∈ RN×Dv , B ∈ RN×4, Z ∈ RN×C

2: y← argmaxc Z // class labels; y ∈ {1, . . . , C}N
3: A ← [ ] // container for adapted features
4: for i ∈ {1, . . . , N} do
5: e

(i)
static ← Estatic[yi] // e(i)static ∈ RDp

6: v(i) ← Vi // v(i) ∈ RDv

7: e
(i)
adapt ← APTCOREMODULE.FORWARD(e

(i)
static,v

(i), role = general) // e(i)adapt ∈ RDp

8: Append e
(i)
adapt to A

9: end for
10: A← STACK(A) // A ∈ RN×Dp

11: G ← RELATIONHEAD(A,V,B) // relation prediction
12: return G

Algorithm 2 APTCoreModule

// Learnable params: prompts P det, P rel ∈ RK×Dp ; projection Wv ∈ RDp×Dv ; fusion MLP fθ
Require: Static semantic vector Estatic ∈ RDp ; visual vector v ∈ RDv ; role ∈
{detection,general,subject,object}

Ensure: Adapted semantic vector eadapt ∈ RDp

1: if role = detection then
2: P ← P det

3: else
4: P ← P rel

5: end if
6: p̄← MEAN(P, dim = 0)
7: ṽ←Wv v
8: h← [p̄ ∥Estatic ∥ ṽ]
9: eadapt ← fθ(h)

10: return eadapt

Algorithm 3 CGP: Compositional Generalization Prompter

// Learnable params: basis prompts P basis∈RB×L×Dp ; gate network gθ :RDv+Dp→∆B ;
projection Wv∈RDp×Dv ; refinement MLP fϕ

Require: Static semantic vector Estatic ∈ RDp ; visual vector v ∈ RDv

Ensure: Adapted semantic vector eadapt ∈ RDp

1: u← [v ∥Estatic] // u ∈ RDv+Dp

2: w← gθ(u) // RCG: gate weights, w ∈ RB ,
∑

b wb = 1

3: S←
∑B

b=1 wb · P basis
b // BPS: synthesized prompt, S ∈ RL×Dp

4: p̄← MEAN(S, dim = 0)
5: ṽ←Wv v
6: h← [p̄ ∥Estatic ∥ ṽ] // FRF input, h ∈ R3Dp

7: eadapt ← fϕ(h)
8: return eadapt

19


	Introduction
	Related Work
	Adaptive Prompt Tuning Framewrok
	Overview
	Unified Plug-in Prompts
	Compositional Generalization Prompter

	Experiment
	Experiment Settings
	Comparison with baselines on Visual Genome
	Comparison with Open Vocabulary SGG Models on Visual Genome
	Ablation Study on Components of APT
	Quantitative Efficiency Analysis

	Discussion: Why Prompt Tuning Works in SGG
	Conclusion
	Implementation Details
	Additional Experiments on Open Image V6
	Comparison with baselines on Open Image
	Comparison with Open Vocabulary SGG Models on Open Image
	Ablation Study of APT on Open Image

	Additional Experiments on GQA
	Comparison with baselines on GQA
	Comparison with Open Vocabulary SGG Models on GQA
	Ablation Study of APT on GQA

	Formalization of the Compositional Generalization Prompter (CGP)
	Notation and shapes
	Relational Context gating (RCG)
	Basis Prompt Synthesis (BPS)
	Feature Refinement and Fusion (FRF)

	Pseudocode of APT

