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Abstract—In recent years, the number of patients using con-
tinuous glucose monitoring (CGM) has increased. In addition to
helping patients manage their disease, CGM produces time series
data that can be used for integration in control algorithms, pre-
dictive models, and for retrospective analyses. Through feature
extraction, many digital biomarkers can be derived from CGM.
In this work, we provide a tool to extract features derived from
the frequency domain. We first introduce a novel open-source
Python library, CGM-Freq, for the analysis of CGM data in
the frequency domain. We then test the library on real data.
This work provides an open-source tool to further investigate
the frequency domain of CGM signals.

Index Terms—signal processing, continuous glucose monitoring

I. INTRODUCTION

Continuous glucose monitors (CGM) are commonly used
wearable devices among patients with diabetes that collect
continuous data on interstitial glucose levels [1]. Increasingly,
there has been interest in analyzing retrospective CGM data to
improve clinical outcomes through building predictive models
and identifying associations between CGM features and clini-
cal outcomes [2]–[4]. Much of this work has leveraged feature
extraction from raw CGM data.

While there have been many recent advances in computa-
tional tools for analyzing CGM data [5], there has been limited
work focusing specifically on frequency-domain analysis of
CGM data. In this work, we present a new open-source tool
in Python that can be used when analyzing CGM data in the
frequency domain. We discuss the components of the library
and test it on open-source data.

Our primary contributions are:
1) We provide an easy-to-use tool to visualize CGM signals

in the frequency domain using advanced signal process-
ing techniques.

2) We provide a library with functions for the generation of
tabular digital biomarkers from the CGM data. The fea-
ture generation from time series data includes features
derived from the frequency domain and features derived
from the time domain. These features can be used when
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building predictive models or analyzing retrospective
data.

3) We test the library on publicly available CGM data.
Through this analysis, we confirm the potential of
features from the frequency domain to discriminate
different disease states.

II. RELATED WORK

A. Existing packages to analyze CGM data

Over the past decade, there have been many different
computational tools developed for the analysis of CGM data
[6]–[13]. These tools exist in multiple programming languages
including R, Python, MATLAB, and through online graphical
user interfaces (GUI), and they provide plots and feature
derivation from raw CGM data. One of the limitations of
the currently available tools is that they do not include a
comprehensive frequency domain analysis.

B. Previous work supporting frequency domain analysis of
CGM

There has been recent interest in analyzing the frequency
spectrum of CGM signals. Fourier analysis of CGM has
been explored in recent literature, and the results of which
have suggested that there may be insights to be gained from
analyzing the frequency domain of CGM signals [14]–[17].
In Fico et al., the authors analyzed the CGM signals from
individuals and showed that frequency-domain features were
associated with the different diagnoses of T2D, T1D, and
individuals at risk for T2D. Features from the frequency
domain have also been incorporated in predictive models [18],
further supporting the rationale for developing more analysis
tools.

Further, in the broader landscape of physiological signal
processing, there has been demonstrated interest in charac-
terizing the frequency spectrum of biological signals, and
computational resources exist for this purpose [19], [20].
However, these tools are not specialized for CGM data.

III. DESIGN AND IMPLEMENTATION

A. Overview

CGM-Freq is a library for analyzing CGM features in the
frequency domain. The toolbox takes in raw CGM input from
a file with required headers for columns representing the time
and the CGM values.

The library has four primary modules:



Fig. 1. Overview of the CGM-Freq library
.

1) Filtering. This module takes in the CGM signal and
applies a low-pass filter based on a cutoff frequency
that can be adjusted by the user. It returns and plots
the filtered signal.

2) Feature Generation. This module has two parts. The
first part computes frequency-domain features and the
second part computes basic time-domain features.

3) Visualization. This module allows for the visualization
of frequency domain of the signal and plots the time
series signal.

4) Spectrogram. This module returns the output of the
spectrogram and plots the spectrogram along with the
time series signal.

Fig. 1 gives an overview of the system and the functions
for each module.

B. Preprocessing

The CGM signal first must be preprocessed using a function
called process cgm(). The output of this function is two arrays:
an array of the CGM values and an array of the time values.
A warning is also printed making note of how many CGM
readings are estimated to be missing based on the sampling
frequency. In the current version of our library, we do not
impute missing data.

C. Filtering

The CGM data is filtered using a low-pass filter. The input
to the function includes the time and CGM values and the
cutoff frequency, which can be adjusted. In this function, a
filtered CGM signal is returned and plots are produced for
visualization. Fig. 2 shows the visualization that is produced
by this function. The raw CGM data is plotted with the filtered
data.

D. Feature Generation

Features are generated using two different functions. Table I
shows the features generated and their definitions. The feature
generation functions are split by frequency domain features
and time domain features.

The first function generates features from the frequency
domain. These features are derived based on previous work

Fig. 2. Filtered CGM signal. This plot shows the output of the filter function
with the filtered signal in black.

[17] which extracts frequency-domain features from the signal
using advanced signal processing techniques [21], [22]. In this
function, the Discrete Fourier Transform is computed using
the fast Fourier transform (FFT) algorithm. Additionally, the
power spectral density (PSD) is generated using the Welch
method [23]. Here, the window type and the number of
samples per segment are input variables that can be modified
to change the frequency resolution of the PSD.

The second function captures the time-domain features of
the signal. We draw from metrics described in literature for
CGM interpretation [24]. Since the purpose of this package
is frequency analysis of CGM signals, we do not include a
comprehensive list of time-domain features that have been pre-
viously reported. Both functions produce tabular data, enabling
a quick transformation of the time series data for downstream
tasks.

E. Visualization

The visualize() function takes in raw CGM data and returns
a plot with three components. Fig. 3 shows the output of the
function. The plots contain the FFT, the PSD, and the raw
CGM data. The function also takes in the sampling frequency
and optionally takes in additionally arguments for the PSD.
The PSD is obtained using the welch() from SciPy [25]. While
only 24 hours of data are shown, the function is capable of
plotting longer time periods of time.

F. Spectrogram

This part of the toolbox produces both a visual output
and numerical outputs of the spectrogram transformation from
SciPy [25]. In Fig. 4, the visual output of the spectrogram
function is shown. The function also returns the raw output
of the spectrogram transformation, for analysis of the power
spectrum as a function of time at different frequencies. The
visual output can be used to identify temporal trends in the
frequency domain of the signal.



TABLE I
FEATURE LIST

Frequency Domain Features

Discrete Fourier Transform
Feature Definition

max amplitude The maximum magnitude of the FFT [17]
fft dominant frequency The frequency where the maximum of the FFT occurs [17]

fft75 frequency The frequency where 75% of the FFT signal is contained [17]
fft peak2 frequency The frequency where the second highest peak of FFT occurs [17]

fft peak2 mag The magnitude of the FFT where the second highest peak of the FFT occurs [17]
Power Spectral Density

Feature Definition
psd max amplitude The maximum value of PSD [17]

psd dominant frequency The frequency where the maximum value of PSD occurs [17]
bandwidth The 3dB frequency bandwidth [17]

psd75 frequency The frequency where 75% of the PSD is contained [17]

Time Domain Features

Feature Definition
Mean Mean glucose in the segment

Minimum Minimum glucose value in the segment
Maximum Maximum glucose value in the segment

TIR The percent of readings in the range 70mg/dL to 180mg/dL in the segment
TAR 1 (>180) The percent of readings above 180 mg/dL in the segment
TAR 2 (>250) The percent of readings above 250 mg/dL in the segment
TBR 1 (<70) The percent of readings below 70 mg/dL in the segment
TBR 2 (<54) The percent of readings below 54 mg/dL in the segment

Std The standard deviation of glucose readings in the segment
CV The coefficient of variation of glucose readings in the segment

The features and definitions for the frequency domain features are drawn from definitions in [17] and the features
and definitions for the time domain features are drawn from [24]

G. Methods

We leverage several existing Python libraries including
NumPy [26], SciPy [25], and Matplotlib [27]. Specifically,
we leverage the find peaks() function from SciPy. The full
list of dependencies for the library are listed in the Github
repository. The publicly available data used in this work was
made available under a Creative Commons Attribution License
[28].

IV. DEMONSTRATION ON REAL DATA

A. Testing Dataset

We used a public dataset from Hall et al. [28] that has CGM
data from individuals with T2D, with pre-diabetes, and with
no diabetes. We used CGM-Freq to extract features from daily
CGM data for each individual in the dataset. When analyzing
the data, we included only CGM data where there were greater
than 280 readings in the day.

B. Frequency domain features on real data

To analyze the features, we plotted the mean and standard
deviation of the features by diagnosis group. Fig. 5 shows a
visual representation of the separation of means for each of the
features by diagnosis group. Many of the time-domain features
and frequency-domain features had different mean values for
each diagnosis group. As expected, the mean average glucose

was higher in individual with diabetes than patients without
diabetes.

In Table II, the mean and standard deviation of each feature
is shown for each diagnosis group. The total number of
individuals and CGM days is also shown in the table. A t-
test was performed to assess significance in differences in
the mean between the ”No diabetes” group and the ”pre-
diabetes” group, and between the ”No diabetes” group and
the ”diabetes” group. Many of the features had statistically
significant different means. These results align with previous
findings from Fico et al, [17] which found statistically signifi-
cant differences in values of many frequency domain features,
such as the maximum peak of the PSD, between groups of
individuals with T2D and individuals at risk of diabetes.

We further analyzed the CGM features across the indi-
viduals to understand the heterogeneity. We took the mean
value of each CGM feature for each individual and plotted the
absolute value of the correlation coefficients of the features.
Fig. 6 shows how the CGM features are correlated with
one another. Both the fft75 frequency and psd75 frequency
have correlation coefficients less than .7 with all time-domain
features, but statistical significance in distinguishing groups
based on diagnosis. This suggests that the frequency domain
features may provide unique insight into glycemic dynamics.



Fig. 3. Visualization output. These plots show the FFT (top), PSD (middle)
and raw CGM data (bottom) for 24 hours of sample data.

Fig. 4. Spectrogram of CGM data. These plots show a sample of 24 hours of
CGM data with the spectrogram (top) and the raw time series data (bottom).
The x axis is time of day for both plots.

V. DISCUSSION

In this work, we introduce the first version of a Python
library for generation of digital biomarkers from CGM signals
in the frequency domain. In our library, we have four modules:
visualization, filtering, feature generation, and spectrogram
generation. This library serves as an open-source tool for
analysis of CGM data in the frequency domain.

The library was tested on a public dataset of patients with
diabetes, pre-diabetes, and no diabetes. The results of the
testing were presented in the paper, confirming the discrimi-
native power of multiple frequency-domain features, which is

Fig. 5. CGM features by diagnosis. The values for each feature are normalized
within each feature for demonstrative purposes. The mean is shown, with error
bars indicating the standard deviation.

Fig. 6. Heatmap showing the absolute value of the correlation coefficients
of the features across all individuals. For individuals with data from multiple
days, we take the mean feature value.

consistent with previous literature [17].
The data this was tested on contained only a small number

of individuals with limited heterogeneity in disease phenotype.



TABLE II
FEATURE VALUES AND SIGNIFICANCE

No
diabetes

Pre-
diabetes

Diabetes

Number of individuals in category 25 10 2
Number of days included 132 46 12

Time Domain Features
Average 96.30

(10.31)
107.96
(13.08)*

117.35
(7.15)*

CV 0.18
(0.05)

0.19
(0.06)*

0.25
(0.06)*

Maximum 154.98
(27.12)

179.31
(41.01)*

222.92
(43.73)*

Minimum 61.77
(10.94)

69.93
(14.95)*

73.75
(8.44)*

Std 17.10
(5.29)

21.11
(8.09)*

28.95
(7.52)*

TAR 1 (>180) 0.00
(0.01)

0.02
(0.03)*

0.05
(0.04)*

TAR 2 ( >250) 0.00
(0.00)

0.00
(0.01)*

0.01
(0.01)*

TBR 1 ( <70) 0.06
(0.09)

0.03
(0.06)*

0.00
(0.00)*

TBR 2 ( <54) 0.00
(0.01)

0.00
(0.01)

0.00
(0.00)

TIR 0.93
(0.11)

0.94
(0.07)

0.95
(0.04)

PSD Features
bandwidth 3.8e-05

(2.7e-05)
3.9e-05
(3.2e-05)

3.2e-05
(1.8e-05)

psd75 frequency 1.4e-04
(3.8e-05)

1.2e-04
(5.4e-05)*

8.7e-05
(2.3e-05)*

psd dominant frequency 4.2e-05
(2.0e-05)

4.6e-05
(2.4e-05)

4.3e-05
(1.6e-05)

psd max amplitude 2.0e+06
(1.8e+06)

4.0e+06
(4.0e+06)*

7.8e+06
(4.2e+06)*

FFT Features
fft75 frequency 3.7e-04

(7.3e-05)
3.3e-04
(1.0e-04)*

2.3e-04
(7.2e-05)*

fft dominant frequency 1.7e-05
(1.9e-05)

1.8e-05
(1.6e-05)

2.4e-05
(1.7e-05)

fft max amplitute 3.3e+03
(1.8e+03)

3.8e+03
(2.3e+03)

5.0e+03
(2.0e+03)*

fft second peak freq 1.4e-05
(4.0e-05)

1.3e-05
(4.0e-05)

1.7e-05
(3.8e-05)

fft second peak mag 2.5e+03
(1.4e+03)

3.2e+03
(2.3e+03)*

4.6e+03
(1.9e+03)*

* indicates p<.05 in t-test with ”no diabetes” group

We expect that the discriminative power of the features may
be different in a larger cohort. Our library provides a tool
to include frequency-domain features in future analyses of
CGM data. Below we highlight some potential use cases of
our library:

1) Predictive models: Predictive models from time series
data are often built using extracted features in tabular
form. This library provides an easy-to-use feature ex-
traction function to quickly transform raw CGM data
into features that can be used to build predictive models.

2) Anomaly detection: By studying how frequency compo-
nents change over time, it may be possible to identify
anomalies in the data.

3) Unsupervised clustering: Digital biomarkers that char-

acterize CGM signals in the frequency domain can
be included in clustering approaches to identify novel
phenotypes.

CGM-Freq is a library for researchers to quickly transform
CGM data into time and frequency domain features in Python.
Our library serves as an additional computational resource that
investigators can use when analyzing CGM data. The toolbox
will continue to be updated and expanded to include more
features as research in this space progresses.
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