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ABSTRACT

Many existing adversarial attacks generate Lp-norm perturbations on image RGB
space. Despite some achievements in transferability and attack success rate, the
crafted adversarial examples are easily perceived by human eyes. Towards visual
imperceptibility, some recent works explore unrestricted attacks without Lp-norm
constraints, yet lacking transferability of attacking black-box models. In this work,
we propose a novel imperceptible and transferable attack by leveraging both the
generative and discriminative power of diffusion models. Specifically, instead of
direct manipulation in pixel space, we craft perturbations in the latent space of
diffusion models. Combined with well-designed content-preserving structures,
we can generate human-insensitive perturbations embedded with semantic clues.
For better transferability, we further “deceive” the diffusion model which can be
viewed as an implicit recognition surrogate, by distracting its attention away from
the target regions. Extensive experiments on various model structures, datasets,
and defense methods have demonstrated the superiority of our attack.

1 INTRODUCTION

Recent years have witnessed remarkable performance exhibited by deep neural networks (DNNs)
across a range of domains, including autonomous driving (Feng et al., 2023; Zou et al., 2022), medical
image analysis (Zhang et al., 2023; 2022b), remote sensing (Chen et al., 2022a;b), etc. Notwith-
standing the indisputable advances, early investigations (Szegedy et al., 2013) have elucidated the
susceptibility of DNNs to meticulously engineered subversions (hereafter referred to as “adversarial
examples”), which may induce grievous mistakes in real-world applications. Moreover, the trans-
ferability of these adversarial examples across distinct model architectures (Papernot et al., 2016)
poses an even greater hazard to practical implementations. Therefore, it is of the utmost necessity to
uncover as many lacunae in machine perception – what may be termed “blind spots” – as can feasibly
be achieved, so as to bolster the DNNs’ resilience when faced with adversarial challenges.

Compared to white-box attacks (Madry et al., 2018; Goodfellow et al., 2014) that the attacker can
access the architecture and parameters of the target model, black-box attacks (Brendel et al., 2018;
Narodytska & Kasiviswanathan, 2016; Papernot et al., 2016) can not obtain the target’s information
and thus are much closer to real-world scenarios. Among black-box directions, we here focus on the
transfer-based attacks (Papernot et al., 2016) that directly apply the adversarial examples constructed
on a surrogate model to fool the target model. By adopting different optimization strategies (Lin
et al., 2020; Dong et al., 2018), designing various loss functions (Lu et al., 2020; Inkawhich et al.,
2019), leveraging multiple data augmentations (Long et al., 2022; Xie et al., 2019; Dong et al., 2019),
etc., existing approaches have achieved much success and improved the attack’s transferability.

Lp-norm based methods. Most of the above methods adopt Lp-norm in RGB color space as an
indicator of human perception and constrain the amplitude of the adversarial perturbations under a
specific value. Despite the efforts paid, these pixel-based attacks are still easy to be perceived by
human eyes, and Lp-norm was recently found unsuitable to measure the perceptual distance between
two images (Zhao et al., 2020; Johnson et al., 2016). From the examples displayed in Figure 1,
the perturbations optimized by Lp loss are noticeable and appear similar to high-frequency noise
(indicate overfits on the surrogate model) despite low L∞ values, which can hinder the transferability
to other black-box models (Jia et al., 2022; Sharma et al., 2019) and is easy to be defended against by
purification defenses (Nie et al., 2022; Naseer et al., 2020).
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Figure 1: Adversarial perturbations crafted by some attacks. The second row denotes the
difference between the clean image and the adversarial example. Please zoom in for a better view.
Towards imperceptible attacks. Recent works (Jia et al., 2022; Yuan et al., 2022; Zhao et al.,
2020) explored new ways to deceive human perception without using the Lp-norm constraint (a.k.a.
unrestricted attacks). By applying perturbations on spaces such as object attribute (Jia et al., 2022),
color mapping matrix (Yuan et al., 2022), etc., the adversarial examples are well imperceptible despite
large Lp-norm values in RGB space. Furthermore, these works (Jia et al., 2022; Yuan et al., 2022)
revealed that the perturbation generated by unrestricted attacks more focuses on relatively large-scale
patterns with high-level semantics, instead of manipulating pixel-level intensity, thus benefiting
the attack’s transferability to other black-box models and even the defended ones. However, these
methods’ transferability still lags behind the pixel-based ones.

In this work, we propose a novel unrestricted attack based on diffusion models (Rombach et al.,
2022). Instead of manipulating pixels directly, we optimize the latent of an off-the-shelf pretrained
diffusion model (Rombach et al., 2022). Besides the basic transferability advantages of high-level
perturbations mentioned above, our motivation for introducing the diffusion model into the adversarial
attack domain stems primarily from its two beneficial properties. 1) Good imperceptibility. Diffusion
models, originally designed for image synthesis, tend to generate natural-looking images in line
with human perception. This inherent quality aligns well with the imperceptibility requirement
of adversarial attacks. Moreover, the iterative denoising process within diffusion models aids in
reducing perceptible high-frequency noise. 2) Approximation of an implicit surrogate. Despite
being initially designed for image synthesis, diffusion models trained on large-scale datasets exhibit
a notable discriminative capability (Xu et al., 2023; Clark & Jaini, 2023). This feature enables
us to approximate them as implicit surrogate models for transfer-based attacks. Leveraging this
“implicit surrogate”, we can potentially enhance transferability across different models and defenses.
Furthermore, the denoising process of diffusion models, akin to a robust purification defense (Nie
et al., 2022), can further bolster the effectiveness of our attack against defensive mechanisms.

To harness the favorable attributes of diffusion models, our work encompasses three key aspects.
Firstly, we establish a foundational attack framework that initially converts clean images into noise
and subsequently introduces modifications in the latent space. This differs from existing image
editing techniques (Hertz et al., 2022; Parmar et al., 2023) that manipulate guided text to achieve
content editing. Instead, we directly operate on the latents of diffusion models which can significantly
enhance attack success. Secondly, we propose to deviate the cross-attention maps between text and
image pixels, in which way we can transform the diffusion model into an implicit surrogate model
that can be practically deceived and attacked. Finally, to avoid distorting the initial semantics, specific
measures, including self-attention constraint and inversion strength, are considered. We term the
proposed unrestricted attack as DiffAttack, and our contributions can be summarized as follows:

• We reveal that with its remarkable generative and implicit discriminative capabilities, the
diffusion model is a promising foundation for creating adversarial examples that exhibit
both high imperceptibility and transferability.

• We propose DiffAttack, a novel unrestricted attack where the good properties of diffusion
models are leveraged by careful designs. By utilizing the cross- and self-attention maps and
attacking the latent of the diffusion model, DiffAttack is both imperceptible and transferable.

• Extensive experiments on a variety of model architectures, datasets, and defense methods
(some are presented in the Appendix) have demonstrated the superiorities of our work over
the existing attack methods.
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2 RELATED WORKS
Transferable Attacks. Transfer-based attacks resort to a surrogate model and rely on the cross-model
transferability of adversarial examples for achieving black-box attacks. By crafting perturbations
to the surrogate model, they expect these adversarial examples can also have a good effect on the
target model. To enhance the generalization of adversarial examples crafted on surrogate models,
previous works put a lot of effort into keeping perturbations from getting stuck in a model-specific
local optimum that overfits the surrogate model and cannot transfer well to other methods. Xiong et al.
(2022); Wang & He (2021) adopted the straightforward strategy of model ensembles to attack as many
models as possible by finding an optimum updated direction. Long et al. (2022); Xie et al. (2019);
Dong et al. (2019) proposed to leverage data augmentations to diversify the inputs, which ensures
the attack robustness under different scenarios. Lu et al. (2020); Naseer et al. (2019); Inkawhich et al.
(2019) applied loss functions on the feature space which demonstrated good performance on black-
box targets. Lin et al. (2020); Dong et al. (2018) combined momentum into optimization schedules to
help jump out of local optimum. Despite the much improvement in the transferability, these works
mostly conduct attacks with Lp-norm constraint on RGB pixel space, resulting in high-frequency
noises and patterns (see Figure 1) which, though hold a relatively low value on Lp-norm, are easy to
be perceived by humans. In contrast, our DiffAttack perturbs the latent in diffusion models, achieving
good imperceptibility together with excellent transferability across various black-box models.

Unrestricted Attacks. Since Lp-norm in RGB space was found not ideal for measuring the perceptual
distance (Jia et al., 2022; Yuan et al., 2022), recent research turns to unconstraint and proposes
unrestricted but imperceptible attacks. Zhao et al. (Zhao et al., 2020) adopted CIEDE2000 which can
better indicate the perceptual color loss. Qiu et al. (Qiu et al., 2020) and Jia et al. (Jia et al., 2022)
achieve imperceptibility by modifying the attributes of the images, especially human faces. Yuan
et al. (Yuan et al., 2022) constructed a color distribution library, which is used to find a successful
distribution for adversarial attacks. However, despite their good imperceptibility, these methods
generally cannot compete with the aforementioned pixel-based methods in terms of transferability.
Our work also falls in this direction but achieves better transferability and imperceptibility, and is the
first to explore the strength of diffusion models in crafting unrestricted attacks.

Diffusion Models. Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have
attracted extensive attention and shown their fabulous power. Images are first converted into purely
Gaussian noise in the forward process and then a U-Net structure is trained to predict the added noise
in each timestep of the reversed process. Being trained on large numbers of data, the diffusion models
(Saharia et al., 2022a; Ramesh et al., 2022; Rombach et al., 2022) can either generate high-quality
images from randomly sampled noise, or more specific ones that follow the guidance of text prompt.
Due to its significant performance, the diffusion model has also diffused to other areas, such as image
inpainting (Li et al., 2022; Xie et al., 2022), image super-resolution (Saharia et al., 2022b), real
image editing (Parmar et al., 2023; Mokady et al., 2022), etc. Recent work further showed that the
pretrained diffusion models can be taken as good recognition models (Xu et al., 2023; Clark & Jaini,
2023) and denoisers (Nie et al., 2022). Despite the many applications mentioned above, the potential
of diffusion models in the adversarial attack field remains underexplored.

3 METHOD

3.1 PROBLEM FORMULATION

Given a clean image x and its corresponding label y, attackers aim to craft perturbations that can
deviate the decision of a classifier Fθ (θ denotes the model’s parameters) from correct to wrong:

Fθ(Attack(x;Gϕ)) = Fθ(x
′) ̸= y (1)

where Attack(·) is the attack approach and x′ is the crafted adversarial example. Since Fθ is
inaccessible in black-box scenarios, the adversarial examples are crafted on a surrogate model Gϕ.

Different from previous pixel-based attacks (Dong et al., 2018; Long et al., 2022) that apply Lp-norm
constraints on pixel values (∥ϵ∥p < c, where ϵ is the perturbation and c is a hyperparameter), we
impose perturbations in the latent space of the diffusion model and rely on properties of the diffusion
model to achieve visually natural and successful attacks. We describe our design in detail below.

3.2 BASIC FRAMEWORK

We display in Figure 2 the whole framework of DiffAttack, where we adopt the open-source Stable
Diffusion (Rombach et al., 2022) that pretrained on extremely massive text-image pairs. Since adver-
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Figure 2: Framework of DiffAttack. We adopt Stable Diffusion (Rombach et al., 2022) and leverage
DDIM Inversion (Song et al., 2021) to convert the clean image into the latent space. The latent is
optimized to deceive the classifier. The cross-attention maps are leveraged to “deceive” the diffusion
model, and we use self-attention maps to preserve the structure. For simplicity, we here do not display
the unconditional optimization, whose details can be referred to Section 3.4.

sarial attacks aim to fool the target model by perturbing the initial image, they can be approximated
as a special kind of real image editing. Inspired by recent diffusion editing approaches (Couairon
et al., 2022; Mokady et al., 2022; Parmar et al., 2023), our framework leverages the DDIM Inversion
technology (Song et al., 2021), where the clean image is mapped back into the diffusion latent space
by reversing the deterministic sampling process:

xt = Inverse(xt−1) = Inverse ◦ · · · ◦ Inverse︸ ︷︷ ︸
t

(x0) (2)

where Inverse(·) denotes the DDIM Inversion operation (Please see Appendix B for details. In Eq.
2, we ignore the autoencoder stage of the Stable Diffusion (Rombach et al., 2022) for simplicity).
We apply the inversion for several timesteps from x0 (the initial image) to xt. A high-quality
reconstruction of x0 can then be expected if we conduct the deterministic denoising process from xt

(Dhariwal & Nichol, 2021; Song et al., 2021).

Many of the existing image editing approaches (Couairon et al., 2022; Mokady et al., 2022) proposed
to modify text embeddings for image editing, through which way, the image latent xt can gradually
shift to the target semantic space during the iterative denoising process with the text guidance.
However, in our explorations (see Appendix C), we found that the perturbations on the guided text
embeddings would be hard to work on the other black-box models, leading to weak transferability.
Therefore, different from the editing approaches, we here propose to directly perturb the latent xt:

argmin
xt

Lattack = −J(x′, y;Gϕ), where x′ = x′
0 = Denoise ◦ · · · ◦Denoise︸ ︷︷ ︸

t

(xt) (3)

where J(·) is the cross-entropy loss and Denoise(·) denotes the diffusion denoising process. An initial
concern might arise regarding the potential generation of unnatural results using this straightforward
method. However, we can observe in Figure 1 that the difference is almost indistinguishable between
the image reconstructed from the perturbed latent and the initial clean one. Furthermore, we can
notice that the difference image encapsulates numerous high-level semantic cues, as opposed to the
high-frequency noise typically associated with pixel-based attacks. We attribute this phenomenon to
the denoising process of the diffusion model, which effectively reduces perceptible high-frequency
noise. These semantically rich perturbations can not only enhance the imperceptibility but also benefit
the attack’s transferability (Jia et al., 2022).

3.3 “DECEIVE” DIFFUSION MODEL

According to the research by Nie et al. (2022), the reversed process of the diffusion model is a strong
adversarial purification defense. Thus, our perturbed latent will experience purification before being
decoded to the final image, which then ensures the naturalness of crafted adversarial examples and
also the robustness towards other purification denoises (see Section 4.2.2).

In addition to leveraging the denoising component, we here go a further step to enhance our attack’s
transferability. Given an image and its corresponding caption, we can see from Figure 3 that in the
reconstruction process of the inversed latent, the cross-attention maps display a strong relationship
between the guided text and the image pixels, which demonstrates the potential recognition capability
of pretrained diffusion models. Such a relationship is also verified by Hertz et al. (Hertz et al., 2022)
and its recognition power recently has been leveraged on the downstream tasks (Xu et al., 2023; Clark
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& Jaini, 2023). Thus, the diffusion model that is trained on massive data can be approximated as an
implicit recognition model, and our motivation is that, if our crafted attacks can “deceive” this model,
we may expect an improvement of the transferability to other black-box models.

Denote C as the caption of the clean image, which we set to the groundtruth category’s name (we can
also simply use the predicted category of Gϕ, and thus not rely on true labels). We accumulate the
cross-attention maps between image pixels and C in all the denoising steps and get the average. To
“deceive” the pretrained diffusion model, we propose to minimize the following formula:

argmin
xt

Ltransfer = Var(Average(Cross(xt, t, C; SDM))) (4)

“An image of bananas and 
a pineapple”

Self Attention

“bananas”： “pineapple”：

Cross Attention

Figure 3: Visualization of cross- and self- attention maps.
There is a strong relationship between text and pixels in
cross-attention, while self-attention can well reveal structure.

where Var(·) calculates the input’s
variance, Cross(·) denotes the accu-
mulation of all the cross-attention
maps in the denoising process, and
SDM is the Stable Diffusion. The
insight is to distract the diffusion
model’s attention from the labeled ob-
jects. By evenly distributing attention
to each pixel, we can disrupt the orig-
inal semantic relationship, ensuring
that our crafted adversarial examples
well “deceive” the diffusion model.
With such a design, DiffAttack ex-
hibits an implicit ensemble characteristic. Note that it differs significantly from typical explicit
ensemble attacks (Tramèr et al., 2018), about which we give a detailed analysis in Appendix K.

3.4 PRESERVE CONTENT STRUCTURE

As mentioned in Section 3.2, our unrestricted attack can be approximated as an image editing
approach, thus the change of the content structure is unavoidable. If the degree of the changes is
not under control, the resulting adversarial examples may lose most semantics of the initial clean
image (see Figure 5), which loses the significance of the adversarial attacks and is not what we want.
Therefore, we here preserve the content structure mainly from two perspectives.

Self-Attention Control. Researches by Tumanyan et al. (2022); Shechtman & Irani (2007) have
discovered that the self-similarly-based descriptors can capture structural information while ignoring
image appearance. Along with this idea, we can observe from Figure 3 that the self-attention in the
diffusion models also has that property embedded in it, which is in contrast to cross attention that
mainly focuses on high-level semantics. Therefore, we propose to leverage the self-attention maps for
structure retention. We set a copy xt(fix) of the inversed latent which is fixed without perturbations.
By respectively calculating the self-attention maps (denoted as St(fix) and St) of xt(fix) and xt, we
force St to get close to St(fix) as follows:

argmin
xt

Lstructure = ∥St − St(fix)∥22 (5)

Similar to Eq. 4, we here apply the self-attention constraint to all the denoising steps. Since xt(fix)

reconstructs the initial clean image well (Song et al., 2021), we can in this way preserve the structure.

Inversion Strength Trade-off. With DDIM Inversion strength increased, the latent xt will get closer
to pure Gaussian distribution and the perturbations on it may cause serious distortion due to influence
on more denoising steps (see Figure 5). Whereas, a limited inversion cannot provide enough space
for attacking, since the latent image prior is too strong. The inversion strength is a trade-off between
imperceptibility and the attack success. Recent work (Meng et al., 2021) has found that the diffusion
models tend to add coarse semantic information (e.g., layout) in the early denoising steps while more
fine details in the later steps. Thus, we control the inversion at the back of the denoising process for
retention of high-level semantics, and reduce the total DDIM sample steps for more editing space.

Besides the above operations, we also adopt the approach of Mokady et al. (2022) to get a good initial
reconstruction by optimizing unconditional embeddings. Details can be found in their source paper.

In general, the final objective function of DiffAttack is as follows, where α, β, and γ represent the
weight factors of each loss:

argmin
xt

L = αLattack + βLtransfer + γLstructure (6)
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following the previous methods (Long et al., 2022; Yuan et al., 2022; Zhao et al., 2020),
we evaluate the performance of our attack on the development set of ImageNet-Compatible Dataset1,
which consists of 1,000 images with size 299×299×3. Considering that the Stable Diffusion cannot
handle the original input size of the ImageNet-Compatible Dataset, we focused on a resized version
of 224×224×3 in all the experiments. DiffAttack also generalizes well to other datasets. Please
refer to Appendix I where we conduct further experiments on CUB-200-2011 (Wah et al., 2011) and
Stanford Cars (Krause et al., 2013).

Models. We evaluate the transferability of the attacks across a variety of network structures, including
CNNs, Transformers, and MLPs. For CNNs, we adopt normally trained models including ConvNeXt
(Liu et al., 2022), ResNet-50 (Res-50) (He et al., 2016), VGG-19 (Simonyan & Zisserman, 2014),
Inception-v3 (Inc-v3) (Szegedy et al., 2016), and MobileNet-v2 (Mob-v2) (Sandler et al., 2018). For
Transformers, we consider normally trained ViT-B/16 (ViT-B) (Dosovitskiy et al., 2021), Swin-B
(Liu et al., 2021), DeiT-B and DeiT-S (Touvron et al., 2021). For MLPs, we adopt normally trained
Mixer-B/16 (Mix-B) and Mixer-L/16 (Mix-L) (Tolstikhin et al., 2021). Furthermore, we also consider
various defense methods, including DiffPure (Nie et al., 2022), RS (Jia et al., 2020), R&P (Xie
et al., 2018), HGD (Liao et al., 2018), NIPS-r3 (Thomas & Elibol, 2017), NRP (Naseer et al., 2020),
and adversarially trained models (Adv-Inc-v3 (Kurakin et al., 2018), Inc-v3ens3, Inc-v3ens4, and
IncRes-v2ens (Tramèr et al., 2018)).

Implementation Details. We leverage DDIM (Song et al., 2021) as the sampler of the Stable
Diffusion (Rombach et al., 2022). The number of steps is set to 20 and we apply 5 DDIM Inversion
steps of the initial clean image. In the inversion process, the guidance scale is set to 0, while in the
denoising process, we set it to 2.5. For optimizing the latent xt, we adopt AdamW (Loshchilov &
Hutter, 2019) with the learning rate set to 1e−2 and the iterations set to 30. The weight factors α, β,
γ in Eq. 6 are set to 10, 10000, 100 respectively. All experiments are run on a single RTX 3090 GPU.

Evaluation Metrics. We adopt top-1 accuracy to evaluate the performance of the attack methods
and leverage Frechet Inception Distance (FID) (Heusel et al., 2017) as the indicator of the human
imperceptibility of the crafted adversarial examples. A full-referenced metric, LPIPS (Zhang et al.,
2018), is also used to assess the perceptual differences which can be found in Appendix H, I, J.

4.2 COMPARISONS

4.2.1 RESULTS ON NORMALLY TRAINED MODELS

Here, we compared the performance of DiffAttack on normally trained models with other transfer-
based black-box attacks. We select five pixel-based attacks (MI-FGSM (Dong et al., 2018), DI-FGSM
(Xie et al., 2019), TI-FGSM (Dong et al., 2019), PI-FGSM (Gao et al., 2020), S2I-FGSM (Long
et al., 2022)) and two unrestricted attacks (PerC-AL (Zhao et al., 2020), NCF (Yuan et al., 2022)).
Except that the resolution is changed to 224×224×3, the implementations of these methods follow
their original optimal settings (See Appendix F for details). We craft the adversarial examples via
Res-50, VGG-19, Mov-v2, Inc-v3, ConvNeXt, and Swin-B (Performance on more surrogate models
can be found in Appendix H). The transferability of different attack methods is displayed in Table 1.

From the results, we can observe that DiffAttack can achieve the best transferability across a variety
of model structures, while other unrestricted attacks (PerC-AL and NCF) usually fail to compete
with pixel-based attacks. In some architectures such as VGG-19 and Mob-v2, our method can even
outperform the second-best method by nearly 10 points (38.2% vs. 49.0%, 40.5% vs. 49.9%). It may
be noticed that our method fails to compete with MI-FGSM and PI-FGSM under Inc-v3 structure,
however, from the FID results, we have a large advantage over them (about 20 or more points lower).

For the imperceptibility of the crafted adversarial examples, we can observe that PerC-AL has
always achieved the best FID result. However, it can hardly deceive other black-box models and
achieves the worst transferability where the accuracy value of AVG(w/o self) is very close to the
clean image. Therefore, we choose to ignore the PerC-AL results here, and our method achieves the
best performance. We turn the color of the best performance in Table 1 to red for a better view.

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.
1.0/examples/nips17_adversarial_competition/dataset.
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Table 1: Transferability and imperceptibility comparisons on normally trained models. We
report top-1 accuracy(%) of each method. “S.” denotes surrogate models while “T.” denotes target
models. For white-box attacks (surrogate model same as target), we set the background to gray.
“AVG(w/o self)” denotes the average accuracy on all the models except the one that same as the
surrogate. “FID” is calculated between the 1,000 images of the ImageNet-Compatible dataset with
the ImageNet validation set. The best result is bolded, and the second-best result is underlined.

S.
T. Attacks

CNNs Transformers MLPs
AVG(w/o self) FID

Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Clean 92.7 88.7 86.9 80.5 97.0 93.7 95.9 94.5 94.0 82.5 76.5 89.4 57.8

Res-50

MI-FGSM 0 19.9 20.2 28.9 57.8 67.3 67.0 72.4 67.0 52.2 45.4 49.8 81.2
DI-FGSM 0 21.2 20.5 34.5 71.6 82.0 75.3 80.5 76.0 61.3 56.8 58.0 85.3
TI-FGSM 0 42.4 37.1 46.0 83.6 81.6 83.7 84.5 79.0 66.0 61.7 66.6 66.0
PI-FGSM 0 14.1 15.0 24.0 72.5 65.3 77.5 76.7 65.0 50.5 43.8 50.5 97.9
S2I-FGSM 0 9.2 6.6 18.6 44.1 63.9 52.0 65.9 59.0 45.6 44.3 40.9 79.8
PerC-AL 6.5 83.1 80.2 76.4 96.0 93.9 94.8 94.4 93.0 81.6 75.1 86.8 58.2

NCF 11.3 30.5 30.3 52.6 78.3 65.7 76.8 75.1 67.0 53.7 47.6 57.8 70.9

DiffAttack(Ours) 3.7 24.4 22.9 31.0 41.0 48.8 43.8 49.5 45.0 42.9 42.2 39.2 62.6

VGG-19

MI-FGSM 22.7 0 15.4 33.5 53.2 73.2 63.3 74.7 68.0 54.3 48.6 50.6 82.4
DI-FGSM 32.2 0 23.9 46.5 67.2 84.7 71.9 84.8 80.0 65.7 60.9 61.8 70.9
TI-FGSM 44.5 0 32.8 47.4 77.8 81.4 79.3 83.6 79.0 64.9 60.3 65.1 66.6
PI-FGSM 22.7 0 16.4 29.8 68.3 68.0 75.7 79.5 68.0 50.9 41.8 52.1 96.4
S2I-FGSM 17.9 0 11.3 31.8 49.5 74.1 57.9 76.0 68.0 52.6 50.8 49.0 82.9
PerC-AL 87.5 4.6 79.0 76.1 95.1 94.2 94.0 94.3 93.0 81.3 75.1 87.0 57.9

NCF 38.3 6.8 31.5 52.4 80.5 67.5 77.6 77.4 71.0 53.5 47.2 59.7 70.4

DiffAttack(Ours) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9

Mob-v2

MI-FGSM 26.4 18.7 0 31.0 62.0 69.5 65.2 71.6 63.0 46.9 44.4 49.9 76.4
DI-FGSM 28.7 18.9 0 33.9 73.4 79.9 71.4 79.6 75.0 57.7 57.1 57.6 78.6
TI-FGSM 47.2 37.9 0 45.2 83.0 79.9 80.9 81.8 76.0 61.7 58.3 65.1 65.6
PI-FGSM 21.1 13.3 0 27.6 74.4 65.3 77.0 77.4 66.0 49.7 41.5 51.4 98.7
S2I-FGSM 21.0 13.4 0 27.2 64.3 74.1 62.6 75.2 68.0 51.4 48.3 50.5 79.4
PerC-AL 88.2 84.2 5.9 76.8 96.2 93.9 94.2 94.3 94.0 81.2 74.3 87.7 58.1

NCF 36.0 29.4 7.4 51.9 77.4 67.2 76.1 76.1 68.0 54.9 48.3 58.6 69.7

DiffAttack(Ours) 23.6 23.4 1.8 31.6 50.3 51.4 45.8 53.4 46.0 38.5 40.8 40.5 62.9

Inc-v3

MI-FGSM 42.8 36.6 34.4 0 79.8 75.3 79.4 78.6 73.0 56.5 48.9 60.6 80.5
DI-FGSM 61.7 57.4 51.9 0.2 89.9 84.6 86.8 86.7 82.0 68.4 62.3 73.2 67.1
TI-FGSM 76.0 70.1 66.7 0.1 93.8 88.7 91.2 89.7 88.0 73.8 66.8 80.5 62.8
PI-FGSM 37.9 22.4 28.4 0 81.0 74.3 83.0 81.9 72.0 57.1 45.8 58.4 92.5
S2I-FGSM 52.3 47.8 43.3 0 86.3 80.8 84.1 83.8 78.0 63.5 57.3 67.8 72.5
PerC-AL 90.8 87.0 85.8 7.7 97.5 93.6 95.1 94.2 94.0 81.5 75.3 89.4 58.4

NCF 52.6 45.8 46.2 17.4 85.7 75.9 83.4 82.7 76.0 61.1 52.9 66.2 66.7

DiffAttack(Ours) 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3

ConvNeXt

MI-FGSM 34.5 22.4 26.5 41.9 0 63.4 18.0 56.5 56 41.4 40.2 40.1 84.5
DI-FGSM 33.6 24.3 29.8 46.6 0 71.0 18.8 62.2 64.0 49.6 46.7 44.6 79.6
TI-FGSM 50.7 37.3 41.1 51.8 0 70.9 38.8 68.6 69.0 52.3 47.2 52.7 73.5
PI-FGSM 23.6 14.2 17.1 22.4 0 43.0 37.2 48.7 43.0 33.2 31.7 31.4 101.8
S2I-FGSM 13.6 9.6 11.9 20.2 0 35.4 4.2 31.0 31.0 23.2 25.6 20.5 99.4
PerC-AL 89.0 84.5 84.0 77.5 88.9 92.8 90.0 92.4 92.0 79.3 74.5 85.6 57.7

NCF 47.1 41.4 39.2 54.7 41.4 61.6 63.9 64.8 62.0 52.2 47.8 53.5 67.0

DiffAttack(Ours) 20.9 24.8 21.8 25.8 1.9 26.7 11.4 21.6 24.0 21.7 24.0 22.2 73.3

Swin-B

MI-FGSM 55.7 42.3 42.7 55.2 42.5 70.6 0.9 64.2 64.0 52.4 47.9 53.7 72.8
DI-FGSM 52.7 43.0 44.5 56.4 33.9 66.6 2.7 57.2 58.0 52.4 50.8 51.5 65.7
TI-FGSM 71.9 61.7 56.9 60.2 66.0 76.3 1.9 72.2 72.0 61.2 56.9 65.6 65.9
PI-FGSM 38.3 21.6 25.8 35.7 54.8 48.4 0.6 52.4 47.0 43.5 38.5 40.6 89.7
S2I-FGSM 47.4 37.8 35.4 45.3 26.8 48.5 1.0 46.2 45.0 39.3 39.0 41.1 68.2
PerC-AL 92.2 87.4 85.5 78.5 94.6 94.0 6.3 94.1 93.0 81.4 75.5 87.6 57.9

NCF 49.5 44.9 44.9 60.5 70.1 63.7 36.9 66.0 63.0 51.7 49.1 56.3 65.5

DiffAttack(Ours) 43.5 42.1 40.7 41.4 34.0 39.0 9.9 35.0 37.0 37.7 37.4 38.8 65.5

In Figure 4, we visualize the adversarial examples crafted by different attack approaches. We can
see that our attack is much more imperceptible compared with MI-FGSM, DI-FGSM, TI-FGSM, PI-
FGSM, and S2I-FGSM, where there is high-frequency noise that can be perceived easily. Compared
with NCF, DiffAttack is more natural in color space. For PerC-AL, although the attack can hard to be
perceived, its transferability is the worst as mentioned above. Thus, our method’s superiority is well
verified. More visualizations can be found in Appendix O.

Besides the above iterative approaches, there exists another category of attacks known as GAN-based
attacks (Poursaeed et al., 2018). These attacks do not directly optimize perturbations but instead
focus on training a GAN generator. While DiffAttack fundamentally belongs to the iterative approach
category, we conduct a comprehensive comparison with these GAN-based attacks in Appendix
J, where DiffAttack consistently outperforms them. Additionally, to strengthen the potential of
DiffAttack, we compare it with ensemble attacks, which are more powerful, in Appendix G and K.
4.2.2 RESULTS ON DEFENSE APPROACHES

To further verify the robustness of each attack method, we evaluate the performance of the crafted
adversarial examples on defense approaches. Following Yuan et al. (2022); Long et al. (2022), we
consider both input preprocessing defenses (Jia et al., 2020; Xie et al., 2018; Liao et al., 2018; Thomas
& Elibol, 2017; Naseer et al., 2020) and adversarially trained models (Kurakin et al., 2018; Tramèr
et al., 2018) (see Section 4.1). We further consider the recent DiffPure defense (Nie et al., 2022)
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Clean MI-FGSM DI-FGSM TI-FGSM PI-FGSM PerC-AL NCFS2I-FGSM Ours

Figure 4: Visual comparisons among different attacks. Please zoom in for a better view.
Table 2: Robustness on defense approaches. We report top-1 accuracy(%) of each method. “A.”
denotes attack methods while “D.” denotes defense approaches. “Inc-v3normal” denotes the accuracy
on normally trained Inc-v3. For NRP and DiffPure, we display the accuracy differences after
purification. The best result is bolded, and the second-best result is underlined.

A.
D. HGD R&P NIP-r3 RS Adv-Inc-v3 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Inc-v3normal NRP DiffPure

MI-FGSM 77.9 76.8 65.2 62.7 51.1 49.8 53.7 70.5 0 +5.9 +38.4
DI-FGSM 80.5 83.8 79.4 68.7 64.2 58.5 61.5 74.9 0.2 +22.9 +52.4
TI-FGSM 84.7 86.1 87.0 69.4 66.1 62.4 64.5 76.8 0.1 +25.8 +55.5
PI-FGSM 73.4 68.6 57.2 37.1 42.3 45.0 44.6 62.0 0 +7.7 +21.5
S2I-FGSM 72.5 76.5 73.3 65.0 51.8 47.0 52.2 67.7 0 +3.2 +47.0
PerC-AL 95.6 94.4 96.7 74.2 80.8 76.7 75.4 88.6 7.7 +56.8 +55.9

NCF 71.1 66.4 74.6 29.0 48.8 47.2 49.0 60.5 17.4 +11.0 +14.8

DiffAttack(Ours) 62.0 65.5 70.0 52.8 46.0 43.8 43.1 58.3 13.9 +2.3 +13.9

to better demonstrate our superiority. We take Inc-v3 as an example surrogate model and all the
adversarial examples are crafted from it. For NRP and DiffPure, we set the target model as Inc-v3
itself, thus better revealing the robustness. For other defenses, the target models are the same as the
official papers. We display the results in Table 2.

Table 3: Transferability.
Prompt

Guidance
Diffusion
Deception

AVG
(w/o self)

✗ ✗ 70.0
✓ ✗ 66.5
✓ ✓ 65.4

Table 4: Imperceptibility.
Steps

Inversed
Self-Attn
Control

Initial
Recon FID

10 ✗ ✗ 97.9
5 ✗ ✗ 66.7
5 ✓ ✗ 63.5
5 ✓ ✓ 62.3

Clean
inverse 10 steps

w/o self-attn control

w/o initial recon

inverse 5 steps

w/o self-attn control

w/o initial recon

inverse 5 steps

w/ self-attn control

w/o initial recon

inverse 5 steps

w/ self-attn control

w/ initial recon (final)

Figure 5: Visualization of imperceptibility ablations.
Please zoom in for a better view.

From the results, we can see that our
method can achieve good robustness
and outperform other methods when
some defenses are applied. For the ad-
versarial purification defenses, it can
be seen that the attack success of our
attack has the least change compared
with other ones, which does verify the
robustness of DiffAttack and the effec-
tiveness of our designs in Section 3.3.

4.3 ABLATION STUDIES

In Table 3, we ablate the designs men-
tioned in Section 3.3. The adversarial
examples are crafted on Inc-v3. We
can observe that with the loss in Eq.
4 added, the attack success improves,
verifying our design’s effectiveness. It
can also be noted that prompt guidance is important for transferability, which we attribute to the fact
that prompts can help guide the attack on the target objects. Moreover, as stated in Section 1, both
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our latent perturbation approach and the denoising process in diffusion models also contribute to
transferability. A more detailed ablation study on this aspect is provided in Appendix N. Results in
Table 4 verify the effectiveness of our designs for structure retention. With the inversion strength and
self-attention controlled, the FID result gradually improves. We also visualize the structure ablation
in Figure 5, which can display the visual improvement obviously. It can be seen that the control of
inversion strength helps a lot preserve the structure, and the usage of self-attention maps can ensure
better texture. For more ablation studies on parameter settings, please refer to Appendix O.

5 DISCUSSIONS AND OUTLOOKS
Besides the designs outlined in Section 3, we have explored other strategies to enhance impercepti-
bility and transferability during the exploration of diffusion-based adversarial attacks. While these
exploratory endeavors yielded limited success, we deem it valuable to provide an in-depth discussion,
as they may contribute to future research. Detailed insights are presented in Appendices D and E.

We are also pleased to observe the rapid growth of concurrent research in diffusion-based attacks,
underscoring the potential of this direction. For a comprehensive overview, we briefly compare our
approach with these contemporaneous efforts. In contrast to DiffAttack, which places a primary
emphasis on creating adversarial attacks that are both imperceptible and transferable, Diff-PGD
(Xue et al., 2023) prioritizes controllability and stealthiness. Diff-PGD combines PGD (Madry
et al., 2018) with diffusion models, exploring its applicability across various attack types, including
style-guided and physical attacks. ACA (Chen et al., 2023), on the other hand, closely aligns its
research focus and techniques with those of DiffAttack. The key distinctions lie in ACA’s integration
of the momentum concept (Dong et al., 2018) to enhance transferability, as well as the design of a
differentiable boundary process aimed at preventing boundary leakage. In contrast, our approach
introduces Ltransfer and Lstructure to address transferability and imperceptibility, respectively.

Furthermore, we offer insights into potential future directions for diffusion-based adversarial attacks.
One avenue for future research is to take diffusion models as a novel input augmentation. Recently,
there are many works (Long et al., 2022; Xie et al., 2019) that enhance the attack’s transferability
by applying differentiable augmentations on the input image, in which way, the crafted adversarial
examples gain robustness under different scenarios. In line with these approaches, we can also take
diffusion models as novel augmentations. By directly adding noise (or applying DDIM Inversion),
we first convert the input image into the latent space, then we conduct the diffusion denoising process
to reconstruct images. This reconstruction process, with small differences from the input image every
time, can be seen as an augmentation when we leverage stochastic sampling in each step (the way
like DDPM (Ho et al., 2020) but not deterministic DDIM (Song et al., 2021)). Therefore, we may
expect good transferability in this way.

Moreover, as the adversarial example crafted by diffusion models has many semantic clues embedded
in it (see Figure 1), it is also interesting and worth exploring whether the accuracy of clean images
can be improved if we merge these examples in the training dataset and whether such an adversarial
training can enhance the robustness of the classifier without sacrificing the clean image accuracy
compared with previous attacks (Kurakin et al., 2017).

Additionally, we identify three crucial aspects of diffusion-based attacks that merit further exam-
ination. First, the substantial computational cost, arising from the iterative nature and numerous
parameters of diffusion models, potentially limits their practicality in real-time or resource-constrained
settings (see Appendix M). Second, compared to pixel-based attacks, DiffAttack struggles to achieve
a 100% white-box attack success rate, a phenomenon also observed in other generative-model-based
(GAN-based) attacks (Poursaeed et al., 2018) and unrestricted attacks (Zhao et al., 2020; Yuan et al.,
2022) (see Table 1 and Appendix J). Finally, in the transferable targeted attack task (see Appendix L),
DiffAttack, along with other compared attacks, exhibits low transferability despite strong performance
in the untargeted attack task. These findings also suggest promising avenues for future research.

6 CONCLUSION
In this work, we explore the potential of diffusion models in crafting adversarial examples and
propose a powerful transfer-based unrestricted attack. By leveraging the properties of diffusion
models, our approach achieves both imperceptibility and transferability. Experiments across extensive
black-box models, defenses, and datasets have demonstrated our method’s superiority. Furthermore,
we also comprehensively discussed the possible future work with diffusion models. We hope that our
work can pave the way for further research on diffusion-based adversarial attacks.
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Ethics Statement. Since images crafted by DiffAttack are natural from human eyes but can lead
to wrong decisions across various black-box models and defenses, some could maliciously use our
method to undermine real-world applications, inevitably raising more concerns about AI safety.

Reproducibility Statement. In terms of reproducibility, we have provided thorough descriptions
of our method’s architectures and algorithms in Section 3. For additional implementation specifics,
please refer to Section 4.1 and Appendix F. Moreover, our source code, along with detailed com-
ments and instructions, has been submitted in the Supplemental Materials to facilitate a thorough
understanding of our work.
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A OVERVIEW

In the appendix, we will first provide a detailed review of DDIM Inversion in Appendix B. Then, we
conduct an analysis of the effect of perturbations on text embeddings in Appendix C. In Appendix D
and Appendix E, considering the possible help for future research, we display our further trials (with
little success) on improving the imperceptibility and transferability of the attacks. In Appendix F,
we present more implementation details of the compared methods in Table 1 of the main paper. We
compare DiffAttack with the combination of multiple attack approaches in Appendix G. We present
DiffAttack’s performance on more surrogate models in Appendix H. Comparisons on more datasets
and with GAN-based attacks are presented in Appendix I and Appendix J respectively. In Appendix
K, we present comparisons with ensemble attacks and also give a detailed analysis of the relationship
between DiffAttack and the ensemble attacks. Besides, we give discussions about the DiffAttack’s
performance on the transferable targeted attack in Appendix L. Limitations of computational cost are
discussed in Appendix M. Finally, more ablation studies, quantitive studies, and visualizations are
shown in Appendix N and Appendix O.

B DETAILED FORMULATION OF DDIM INVERSION

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) are a class of generative models
that sample images by gradually denoising an initial Gaussian noise. There is a forward process and
a reversed process in DDPMs. The forward process is to gradually add Gaussian noise to the original
image x0 and thus produces a series of noisy latents x1, x2, · · · , xT :

q(xt|xt−1) = N (
√
1− βtxt−1, βtI) (7)

where βt ∈ (0, 1). When T is large enough, the last latent xT will approximately follow an isotropic
Gaussian distribution.

Instead of iteratively calculating the intermediate latents to get xt, a good property of the forward
process is that we can directly sample xt from x0:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) (8)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (9)

where αt = 1− βt, ᾱt =
∏t

s=0 αs.

The reversed process is to draw a new sample from the distribution q(x0). Starting from xT ∼
N (0, I), we can get a new sample by iteratively sampling the posteriors q(xt−1|xt). Since q(xt−1|xt)
is intractable due to the unknown data distribution q(x0), a neural network pθ is trained to approximate
that by predicting the mean and covariance of q(xt−1|xt), which is shown to also be Gaussian
distributions (Sohl-Dickstein et al., 2015):

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (10)

Since µθ(xt, t) =
1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
, Ho et al. (Ho et al., 2020) simplified the objective

function by only predicting the noise ϵθ(xt, t):

min
θ

L(θ) = Ex0,ϵ∼N(0,I),t∥ϵ− ϵθ(xt, t)∥22 (11)

After we get the trained ϵθ(xt, t), we can conduct a sampling as follows:

xt−1 = µθ(xt, t) + σtz, z ∼ N(0, I). (12)

Since the classic DDPMs are essentially a Markov chain and they require a large timestep T to
achieve good performance. To accelerate DDPMs sampling process, Song et al. (Song et al., 2021)
generalize DDPMs from a particular Markovian process to non-Markovian processes:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(xt) + σtz, z ∼ N(0, I) (13)

By setting σt = 0, we then get a deterministic sampling process (from xT to x0), which is the
DDIM’s principle.
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Since the deterministic process of DDIM can be further taken as Euler integration for solving ordinary
differential equations (ODEs)(Song et al., 2021), we can map a real image back to its corresponding
latent by reversing the process. This operation, named DDIM Inversion, paves the way for later
editing of real images (Couairon et al., 2022; Mokady et al., 2022). By rewriting Eq. 13, the denoising
process of DDIM is as follows:

xt−1 − xt =
√
ᾱt−1

[(√
1/ᾱt −

√
1/ᾱt−1

)
xt +

(√
1/ᾱt−1 − 1−

√
1/ᾱt − 1

)
ϵθ(xt)

]
(14)

We can then encode the real image into the latent space by reversing the above formulation:

xt+1 − xt =
√
ᾱt+1

[(√
1/ᾱt −

√
1/ᾱt+1

)
xt +

(√
1/ᾱt+1 − 1−

√
1/ᾱt − 1

)
ϵθ(xt)

]
(15)

C PERTURBATION ON GUIDED TEXT EMBEDDINGS

As mentioned in Section 3.2 in the main paper, we choose to perturb the latent xt but not the guided
text C, which is different from the mainstream image editing approaches (Couairon et al., 2022;
Mokady et al., 2022; Parmar et al., 2023). The reason is that text perturbation will be hard to transfer
to other black-box models. In the following, we display the details of text perturbation designs and
some necessary experiments and analyses.

C.1 DESIGN DETAILS

Here we first define two text prompts: C1, C2, which are the first and second most possible categories
predicted by the classifier. We leverage C1 for the optimization of unconditional embeddings
mentioned in Section 3.4 in the main paper. Then, we replace C1 with C2 which follows Mokady
et al. (2022); Hertz et al. (2022) and can expect the changes of object semantics in the image. For the
loss functions, we remove Ltransfer in Eq. 6 in the main paper, and modify Lattack as follows:

argmin
C2

Lattack = J(x′, C2;Gϕ) (16)

The equation above is similar to the objective function of targeted attacks, and the insight is to trick
the classifier into predicting the nearest wrong label. Other implementation details are the same as
Section 4.1 in the main paper.

C.2 EXPERIMENTS AND ANALYSIS

In this subsection, we compare the results between the text perturbation and the latent perturbation.
From Table 5, we can observe that although the text perturbation has a slightly higher attack success
in a white-box way (0.5 point accuracy lower on Inc-v3), the attack itself is hard to work on the other
black-box models, thus not competitive with the latent perturbations. We attribute this phenomenon to
the fact that the text perturbation is more high-level than the latent perturbation, due to text semantics.
Therefore, it will tend to generate more realistic results (lower FID in Table 5), but has limited control
over the local area, while the latent perturbation does the opposite.

Table 5: Comparisons of perturbations on the latent and text. “S.” denotes surrogate models
while “T.” denotes target models. For the white-box attacks (surrogate model same as target one), we
set their background to gray. “AVG(w/o self)” denotes the average accuracy on all the target models
except the one that same as the surrogate one. The best result is bolded.

S.
T. CNNs Transformers MLPs

AVG(w/o self) FID
Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Clean 92.7 88.7 86.9 80.5 97.0 93.7 95.9 94.5 94.0 82.5 76.5 89.4 57.8

Text Perturbation 79.6 73.3 74.7 13.4 91.3 85.9 86.9 87.9 86.0 71.6 63.8 80.1 58.8
Latent Perturbation 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3

D TRIAL FOR BETTER IMPERCEPTIBILITY WITH “PSEUDO” MASK

As mentioned in Section 3.4, for some specific images, the adversarial examples crafted by DiffAttack
may distort a lot compared with the original ones. For better control of the changes, we try to generate
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Table 6: Comparisons of different mask types and upsampling strategies. For the white-box
attacks (surrogate model same as target one), we set their background to gray. “AVG(w/o self)”
denotes the average accuracy on all the target models except the one that same as the surrogate one.
The best result is bolded.

Mask Types Upsampling Strategy
CNNs Transformers MLPs

AVG(w/o self) FID
Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

None None 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3
hard nearest 71.4 67.9 64.8 17.8 85.2 80.9 82.9 80.3 81.0 68.2 60.2 74.2 59.1
hard bilinear 68.8 66.8 65.6 18.3 84.0 79.0 81.4 79.9 79.5 66.0 61.8 73.3 59.3
soft bilinear 73.9 69.4 66.9 18.4 88.2 82.7 86.5 84.8 82.0 68.5 62.0 76.5 58.8

“pseudo” masks with the cross attention. With these masks, we can then filter out the background
regions and only perturb the foreground objects, thus achieving better human-imperception. However,
we found that although the results could more easily evade the human eyes, their transferability
dropped a lot. We infer this may be because background information is also beneficial for image
recognition. More details about the implementation and experiments of the trial can be found as
follows. In practice, we will weaken the inversion strength for overly distorted images.

D.1 DESIGN DETAILS

As mentioned in Section 3.3 in the main paper, there is a strong relationship in the cross-attention
maps between the text prompt and the image pixels. Thus, we can make use of this property to
generate the true label’s “pseudo” mask:

P = Average(Cross(xt, t, C; SDM)) (17)

Msoft = Up(
P

Max(P )
) (18)

(Optional) Mhard =

{
1, Msoft > 0.5

0, Msoft ≤ 0.5
(19)

where Up(·) is an upsampling operation to resize the cross-attention map (due to the existing
downsamplings in the encoder of the Autoencoder and U-Net). Max(·) is to extract the maximum
value and normalize the cross-attention maps P . Since P ≥ 0, the normalized Msoft ∈ [0, 1]. Eq.
19 is optional to get a hard mask. With the mask, we then filter out the background area and only
apply perturbations on the foreground (area covered by true objects). The Eq. 3 in the main paper is
then changed as follows:

argmin
xt

Lattack = −J(x′ ×M + x× (1−M), y;Gϕ) (20)

The optimization details are the same as the implementation details in Section 4.1 in the main paper.

D.2 EXPERIMENTS AND ANALYSIS

Here we conduct experiments to see the impact of different upsampling strategies and different mask
types. In Table 6, we display the performance when the mask is applied. It can be perceived from
the results that there is an obvious trade-off between transferability and imperceptibility. The use of
masks lowers the FID value, yet also lowers the attack success by a large margin. We infer that it
is because the recognition of an image is not only related to its foreground but also its background
(Zhu et al., 2017). Thus the attack success rate will drop when the mask is applied. We also visualize
the adversarial example crafted by leveraging the mask in Figure 6, from which we can see that the
applied mask can better preserve words on hot air balloon skin, and the hard mask tends to generate
blocky artifacts compared with soft-mask.

E TRIAL ON FURTHER IMPROVING TRANSFERABILITY

We also explore further improving the transferability of DiffAttack. For image classification, the
classifier will output each category’s confidence, and top1 is usually taken as the final decision. We
here try to also make use of the following 4 categories in top5 for better transferability. Specifically,
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Clean W/O Mask Soft + BilinearHard + BilinearHard + Nearest

Figure 6: Visualization of the adversarial example crafted by leveraging the mask. The second
and third rows denote the scaled-up regions in the first row.

different from Section 3.3 where we only set the guided text to top1 category’s name, we here set the
text to a stack of the 5 categories’ names in top5 (sort by confidence from largest to smallest). Then,
we optimize xt to reduce the intensity of cross attention between pixels and the first category text and
increase that between pixels and the other four categories text. The motivation is that, the confidence
denotes, to some extent, the amount of related information of the category in the image, thus it may
be much easier to deceive the classifier to the nearest category on the decision plane. However, from
our experiments, this trial fails to improve the transferability and even hurts it. We attribute this to the
limitation of the search space. More details can be found as follows.

E.1 DESIGN DETAILS

In Eq. 4 in the main paper, C = “{True Label / Category 1st}” that the guided text can be either
the true label or the top1 predicted category. We here extend the text to leverage more categories:

Cext = “{Category 1st}, {Category 2nd}, · · · , {Category Nth}” (21)
where {Category Nth} denotes the name of the Nth most possible category predicted by the classifier.
Then, Eq. 3 in the main paper is modified to:
Lattack = −J(x′,Category 1st;Gϕ)+(J(x′,Category 2nd;Gϕ) + · · ·+ J(x′,Category Nth;Gϕ))︸ ︷︷ ︸

N−1

(22)
By minimizing the above equation, the adversarial examples are crafted to lead the classification
results towards the most error-prone categories, which may have benefits on the transferability (but
failed through our experiments). We further add an extra loss to force the perturbed xt to have lower
cross-attention intensity with {Category 1st} and higher with other text prompts, which we expect
can help deceive the diffusion models:

Pi = Average(Cross(xt, t, Ci; SDM)) (23)
argmax

xt

Lext = Average(P2 + · · ·+ PN︸ ︷︷ ︸
N−1

)− P1 (24)

where Ci denotes Category ith, and Pi denotes the cross attention between image pixels and Ci.
Average(·) here represents the averaging operation in pixel space. We then add Lext to Eq. 6 in the
main paper with a weight factor set to 100.
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Table 7: Explorations on the effect of different categories as text prompts. For the white-box
attacks (surrogate model same as target one), we set their background to gray. “AVG(w/o self)”
denotes the average accuracy on all the target models except the one that same as the surrogate one.
The best result is bolded.

top-N
CNNs Transformers MLPs

AVG(w/o self) FID
Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

1 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3
2 67.0 63.7 61.2 9.1 81.7 77.1 77.5 79.1 76.4 64.0 56.8 70.4 60.9
5 64.4 61.0 59.2 5.9 81.4 78.8 78.0 77.5 75.9 61.0 54.0 69.1 62.8

Table 8: Comparison with the combination of multiple attack approaches. We report top-1
accuracy(%) of each method. For the white-box attacks (surrogate model same as target one), we
set their background to gray. “AVG(w/o self)” denotes the average accuracy on all the target models
except the one that same as the surrogate one. The best result is bolded.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L AVG(w/o self) FID

S2I-FGSM 17.9 0 11.3 31.8 49.5 74.1 57.9 76.0 68.0 52.6 50.8 49.0 82.9
S2I-MI-FGSM 6.2 0 3.6 14.5 30.1 51.4 41.1 54.3 45.7 34.5 33.0 31.4 100.0

S2I-DI-MI-FGSM 3.6 0 2.3 9.2 24.6 44.7 33.3 49.2 38.2 28.2 29.1 26.2 104.5
S2I-TI-DI-MI-FGSM 5.2 0 3.1 7.8 40.0 35.9 46.0 49.3 36.8 27.5 27.1 27.9 104.9

S2I-SI-TI-DI-MI-FGSM 5.5 0 4.1 7.7 45.4 34.4 47.5 49.5 36.4 27.0 26.3 28.4 114.7

DiffAttack(Ours) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9
DiffAttack(w/o Structure Controls) 19.7 3.9 15.5 19.9 32.2 35.0 28.8 30.8 30.1 20.7 21.8 25.5 96.2

E.2 EXPERIMENTS AND ANALYSIS

We here analyze the impact of different numbers of categories leveraged as text prompts. From
Table 7, leveraging more guided category texts failed to improve the attack’s transferability, and even
damage the performance. We infer that it is because the search space of the attack is limited when we
force the adversarial examples to be classified as some specific categories. When we set the category
number from 2 to 5, we can observe a slight increase in the attack success, while when we set it to 1,
we have no constraint on the predicted category, and thus gain a large increase in the attack success.

F MORE IMPLEMENTATION DETAILS

In Section 4 in the main paper, we compared the performance of DiffAttack with other transfer-based
black-box attacks, including MI-FGSM (Dong et al., 2018), DI-FGSM (Xie et al., 2019), TI-FGSM
(Dong et al., 2019), PI-FGSM (Gao et al., 2020), S2I-FGSM (Long et al., 2022), and also two
unrestricted attacks (PerC-AL (Zhao et al., 2020), and NCF (Yuan et al., 2022)). Here, we detail the
hyperparameter settings of the compared attack methods.

The settings mostly follow their source papers/codes. All I-FGSM-based ones (Dong et al., 2018;
Xie et al., 2019; Dong et al., 2019; Gao et al., 2020; Long et al., 2022) are constrained by Linf with
steps set to 10, maximum perturbation set to 16, and step size set to 1.6. For MI-FGSM, we set its
decay factor to 1.0. For DI-FGSM, we set its transformation probability to 0.5. For TI-FGSM, we
set its kernel size to 7. For PI-FGSM, we set its amplification factor to 10. For S2I-FGSM, we set
its inner iteration number to 20, its tuning factor to 0.5, and its standard deviation to 16. As for the
unrestricted attacks (Zhao et al., 2020; Yuan et al., 2022), we set PerC-AL’s iteration number to 1000
and its confidence to 40. For NCF, we set its random search number to 50, neighborhood search
number to 15, reset number to 10, and step size to 0.013.

G COMPARISON WITH A COMBINATION OF MULTIPLE ATTACK APPROACHES

Many recent Lp-norm-based attacks enhance their efficacy by combining with other attack strategies.
For instance, the S2I-SI-TI-DIM (Long et al., 2022) approach integrates five attack methods (MI-
FGSM (Dong et al., 2018), DI-FGSM(Xie et al., 2019), TI-FGSM(Dong et al., 2019), SI-FGSM(Lin
et al., 2020), and their own S2I-FGSM). While it is unfair to compare a single DiffAttack against an
ensemble of these attack strategies, we still perform such comparisons in Table 8 to better elucidate
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Table 9: Comparisons on more surrogate models. We report top-1 accuracy(%) of each method.
“S.” denotes surrogate models while “T.” denotes target models. For the white-box attacks (surrogate
model same as target one), we set their background to gray. “AVG(w/o self)” denotes the average
accuracy on all the target models except the one that same as the surrogate one. The best result is
bolded, and the second-best result is underlined.

S.
T. Attacks

CNNs Transformers MLPs
AVG(w/o self) FID

Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Clean 92.7 88.7 86.9 80.5 97.0 93.7 95.9 94.5 94.0 82.5 76.5 89.4 57.8

PI-FGSM 34.2 27.7 23.6 31.5 66.9 0 56.5 25.6 17.0 29.7 26.3 33.9 91.2
S2I-FGSM 45.0 39.6 38.6 38.1 63.1 0.2 45.2 10.7 5.5 18.1 20.2 32.4 70.2

NCF 45.1 40.4 39.6 56.1 73.5 27.6 70.1 64.1 57.8 49.7 44.9 54.1 67.4ViT-B

DiffAttack(Ours) 39.4 40.5 36.1 34.7 41.7 4.7 30.3 22.4 19.9 27.2 30.0 32.2 66.4
PI-FGSM 33.8 19.4 22.8 30.6 64.7 22.5 54.5 0 16.7 32.6 28.9 34.4 92.1
S2I-FGSM 39.8 34.5 29.3 32.6 50.4 6.7 28.0 0.4 3.9 13.6 17.9 25.7 75.8

NCF 52.2 47.3 46.7 59.3 73.4 62.5 67.5 31.7 59.2 50.9 48.0 56.7 65.3DeiT-B

DiffAttack(Ours) 39.9 40.4 36.8 37.0 37.5 22.4 25.9 3.1 18.2 26.2 27.9 31.2 67.6

PI-FGSM 47.5 37.0 39.2 40.8 72.1 49.9 70.9 56.6 45.1 0 13.9 47.3 85.5
S2I-FGSM 60.6 52.4 47.8 52.1 72.6 48.4 58.4 43.9 40.7 1.6 8.9 48.6 66.4

NCF 55.0 47.5 49.6 61.1 81.8 71.1 77.5 75.6 71.1 10.0 35.0 62.5 65.2Mix-B

DiffAttack(Ours) 52.2 52.1 49.6 45.0 57.9 48.8 49.9 44.6 45.4 16.6 22.1 46.8 64.2

Table 10: Imperceptibility assessment under LPIPS metric. We report the LPIPS value of different
attack methods under different surrogate models. “S.” denotes surrogate models while “A.” denotes
attack methods. The best result is bolded.

S.
A. PI-FGSM S2I-FGSM NCF DiffAttack(Ours)

Res-50 0.356 0.157 0.383 0.137
VGG-19 0.367 0.155 0.392 0.150
Mob-v2 0.367 0.157 0.387 0.138
Inc-v3 0.368 0.137 0.343 0.126

ConvNeXt 0.359 0.159 0.360 0.154
Swin-B 0.358 0.114 0.346 0.138
ViT-B 0.360 0.177 0.364 0.152

DeiT-B 0.362 0.166 0.336 0.146
Mix-B 0.344 0.154 0.326 0.143

the capabilities of DiffAttack. The adversarial examples are crafted on VGG-19, with the powerful
S2I-SI-TI-DIM attack serving as the reference.

The results indicate that S2I-based methods exhibit improved transferability when combined with
other attacks, albeit at the cost of increased distortion. Our original DiffAttack cannot surpass
the performance achieved by the combination of multiple attack approaches. Nevertheless, when
structural controls are eliminated (as discussed in Section 3.4) to align the FID values for fair
comparisons, DiffAttack once again showcases superior performance.

H PERFORMANCE ON ADDITIONAL SURROGATE MODELS AND LPIPS
METRIC

Besides the results in Table 1 in the main paper, we supplement more experiments when the surrogate
models are Transformers or MLPs in Table 9. Here, we further consider ViT-B, DeiT-B, and Mix-B
as the surrogate model. For brevity, we only compare DiffAttack with those more recent attack
methods (Gao et al., 2020; Long et al., 2022; Yuan et al., 2022). From the results, it is further verified
that DiffAttack generalizes well on various model structures, achieving good performance on both
imperceptibility and transferability.

Furthermore, to bolster the credibility of our imperceptibility assessment in the main paper, we
augment our evaluation beyond FID by incorporating the full-reference image quality assessment
metric, LPIPS (Zhang et al., 2018). The outcomes in Table 10 reveal that DiffAttack also excels in
terms of LPIPS, further solidifying its efficacy for achieving superior imperceptibility.

21



Under review as a conference paper at ICLR 2024

Table 11: Comparisons on CUB-200-2011 dataset and Stanford Cars dataset. We report top-1
accuracy(%) of each method. “S.” denotes surrogate models while “T.” denotes target models. For the
white-box attacks (surrogate model same as target one), we set their background to gray. “AVG(w/o
self)” denotes the average accuracy on all the target models except the one that same as the surrogate
one. The best result is bolded, and the second-best result is underlined.

CUB-200-2011 Stanford Cars

Attacks Res-50 SENet154 SE-Res101 AVG(w/o self) FID LPIPS Res-50 SENet154 SE-Res101 AVG(w/o self) FID LPIPS

S.
T.

clean 75.7 80.5 76.6 77.6 11.1 - 73.9 76.4 74.4 74.9 11.6 -

MI-FGSM 3.1 40.7 32.7 36.7 31.7 0.340 0.1 33.5 25.9 29.7 41.3 0.251
DI-FGSM 0.3 42.7 33.8 38.3 20.9 0.155 0.1 33.3 29.3 31.3 28.7 0.097
TI-FGSM 2.8 50.6 43.9 47.3 21.1 0.136 0.1 46.9 41.0 44.0 23.2 0.097
PI-FGSM 9.1 35.2 26.2 30.7 34.8 0.355 1.5 31.5 23.2 27.4 53.2 0.310
S2I-FGSM 0.7 35.1 28.1 31.6 24.3 0.196 0.1 25.7 24.4 25.1 34.4 0.134

NCF 0.2 22.7 13.9 18.3 35.2 0.335 6.6 46.0 38.4 42.2 24.1 0.302

Res-50

DiffAttack(Ours) 3.3 19.3 16.7 18.0 20.6 0.122 0.1 15.1 13.1 14.1 17.8 0.112

MI-FGSM 41.7 0.2 42.3 42.0 37.9 0.402 32.4 0.0 33.8 33.1 41.3 0.295
DI-FGSM 54.5 0.2 48.9 51.7 23.5 0.158 45.6 0.1 45.5 45.6 29.1 0.096
TI-FGSM 60.1 0.3 56.2 58.1 20.8 0.137 54.1 0.1 53.2 53.7 23.0 0.095
PI-FGSM 30.5 0.0 33.1 31.8 46.5 0.403 21.9 0.0 26.3 24.1 59.6 0.333
S2I-FGSM 43.2 0.0 34.0 38.6 25.4 0.164 27.7 0.0 25.7 26.7 33.6 0.108

NCF 13.5 6.8 17.6 15.5 35.0 0.314 38.5 20.7 41.6 40.1 23.3 0.279

SENet154

DiffAttack(Ours) 53.8 2.5 51.3 52.6 17.9 0.104 37.3 0.9 32.5 34.9 16.2 0.095
MI-FGSM 32.8 36.0 0.1 34.4 41.0 0.395 25.5 27.6 0.0 26.6 44.6 0.285
DI-FGSM 39.4 38.0 0.2 38.7 23.5 0.165 28.1 29.3 0.2 28.7 28.5 0.106
TI-FGSM 53.4 55.3 0.2 54.4 21.8 0.136 48.7 49.8 0.0 49.3 22.5 0.096
PI-FGSM 21.7 29.8 0.0 25.8 45.5 0.403 18.5 29.3 0.0 23.9 59.9 0.331
S2I-FGSM 30.4 31.5 0.0 31.0 26.7 0.195 20.5 17.1 0.1 18.8 36.9 0.142

NCF 9.4 20.2 3.1 14.8 33.3 0.316 33.4 46.8 12.1 40.1 24.0 0.298

SE-Res101

DiffAttack(Ours) 27.0 23.5 3.9 25.3 22.4 0.121 17.5 16.0 0.3 16.8 18.0 0.114

I PERFORMANCE ON MORE DATASETS

In Section 4 of the main paper, our comparative experiments are exclusively conducted on the
ImageNet-Compatible Dataset. To bolster the credibility of DiffAttack’s performance and its applica-
bility, we have expanded our evaluation to encompass two additional datasets: CUB-200-2011 (Wah
et al., 2011) and Stanford Cars (Krause et al., 2013). Aligning with the ImageNet-Compatible dataset,
we randomly selected 1,000 samples from both the CUB-200-2011 and Stanford Cars datasets,
respectively, for crafting adversarial examples. For normally trained models, we employed three
models: ResNet50 (R-50) (He et al., 2016), SENet154 (S-154), and SE-ResNet101 (SR-101) (Hu
et al., 2018), all initialized with pretrained weights provided by Zhang et al. (2022a).

The results in Table 11 highlight DiffAttack’s strong generalization across diverse datasets. Note that
PerC-AL is not included in the comparison due to its notably low transferability, as indicated in Table
1 in the main paper.

J COMPARISONS WITH GAN-BASED ATTACK METHODS

Different from iterative optimization attacks, GAN-based attack methods craft adversarial examples
by directly training a generator and thus achieve better efficiency. Considering both the GAN-based
attacks and our DiffAttack leverage generative models (although DiffAttack is essentially an iterative
optimization approach), we supplement comparative experiments between them to increase the
comprehensiveness of our experiments and further highlight DiffAttack’s benefits.

Here, we consider four GAN-based attacks: GAP (Poursaeed et al., 2018), CDA (Naseer et al., 2019),
BIA (Zhang et al., 2022a), and TSAA (He et al., 2022). All these compared methods have their code
open-source and our experiments are based on that. For BIA (Zhang et al., 2022a), we directly use
their provided pretrained generator (for VGG-19) to generate adversarial examples. The variants of it
(BIA+DA and BIA+RN) have also been considered for comparisons. For CDA (Naseer et al., 2019),
we utilize their pretrained generator (for VGG-19) to generate adversarial examples. We also take
recent TSAA (He et al., 2022) into account. Considering the original TSAA is a sparse attack, we
directly remove its last layer’s mask mechanism to allow it to attack the whole image. As TSAA does
not provide pretrained weight for VGG-19 but provides for Res-50, we compare DiffAttack with it
on Res-50. For GAP (Poursaeed et al., 2018), since it does not provide any pretrained weight, we
strictly follow their provided training code and train the generator for VGG-19 and Res-50 ourselves.
As GAP has two kinds of generator (universal and image dependent), we trained a total of four
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Table 12: Comparisons with GAN-based attack methods. We report top-1 accuracy(%) of each
method. We craft adversarial examples either on VGG-19 or Res-50. For the white-box attacks
(surrogate model same as target one), we set their background to gray. “AVG(w/o self)” denotes the
average accuracy on all the target models except the one that same as the surrogate one. The best
result is bolded, and the second-best result is underlined.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG
(w/o self) FID LPIPS

clean 92.7 88.7 86.9 80.5 97 93.7 95.9 94.5 94 82.5 76.5 89.4 57.8 -

GAP (universal) 56.9 12.4 20.6 56.9 92.2 92.1 91.3 91.1 88.0 65.1 57.5 71.2 100.6 0.178
GAP(image dependent) 70.1 9.5 35.6 60.2 79.4 89.6 89.1 88.6 83.6 66.1 55.2 71.8 108.0 0.164

CDA 23.0 0.2 16.5 48.6 45.2 89.1 80.7 86.0 82.4 62.7 54.1 58.8 131.8 0.174
BIA 25.2 1.8 10.5 38.6 58.8 83.2 75.6 82.9 80.3 54.3 47.6 55.7 200.3 0.252

BIA+DA 16.3 1.6 7.6 33.1 44.0 85.1 74.8 84.5 80.4 55.7 49.8 53.1 246.0 0.247
BIA+RN 14.7 1.4 5.8 28.6 52.2 79.7 70.0 80.7 77.4 48.9 44.1 50.2 246.7 0.275

DiffAttack(Ours) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9 0.150

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG
(w/o self) FID LPIPS

clean 92.7 88.7 86.9 80.5 97 93.7 95.9 94.5 94 82.5 76.5 89.4 57.8 -

GAP (universal) 35.6 34.0 34.3 55.3 88.8 87.0 91.9 91.4 85.8 64.7 57.4 69.1 89.7 0.248
GAP(image dependent) 42.9 21.7 25.4 55.6 87.1 88.5 89.5 88.1 84.4 62.3 55.8 65.8 102.6 0.147

TSAA (dense) 15.4 16.4 22.2 52.0 74.3 87.4 89.2 90.4 86.3 66.6 61.8 64.7 105.6 0.261

DiffAttack(Ours) 3.7 24.4 22.9 31.0 41.0 48.8 43.8 49.5 45.0 42.9 42.2 39.2 62.6 0.137

generators. All of these methods’ maximum perturbation is set to 10, which is aligned with their
source paper (we also tried 16, but it will massively distort the image and lead to a quite high FID).
The input resolution of these methods is 224×224×3, which also strictly follows their papers and is
the same as our settings.

From the results in Table 12, it is amazing to see that our DiffAttack can surpass other GAN-
based attacks by a large margin on transferability (AVG w/o self), while also keeping quite better
imperceptibility (FID and LPIPS). These supplementary experiments can not only enhance the
comprehensiveness of our findings but also reinforce the effectiveness of DiffAttack.

K DISCUSSIONS ABOUT DIFFATTACK’S RELATIONSHIP WITH ENSEMBLE
ATTACKS

DiffAttack as an “Implicit” Ensemble Attack. DiffAttack can be considered as an “Implicit”
ensemble attack. The loss function Ltransfer in Eq. 4 functions to divert the intermediate 2D cross-
attention maps. This resembles the role of a zero-shot CLIP classifier (Radford et al., 2021), which
aims to align the image’s features with its corresponding text embedding. From this perspective,
DiffAttack can be viewed as an ensemble adversarial attack, targeting both a zero-shot CLIP classifier
and a surrogate classifier.

However, it’s essential to highlight that, unlike explicit ensemble attacks involving multiple surrogate
models behind the final output adversarial examples (Tramèr et al., 2018), DiffAttack’s ensemble
characteristic is “implicit”. Ltransfer is designed to perturb the intermediate 2D cross-attention maps
of the diffusion model rather than attacking the final similarity results of an explicit CLIP classifier.
This design avoids the need for an additional image classifier to generate adversarial examples,
resulting in no additional memory overhead.

In summary, DiffAttack exhibits an “implicit ensemble characteristic” but differs significantly from
typical explicit ensemble attacks.

Comparisons with Explicit Ensemble Attacks Using a Zero-shot CLIP Classifier. To ensure
the comprehensiveness of our experiments, we have included comparisons with ensemble attacks
employing an additional explicit zero-shot CLIP classifier. Also, we adapted the original DiffAttack
into an explicit ensemble attack by substituting Ltransfer with an explicit CLIP surrogate model.

We display the compared results in Table 13. The base surrogate model is VGG-19 and we consider
comparisons with three recent attack methods (Gao et al., 2020; Long et al., 2022; Yuan et al., 2022).
For the zero-shot CLIP classifier, we utilized the pretrained ViT-B/32 weights provided by OpenAI.
Based on the results obtained, our original DiffAttack consistently outperforms other methods in
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Table 13: Comparisons with explicit ensemble attacks using a zero-shot CLIP classifier. We
report top-1 accuracy(%) of each method. We craft adversarial examples on VGG-19 and CLIP.
For the white-box attacks (surrogate model same as target one), we set their background to gray.
“AVG(w/o self)” denotes the average accuracy on all the target models except the one that same as the
surrogate one. The best result is bolded, and the second-best result is underlined.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L AVG(w/o self) FID

PI-FGSM (VGG-19) 22.7 0 16.4 29.8 68.3 68.0 75.7 79.5 67.6 50.9 41.8 52.1 96.4
PI-FGSM (VGG-19+CLIP) 40.2 21.6 26.2 33.5 79.5 57.1 78.6 71.1 59.7 49.0 39.2 53.4 89.5

S2I-FGSM (VGG-19) 17.9 0.0 11.3 31.8 49.5 74.1 57.9 76.0 68.0 52.6 50.8 49.0 82.9
S2I-FGSM (VGG-19+CLIP) 16.1 0.4 9.6 26.4 46.8 58.8 50.3 63.2 56.3 44.5 42.3 41.4 84.6

NCF (VGG-19) 38.3 6.8 31.5 52.4 80.5 67.5 77.6 77.4 70.6 53.5 47.2 59.7 70.4
NCF (VGG-19+CLIP) 39.9 9.9 32.0 53.7 79.3 66.2 78.5 77.5 68.4 54.1 48.4 59.8 70.4

DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9
DiffAttack (VGG-19+CLIP, w/o Ltransfer) 27.2 10.0 24.1 29.4 44.1 46.1 41.5 45.1 39.7 38.7 36.9 37.3 64.6

Table 14: Leveraging DiffAttack for Ensemble Attacks. We report top-1 accuracy(%) of each
method. We craft adversarial examples on VGG-19 and CLIP. “AVG(w/o self)” denotes the average
accuracy on all the target models except the ones that have a gray background. The best result is
bolded.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L AVG(w/o self) FID

S2I-FGSM(VGG-19+Res-50) 1.5 0.0 4.5 14.8 28.8 57.7 40.4 61.0 54.0 41.2 39.2 38.0 84.7
DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 40.1 63.9

DiffAttack(VGG-19+Res-50,w/o Ltransfer) 3.8 3.8 11.6 20.0 24.0 36.3 26.3 34.0 30.6 30.9 30.5 27.1 62.1

S2I-FGSM(VGG-19+Swin-B) 14.5 0.3 9.5 25.8 27.2 51.3 15.4 52.5 48.1 41.8 39.0 34.4 83.1
DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 37.8 63.9

DiffAttack(VGG-19+Swin-B,w/o Ltransfer) 19.3 6.9 19.4 26.0 27.6 33.5 15.6 30.4 30.1 30.7 31.4 27.6 64.2

S2I-FGSM(VGG-19+Mix-L) 17.5 0.3 12.0 27.9 43.8 58.0 46.2 56.1 51.4 24.6 10.8 37.5 83.9
DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9

DiffAttack(VGG-19+Mix-L,w/o Ltransfer) 22.7 4.2 20.5 31.2 40.7 43.9 36.8 43.1 40.4 27.5 25.8 34.1 64.3

S2I-FGSM(Res-50+ViT-B) 1.1 7.7 5.9 17.5 39.3 10.9 40.5 26.7 20.3 27.2 29.6 23.9 79.6
DiffAttack(Res-50) 3.7 24.4 22.9 31.0 41.0 48.8 43.8 49.5 45.0 42.9 42.2 38.1 62.6

DiffAttack(Res-50+ViT-B,w/o Ltransfer 6.3 18.8 18.7 24.6 27.7 12.9 26.4 24.2 21.1 26.5 27.8 24.0 63.6

terms of both transferability and imperceptibility, even when those methods attack an additional CLIP
classifier. As for our adapted ensemble DiffAttack, which replaces Ltransfer with an explicit CLIP
classifier, we observed an improvement in transferability but a reduction in imperceptibility. It’s worth
noting again that, unlike the explicit CLIP classifier, Ltransfer utilizes intermediate cross-attention
maps during the denoising process, incurring no additional memory costs.

Leveraging DiffAttack for Ensemble Attacks. Here, we unveil another remarkable potential of
diffusion models in crafting adversarial examples: Ensemble attacks founded on diffusion models
can significantly outperform conventional ensemble attacks (Tramèr et al., 2018).

To demonstrate this, we conducted a comparison between DiffAttack and Lp-norm-based attacks
involving multiple surrogate models, using S2I-FGSM (Long et al., 2022) as an example. Adversarial
examples were generated to target various model structures.

The results in Table 14 indicate that our original DiffAttack, which targets a single model structure,
falls short when compared to ensemble attacks that target two model structures explicitly. The
reason is evident: when more model structures are explicitly attacked, the generated adversarial
examples exhibit superior transferability across these surrogate structures. It’s important to note
that the diffusion model (Rombach et al., 2022) we employ, designed initially for image synthesis,
fundamentally serves as an “implicit” recognition model. Therefore, our deception loss Ltransfer

cannot be designed in the same manner as commonly used attack losses (See Lattack in Eq. 3) that
directly target the classifier’s decision (the ultimate goal of the attack). This limitation explains the
original DiffAttack’s inability to outperform ensemble attacks in terms of transferability, although it
still maintains superior imperceptibility.

However, when we employed an explicit ensemble attack based on DiffAttack, while also removing
Ltransfer for fairness, DiffAttack achieved better (or competitive) results in both transferability and
imperceptibility, as evident in Table 14. These findings underscore the potential of diffusion models
as a promising platform also for constructing ensemble attacks.

24



Under review as a conference paper at ICLR 2024

Table 15: Performance comparisons on targeted transferable attacks. We report Attack Success
Rate(%) of each method here. We craft adversarial examples on VGG-19. “Success Rate AVG(w/o
self)” denotes the average attack success rate on all the target models except the ones that have a gray
background. The best result is bolded.

CNNs Transformers MLPs
Targeted Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Success Rate
AVG(w/o self) FID

MI-FGSM 0.6 99.5 0.6 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2 93.5
DI-FGSM 0.4 94.7 0.5 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 75.6
TI-FGSM 0.3 97.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 70.0
PI-FGSM 0.1 99.7 0.2 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.2 0.1 92.3
S2I-FGSM 2.0 91.4 1.9 0.5 0.8 0.0 0.3 0.1 0.0 0.0 0.0 0.6 82.9

DiffAttack(1e−2) 0.3 61.4 0.3 0.0 0.2 0.1 0.2 0.0 0.2 0.0 0.0 0.1 74.7
DiffAttack(1e−1) 6.1 99.8 5.6 3.5 6.3 4.1 3.8 2.6 3.2 0.9 1.1 3.7 147.2

Table 16: Limitation in terms of time and GPU memory consumption. We report the time for
crafting adversarial examples of different attack methods, together with the maximum memory cost.
For GAN-based methods (BIA), the adversarial examples are crafted by inferencing the trained
generator. While for other methods, the adversarial examples are iteratively optimized with Res-50
as the surrogate model.

Attack MI-FGSM DI-FGSM TI-FGSM PI-FGSM S2I-FGSM PerC-AL NCF BIA DiffAttack

Mem(MB) 302 336 301 412 305 197 374 242 14083

Time(s) 0.2 0.2 0.2 0.6 5.5 44.8 18.6 0.01 29.9

L DISCUSSIONS ON DIFFATTACK’S PERFORMANCE IN TRANSFERABLE
TARGETED ATTACK

In this section, we assess the performance of DiffAttack when employed as a targeted attack method.
Originally designed for the untargeted attack, we adapt DiffAttack for the targeted task by removing
Ltransfer in Section 3.3 directly. To transform all compared methods in the main paper into targeted
attacks, we modify their loss functions by reversing the sign of the classification loss to maximize the
logit for the target category. Notably, we exclude PerC-AL as it doesn’t support adaptation to targeted
attacks, and NCF due to its extremely low success rate in targeted attacks. For target categories, we
employ the labels provided in the ImageNet-Compatible Dataset. Adversarial examples are crafted
using VGG-19, and the results are presented in Table 15. Differing from the results presented in other
tables, here we present the attack success rate of the target attacks for clarity. The attack success rate
is essentially the complement of the top-1 accuracy, calculated as 100% minus the top-1 accuracy.

From the results, we observe that all models struggle to achieve transferability to black models,
a notable and promising avenue for future research. Additionally, when compared to pixel-based
attacks, DiffAttack exhibits a lower success rate on the targeted model. We attribute this difference
to the tendency of pixel-based attacks to overfit by introducing high-frequency noise. In contrast,
unrestricted attacks like DiffAttack often emphasize large-scale patterns with high-level semantics,
making it challenging to achieve a high success rate in white-box attacks (this also occurs among those
GAN-based attacks). It’s worth noting that by increasing the learning rate from 1e−2 (our default
setting) to 1e−1, DiffAttack can improve its white-box attack success rate and also its transferability.
However, this enhancement comes at the cost of reduced fidelity which may be less meaningful.

M DISCUSSIONS ABOUT LIMITATION OF TIME AND MEMORY COST

Due to the iterative characteristic and the substantial number of parameters in diffusion models,
DiffAttack has a limitation in terms of time and memory consumption compared to other attack
methods. In Table 16, we display a comprehensive comparison of computational cost and runtime
among DiffAttack, pixel-based attacks, and GAN-based attacks.

The comparison is to process a 224×224 image on a single RTX 3090 GPU. The results reveal that
DiffAttack consumes greater memory and generally takes longer to generate adversarial examples.
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Table 17: Demonstration of the effect of the diffusion model itself in enhancing transferability.
We report top-1 accuracy(%). We craft adversarial examples on Inc-v3. “AVG(w/o self)” denotes the
average accuracy on all the target models except the ones that have a gray background. The best result
is bolded. The first table displays the performance on normally trained models, while the second one
on defensive models.

CNNs Transformers MLPs
Ablation Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L AVG(w/o self) FID

w/o Diffusion Model 62.5 60.3 56.9 0 88.3 85.9 87.6 88.2 84.8 68.0 62.8 74.5 69.2
w/o Ltransfer 60.6 59.2 57.4 10.9 77.9 75.1 74.4 75.2 71.9 58.6 54.7 66.5 61.6

Ablation Defensive Models AVG
Adv-Inc-v3 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

w/o Diffusion Model 66.4 62.7 63.7 79.1 68.0
w/o Ltransfer 45.0 43.0 42.3 57.1 46.9

This could hinder its deployment in resource-constrained settings, such as autonomous driving and
edge models, or for targeting real-time systems.

Notably, this is a common drawback shared by all approaches relying on diffusion models. However,
we hope to note that due to the popularity of diffusion models these years, famous communities such
as PyTorch and Huggingface keep advancing the efficiency and memory optimization of diffusion
models (like Pytorch 2.0 and Diffusers repository). Many recent works (Ulhaq et al., 2022; Dao et al.,
2022) have also been dedicated to accelerating diffusion models and addressing memory costs. We
firmly believe that these efforts will help bridge the computational gap between DiffAttack and other
attack methods in the future, further fostering research on diffusion-based attacks.

N FURTHER ABLATION STUDY: ASSESSING THE IMPACT OF THE DIFFUSION
MODEL ITSELF ON TRANSFERABILITY AND IMPERCEPTIBILITY

As highlighted in Section 1, the transferability of DiffAttack is not solely attributed to Ltransfer, but
also originates from our latent space perturbation and the denoising process intrinsic to the diffusion
model itself. In other words, the diffusion model’s structure and mechanisms inherently contribute to
improving transferability.

To empirically validate this point, we conducted an ablation study by eliminating the diffusion model
and directly perturbing the image pixels. This resulted in a pixel-based attack similar to I-FGSM
(Kurakin et al., 2017). We aligned the number of iterations with DiffAttack and, to mitigate the
generation of unnatural high-frequency noise inherent in pixel-based attacks (as illustrated in Figure
1 in the main paper), we adopted settings from Lp-norm-based transferable attacks, limiting the
maximum perturbation to 16. To effectively illustrate the influence of the diffusion model itself
on transferability, particularly the latent space perturbation and denoising process, we compared
this modified degradation model with an adapted DiffAttack (without Ltransfer). We evaluated
performance on both normally trained models and four defensive models (Adv-Inc-v3, Inc-v3ens3,
Inc-v3ens4, and IncRes-v2ens), yielding the results in Table 17.

The presented results demonstrate that the diffusion model itself can enhance the transferability of
adversarial examples, not only on traditionally trained models but also on defensive models. This
strongly supports our assertion that the latent space perturbation and defensive denoising process
in DiffAttack contribute to improved transferability. Additionally, with the diffusion model, the
adversarial examples exhibit lower perceptibility (as indicated by FID scores), further substantiating
the motivations outlined in Section 1 and reinforcing the contributions of our work.

O MORE QUANTITIVE STUDIES AND VISUALIZATIONS

As a supplement to the experiments in Section 4, we here reveal more experimental results about the
parameter settings and also display more visualized comparisons.
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Figure 7: The effect of different parameter settings. We conduct a quantitative study on the
parameter settings of the guidance scale, iterations, DDIM steps, and weight factors of each loss.
“AVG(w/o self)” denotes the average accuracy on all the target models except the one that same as the
surrogate one.

Settings of Guidance Scale. From Figure 7, it can be observed that with the guidance scale
increased, the transferability improves while the imperceptibility deteriorates. We infer this is
because larger guidance scales will tend to change the latent more and thus potentially generate more
perturbations. Since there is a large gap in the attack success between the guidance scale set to 1.0
and 2.5, but a slight change of the FID value, we set the guidance scale to 2.5 finally.

Settings of Iterations. We can notice from Figure 7 that more iterations will sacrifice image quality
for the attack success. As more iterations will consume longer optimization time, we here set the
number of iterations to 30, which strikes a balance between time-consuming, image quality, and
attack robustness.

Settings of DDIM Steps. In Figure 7, we keep the DDIM Inversion steps the same (5 inversion
steps), to see the effect of different DDIM full sample steps. We do not show here the results for
the step number set to 10 because the image quality is rather poor and the structure is completely
changed. From the results, we can see that the step number does impact a lot both the transferability
and the imperceptibility. Here we set the number of DDIM sample steps to 20, which can produce
perceptually invisible adversarial samples with stronger attack robustness.

Settings of Weight Factor for Loss. We also conduct quantitative studies on the weight factor
settings in Eq. 6 in the main paper. From Figure 7, it can be noticed that our designs of Ltransfer

and Lstructure do make sense for improving the attack’s transferability and preserving the content
structure. For Lattack, we can see from the results that there is a negligible performance improvement
when α is increased to a certain extent, thus we set α to 10. For Ltransfer and Lstructure, to balance
both the transferability and the imperceptibility, we set them to 10000 and 100 respectively.

More Visualizations. We display more visual comparisons in Figure 8 and Figure 9, from which it
can be observed that the adversarial examples crafted by our attack are human-imperceptible and
hard to be perceived.
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Figure 8: Supplement visualization of adversarial examples crafted by different attacks. Please
zoom in for a better view.
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Figure 9: Supplement visualization of adversarial examples crafted by different attacks. Please
zoom in for a better view.
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