
Highly Parallel Deep Ensemble Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this paper, we propose a novel highly parallel deep ensemble learning, which1

leads to highly compact and parallel deep neural networks. The main idea is to first2

represent the data in tensor form, apply a linear transform along certain dimension3

and split the transformed data into different independent spectral data sets; then4

the matrix product in conventional neural networks is replaced by tensor product,5

which in effect imposes certain transformed-induced structure on the original6

weight matrices, e.g., a block-circulant structure. The key feature of the proposed7

spectral tensor network is that it consists of parallel branches with each branch being8

an independent neural network trained using one spectral subset of the training9

data. Besides, the joint data/model parallel amiable for GPU implementation.10

The outputs of the parallel branches, which are trained on different independent11

spectral, are combined for ensemble learning to produce an overall network with12

substantially stronger generalization capability than that of those parallel branches.13

Moreover, benefiting from the reducing size of inputs, the proposed spectral tensor14

network exhibits an inherent network compression, and as a result, reduction15

in computation complexity, which leads to the acceleration of training process.16

The high parallelism from the massive independent operations of the parallel17

spectral subnetworks enable a further acceleration in training and inference process.18

We evaluate the proposed spectral tensor networks on the MNIST, CIFAR-1019

and ImageNet data sets, to highlight that they simultaneously achieve network20

compression, reduction in computation and parallel speedup.21

1 Introduction22

Deep neural networks (DNNs) [1] have made impressive successes in many applications, such23

as computer vision [2][3][4], online game [5][6][7], natural language processing [8][9][10], au-24

tonomous driving [11][12][13], and robotics [14][15][16]. However, DNNs are memory-intensive25

and computation-intensive, which are two major challenges for wider adoption, e.g., in Internet of26

Things (IoT) applications [17]. Modern DNNs may have billions of parameters that consume exces-27

sive amount of memory and usually require long training time. For example, AlexNet [18] consists28

of three fully-connected layers and five convolutional layers, containing 60 million parameters and29

consuming about 250 MB of memory and about 40 hours for training on ImageNet data set [19].30

To mitigate the impact of memory and computation intensive, there are two types of techniques31

most investigated by researchers, namely model compression and parallel training. The model32

compression methods, which represents the conventional neural layers in DNNs by compact layers,33

such as the strucred linear layers, tensor layers, etc., are one of the most efficient methods to reduce34

memory consumption of DNNs. Besides, the proposed parallel training methods can be generally35

categorized into data parallelism and model parallelism methods. It should be noted that tensor36

layer provides potential parallelism for efficient GPU computing as well as the reduction of the37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Table 1: Different tensor layers. An N2 ×N2 weight matrix is organized into a d-th order tensor
with the size of each dimension n, i.e., N4 = nd, and r is the tensor rank.

Methods Model size Inference time
Fully connected layer O(N4) O(N4)
Low-rank matrix [29] O(N2r) O(N2r)
CP tensor layer [31] O(nr) O(nr)

Tucker tensor layer [32] O(nr + r3) O(nr)
HT tensor layer [32] O(dn2r + rd) O(dnr2N2)

Tensor-train layer [29] O(dnr2) O(dr3N2)

memory consumption. Thus, it naturally motivates us to employ tensor layer to achieve both the38

model compression and parallel computing.39

In this paper, we propose a unified approach that simultaneously achieves both model compression40

and parallel learning without communication overhead. The key technique is a novel spectral tensor41

layer that enables a joint data/model-parallel implementation of a DNN as follows: 1) The training42

data set is split into multiple orthogonal spectral sets; 2) The neural network is split into parallel43

branches with each branch being a conventional neural network, that are trained asynchronously and44

independently on the corresponding spectral sets; 3) The outputs of the parallel branches are finally45

combined to yield an overall neural network with substantially stronger generalization capability than46

that of those parallel branches.47

The remainder of this paper is organized as follows. Section 2 presents an brief overview of the48

study on the model compression and parallel computing. Section 3 presents multiple spectral tensor49

layers, including fully connected layers, convolution layers and recurrent layers. Section 4 presents50

the experimental results and we conclude this paper in Section 5.51

2 Related Works52

Network compression: Consider a linear layer that is a central building block of modern DNNs,53

where an input x ∈ RN2

(e.g., an N ×N image) is transformed by a weight matrix W ∈ RN2×N2

54

[1], i.e., y = Wx ∈ RN2

. The memory size for storing W is O(N4) and the computational55

complexity of the matrix-vector product is also O(N4), both are very demanding for smartphones,56

robots, and embedded devices.57

Many works [20][21][22][23] showed that over 95% of the parameters are redundant, thus the58

network can be greatly compressed. The structured linear layer imposes certain structures on W ,59

including circulant [21][22][24], circulant-block [25][26], and Teoplitz-like structures [21][27][23].60

For example, for a circulant weight matrix W [21][22][27][24], the memory size becomes O(N2)61

and the computational complexity becomes O(N2 logN), at the expense of a slight drop in the62

inference performance.63

On the other hand, the tensor layer exploits different types of low-rank tensor representations of64

the weight matrix W [28][29][30][31][32]. For example, if the weight matrix W ∈ RN2×N2

has65

rank r ≪ N2, such that W = AB, A ∈ RN2×r, B ∈ Rr×N2

, then the memory size becomes66

O(2N2r), and the computational complexity becomes O(2N2r). Table 1 summarizes the model size67

and computational complexity for various tensor representation schemes.68

Parallel training: Existing works on parallel machine learning take advantage of either data-69

parallelism [33][34][35] or model-parallelism [36][37][38] or both [39]. In the data-parallel approach,70

the data are distributed among multiple processors that apply the same model [33]. The processors71

periodically exchange the outputs and gradients. In the model-parallel approach, exact copies of the72

whole data set are processed by multiple processors that operate in parallel on different parts of the73

same model [36]. There are frequent aggregation of model parts and distribution of gradients [40].74

From the above discussion, we see that the computation associated with a DNN can be speed up via75

two separate ways: one is through model compression so that reduced number of weight parameters76

leads to reduced number of multiplications and additions; and the other is through parallel computing,77

2

Figure 1: The framework of highly parallel deep ensemble learning.

where the speedup is due to distributing the computation among parallel processors, at the expense of78

communication overhead.79

3 Highly Parallel Spectral Tensor Networks80

3.1 Overview81

As shown in Fig.1, a batch of data is firstly pre-processed to the spectral dataset and splitted into82

Q independent subsets. Then, Q different subnetwork, namely spectral tensor layer, works on Q83

independent joint spectral dataset to output own result. Last, the final result is the ensemble result84

from Q subnetworks. Tne subnetwork family includes the fully connected spectral tensor layer,85

convolutional spectral tensor layer and recurrent spectral tensor layer. The feature of joint data and86

model parallel makes it suitable for computing on GPUs. The operations in the forward pass, such as87

t-product further provides potential high parallelism for acceleration on GPUs.88

3.2 Notations and Basic Tensor Operations89

Scalars, vectors, matrices and tensors are denoted by lowercase, boldface lowercase, boldface capital,90

and calligraphic letters, e.g., a ∈ R, a ∈ Rn, A ∈ Rn1×n2 , A ∈ Rn1×n2×n3 , respectively. We use91

A(:, :, k), A(:, j, :), A(i, :, :) to denote the frontal, lateral, and horizontal slices.92

Given an invertible discrete linear transform L : Rn3 → Cn3 , let L and its inverse L−1 be taken along93

the third-dimension of third-order tensors. That is, for A ∈ Rn1×n2×n3 , Ã = L(A) ∈ Cn1×n2×n3 ,94

with Ã(i, j, :) = L(A(i, j, :)), i = 1, ..., n1, j = 1, ..., n2. And for Ã ∈ Cn1×n2×n3 , A = L−1(Ã),95

with A(i, j, :) = L−1(Ã(i, j, :)), i = 1, ..., n1, j = 1, ..., n2. The general spectral tensor product96

[41][42][43] is defined as97

C = A • B = L−1(L(A)△ L(B)), (1)

where △ denotes the frontal-slice wise multiplication, i.e., for Ã ∈ Cn1×n′×n3 , B̃ ∈ Cn′×n2×n3 , if98

C̃ = Ã △ B̃, then C̃(:, :, k) = Ã(:, :, k) B̃(:, :, k), k = 1, ..., n3. The t-product [44] is a special case99

of (1) where the transform L is the DFT [45].100

For a tensor A ∈ Rn1×n2×n3 , we define the following operations. bcirc(A) ∈ Rn1n3×n2n3 organizes101

its n3 frontal slices into a block-circulant matrix102

bcirc(A) =


A(:, :, 1) A(:, :, n3) · · · A(:, :, 2)
A(:, :, 2) A(:, :, 1) · · · A(:, :, 3)

...
...

. . .
...

A(:, :, n3) A(:, :, n3 − 1) · · · A(:, :, 1)

 . (2)

Further, unfold(·) is defined as103

unfold(A) = [A(:, :, 1)T , · · · ,A(:, :, n3)
T]T ∈ Rn1n3×n2 ,

3

and fold(·) organizes it back to A, such that104

fold(unfold(A)) = A. (3)

Given A ∈ Rn1×n′×n3 and B ∈ Rn′×n2×n3 , the t-product [45] can be expressed as follows105

A ∗t B = fold(bcirc(A) · unfold(B)) ∈ Rn1×n2×n3 . (4)

The vec(·) operation maps a matrix in Rn1×n2 into a vector in Rn1n2 , while vec−1(·) is the inverse106

mapping.107

3.3 Fully Connected Spectral Tensor Layer108

A conventional N -layer fully connected network takes m input vectors each of size ℓ′0 × 1 and109

represents them as a matrix X0 ∈ Rℓ′0×m. For example, if each input vector represents a color110

image of size n× n× 3, then ℓ′0 = 3n2. Each input vector will be classified to one of the L classes.111

The network parameters at the j-th layer include a weight matrix W j ∈ Rℓ′j×ℓ′j−1 and an offset112

Bj = [bj , ..., bj]︸ ︷︷ ︸
m

∈ Rℓ′j×m, and the forward pass can be represented as [1]113

Xj = σ(W j ·Xj−1 +Bj), j = 1, ..., N − 1, (5)

where Xj ∈ Rℓ′j×m, and σ(·) is an element-wise activation function, e.g., linear, sigmoid, ReLU,114

and softmax. The last, i.e., N -th, layer produces the output Y ∈ RL×m corresponding to the m input115

vectors, where116

XN = WN ·XN−1, (6)

Y = f(XN), (7)

and the output function f(X) operates on the columns of X , i.e., f(X(:, s)) maps X(:, s) to an117

output score vector Y (:, s) ∈ RL representing the probabilities that the s-th input data vector X0(:, s)118

belongs to different classes. For example f(·) can be a softmax.119

For our proposed fully connected spectral tensor network, the m input data vectors are organized as a120

tensor X 0 ∈ Rℓ0×m×Q. For the n × n × 3 color image example, we can set Q = 3n and ℓ0 = n,121

namely each image is a lateral slice of X 0. Using the weight tensor Wj ∈ Rℓj×ℓj−1×Q and offset122

tensor Bj ∈ Rℓj×m×Q, a fully connected tensor layer corresponding to (5) and (6) becomes123

X j = ϱ(Wj • X j−1 + Bj), j = 1, ..., N − 1, (8)

XN = WN • XN−1, (9)

where X j ∈ Rℓj×m×Q, the spectral tensor product • is given in (1), and the tensor-activation function124

ϱ(·) under transform L is defined by applying the conventional element-wise activation function σ(·)125

in the spectral domain, i.e.,126

ϱ(X) = L−1(σ(L(X))). (10)

A salient feature of the proposed spectral tensor network is the fully parallel implementation. Specifi-127

cally, for X ∈ Rℓ×m×Q, denote X̃ ∈ Cℓ×m×Q as the transform of X along the third dimension, i.e.,128

X̃ (i, s, :) = L(X (i, s, :)), i = 1, ..., ℓ, s = 1, ...,m. Denote further X̃q = X̃ (:, :, q). Then according129

to (1), (8)-(9) can be split into Q branches of matrix computations130

X̃j
q = σ

(
W̃ j

q · X̃j−1
q + B̃j

q

)
, (11)

X̃N
q = W̃N

q · X̃N−1
q , q = 1,, Q, (12)

where X̃j
q ∈ Cℓj×m, B̃j

q = [b̃jq, ..., b̃
j
q]︸ ︷︷ ︸

m

∈ Cℓj×m, and W̃ j
q ∈ Cℓj×ℓj−1 .131

We further assume that the weight tensor Wj in (8)-(9) has low tubal-rank [45][46] such that Wj =132

Cj • Dj , where Cj ∈ Cℓj×r×Q, Dj ∈ Cr×ℓj−1×Q, and r ≪ min{ℓ0, ..., ℓN}. Correspondingly, the133

weight matrix of each branch has low-rank structure, i.e.,134

W̃ j
q = C̃j

q · D̃j
q , q = 1, ..., Q, (13)

4

where C̃j
q ∈ Cℓj×r and D̃j

q ∈ Cr×ℓj−1 . Then, (11)-(12) become135

Z̃j
q = D̃j

q · X̃j−1
q , j = 1, ..., N, (14)

X̃j
q = σ

(
C̃j

q · Z̃j
q + B̃j

q

)
, j = 1, ..., N − 1, (15)

X̃N
q = C̃N

q · Z̃N
q , (16)

where Z̃j
q ∈ Cr×m, q = 1, ..., Q.136

Therefore, an N -layer fully connected spectral tensor network in (8)-(9) is split into a 2N -layer137

network, such that each layer in (11) is now implemented by two sub-layers, namely a linear layer138

(14) and a nonlinear layer (15), while the N -th layer in (12) is implemented by two linear sub-layers,139

namely (14) and (16). There are multiple parallel matrix multiplications with the same size and along140

the same dimension in Q subnetworks. Therefore, we employ the batch matrix multiplication using141

GPUs to accelerate the computations.142

Finally, we specify the network output. At each branch q, the output function f(·) is applied to the143

last layer output X̃N
q , as in (7), i.e.,144

Yq = f(X̃N
q), q = 1, ..., Q. (17)

Finally the network output is the weighted sum of the outputs of the Q branches, i.e.,145

Y =

Q∑
q=1

ωqYq, s.t. ωq ≥ 0,

Q∑
q=1

ωq = 1. (18)

The loss function can be a cross-entropy function as follows:146

Loss = −
m∑
s=1

L∑
c=1

1(ys(c) = 1) · ln(Y (c, s)). (19)

Once the spectral tensor network in Fig. 1 is trained, for inference, given a new data sample x ∈ Rℓ0Q,147

we first matricize it into X ∈ Rℓ0×Q and then take transform along each row to obtain X̃ . We input148

the q-th column of X̃ , i.e., X̃(:, q), to the q-th sub-network and obtain the output yq, q = 1, ..., Q.149

The final output is then y =
∑Q

q=1 ωqyq .150

3.4 Convolutional Spectral Tensor Layer151

A convolutional neural network [1][47] takes m input images each of dimension H0 ×W0 ×C0, i.e.,152

each image has a size H0×W0 and the number of channels is C0, and represents them as a fourth-order153

tensor X0 ∈ RH0×W0×C0×m. The input to the j-th layer is Xj−1 ∈ RHj−1×Wj−1×Cj−1×m, which is154

processed by a convolutional kernel Wj ∈ RH′
j×W ′

j×Cj−1×Cj and an offset Bj ∈ RH′′
j ×W ′′

j ×Cj×m,155

to yield Yj ∈ RH′′
j ×W ′′

j ×Cj×m, with H ′′
j = Hj−1 −H ′

j + 1, W ′′
j = Wj−1 −W ′

j + 1, where156

Yj(h,w, c, :) =

Cj−1∑
d=1

W ′
j−1∑
ℓ=0

H′
j−1∑
i=0

Xj−1(h+ i, w + ℓ, d, :) ·Wj(i, ℓ, d, c) + Bj(h,w, c, :),

h = 1, ...,H ′′
j , w = 1, ...,W ′′

j , c = 1, ..., Cj .

(20)

To introduce the convolutional spectral tensor network, we represent (20) as a matrix product form157

that is similar to (5)158

Y j = W j ·Xj−1 +Bj , (21)

where Y j ∈ RH′′
j W ′′

j Cj×m, W j ∈ RH′′
j W ′′

j Cj×Hj−1Wj−1Cj−1 , and Xj−1 ∈ RHj−1Wj−1Cj−1×m159

are formed from Yj ,Wj and Xj−1. In particular,160

Y j(:, s) = vec(unfold(Yj(:, :, :, s))),

Xj−1(:, s) = vec(unfold(Xj−1(:, :, :, s))), s = 1, ...,m.
(22)

5

Assume that Cj = nB for j = 0, ..., N , then similar to (8)-(9), (21) leads to a convolutional tensor161

layer162

Yj = Wj • X j−1 + Bj , (23)

where Yj ∈ RH′′
j W ′′

j n×m×B , Wj ∈ RH′′
j W ′′

j n×Hj−1Wj−1n×B , X j ∈ RHj−1Wj−1n×m×B , and163

Bj ∈ RH′′
j W ′′

j n×m×B .164

Consider the case when L is DFT, according to (4), (23) can be written as (21) where165

Y j = unfold(Yj), Xj−1 = unfold(X j−1), Bj = unfold(Bj), and W j = bcirc(Wj) ∈166

RH′′
j W ′′

j nB×Hj−1Wj−1nB has a block-circulant structure, namely B × B blocks organized in a167

circulant form and each block has size H ′′
j W

′′
j n×Hj−1Wj−1n. Recall that W j in (21) is derived168

from the convolutional kernel Wj ∈ RH′
j×W ′

j×nB×nB in (20), following a linear mapping that is169

consistent with (22). Therefore, the block-circulant structure of W j in (21) implies a block-circulant170

structure of each matrix Wj(i, ℓ, :, :) in (20).171

Similar to the fully connected case in Section 3.3, the proposed convolutional spectral tensor network172

also features a fully parallel implementation. Specifically, for X ∈ RHWn×m×B , denote X̃ =173

L(X) ∈ CHWn×m×B as the transform of X along the third dimension. Denote X̃b = X̃ (:, :, b).174

Then, (23) can be split into B parallel branches of matrix computations as follows175

Ỹ j
b = W̃ j

b · X̃j−1
b + B̃j

b , b = 1, ..., B, (24)

where Ỹ j
b ∈ CH′′

j W ′′
j n×m, W̃ j

b ∈ CH′′
j W ′′

j n×Hj−1Wj−1n, and X̃j−1
b ∈ CHj−1Wj−1n×m. To fully176

utilize the parallelism of B branches, we employ batch matrix multiplication on GPUs to accelerate177

(24).178

We convert (24) back to the convolutional form in (20), using an inverse mapping of (22) as follows179

Ỹj
b(:, :, :, s) = fold(vec−1(Ỹ j

b (:, s))),

X̃j−1
b (:, :, :, s) = fold(vec−1(X̃j−1

b (:, s))), s = 1, ...,m.
(25)

For the b-th branch in (24), the input is X̃j−1
b ∈ CHj−1×Wj−1×n×m, the output feature map is180

Ỹb ∈ CH′′
j ×W ′′

j ×n×m, and the kernel weight is W̃j
b ∈ CH′

j×W ′
j×n×n. Then for b = 1, ..., B, (24)181

can be rewritten as182

Ỹj
b(h,w, c, :) =

n∑
d=1

W ′
j−1∑
ℓ=0

H′
j−1∑
i=0

X̃j−1
b (h+ i, w + ℓ, d, :) · W̃j

b(i, ℓ, d, c) + B̃j
b(h,w, c, :),

h = 1, ...,H ′′
j , w = 1, ...,W ′′

j , c = 1, ..., n.

(26)

Similar to the fully connected tensor networks in Section 3.3, we apply the activation function in the183

spectral domain as follows184

Z̃j
b = σ(Ỹj

b) ∈ CH′′
j ×W ′′

j ×n×m. (27)
Then, the pooling operation is performed at the j-th layer of each branch, resulting in the output185

X̃j
b ∈ CHj×Wj×n×m.186

At the last layer, the output function f(·) is applied to X̃N
b as in (22).187

3.5 Recurrent Spectral Tensor Layer188

To present the recurrent spectral tensor layer, We take the same case in Section 3.3. Different189

from the fully connected layer, the network parameters of the recurrent layer at the j-th layer190

include a weight matrix W j
X ∈ Rℓ′j×ℓ′j−1 , W j

H ∈ Rℓ′j−1×ℓ′j−1 , W j
Y ∈ Rℓ′j−1×ℓ′j−1 and an offset191

Bj = [bj , ..., bj]︸ ︷︷ ︸
m

∈ Rℓ′j×m, and the forward pass can be represented as [1]192

Hj
t = σ1(W

j
X ·Xj−1

t +W j
H ·Hj−1

t +Bj),

Xj
t = σ2(W

j
Y ·Hj

t), j = 1, ..., N, t = 1, 2, ..., T,
(28)

6

where Xj
t ∈ Rℓ′j×m is the input matrix at the j-t time step, and Y N

t = XN
t .193

For the introduced recurrent spectral tensor layer, the forward can be computed as194

Hj
t = ϱ1(Wj

X • X j−1
t +Wj

H • Hj−1
t + Bj),

X j
t = ϱ2(Wj

Y • Hj
t), j = 1, ..., N, t = 1, 2, ..., T,

(29)

where X j
t ∈ Rℓj×m×Q.195

Furthermore, the implementation of Q branches for computations can be written as196

H̃j
q,t = ϱ1(W̃

j
X • X̃j−1

q,t + W̃ j
H • H̃j−1

q,t + B̃j),

X̃j
q,t = ϱ2(W̃

j
Y • H̃j

q,t), j = 1, ..., N, t = 1, 2, ..., T,
(30)

where X̃j
q,t ∈ Cℓj×m is the input for the q-th subnetwork at the t-th time step, likewise for H̃j

q,t.197

There are 2Q parallel matrix multiplications with the same size and along the same dimension, thus198

we use the batch matrix multiplication on GPUs to accelerate (30).199

4 Performance Evaluation200

We first describe the experimental settings, then present the results on the MNIST, CIFAR-10 and201

ImageNet data sets.202

4.1 Data Sets and Performance Metrics203

We verify the performance of the proposed spectral tensor networks on the following three widely204

used data sets: 1) MNIST [48] contains grayscale images of handwritten digits. Each image has205

28 × 28 pixels. The training set has 60, 000 images and the testing set has 10, 000 images. 2)206

CIFAR-10 [49] contains 60, 000 color images in 10 classes, where each image has size 32×32×3.3)207

ImageNet-1K [19]: It contains 12, 000, 000 training images and 50, 000 testing images with size of208

224× 224× 3, labeled with the presence or absence of 1000 object categories that do not overlap209

with each other.210

We are interested in the following performance metrics:1) Compression ratio: the ratio of the211

conventional network size to the spectral tensor network size, which is the also the total reduction in212

computation due to the reduced number of non-zero network weights; 2) Parallel speedup: the ratio213

of the training time of a conventional network to that of the spectral tensor network, due to the fully214

parallel training of all sub-networks; 3) Convergence: the loss value versus the training iterations: 4)215

Accuracy: the percentage of correctly estimated labels. Both the training and testing processes are216

executed on a DGX-2 server [50] that has two 64 core AMD CPUs, 8 NVIDIA A100 GPUs and 2217

TB of memory. The operating system is Ubuntu 20.04 with CUDA 10.1. We use PyTorch [51] to218

implement neural networks.219

We summarize the compression ratio, the reduction of computation, and the parallel speedup in220

Table 2. They are theoretical upper bounds, while their actual values depend on data sets and221

implementations. For the compression ratio and reduction in computation, each fully connected222

network / convolutional network has two columns: the right one corresponds to select-the-best223

weighting, and the left one to other weighting methods.224

4.2 Evaluation of Fully Connected Spectral Tensor Networks225

For comparison, we consider a conventional fully connected network (FC) [1], the tNN [44], and the226

fully connected spectral tensor network (FC-tensor) in Section 3. All three methods use the ReLU227

activation function as σ(·) in the hidden layers, the softmax function as the output function f(·) in228

the last layer, and the cross-entropy loss function in (19). We use N = 8 layers in each method and229

the DCT transform in tNN and the proposed FC-tensor method. The learning rate was set to be 0.01,230

the batch size was set to be 64, and we used the Adam optimizer [52].231

For the MNIST data set, the conventional FC method has n = 28, ℓ′0 = ... = ℓ′7 = 784, and L = 10.232

Both the tNN method and our FC-tensor method have n = 28, Q = 28, ℓ0 = ... = ℓ7 = 28, and233

L = 10. Our FC-tensor method has r = 8. For the CIFAR-10 data set, the following parameters are234

7

Figure 2: Training loss of fully connected networks on the MNIST data set (left) and CIFAR-10 data
set (right).

Table 2: Upper bounds for model compression and parallel speedup. For fully connected networks,
n denotes the input size of each sub-network, r is a rank value, and there are Q branches. For
convolutional networks, there are B branches.

- Fully Connected Convolutional (1D)
Compression ratio O(nQ/2r), O(nQ2/2r) O(B), O(B2)

Reduction in computation O(nQ/2r), O(nQ2/2r) O(B), O(B2)
Parallel speedup O(Q) O(B)

different: n = 32, Q = 32, ℓ′0 = ... = ℓ′7 = 1, 024, and ℓ0 = ... = ℓ7 = 32. Therefore, our methods235

achieve a compression ratio of 49× and 64× for the two data sets, respectively.236

The training loss over iterations is shown in Fig. 2, with the left one for the MNIST datas set and237

the right one for the CIFAR-10 data set. Our scheme converges faster than tNN and FC, while the238

training process is more stable than FC. The possible reason is that the FC-tensor has much less239

parameters so that a more stable model can be learned from the same amount of data samples1. The240

loss values of our sub-networks are lower than both tNN and FC.241

Figure 3: Training loss on ImageNet-1K data set.

Table 3: MNIST and CIAFR-10 data sets.
Methods MNIST CIFAR-10
FC [1] 98.71% 59.19%

tNN [44] 97.59% 44.50%
FC-tensor (average) 97.43% 47.24%

FC-tensor (weighted sum) 98.02% 48.13%
FC-tensor (geometric) 99.01% 48.33%

In Table 3, we report accuracy results on both MNIST and CIAFR-10 data sets. Among the four242

schemes for weighting the sub-networks , the geometric weighting gives the best performance. For243

the MNIST data set, all three methods achieve a relative high accuracy, i.e., over 97%, while our244

FC-tensor method reaches 98.36%. For the CIFAR-10 data set, all three methods achieve a relative245

low accuracy, i.e., below 60%. This is consistent with the known fact that fully connected layers are246

1Note that we use the same number of layers and the same batch size.

8

Table 3: Results on the ImageNet-1K data set.
Methods Accuracy Size Training Time

AlexNet [18] 63.44% 244 MB 40.8 h
AlexNet-spectral (average) 61.26% 130 MB 31.9 h

AlexNet-spectral (weighted sum) 58.01% 130 MB 31.9 h
AlexNet-spectral (geometric) 62.26% 130 MB 31.9 h

AlexNet-spectral (select-the-best) 56.45% 32.5 MB 31.9 h
CycleMLP [53] 83.23% 103 MB 93.6 h

CycleMLP-spectral (average) 78.80% 76 MB 60.4 h
CycleMLP-spectral (weighted sum) 77.54% 76 MB 60.4 h

CycleMLP-spectral (geometric) 83.20% 76 MB 60.4 h
CycleMLP-spectral (select-the-best) 72.45% 19 MB 60.4 h

not enough for the classification task on CIFAR-10. Note that both tNN and FC-tensor achieve lower247

accuracy than the FC method.248

4.3 Evaluation on ImageNet Data set249

The ImageNet data set [19] is split into B = 4 spectral subsets, where each image is organized into250

a tensor of size 56× 56× 3× 16 and then processed into a spectrum tensor using DCT transform.251

Note that the three RGB channels are processed independently.252

Our proposed spectral tensor methods have the same structure in Fig. 1, where each branch is replaced253

by either AlexNet [18] or CycleMLP. We use the DCT transform in our spectral methods. We set254

the learning rate 0.01 and the batch size 128. We follow the standard practice in the community by255

reporting the top-1 accuracy on the testing set.256

For the ImageNet data set, the training loss over training iterations is shown in Fig. 3. Our spectral257

sub-networks have similar loss curve to their original networks. In Table 3, we report the accuracy,258

model size, and training time. For the AlextNet structure, our spectral network achieves 1.88× model259

compression and 1.28× speedup in training time, at the cost of an accuracy drop of 1.18%. For the260

CycleMLP structure, our spectral network achieves 1.36× model compression and 1.55× speedup in261

training time, at the cost of an accuracy drop of 0.03%.262

5 Conclusions263

In this paper, we have proposed a spectral tensor form of deep neural networks that is inherently com-264

pressive and allows communication-free parallel/distributed implementations. The data is organized265

into tensors and a linear transform is applied along certain dimension, resulting in different spectral266

subsets. The overall network consists of parallel branches of networks, each independently performs267

training and inference on a spectral data subset. We tested the proposed spectral networks, including268

fully connected, convolutional, AlexNet, and CycleMLP, on the MNIST, CIFAR-10 and ImageNet269

data sets, and results show that they can achieve relatively high accuracy with substantial network270

compression, computation reduction, and parallel speedup, compared with conventional networks.271

Limited by the pages, We do not provide experiments using the recurrent spectral tensor layer.272

For future works, we would like to explore an ensemble-style approach model soup [54] that takes273

average over multiple trained models and achieves state-of-the-art performance on the ImageNet data274

set.275

References276

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT Press, 2016.277

[2] Yang Liu, Peng Sun, Nickolas Wergeles, and Yi Shang, “A survey and performance evaluation278

of deep learning methods for small object detection,” Expert Systems with Applications, vol.279

172, pp. 114602, 2021.280

9

[3] Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen, Mengchen Liu, Lu Yuan, and Lei281

Zhang, “Dynamic head: Unifying object detection heads with attentions,” in Proceedings of the282

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7373–7382.283

[4] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka,284

Lei Li, Zehuan Yuan, Changhu Wang, et al., “Sparse r-cnn: End-to-end object detection with285

learnable proposals,” in Proceedings of the IEEE/CVF Conference on Computer Vision and286

Pattern Recognition, 2021, pp. 14454–14463.287

[5] Xiangjun Wang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang, Wei Zhang, Weimin Li,288

Xiongjun Pi, Jujie He, Chao Gao, et al., “Scc: an efficient deep reinforcement learning agent289

mastering the game of starcraft ii,” in International Conference on Machine Learning. PMLR,290

2021, pp. 10905–10915.291

[6] Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu, “Fop: Factorizing292

optimal joint policy of maximum-entropy multi-agent reinforcement learning,” in International293

Conference on Machine Learning. PMLR, 2021, pp. 12491–12500.294

[7] Bo Liu, Qiang Liu, Peter Stone, Animesh Garg, Yuke Zhu, and Anima Anandkumar, “Coach-295

player multi-agent reinforcement learning for dynamic team composition,” in International296

Conference on Machine Learning. PMLR, 2021, pp. 6860–6870.297

[8] Zhiqi Huang, Fenglin Liu, Xian Wu, Shen Ge, Helin Wang, Wei Fan, and Yuexian Zou, “Audio-298

oriented multimodal machine comprehension via dynamic inter-and intra-modality attention,” in299

Proceedings of the AAAI Conference on Artificial Intelligence, 2021, vol. 35, pp. 13098–13106.300

[9] Tianyang Zhao, Zhao Yan, Yunbo Cao, and Zhoujun Li, “Asking effective and diverse questions:301

a machine reading comprehension based framework for joint entity-relation extraction,” in302

Proceedings of the Twenty-Ninth International Conference on International Joint Conferences303

on Artificial Intelligence, 2021, pp. 3948–3954.304

[10] Cong Sun, Zhihao Yang, Lei Wang, Yin Zhang, Hongfei Lin, and Jian Wang, “Biomedical305

named entity recognition using bert in the machine reading comprehension framework,” Journal306

of Biomedical Informatics, vol. 118, pp. 103799, 2021.307

[11] Aditya Prakash, Kashyap Chitta, and Andreas Geiger, “Multi-modal fusion transformer for308

end-to-end autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer309

Vision and Pattern Recognition, 2021, pp. 7077–7087.310

[12] Yingfeng Cai, Tianyu Luan, Hongbo Gao, Hai Wang, Long Chen, Yicheng Li, Miguel Angel311

Sotelo, and Zhixiong Li, “Yolov4-5d: An effective and efficient object detector for autonomous312

driving,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–13, 2021.313

[13] Sudeep Fadadu, Shreyash Pandey, Darshan Hegde, Yi Shi, Fang-Chieh Chou, Nemanja Djuric,314

and Carlos Vallespi-Gonzalez, “Multi-view fusion of sensor data for improved perception and315

prediction in autonomous driving,” in Proceedings of the IEEE/CVF Winter Conference on316

Applications of Computer Vision, 2022, pp. 2349–2357.317

[14] Huu-Thiet Nguyen, Chien Chern Cheah, and Kar-Ann Toh, “An analytic layer-wise deep318

learning framework with applications to robotics,” Automatica, vol. 135, pp. 110007, 2022.319

[15] Radouan Ait Mouha et al., “Deep learning for robotics,” Journal of Data Analysis and320

Information Processing, vol. 9, no. 02, pp. 63, 2021.321

[16] Yinong Chen and Gennaro De Luca, “Technologies supporting artificial intelligence and322

robotics application development,” Journal of Artificial Intelligence and Technology, vol. 1, no.323

1, pp. 1–8, 2021.324

[17] G. Menghani, “Efficient deep learning: A survey on making deep learning models smaller,325

faster, and better,” arXiv preprint arXiv:2106.08962, 2021.326

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional327

neural networks,” Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105,328

2012.329

10

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet: A large-scale hierarchical330

image database,” in IEEE CVPR. Ieee, 2009, pp. 248–255.331

[20] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Predicting parameters in deep332

learning,” in Advances in Neural Information Processing Systems, 2013, pp. 2148–2156.333

[21] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for small-footprint deep334

learning,” in Advances in Neural Information Processing Systems, 2015, pp. 3088–3096.335

[22] Y. Cheng, F. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang, “An exploration of336

parameter redundancy in deep networks with circulant projections,” in IEEE International337

Conference on Computer Vision, 2015, pp. 2857–2865.338

[23] M. Moczulski, M. Denil, J. Appleyard, N. De Freitas, Z. Wang, M. Zoghi, F. Hutter, D. Matheson,339

and S. Reed, “ACDC: A structured efficient linear layer,” in ICLR, 2015, vol. 55.340

[24] A. Prabhu, A. Farhadi, and M. Rastegari, “Butterfly transform: An efficient fft based neural341

architecture design,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition,342

2020, pp. 12024–12033.343

[25] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, and G. Yuan,344

“Circnn: accelerating and compressing deep neural networks using block-circulant weight345

matrices,” in Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp.346

395–408.347

[26] S. Liao and B. Yuan, “Circconv: A structured convolution with low complexity,” in AAAI348

Conference on Artificial Intelligence, 2019, vol. 33, pp. 4287–4294.349

[27] B. Gong, B. Jou, F. Yu, and S.-F. Chang, “Tamp: A library for compact deep neural networks350

with structured matrices,” in ACM International Conference on Multimedia, 2016, pp. 1206–351

1209.352

[28] T. N Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, “Low-rank matrix353

factorization for deep neural network training with high-dimensional output targets,” in IEEE354

ICASSP, 2013, pp. 6655–6659.355

[29] A. Novikov, D. Podoprikhin, A. Osokin, and D.P. Vetrov, “Tensorizing neural networks,” in356

Advances in Neural Information Processing Systems, 2015, pp. 442–450.357

[30] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal, “Wide compression: Tensor ring358

nets,” in IEEE CVPR, 2018, pp. 9329–9338.359

[31] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up convolutional360

neural networks using fine-tuned cp-decomposition,” ICLR, 2015.361

[32] M. Yin, S. Liao, X.-Y. Liu, X. Wang, and B. Yuan, “Towards extremely compact rnns for video362

recognition with fully decomposed hierarchical tucker structure,” in IEEE CVPR, 2021, pp.363

12085–12094.364

[33] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A365

survey on distributed machine learning,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp.366

1–33, 2020.367

[34] Vipul Gupta, Dhruv Choudhary, Peter Tang, Xiaohan Wei, Xing Wang, Yuzhen Huang, Arun368

Kejariwal, Kannan Ramchandran, and Michael W Mahoney, “Training recommender systems369

at scale: Communication-efficient model and data parallelism,” in Proceedings of the 27th ACM370

SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2928–2936.371

[35] Xiangyu Ye, Zhiquan Lai, Shengwei Li, Lei Cai, Ding Sun, Linbo Qiao, and Dongsheng Li,372

“Hippie: A data-paralleled pipeline approach to improve memory-efficiency and scalability for373

large dnn training,” in 50th International Conference on Parallel Processing, 2021, pp. 1–10.374

[36] A. L. Gaunt, M. A. Johnson, M. Riechert, D. Tarlow, R. Tomioka, D. Vytiniotis, and S. Webster,375

“AMPNet: Asynchronous model-parallel training for dynamic neural networks,” arXiv preprint376

arXiv:1705.09786, 2017.377

11

[37] An Xu, Zhouyuan Huo, and Heng Huang, “On the acceleration of deep learning model378

parallelism with staleness,” in Proceedings of the IEEE/CVF Conference on Computer Vision379

and Pattern Recognition, 2020, pp. 2088–2097.380

[38] Kabir Nagrecha, “Model-parallel model selection for deep learning systems,” in Proceedings of381

the 2021 International Conference on Management of Data, 2021, pp. 2929–2931.382

[39] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of distributed machine learning383

on big data,” Engineering, vol. 2, no. 2, pp. 179–195, 2016.384

[40] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,385

M. Isard, et al., “TensorFlow: A system for large-scale machine learning,” in USENIX386

Symposium on Operating Systems Design and Implementation, 2016, pp. 265–283.387

[41] E. Kernfeld, M. Kilmer, and S. Aeron, “Tensor–tensor products with invertible linear transforms,”388

Linear Algebra and its Applications, vol. 485, pp. 545–570, 2015.389

[42] M. E. Kilmer, L. Horesh, H. Avron, and E. Newman, “Tensor-tensor algebra for optimal390

representation and compression of multiway data,” Proceedings of the National Academy of391

Sciences, vol. 118, no. 28, 2021.392

[43] X.-Y. Liu and X. Wang, “Fourth-order tensors with multidimensional discrete transforms,”393

arXiv preprint arXiv:1705.01576, pp. 1–37, 2017.394

[44] E. Newman, L. Horesh, H. Avron, and M. Kilmer, “Stable tensor neural networks for rapid395

deep learning,” arXiv preprint arXiv:1811.06569, 2018.396

[45] M.E. Kilmer and C.D Martin, “Factorization strategies for third-order tensors,” Linear Algebra397

and its Applications, vol. 435, no. 3, pp. 641–658, 2011.398

[46] M.E. Kilmer, K. Braman, N. Hao, and R.C. Hoover, “Third-order tensors as operators on399

matrices: A theoretical and computational framework with applications in imaging,” SIAM400

Journal on Matrix Analysis and Applications, vol. 34, no. 1, pp. 148–172, 2013.401

[47] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks:402

analysis, applications, and prospects,” IEEE Transactions on Neural Networks and Learning403

Systems, 2021.404

[48] L. Deng, “The MNIST database of handwritten digit images for machine learning research,”405

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.406

[49] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Master’s407

thesis, University of Tront, 2009.408

[50] J. Choquette et al., “NVIDIA A100 tensor core GPU: Performance and innovation,” IEEE409

Micro, vol. 41, no. 2, pp. 29–35, 2021.410

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, and et al, “PyTorch: An imperative411

style, high-performance deep learning library,” in Advances in Neural Information Processing412

Systems, 2019, pp. 8026–8037.413

[52] D.P Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015.414

[53] S. Chen, E. Xie, C. Ge, D. Liang, and P. Luo, “CycleMLP: A MLP-like architecture for dense415

prediction,” ICLR, 2022.416

[54] Mitchell Wortsman, Gabriel Ilharco, and et al, “Model soups: averaging weights of multiple fine-417

tuned models improves accuracy without increasing inference time,” preprint arXiv:2203.05482,418

2022.419

12

Checklist420

1. For all authors...421

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s422

contributions and scope? [Yes]423

(b) Did you describe the limitations of your work? [No]424

(c) Did you discuss any potential negative societal impacts of your work? [No]425

(d) Have you read the ethics review guidelines and ensured that your paper conforms to426

them? [Yes]427

2. If you are including theoretical results...428

(a) Did you state the full set of assumptions of all theoretical results? [N/A]429

(b) Did you include complete proofs of all theoretical results? [N/A]430

3. If you ran experiments...431

(a) Did you include the code, data, and instructions needed to reproduce the main experi-432

mental results (either in the supplemental material or as a URL)? [Yes] See Section433

4.1.434

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they435

were chosen)? [Yes] See Section 4.2 and 4.3.436

(c) Did you report error bars (e.g., with respect to the random seed after running experi-437

ments multiple times)? [Yes] We do not supply experiments of recurrent spectral tensor438

layer.439

(d) Did you include the total amount of compute and the type of resources used (e.g., type440

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.441

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...442

(a) If your work uses existing assets, did you cite the creators? [Yes]443

(b) Did you mention the license of the assets? [Yes]444

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]445

See Section 4.3.446

(d) Did you discuss whether and how consent was obtained from people whose data you’re447

using/curating? [Yes] All the consent is open-source.448

(e) Did you discuss whether the data you are using/curating contains personally identifiable449

information or offensive content? [No] We do not use any personally identifiable450

information or offensive content.451

5. If you used crowdsourcing or conducted research with human subjects...452

(a) Did you include the full text of instructions given to participants and screenshots, if453

applicable? [N/A]454

(b) Did you describe any potential participant risks, with links to Institutional Review455

Board (IRB) approvals, if applicable? [N/A]456

(c) Did you include the estimated hourly wage paid to participants and the total amount457

spent on participant compensation? [N/A]458

13

	Introduction
	Related Works
	Highly Parallel Spectral Tensor Networks
	Overview
	Notations and Basic Tensor Operations
	Fully Connected Spectral Tensor Layer
	Convolutional Spectral Tensor Layer
	Recurrent Spectral Tensor Layer

	Performance Evaluation
	Data Sets and Performance Metrics
	Evaluation of Fully Connected Spectral Tensor Networks
	Evaluation on ImageNet Data set

	Conclusions

