
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP KOOPMAN-LAYERED MODEL WITH UNIVERSAL
PROPERTY BASED ON TOEPLITZ MATRICES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose deep Koopman-layered models with learnable parameters in the form
of Toeplitz matrices for analyzing the dynamics of time-series data. The proposed
model has both theoretical solidness and flexibility. By virtue of the universal
property of Toeplitz matrices and the reproducing property underlined in the model,
we can show its universality and the generalization property. In addition, the
flexibility of the proposed model enables the model to fit time-series data coming
from nonautonomous dynamical systems. When training the model, we apply
Krylov subspace methods for efficient computations. In addition, the proposed
model can be regarded as a neural ODE-based model. In this sense, the proposed
model establishes a new connection among Koopman operators, neural ODEs, and
numerical linear algebraic methods.

1 INTRODUCTION

Koopman operator has been one of the important tools in machine learning (Kawahara, 2016;
Ishikawa et al., 2018; Lusch et al., 2017; Brunton & Kutz, 2019; Hashimoto et al., 2020). Koopman
operators are linear operators that describe the composition of functions and are applied to analyzing
time-series data generated by nonlinear dynamical systems (Koopman, 1931; Budišić et al., 2012;
Klus et al., 2020; Giannakis & Das, 2020; Mezić, 2022). For systems with discrete Koopman spectra,
by computing the eigenvalues of Koopman operators, we can understand the long-term behavior
of the undelined dynamical systems. An important feature of Applying Koopman operators is that
we can estimate them with given time-series data through fundamental linear algebraic tools such
as projection. A typical approach to estimate Koopman operators is extended dynamical mode
decomposition (EDMD) (Williams et al., 2015). For EDMD, we need to choose the dictionary
functions to determine the representation space of the Koopman operator, and what choice of them
gives us a better estimation is far from trivial. In addition, since we construct the estimation in an
analytical way, the model is not flexible enough to incorporate additional information about dynamical
systems. With EDMD as a starting point, many DMD-based methods are proposed (Kawahara, 2016;
Colbrook & Townsend, 2024; Schmid, 2022). For autonomous systems, we need to estimate a
single Koopman operator. In this case, Ishikawa et al. (2024) proposed to choose derivatives of
kernel functions as dictionary functions based on the theory of Jet spaces. Several works deal with
nonautonomous systems. Maćešić et al. (2018) applied EDMD to estimate a time-dependent Koopman
operator for each time window. Peitz & Klus (2019) applied EDMD for switching dynamical systems
for solving optimal control problems. However, as far as we know, no existing works show proper
choices of dictionary functions for nonautonomous systems based on theoretical analysis. In addition,
in the above approaches for nonautonomous systems, since each Koopman operator for a time window
is estimated individually, we cannot take the information of other Koopman operators into account.

To find a proper representation space and gain the flexibility of the model, neural network-based
Koopman methods have been proposed (Lusch et al., 2017; Azencot et al., 2020; Shi & Meng,
2022). These methods set the encoder from the data space to the representation space where the
Koopman operator is defined, and the decoder from the representation space to the data space,
as deep neural networks. Then, we train them. Neural network-based Koopman methods for
nonautonomous systems have also been proposed. Liu et al. (2023) proposed to decompose the
Koopman operator into a time-invariant part and a time-variant part. The time-variant part of the
Koopman operator is constructed individually for each time window using EDMD. Xiong et al.
(2024) assumed the ergodicity of the dynamical system and considered time-averaged Koopman

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

operators for nonautonomous dynamical systems. However, their theoretical properties have not been
fully understood, and since the representation space changes as the learning process proceeds, their
theoretical analysis is challenging.

In this work, we propose a framework that estimates multiple Koopman operators over time with the
Fourier basis representation space and learnable Toeplitz matrices. Using our framework, we can
estimate multiple Koopman operators simultaneously and can capture the transition of properties of
data along time via multiple Koopman operators. We call each Koopman operator the Koopman-layer,
and the whole model the deep Koopman-layered model. The proposed model has both theoretical
solidness and flexibility. We show that the Fourier basis is a proper basis for constructing the
representation space even for nonautonomous dynamical systems in the sense that we can show its
theoretical properties such as universality and generalization bound. In addition, the proposed model
has learnable parameters, which makes the model more flexible to fit nonautonomous dynamical
systems than the analytical methods such as EDMD. The proposed model resolves the issue of
theoretical analysis for the neutral network-based methods and that of the flexibility for the analytical
methods simultaneously.

We show that each Koopman operator is represented by the exponential of a matrix constructed with
Toeplitz matrices and diagonal matrices. This allows us to apply Krylov subspace methods (Gallopou-
los & Saad, 1992; Güttel, 2013; Hashimoto & Nodera, 2016) to compute the estimation of Koopman
operators with low computational costs. By virtue of the universal property of Toeplitz matrices (Ye
& Lim, 2016), we can show the universality of the proposed model with a linear algebraic approach.
We also show a generalization bound of the proposed model using a reproducing kernel Hilbert
space (RKHS) associated with the Fourier functions. We can analyze both the universality and
generalization error with the same framework.

The proposed model can also be regarded as a neural ODE-based model (Chen et al., 2018; Teshima
et al., 2020a; Li et al., 2023). While in the existing method, we train the models with numerical
analysis approaches, in the proposed method, we train the models with a numerical linear algebraic
approach. The universality and generalization results of the proposed model can also be seen as those
for the neural ODE-based models. Our method sheds light on a new linear algebraic approach to the
design of neural ODEs.

Our contributions are summarized as follows:
• We propose a model for analyzing nonautonomous dynamical systems that has both theoretical

solidness and flexibility. We show that the Fourier basis provides us with a proper representation
space, in the sense that we can show the universality and the generalization bound regarding the
model. As for the flexibility, we can learn multiple Koopman operators simultaneously, which
enables us to extract the transition of properties of dynamical systems along time.

• We apply Krylov subspace methods to compute the estimation of Koopman operators. This
establishes a new connection between Koopman operator theoretic approaches and Krylov subspace
methods, which opens up future directions for extracting further information about dynamical
systems using numerical linear algebraic approaches.

• We provide a new implementation method for neural ODEs purely with numerical linear algebraic
approaches, not with numerical analysis approaches.

2 PRELIMINARY

2.1 NOTATIONS

In this paper, we use a generalized concept of matrices. For a finite index set N ⊂ Zd and aj,l ∈ C
(j, l ∈ N), we call A = [aj,l]j,l∈N an N by N matrix and denote by CN×N the space of all N by
N matrices. Indeed, by constructing a bijection I : N → {1, . . . , |N |} and setting ãI(j),I(l) = aj,l,
we obtain a standard matrix [ãI(j),I(l)]I(j),I(l) corresponding to A. Thus, we can deal with the
generalized matrices in the same manner as the standard matrices.

2.2 L2 SPACE AND REPRODUCING KERNEL HILBERT SPACE ON THE TORUS

We consider two function spaces, the L2 space and RKHS, in this paper. Let T be the torus R/2πZ,
i.e., the set of real numbers modulo 2π. We denote by L2(Td) the space of complex-valued square-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

integrable complex-valued functions on Td, equipped with the Lebesgue measure. As for the RKHS,
let κ : Td × Td → C be a positive definite kernel, which satisfies the following two properties:
1. κ(x, y) = κ(y, x) for x, y ∈ Td,
2.

∑N
n,m=1cncmκ(xn, xm)≥0 for N ∈ N, cn ∈ C, xn ∈ T.

Let ϕ be a feature map defined as ϕ(x) = κ(·, x). The RKHS Hκ is the Hilbert space spanned by
{ϕ(x) | x ∈ Td}. The inner product ⟨·, ·⟩ : Hκ ×Hκ → C in Hκ is defined as〈 N∑

n=1

cnϕ(xn),

M∑
m=1

dmϕ(ym)

〉
=

N∑
n=1

M∑
m=1

cndmκ(xn, ym)

for cn, dn ∈ C and xn, yn ∈ Td. Note that by the definition of κ, ⟨·, ·⟩ is well-defined and satisfies
the axiom of inner products. An important property for RKHSs is the reproducing property. For
x ∈ Td and v ∈ Hκ, we have ⟨ϕ(x), v⟩ = v(x), which is useful for deriving a generalization bound.

2.3 KOOPMAN GENERATOR AND OPERATOR

Consider an ODE dx
dt (t) = f(x(t)) on Td. Let g : R× Td be the flow of the ODE, that is, g satisfies

g(0, x) = x and g(s, g(t, x)) = g(s + t, x) for x ∈ Td. The function g(·, x) is the trajectory of
the dynamical system starting at the initial value x. We assume g is continuous and invertible. We
also assume the Jacobian Jg−1

t of g−1
t is bounded for any t ∈ R, where gt = g(t, ·). We define

the Koopman operator Kt on L2(Td) by the composition with g(t, ·) as Kth(x) = h(g(t, x)) for
h ∈ L2(Td) and x ∈ Td. The Koopman operator is a linear operator that maps a function h to a
function h(g(t, ·)). Note that the Koopman operator Kt is linear even if g(t, ·) is nonlinear. Since Kt

depends on t, we can consider the family of Koopman operators {Kt}t∈R. For h ∈ C1(Td), where
C1(Td) is the space of continuous differentiable functions on Td, define a linear operator L as

Lh = lim
t→∞

Kth− h

t
,

where the limit is by means of L2(T). We call L the Koopman generator. We write Kt = etL. Note
that for the function h defined as h(t, x) = Kth̃(x) for h̃ ∈ C1(Td), we have ∂h

∂t = Lh. If L is
bounded, then it coincides with the standard definition etL =

∑∞
i=1(tL)

i/i!. If L is unbounded, it
can be justified by approximating L by a sequence of bounded operators and considering the strong
limit of the sequence of the exponential of the bounded operators (Yosida, 1980).

3 DEEP KOOPMAN-LAYERED MODEL

We propose deep Koopman-layered models based on the Koopman operator theory, which have both
theoretical solidness and flexibility.

3.1 MULTIPLE DYNAMICAL SYSTEMS AND KOOPMAN GENERATORS

Consider J ODEs dx
dt (t) = fj(x(t)) on Td for j = 1, . . . , J . Let gj : R× Td be the flow of the jth

ODE. For v ∈ L2(Td), consider the following model:

G(x) = v ◦ gJ(tJ , ·) ◦ · · · ◦ g1(t1, ·)(x) = v(gJ(tJ , · · · g1(t1, x))). (1)

Starting from a point x, it is first transformed according to the flow g1, and then g2, and so on. This
model describes a switching dynamical system, and also is regarded as a discrete approximation of a
nonautonomous dynamical system.

Remark 3.1 Since we are focusing on the complex-valued function space L2(Td), G itself is a
complex-valued function. However, we can easily extend the model to the flow gJ(tJ , ·)◦· · ·◦g1(t1, ·),
which is a map from Td to Td. We can obtain a complex-valued function on Td+1 that describes a
map from Td to Td. Indeed, let g̃j(x, y) = [gj(tj , x), y] for x ∈ Td and y ∈ T. Let ṽ be a function
that satisfies ṽ(x, k/d) = xk, where xk is the kth element of x, and let G = ṽ ◦ g̃J ◦ · · · ◦ g̃1. Then,
G(·, k/d) is the kth element of gJ(tJ , ·) ◦ · · · ◦ g1(t1, ·).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Remark 3.2 The analysis in Td is not restrictive. In many practical cases, we are interested in
dynamics in a bounded domain Ω in Rd. For example, dynamics in a space around a certain object
(e.g., heat source). Let Bd be the unit ball in Td. If Ω is diffeomorphic to Bd, then we can construct
a dynamical system f̌j on Td that satisfies f̌j(x) = f̃j(x) for x ∈ Bd, where f̃j is the equivalent
dynamical system on Bd with fj . In addition, although we focus on the fundamental case of Td, the
analysis on Td opens up methods for more general cases. Indeed, Td is the simplest example of locally
compact groups, and the Fourier functions are generalized to the irreducible representations (Fulton
& Harris, 2004). See Appendix B for more details.

3.2 APPROXIMATION OF KOOPMAN GENERATORS USING TOEPLITZ MATRICES

We consider training the model (1) using given time-series data. For this purpose, we apply the
Koopman operator theory. Let Lj be the Koopman generator associated with the flow gj . Since the
Koopman operator Ktj

j of gj is represented as etjLj , the model (1) is represented as

G = et1L1 · · · etJLJ v.

To deal with the Koopman generators defined on the infinite-dimensional space, we approximate
them using a finite number of Fourier functions. For the remaining part of this section, we omit the
subscript j for simplicity. However, in practice, the approximation is computed for the generator Lj

for each layer j = 1, . . . , J . Let qn(x) = ein·x for n ∈ Zd and x ∈ Td, where i is the imaginary unit.
Let Mr ⊂ Zd be a finite index set for r = 1, . . . , R. We set the kth element of the function f in the
ODE as ∑

mR∈MR

akmR,RqmR
· · ·

∑
m1∈M1

akm1,1qm1
(2)

with akmr,r ∈ C, the product of weighted sums of Fourier functions. Then, we approximate the
Koopman generator L by projecting the input vector onto the finite-dimensional space VN :=
Span{qn | n ∈ N}, where N ⊂ Zd is a finite index set, applying L, and projecting it back to VN
as QNQ

∗
NLQNQ

∗
N . Here, QN : CN → VN is the linear operator defined as QNc =

∑
n∈N cnqn

for c = (cn)n∈N ∈ CN and ∗ is the adjoint. Note that QNQ
∗
N is the projection onto VN . Then, the

representation matrix Q∗
NLQN of the approximated Koopman generator QNQ

∗
NLQNQ

∗
N is written

as follows. Throughout the paper, all the proofs are documented in Appendix A.

Proposition 3.3 The (n, l)-entry of the representation matrixQ∗
NLQN of the approximated operator

is
d∑

k=1

∑
nR−l∈MR

∑
nR−1−nR∈MR−1

· · ·
∑

n2−n3∈M2

∑
n−n2∈M1

aknR−l,Ra
k
nR−1−nR,R−1 · · · akn2−n3,2a

k
n−n2,1ilk, (3)

where lk is the kth element of the index l ∈ Zd. Moreover, we set nr = mRj + · · ·+mr + l, thus
n1 = n, mr = nr − nr+1 for r = 1, . . . , R− 1, and mR = nR − l.

Note that since the sum involves the differences of indices, it can be written using Toeplitz matrices,
whose (n, l)-entry depends only on n− l. We approximate the sum appearing in Eq. (3) by restricting
the index nr to N , combining with the information of time t, and setting a matrix L ∈ CN×N as

L = t

d∑
k=1

Ak
1 · · ·Ak

RDk, (4)

where Ak
r is the Toeplitz matrix defined as Ak

r = [akn−l,r]n,l∈N and Dk is the diagonal matrix defined
as (Dk)l,l = ilk for the index l ∈ Zd. We finally regardQNLQ∗

N as an approxitation of the Koopman
genertor L.

Then, we construct the approximation G of G, defined in Eq. (1), as

G = eQNL1Q
∗
N · · · eQNLJQ

∗
N v = QNeL1 · · · eLJQ∗

Nv. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We call the model G deep Koopman-layered model.

To compute the product of the matrix exponential eLj and the vector eLj+1 · · · eLJQ∗
Nv, we can

use Krylov subspace methods. If the number of indices for describing f is smaller than that for
describing the whole model, i.e., |Mr| ≪ |N |, then the Toeplitz matrix Ak

r is sparse. In this case,
the matrix-vector product can be computed with the computational cost of O(

∑R
r=1 |Mr||N |). Thus,

one iteration of the Krylov subspace method costs O(
∑R

r=1 |Mr||N |), which makes the computation
efficient compared to direct methods without taking the structure of the matrix into account, whose
computational cost results in O(|N |3). We also note that even if the Toeplitz matrices are dense, the
computational cost of one iteration of the Krylov subspace method is O(|N | log |N |) if we use the
fast Fourier transform.

Remark 3.4 To restrict f to be a real-valued map and reduce the number of parameters akm,r, we
can set Mr as {−m1,r, . . . ,m1,r} × · · · × {−md,r, . . . ,md,r} for mk,r ∈ N for k = 1, . . . , d.
In addition, we set akm,r = ak−m,r for m ∈ Mr. Then, we have akm,rqm = ak−m,rq−m, and f is
real-valued.

Remark 3.5 An advantage of applying Koopman operators is that their spectra describe the prop-
erties of dynamical systems. For example, if the dynamical system is measure preserving, then the
corresponding Koopman operator is unitary. Since each Koopman layer is an estimation of the
Koopman operator, we can analyze time-series data coming from nonsutonomous dynamical systems
by computing the eigenvalues of the Koopman layers. We will observe the eigenvalues of Koopman
layers numerically in Subsection 6.3.

4 UNIVERSALITY

In this section, we show the universal property of the proposed deep Koopman-layered model. We
can interpret the model G as the approximation of the target function by transforming the function v
into the target function using the linear operator QNeL1 · · · eLJQ∗

N . If we can represent any linear
operator by eL1 · · · eLJ , then we can transform v into any target function in VN , which means we
can approximate any function as N goes to the whole set Zd. Thus, this property corresponds to
the universality of the model. In Section 3, by constructing the model with the matrix eL1 · · · eLJ

based on the Koopman operators with the Fourier functions, we restrict the number of parameters of
the linear operator that transforms v into the target function. The universality of the model means
that this restriction is reasonable in the sense of representing the target functions using the deep
Koopman-layered model.

Let T (N,C) = {
∑d

k=1A
k
1 · · ·Ak

Rk
Dk, | Rk ∈ N, Ak

1 · · ·Ak
Rk

∈ CN×N : Toeplitz} be the set of
matrices in the form of L in Eq. (4). Let L2

0(Td) = Span{qn | n ̸= 0} be the space of L2 functions
whose average is 0. We show the following fundamental result of the universality of the model:

Theorem 4.1 Assume v ∈ L2
0(Td) and v ̸= 0. For any f ∈ L2

0(Td) with f ̸= 0 and for any ϵ > 0,
there exist a finite set N ⊂ Z \ {0}, a positive integer J , and matrices L1, . . . ,LJ ∈ T (N,C) such
that ∥f −G∥ ≤ ϵ and G = QNeL1 · · · eLJQ∗

Nv.

Theorem 4.1 is for a single function f , but applying Theorem 4.1 for each component of G, we obtain
the following result for the flow gJ̃(tJ̃ , ·) ◦ · · · ◦ g1(t1, ·) with J̃ ∈ N, which is considered in Eq. (1).

Corollary 4.2 Assume v ∈ L2
0(Td) and v ̸= 0. For any sequence g1(t1, ·), . . . , gJ̃(tJ̃ , ·) of flows

that satisfies v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) ∈ L2
0(Td) and v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) ̸= 0 for

j = 1, . . . J̃ , and for any ϵ > 0, there exist a finite set N ⊂ Z \ {0}, integers 0 < J1 < · · · < JJ̃ ,
and matrices L1, . . . ,LJJ̃

∈ T (N,C) such that ∥v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) − Gj∥ ≤ ϵ and
Gj = QNeLJj−1+1 · · · eLJ

J̃Q∗
Nv for j = 1, . . . , J̃ , where J0 = 1.

Remark 4.3 The function space L2
0(Td) for the target function is not restrictive. By adding a

constant to the functions in L2
0(Td), we can represent any function in L2(Td). Thus, by adding

one additional learnable parameter c ∈ C to the model G in Theorem 4.1 and consider the model
G(x) + c for an input x ∈ Td, we can represent any function in L2(Td).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark 4.4 In the same manner as Theorem 4.1, we can show that we can represent any function in
VN = Span{qn | n ∈ N} exactly using the deep Koopman-layered model. Thus, if the decay rate
of the Fourier transform of the target function is α, then the convergence rate with respect to N is
O((1− α2)−d/2). See Appendix C for more details.

The proof of Theorem 4.1 is obtained by a linear algebraic approach. By virtue of setting fj as
the product of weighted sums of Fourier functions as explained in Eq. (2), the approximation of
the Koopman generator is composed of Toeplitz matrices. As a result, we can apply the following
proposition regarding Toeplitz matrices by Ye & Lim (2016, Theorem 2).

Proposition 4.5 For any B ∈ CN×N , there exists R = ⌊|N |⌋ + 1 Toeplitz matrices A1, . . . , AR

such that B = A1 · · ·AR.

We use Proposition 4.5 to show the following lemma regarding the representation with T (N,C).

Lemma 4.6 Assume N ⊂ Zd \ {0}. Then, we have CN×N = T (N,C).

Since CN×N is a Lie algebra and the corresponding Lie group GL(N,C), the group of nonsingular
N by N matrices, is connected, we have the following lemma (Hall, 2015, Corollary 3.47).

Lemma 4.7 We have GL(N,C) = {eL1 · · · eLJ | J ∈ N, L1, . . . ,LJ ∈ CN×N}.

We also use the following transitive property of GL(N,C) and finally obtain Theorem 4.1.

Lemma 4.8 For any u,v ∈ CN \ {0}, there exists A ∈ GL(N,C) such that u = Av.

5 GENERALIZATION BOUND

We investigate the generalization property of the proposed deep Koopman-layered model in this
section. Our framework with Koopman operators enables us to derive a generalization bound
involving the norms of Koopman operators.

Let GN = {QNeL1 · · · eLJQ∗
Nv | L1, . . . ,LJ ∈ T (N,C)} be the function class of deep Koopman-

layered model (5). Let ℓ(GN) = {(x, y) 7→ ℓ(f(x), y) | f ∈ GN} for a function ℓ that is bounded by
C > 0. Then, we have the following result of a generalization bound for the deep Koopman-layered
model.

Proposition 5.1 Let h ∈ ℓ(GN), x and y be random variables, S ∈ N, and x1, . . . , xS and
y1, . . . , yS be i.i.d. samples drawn from the distributions of x and y, respectively. For any δ > 0,
with probability at least 1− δ, we have

E[h(x, y)] ≤ 1

S

S∑
s=1

h(xn, yn) +
α√
S
max
j∈N

eτ∥j∥1 sup
L1,...,LJ∈T (N,C)

∥eL1∥ · · · ∥eLJ∥ ∥v∥+ 3C

√
log(δ/2)

S
.

We use the Rademacher complexity to derive Proposition 5.1. For this purpose, we regard the
model (1) as a function in an RKHS. For j ∈ Zd and x ∈ Td, let q̃j(x) = e−τ∥j∥1eij·x, where
τ > 0 is a fixed parameter and ∥[j1, . . . , jd]∥1 = |j1| + · · · + |jd| for [j1, . . . , jd] ∈ Zd. Let
κ(x, y) =

∑
j∈Zd q̃j(x)q̃j(y), and consider the RKHS Hκ associated with the kernel κ. Note that

κ is a positive definite kernel, and {q̃j | j ∈ Zd} is an orthonormal basis of Hκ. Giannakis et al.
(2022) and Das et al. (2021) used this kind of RKHSs for simulating dynamical systems on a quantum
computer based on the Koopman operator theory and for approximating Koopman operators by a
sequence of compact operators. Here, we use the RKHS Hκ for deriving a generalization bound.
To regard the function G ∈ VN = Span{qj | j ∈ N} ⊂ L2(Td) as a function in Hκ, we define
an inclusion map ιN : VN → Hκ as ιNqj = eτ∥j∥1 q̃j for j ∈ N . Then, the operator norm of ιN is
∥τN∥ = maxj∈N eτ∥j∥1 .

Let S ∈ N be the sample size, σ1, . . . , σS be i.i.d. Rademacher variables (i.e., random variables
that follow uniform distribution over {±1}), and x1, . . . , xS be given samples. Then, the empirical
Rademacher complexity R̂S(GN) is bounded as follows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lemma 5.2 We have

R̂S(GN) ≤ α√
S
max
j∈N

eτ∥j∥1 sup
L1,...,LJ∈T (N,C)

∥eL1∥ · · · ∥eLJ∥ ∥v∥,

where α =
∑

j∈Zd e−2τ∥j∥1 .

We can see that the complexity of the model depends exponentially on both N and J . Combining
Lemma 4.2 in Mohri et al. (2012) and Lemma 5.2, we can derive Proposition 5.1.

Remark 5.3 The exponential dependence of the generalization bound on the number of layers is
also typical for standard neural networks (Neyshabur et al., 2015; Bartlett et al., 2017; Golowich
et al., 2018; Hashimoto et al., 2024).

Remark 5.4 Based on Proposition 5.1, we can control the generalization error by adding a regular-
ization term to the loss function to make ∥eL1∥ · · · ∥eLJ∥ smaller. We note that ∥eLj∥ is expected to
be bounded with respect to N since the corresponding Koopman operator is bounded in our setting.
See Appendix H for more details.

6 NUMERICAL RESULTS AND PRACTICAL IMPLEMENTATION

We empirically confirm the fundamental properties of the proposed deep Koopman-layered model.

6.1 TRAINING DEEP KOOPMAN-LAYERED MODEL WITH TIME-SERIES DATA

Based on Corollary 4.2, we train the deep Koopman-layered model using time-series data as follows:
We first fix the final nonlinear transform v in the model G taking Remark 3.1 into account, the number
of layers J̃ , and the index sets N , Mr. We input a family of time-series data {xs,0, . . . , xs,J̃}Ss=1

to G. For obtaining the output of G, we first compute Q∗
Nv = [⟨qn, v⟩]n, where ⟨·, ·⟩ is the inner

product in L2(Td), and compute eLJQ∗
Nv using the Krylov subspace method, where J = JJ̃ ,

LJ = tJ
∑d

k=1A
k
1 · · ·Ak

RDk, and Ak
r = [ak,Jn−l,r]n,l is the Toeplitz matrix. In the same manner,

we compute eLJ−1(eLJQ∗
Nv). We continue that and finally obtain the output G(x) = QNu(x) =∑

n∈N qn(x)un, where u = [u1, . . . , un]
T = eL1 · · · eLJQ∗

Nv. We learn the parameter akm,r for
each layer in G by minimizing

∑S
s=1 ℓ(v(xs,J̃),Gj(xs,j−1)) for j = 1, . . . , J̃ using an optimization

method. For example, we can set an objective function
∑J̃

j=1

∑S
s=1 ℓ(v(xs,J̃),Gj(xs,j−1)). Here

ℓ : C× C → R is a loss function. For example, we can set ℓ as the squared error. We documented
the pseudoscope of the proposed algorithm in Appendix D.

6.2 REPRESENTATION POWER AND GENERALIZATION

To confirm the fundamental property of the Koopman layer, we first consider an autonomous system.
Consider the van der Pol oscillator on T

d2x(t)

dt2
= −µ(1− x(t)2)

dx(t)

dt
+ x(t), (6)

where µ = 3. By setting dx/dt as a new variable, we regard Eq. (6) as a first-ordered system on the
two-dimensional space. We discretized Eq. (6) with the time-interval ∆t = 0.01, and generated 1000
time-series {xs,0, . . . xs,100} for s = 1, . . . , 1000 with different initial values distributed uniformly
on [−1, 1] × [−1, 1]. We added a random noise, which was drawn from the normal distribution
of mean 0 and standard deviation 0.01, to each xs,j and set it as x̃s,j . For training, we used the
pairs {xs,0, x̃s,100} for s = 1, . . . , 1000. Then, we trained deep Koopman-layered models on T3 by
minimizing the loss

∑1000
s=1 ∥QNeL1 · · · eLJQ∗

Nv(x̃s,0)−x̃s,100∥2 using the Adam optimizer (Kingma
& Ba, 2015) with the learning rate 0.001. We created data for testing in the same manner as the
training dataset. We set v(x, y) = sin(y)x1 + cos(y)x2 for x = [x1, x2] ∈ T2 and y ∈ T. Note
that based on Remark 3.1, we constructed Kooman-layers on Td+1 for the input dimension d, and
we designed the function v so that it recovers x1 by v(x, π/2) and x2 by v(x, 0). We used the sine
and cosine functions for designing v since the representation space is constructed with the Fourier

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Without the regularization (b) With and without the regularization
Figure 1: Test errors for different values of J with and without the regularization based on the norms
of the Koopman operators. The result is the average ± the standard deviation of three independent
runs.

functions. We set N = {n = [n1, n2, n3] ∈ Z3 | −5 ≤ n1, n2, n3 ≤ 5} \ {0}, R = 1, and
M1 = {n = [n1, n2, n3] ∈ Z3 | −2 ≤ n1, n2 ≤ 2,−1 ≤ n3 ≤ 1} \ {0} for all the layers. We
applied the Arnoldi method (Gallopoulos & Saad, 1992) to compute the exponential of Lj .

Figure 1 (a) shows the test error for J = 1 and J = 2. We can see that the performance becomes
higher when J = 2 than J = 1. Note that Theorem 4.1 is a fundamental result for autonomous
systems, and according to Theorem 4.1, we may need more than one layer even for the autonomous
systems. The result reflects this theoretical result. This is an effect of the approximation of the
generator. If we can use the true Koopman generator, then we only need one layer for autonomous
systems. However, since we approximated the generator using matrices, we may need more than one
layer. In addition, based on Remark 5.4, we added the regularization term 10−5(∥eL1∥+ · · ·+∥eLJ∥)
and observed the behavior. We consider the case where the training data is noisy, and its sample size
is small. We generated training data as above, but the sample size was 30, and the standard deviation
of the noise was 0.03. We used the test data without the noise. The sample size of the test data was
1000. We set J = 3 to consider the case where the number of parameters is large. The result is
illustrated in Figure 1 (b). We can see that with the regularization, we can achieve smaller test errors
than without the regularization, which implies with the regularization, the model generalizes well.

6.3 EIGENVALUES OF THE KOOPMAN-LAYERS FOR NONAUTONOMOUS SYSTEMS

To confirm that we can extract information about the underlined nonautonomous dynamical systems
of time-series data using the deep Koopman-layered model, we observed the eigenvalues of the
Koopman-layers.

6.3.1 MEASURE-PRESERVING DYNAMICAL SYSTEM

Consider the nonautonomous dynamical system on T2(
dx1(t)

dt
,
dx2(t)

dt

)
=

(
− ∂ζ

∂x2
(t, x(t)),

∂ζ

∂x1
(t, x(t))

)
=: f(t, x), (7)

where ζ(t, [x1, x2]) = eκ(cos(x1−t)+cos x2). Since the dynamical system f(t, ·) is measure-preserving
for any t ∈ R, the corresponding Koopman operator Kt is unitary for any t ∈ R. Thus, the
spectrum of Kt is on the unit disk in the complex plane. We discretized Eq. (7) with the time-
interval ∆t = 0.01, and generated 1000 time-series {xs,0, . . . xs,119} for s = 1, . . . , 1000 for
training with different initial values distributed uniformly on [−1, 1] × [−1, 1]. We split the
data into 6 subsets St = {xs,j | s ∈ {1, . . . , 1000}, j ∈ {20t, . . . , 20(t + 1) − 1}} for
t = 0, . . . , 5. Then, we trained the model with 5 Kooman-layers on T3 by minimizing the loss∑5

j=1

∑1000
s=1

∑19
l=0 ∥QNeLj · · · eL5Q∗

Nv(xs,20(j−1)+l)−xs,100+l∥2 using the Adam optimizer with
the learning rate 0.001. In the same manner as Subsection 6.2, we set v(x, y) = sin(y)x1+cos(y)x2
for x = [x1, x2] ∈ T2 and y ∈ T. Note that we trained the model so that QNeLj · · · eL5Q∗

Nv maps
samples in Sj−1 to S5. We set N = {n = [n1, n2, n3] ∈ Z3 | −5 ≤ n1, n2 ≤ 5,−2 ≤ n3 ≤ 2},
R = 1, and M1 = {n = [n1, n2, n3] ∈ Z3 | −2 ≤ n1, n2 ≤ 2,−1 ≤ n3 ≤ 1} for all the layers.
We applied the Arnoldi method to compute the exponential of Lj . In addition, we assumed the
continuity of the flow of the nonautonomous dynamical system and added a regularization term
0.01

∑5
j=2 ∥eLj − eLj−1∥ to make the Koopman layers next to each other become close. After train-

ing the model sufficiently (after 3000 epochs), we computed the eigenvalues of the approximation eLj

of the Koopman operator for each layer j = 1, . . . , 5. For comparison, we estimated the Koopman
operator Ktj

j using EDMD and KDMD (Kawahara, 2016) with the dataset Sj−1 and Sj separately

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Deep
Koopman
-layerd
model

EDMD

KDMD

j = 1 j = 2 j = 3 j = 4 j = 5
Figure 2: Eigenvalues of the estimated Koopman operators for the nonautonomous measure preserving
system.

for j = 1, . . . , 5. For EDMD, we used the same Fourier functions {qj | j ∈ N} as the deep
Koopman-layered model for the dictionary functions. For KDMD, we transformed [x1, x2] ∈ T2

into x̃ = [eix1 , eix2] ∈ C2 and applied the Gaussian kernel k(x, y) = e−0.1∥x̃−ỹ∥2

. For estimating
K

tj
j , we applied the principal component analysis to the space spanned by {k(·, x) | x ∈ Sj−1} to

obtain |N | principal vectors p1, . . . , p|N |. We estimated Ktj
j by constructing the projection onto the

space spanned by p1, . . . , p|N |. Figure 2 illustrates the results. We can see that the eigenvalues of the
estimated Koopman operators by the deep Koopman-layered model are distributed on the unit circle
for j = 1, . . . , 5, which enables us to observe that the dynamical system is measure-preserving for
any time. On the other hand, the eigenvalues of the estimated Koopman operators with EDMD and
KDMD are not on the unit circle, which implies that the separately applying EDMD and KDMD
failed to capture the property of the dynamical system since the system is nonautonomous.

6.3.2 DAMPING OSCILLATOR WITH EXTERNAL FORCE

Consider the nonautonomous dynamical system regarding a damping oscillator on a compact subspace
of R

d2x(t)

dt2
= −αdx(t)

dt
− x(t)− a sin(bt), (8)

where α = 0.1, a = b = 1. By setting dx/dt as a new variable, we regard Eq. (8) as a first-ordered
system on the two-dimensional space. We generated data, constructed the deep Koopman-layered
model, and applied EDMD and KDMD for comparison in the same manner as Subsection 6.3.1.
Figure 3 illustrates the results. In this case, since the dynamical system is not measure preserving,
it is reasonable that the estimated Koopman operators have eigenvalues inside the unit circle. We
can see that many eigenvalues for the deep Koopman-layered model are distributed inside the unit
circle, and the distribution changes along the layers. Since the external force becomes large as t
becomes large, the damping effect becomes small as t becomes large (corresponding to j becoming
large). Thus, the number of eigenvalues distributed inside the unit circle becomes small as j becomes
large. On the other hand, we cannot obtain this type of observation from the separate estimation of
the Koopman operators by EDMD and KDMD. See Appendix E for additional numerical results.

7 CONNECTION WITH OTHER METHODS

7.1 DEEP KOOPMAN-LAYERED MODEL AS A NEURAL ODE-BASED MODEL

The model (1) can also be regarded as a model with multiple neural ODEs (Teshima et al., 2020b; Li
et al., 2023, Section 3.3). From this perspective, we can also apply the model to standard tasks with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Deep
Koopman
-layerd
model

EDMD

KDMD

j = 1 j = 2 j = 3 j = 4 j = 5
Figure 3: Eigenvalues of the estimated Koopman operators for the nonautonomous damping oscillator.

ResNet. For existing neural ODE-based models, we solve ODEs for the forward computation and
solve adjoint equations for backward computation (Chen et al., 2018; Aleksei Sholokhov & Nabi,
2023). In our framework, solving the ODE corresponds to computing eLju for a matrix Lj and a
vector u. As we stated in Subsection 3.2, we use Krylov subspace methods to compute eLju. In this
sense, our framework provides numerical linear algebraic way to solve neural ODE-based models by
virtue of introducing Koopman generators and operators.

7.2 CONNECTION WITH NEURAL NETWORK-BASED KOOPMAN APPROACHES

In the framework of neural network-based Koopman approaches, we train an encoder ϕ and a decoder
ψ that minimizes ∥xt+1 − ψ(Kϕ(xt))∥ for the given time-series x0, x1, . . . (Lusch et al., 2017; Li
et al., 2017; Azencot et al., 2020; Shi & Meng, 2022). Here, K is a linear operator, and we can
construct K using EDMD or can train K simultaneously with ϕ and ψ. Physics-informed framework
of neural network-based Koopman approaches for incorporating the knowledge of dynamics have
also been proposed (Liu et al., 2024). For neural network-based Koopman approaches, since the
encoder ϕ changes along the learning process, the representation space of the operator K also
changes. Thus, the theoretical analysis of these approaches is challenging. On the other hand, our
deep Koopman-layered approach fixes the representation space using the Fourier functions and learns
only the linear operators corresponding to Koopman generators by restricting the linear operator to a
form based on the Koopman operator.

8 CONCLUSION AND DISCUSSION

In this paper, we proposed deep Koopman-layered models based on the Koopman operator theory
combined with Fourier functions and Toeplitz matrices. We showed that the Fourier basis forms a
proper representation space of the Koopman operators in the sense of the universal and generalization
property of the model. In addition to the theoretical solidness, the flexibility of the proposed model
allows us to train the model to fit time-series data coming from nonautonomous dynamical systems.

According to Lemma 4.7 and Theorem 4.1, to represent any function, we need more than one
Koopman layer. Investigating how many layers we need and how the representation power grows
as the number of layers increases theoretically remains for future work. In addition, we applied
Krylov subspace methods to approximate the actions of the Koopman operators to vectors. Since the
Krylov subspace methods are iterative methods, we can control the accuracy of the approximation
by controlling the iteration number. How to decide and change the iteration number throughout the
learning process for more efficient computations is also future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hassan Mansour Aleksei Sholokhov, Yuying Liu and Saleh Nabi. Physics-informed neural ODE
(PINODE): embedding physics into models using collocation points. Scientific Reports, 13:10166,
2023.

Omri Azencot, N. Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent Koopman autoencoders. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 2020.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Proceedings of the 31st Conference on Neural Information Processing Systems
(NIPS), 2017.

Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press, 2019.

Marko Budišić, Ryan Mohr, and Igor Mezić. Applied Koopmanism. Chaos (Woodbury, N.Y.), 22:
047510, 2012.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Proceedings of the 32rd Conference on Neural Information Processing
Systems (NeurIPS), 2018.

Matthew J. Colbrook and Alex Townsend. Rigorous data-driven computation of spectral properties of
Koopman operators for dynamical systems. Communications on Pure and Applied Mathematics,
77(1):221–283, 2024.

Suddhasattwa Das, Dimitrios Giannakis, and Joanna Slawinska. Reproducing kernel Hilbert space
compactification of unitary evolution groups. Applied and Computational Harmonic Analysis, 54:
75–136, 2021.

William Fulton and Joe Harris. Representation Theory –A First Course–. Springer, 2004.

Efstratios Gallopoulos and Yousef Saad. Efficient solution of parabolic equations by Krylov ap-
proximation methods. SIAM Journal on Scientific and Statistical Computing, 13(5):1236–1264,
1992.

Dimitrios Giannakis and Suddhasattwa Das. Extraction and prediction of coherent patterns in
incompressible flows through space-time Koopman analysis. Physica D: Nonlinear Phenomena,
402:132211, 2020.

Dimitrios Giannakis, Abbas Ourmazd, Philipp Pfeffer, Jörg Schumacher, and Joanna Slawinska.
Embedding classical dynamics in a quantum computer. Physical Review A, 105(5):052404, 2022.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In Proceedings of the 2018 Conference On Learning Theory (COLT), 2018.

Stefan Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal
pole selection. GAMM-Mitteilungen, 36(1):8–31, 2013.

Brian C. Hall. Lie Groups, Lie Algebras, and Representations –An Elementary Introduction–.
Springer, 2nd edition, 2015.

Yuka Hashimoto and Takashi Nodera. Inexact shift-invert Arnoldi method for evolution equations.
ANZIAM Journal, 58:E1–E27, 2016.

Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Yoichi Matsuo, and Yoshinobu Kawahara. Krylov
subspace method for nonlinear dynamical systems with random noise. Journal of Machine Learning
Research, 21(172):1–29, 2020.

Yuka Hashimoto, Sho Sonoda, Isao Ishikawa, Atsushi Nitanda, and Taiji Suzuki. Koopman-based
generalization bound: New aspect for full-rank weights. In Proceedings of the 12th International
Conference on Learning Representations (ICLR), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Isao Ishikawa, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, and Yoshinobu Kawahara. Metric
on nonlinear dynamical systems with Perron-Frobenius operators. In Proceedings of the 32nd
Conference on Neural Information Processing Systems (NeurIPS), 2018.

Isao Ishikawa, Yuka Hashimoto, Masahiro Ikeda, and Yoshinobu Kawahara. Koopman operators
with intrinsic observables in rigged reproducing kernel Hilbert spaces. arXiv:2403.02524, 2024.

Yoshinobu Kawahara. Dynamic mode decomposition with reproducing kernels for Koopman spectral
analysis. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS),
2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015.

Stefan Klus, Ingmar Schuster, and Krikamol Muandet. Eigendecompositions of transfer operators in
reproducing kernel Hilbert spaces. Journal of Nonlinear Science, 30:283–315, 2020.

Bernard Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

Qianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111,
2017.

Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An approximation
perspective. Journal of the European Mathematical Society, 25(5):1671–1709, 2023.

Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time
series dynamics with Koopman predictors. In Proceedings of the 37th Conference on Neural
Information Processing Systems (NeurIPS), 2023.

Yuying Liu, Aleksei Sholokhov, Hassan Mansour, and Saleh Nabi. Physics-informed Koop-
man network for time-series prediction of dynamical systems. In ICLR 2024 Workshop on
AI4DifferentialEquations In Science, 2024.

Louis Lortie, Steven Dahdah, and James Richard Forbes. Forward-backward extended DMD with an
asymptotic stability constraint. arXiv: 2403.10623.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature Communications, 9:4950, 2017.

Senka Maćešić, Nelida Črnjarić Žic, and Igor Mezić. Koopman operator family spectrum for
nonautonomous systems. SIAM Journal on Applied Dynamical Systems, 17(4):2478–2515, 2018.

Igor Mezić. On numerical approximations of the Koopman operator. Mathematics, 10(7):1180, 2022.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT press, 1st edition, 2012.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Proceedings of the 2015 Conference on Learning Theory (COLT), 2015.

Sebastian Peitz and Stefan Klus. Koopman operator-based model reduction for switched-system
control of PDEs. Automatica, 106:184–191, 2019.

Marc A. Rieffel. Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance.
Memoirs of the American Mathematical Society, 168:67–91, 2004.

Peter J. Schmid. Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics,
54:225–254, 2022.

Haojie Shi and Max Q.-H. Meng. Deep Koopman operator with control for nonlinear systems. IEEE
Robotics and Automation Letters, 7(3):7700–7707, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi Sugiyama.
Coupling-based invertible neural networks are universal diffeomorphism approximators. In Pro-
ceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS), 2020a.

Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta Oono. Universal approxima-
tion property of neural ordinary differential equations. In NeurIPS 2020 Workshop on Differential
Geometry meets Deep Learning, 2020b.

Loring W. Tu. An Introduction to Manifolds. Springer New York, second edition, 2011.

Rui Wang, Yihe Dong, Sercan Ö. Arik, and Rose Yu. Koopman neural operator forecaster for
time-series with temporal distributional shifts. In Proceedings of the 11th International Conference
on Learning Representations (ICLR), 2023.

Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A data-driven approximation
of the Koopman operator: extending dynamic mode decomposition. Journal of Nonlinear Science,
25:1307–1346, 2015.

Wei Xiong, Xiaomeng Huang, Ziyang Zhang, Ruixuan Deng, Pei Sun, and Yang Tian. Koopman
neural operator as a mesh-free solver of non-linear partial differential equations. Journal of
Computational Physics, 513:113194, 2024.

Ke Ye and Lek-Heng Lim. Every matrix is a product of Toeplitz matrices. Foundation of Computa-
tional Mathematics, 16:577–598, 2016.

Kôsaku Yosida. Functional Analysis. Springer, 6th edition, 1980.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOFS

We provide the proofs of statements in the main text.

Proposition 3.3 The (n, l)-entry of the representation matrix Q∗
NLjQN of the approximated

operator is
d∑

k=1

∑
nRj

−l∈Mj
Rj

∑
nRj−1−nRj

∈Mj
Rj−1

· · ·
∑

n2−n3∈Mj
2

∑
n−n2∈Mj

1

aj,knRj
−l,Rj

aj,knRj−1−nRj
,Rj−1

· · · aj,kn2−n3,2
aj,kn−n2,1

ilk,

where lk is the kth element of the index l ∈ Zd. Moreover, we set nr = mRj
+ · · ·+mr + l, thus

n1 = n, mr = nr − nr+1 for r = 1, . . . , Rj − 1, and mRj
= nRj

− l.

Proof We have

⟨qn, Ljql⟩ =
〈
qn,

d∑
k=1

∑
mRj

∈Mj
Rj

aj,kmRj
,Rj
qmRj

· · ·
∑

m1∈Mj
1

aj,km1,1
qm1 ilkql

〉

=

〈
qn,

d∑
k=1

∑
mRj

∈Mj
Rj

· · ·
∑

m1∈Mj
1

aj,kmRj
,Rj

· · · aj,km1,1
qmRj

+···+m1+lilk

〉

=

d∑
k=1

∑
mRj

+···+m1+l=n

mRj
∈Mj

Rj
···m1∈Mj

1

aj,kmRj
,Rj

· · · aj,km1,1
ilk

=

d∑
k=1

∑
nRj

−l∈Mj
Rj

∑
nRj−1−nRj

∈Mj
Rj−1

· · ·
∑

n2−n3∈Mj
2

∑
n−n2∈Mj

1

aj,knRj
−l,Rj

aj,knRj−1−nRj
,Rj−1

· · · aj,kn2−n3,2
aj,kn−n2,1

ilk.

□

Corollary 4.2 Assume v ∈ L2
0(Td) and v ̸= 0. For any sequence g1(t1, ·), . . . , gJ̃(tJ̃ , ·) of flows

that satisfies v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) ∈ L2
0(Td) and v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) ̸= 0 for

j = 1 . . . J̃ , and for any ϵ > 0, there exist a finite set N ⊂ Z \ {0}, integers 0 < J1 < · · · < JJ̃ ,
and matrices L1, . . . ,LJJ̃

∈ T (N,C) such that ∥v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) − Gj∥ ≤ ϵ and
Gj = QNeLJj−1+1 · · · eLJ

J̃Q∗
Nv for j = 1, . . . , J̃ , where J0 = 1.

Proof Since v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) ∈ L2
0(Td) and v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) ̸= 0, there exist

finite Nj ⊂ Zd \ {0} and Gj ∈ VNj , Gj ̸= 0 such that ∥v ◦ gJ̃(tJ̃ , ·) ◦ · · · ◦ gj(tj , ·) −Gj∥ ≤ ϵ

for j = 1, . . . , J̃ . Since v ∈ L2
0(Td) and v ̸= 0, there exist finite NJ̃+1 ⊂ Zd \ {0} such that

Q∗
NJ̃+1

v ̸= 0. Let N =
⋃J̃+1

j=1 Nj . By Lemma 4.8, since Q∗
Nv ̸= 0, there exist JJ̃−1, JJ̃ ∈ N

and LJJ̃−1+1, . . . ,LJJ̃
∈ T (N,C) such that GJ̃ = QNe

LJ
J̃−1

+1 · · · eLJ
J̃Q∗

Nv. Since GJ̃ ̸= 0,
again by Lemma 4.8, there exist JJ̃−2 ∈ N and LJJ̃−2+1, . . . ,LJJ̃−1

∈ T (N,C) such that GJ̃−1 =

QNe
LJ

J̃−2
+1 · · · eLJ

J̃−1 e
LJ

J̃−1
+1 · · · eLJ1Q∗

Nv = QNe
LJ

J̃−2
+1 · · · eLJ

J̃−1Q∗
NGJ̃ . We continue to

apply Lemma 4.8 to obtain the result. □

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 4.6 Assume N ⊂ Zd \ {0}. Then, we have CN×N = T (N,C).

Proof We show CN×N ⊆ T (N,C). The inclusion CN×N ⊇ T (N,C) is trivial. SinceN ⊂ Zd\{0},
for any n = [n1, . . . , nd] ∈ N , there exists k ∈ {1, . . . , d} such that ink = (Dk)n,n ̸= 0. We denote
by kmin(n) the minimal index k ∈ {1, . . . , d} that satisfies (Dk)n,n ̸= 0. Let B ∈ CN×N . We
decompose B as B = B1 + . . . + Bd, where (Bk):,n = B:,n if k = kmin(n) and (Bk):,n = 0
otherwise. Here, (Bk):,n is the nth column of Bk. Then, we have (Bk):,n = 0 if (Dk)n,n = 0. Let
D+

k be the diagonal matrix defined as (D+
k)n,n = 1/(Dk)n,n if (Dk)n,n ̸= 0 and (D+

k)n,n = 0

if (Dk)n,n = 0. In addition, let Ck = BkD
+
k . Then, we have B =

∑d
k=1 CkDk. Applying

Propostion 4.5, we have B ∈ T (N,C), and obtain CN×N ⊆ T (N,C). □

Lemma 4.8 For any u,v ∈ CN \ {0}, there exists A ∈ GL(N,C) such that u = Av.

Proof Let n0 ∈ N and let B ∈ N× N be defined as Bn,: = 1/∥v∥2v∗ for n = n0 and so that Bn,:

and Bm,: becoming orthogonal if n ̸= m. Then, the nth element of Bv is 1 for n = n0 and is 0 for
n ̸= n0. Let C ∈ N× N be defined as Cn,: = u for n = n0 and so that Cn,: and Cm,: becoming
orthogonal if n ̸= m. Then, B,C ∈ GL(N,C) and CBv = u. □

Lemma 5.2 We have

R̂S(GN) ≤ α√
S
max
j∈N

eτ∥j∥1 sup
L1,...,LJ∈T (N,C)

∥eL1∥ · · · ∥eLJ∥ ∥v∥,

where α =
∑

j∈Zd e−2τ∥j∥1 .

Proof

R̂S(GN) =
1

S
E

[
sup

G∈GN

S∑
s=1

G(xs)σs

]
=

1

S
E

[
sup

G∈GN

S∑
s=1

ιNG(xs)σs

]

=
1

S
E

[
sup

G∈GN

〈 S∑
s=1

σsϕ(xs), ιNG

〉]
≤ 1

S
sup

G∈GN

∥ιNG∥HK

(S∑
s=1

K(xs, xs)

)1/2

≤ α√
S

sup
G∈GN

∥ιN∥∥G∥L2(Td) ≤
α√
S
max
j∈N

eτ∥j∥1 sup
L1,...,LJ∈T (N,C)

∥QNeL1 · · · eLJQ∗
Nv∥

≤ α√
S
max
j∈N

eτ∥j∥1 sup
L1,...,LJ∈T (N,C)

∥eL1∥ · · · ∥eLJ∥ ∥v∥,

where α =
∑

j∈Zd e−2τ∥j∥1 . □

B DETAILS OF REMARK 3.2

B.1 REDUCTION TO THE ANALYSIS ON Td

If Ω is diffeomorphic to Bd, then we can construct a dynamical system f̌j on Td that satisfies
f̌j(x) = f̃j(x) for x ∈ Bd, where f̃j is the equivalent dynamical system on Bd with fj . Indeed, let
Bd = {x ∈ Rd | ∥x∥ ≤ 1} be the unit ball. Let ψ : Ω → Bd be the diffeomorphism, and let y =

ψ(x). Then, the dynamical system dx
dt (t) = fj(x(t)) is equivalent to dy

dt (t) = Jψ(y(t))−1fj(y(t))
since Jψ(y) is invertible for any y ∈ Bd, where Jψ is the Jacobian of ψ. Note that since Jψ does not

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

depend on j, the transition of f̃j over j depends only on that of fj over j. Let f̃j(y) = Jψ(y)−1fj(y).
Instead of considering the dynamical system fj on Ω, we can consider the dynamical system f̃j
on Bd. Let a be a positive real number satisfying 1 < a < π. Then, we can smoothly extend f̃j
on Bd to a map f̂j on aBd as f̂j(x) = f̃j(x) (x ∈ Bd), f̂j(x) = 0 (∥x∥ = a). For example, we
can construct f̂j in the same manner as a smooth bump function (Tu, 2011). Finally, we extend f̂j
on aBd to a map f̌j on [−π, π]d as f̌j(x) = f̂j(x) (x ∈ aBd), f̌j(x) = 0 (x /∈ aBd). Then, since
f̌j([−π, . . . ,−π]) = f̌j([π, . . . , π]), we can regard f̌j as a dynamical system on Td.

B.2 GENERALIZATION OF Td TO MORE GENERAL DOMAIN

Indeed, Td is the simplest example of locally compact groups, and the Fourier functions are general-
ized to the irreducible representations (Fulton & Harris, 2004). For a group G, a representation ρ
is a map ρ : G → GL(V) for some vector space V that satisfies ρ(x)ρ(y) = ρ(x · y) for x, y ∈ G.
Here, GL(V) is the space of all bijective linear transformations from V to V . We note that if G is
abelian, then V is always one-dimensional. For example, for Rd, the irreducible representations are
ρξ(x) := eiξ·x for x ∈ Rd and ξ ∈ Rd. As we will see in Section 3.2, a crucial property of the Fourier
function qn is the product of two Fourier functions are also a Fourier function, i.e., qn · qm = qm+n.
This property is valid also for general irreducible representations since we have ρ(x)ρ(y) = ρ(x · y).
Thus, we can consider a generalized version of Toeplitz matrices by using ρ (Rieffel, 2004). Although
showing the universal property of the generalized Toeplitz matrices is challenging and future work,
this type of argument gives us a promising way of generalizing our framework.

C DETAILS OF REMARK 4.4

In the same manner as Theorem 4.1, we can show that we can represent any function in VN =
Span{qn | n ∈ N} exactly using the deep Koopman-layered model. Thus, if the decay rate of the
Fourier transform of the target function h is α, i.e., if there exist 0 < α < 1 such that h is represented
as h =

∑
n∈Zd cnqn with some cn ∈ C satisfying |cn| ≤ αn1+···+nd for sufficiently large n, then the

convergence rate with respect to N is O((1− α2)−d/2). Indeed, for sufficiently large N , we have

min
h̃∈VN

∥h− h̃∥ =

∥∥∥∥ ∑
n/∈N

cnqn

∥∥∥∥ =
∑
n/∈N

|cn|2 ≤
∑
n/∈N

α2(n1+···+nd) = O

((
1

1− α2

)d/2)
.

D ALGORITHMIC DETAILS OF TRAINING DEEP KOOPMAN-LAYERED MODEL

We provide a pseudocode of the algorithm of training the deep Koopman-layered model in Algo-
rithm 1. Let qn be the Fourier function defined as qn(z) = ein·z for n ∈ Zd and z ∈ Td, and let ⟨·, ·⟩
be the inner product in L2(Td). Thus, ⟨qn, v⟩ means the nth Fourier coefficient of a function v. Let
L2
0(Td) = Span{qn | n ̸= 0}, and we fix a nonlinear map v ∈ L2

0(Td) in the model G. We also fix
the finite index set N ⊆ Nd determining the representation space of the Koopman generators, number
of layers J ∈ N, the number Rj ∈ N of Toeplitz matrices, index sets M j

1 , . . . ,M
j
Rj

⊆ Zd determin-
ing the sparseness of the Toeplitz matrices for the jth layer, and the loss function ℓ : C× C → R+.
They determine the model architecture. LetAk,j

r = [ak,jn−l,r]n,l∈N,n−l∈Mj
r

be the Toeplitz matrix with
learnable parameters ak,jn,r and Dk be the diagonal matrix with (Dk)l,l = ilk for l ∈ Zd. In addition,
we put all the learnable parameters A = [an,rk,j]k=1,...,d,n∈N

⋂
Mj

r ,r=1,...,Rj ,j=1,...J̃ . For simplicity,

we focus on the case of the number of layers J is equal to the time step J̃ . We note that the time t
in the definition of L in Subsection 3.2 do not need for practical learning algorithm since it is just
regarded as the scale factor of the learnable parameter Ak

1 .

E ADDITIONAL NUMERICAL RESULTS

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Training deep Koopman-layered model

Require: v ∈ L2
0(T), N ⊆ Zd, J ∈ N, R1, . . . , RJ ∈ N, M j

1 , . . . ,M
j
Rj

⊆ Zd (j = 1, . . . , J),
ℓ : C× C → R+, time-series {xs,1, . . . , xs,J}Ss=1

Ensure: Learnable parameter A of the deep Koopman-layered model
1: Compute a vector u = [⟨qn, v⟩]n∈N .
2: Set (Dk)l,l = ilk.
3: Initialize A.
4: for each epoch do
5: for each layer j = J, . . . , 1 do
6: Compute u = e

∑d
k=1 Ak,j

1 ···Ak,j
Rj

Dku using a Krylov subspace method.
7: Compute the output ys =

∑
n∈N qn(xs,j−1)un of jth layer for s = 1, . . . S.

8: Compute the loss Hj =
∑S

s=1 ℓ(v(xs,J), ys).
9: end for

10: Compute the total loss H =
∑J

j=1Hj and the gradient of H with respect to A and apply a
gradient method to update the learnable parameter A.

11: end for

Figure 4: Test errors for the deep Koopman layered models and the neural ODE. The result is the
average ± the standard deviation of three independent runs.

E.1 COMPARISON TO NEURAL ODE

To show that the proposed model can be an alternative to neural ODE-based approaches, we conducted
additional experiments. We applied a neural ODE (Chen et al., 2018) to the same problem as
Subsection 6.2 (the van der Pol oscillator). The neural ODE is composed of the two-layer neural
network with the hyperbolic tangent activation function whose width of the first layer is 55. The
forward process is solved by the Runge-Kutta method. We note that the number of parameters of
this model is 2 × 55 + 55 × 2 = 220, which is almost the same as the number of parameters of
the Koopman-layered model considered in Subsection 6.2, which is 222 for the case of J = 2. To
compare the basic performance of the two models, we used one time step data for training the neural
ODE. Note that in Subsection 6.2, we also used only one time step data for the deep Koopman-layered
model. In the same manner as the deep Koopman-layered model, used the Adam optimizer with the
learning rate 0.001. The result is shown in Figure 4. We can see that the deep Koopman-layered
model outperforms the neural ODE model.

We can also use multi time step data for training the above neural ODE model. Thus, we also
used two time steps {xs,0, x̃s,50, x̃s,100}1000s=1 to train the same neural ODE model and compared the
performance with the deep Koopman-layered model. We used the Adam optimizer with the learning
rate 0.01. The result is shown in Figure 5. We can see that even if we use two time stap data for
the neural ODE model, the deep Koopman-layered model with one time step data outperformed the
neural ODE model. These results show that the Koopman-layered model has a potential power of
being an alternative to neural ODE-based approaches.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Test errors for the deep Koopman layered models and the neural ODE with two time step
data. The result is the average ± the standard deviation of three independent runs.

E.2 COMPARISON TO KOOPMAN-BASED APPROACH WITH LEARNED REPRESENTATION SPACES

We show the results of additional experiments with the Koopman-based approach with learned
representation spaces (see Subsection 7.2). We considered the following two settings for the same
example in Subsection 6.3.2.

1. Learn a set of dictionary functions to construct the representation space of five Koopman
generators (learning a common set of dictionary functions is also considered by (Liu et al.,
2023)).

2. Learn five sets of dictionary functions each of which is for each Koopman generator.

We used a 3-layered ReLU neural network to learn the dictionary functions. The widths of the first
and the second layer are 1024 and 121. We applied the EDMD with the learned dictionary functions.
The result is illustrated in Figure 6 (a,b). We cannot capture the transition of the distribution of the
eigenvalues through j = 1, . . . , 5 even though we learned the dictionary functions. We can also
see that there are some eigenvalues equally spaced on the unit circle. This behavior is typical for
autonomous systems with a constant frequency. Since the dynamical system is nonautonomous and
the frequency of the system changes over time, the above behavior is not suitable for this example.
This result implies that DMD-based methods try to capture the system as an autonomous system,
which is not suitable for nonautonomous systems. To obtain more stable eigenvalues, we also
implemented the forward-backward extended DMD (Lortie et al.) with the second setting. The result
is shown in Figure 6 (c), and it is similar to the above two cases.

F APPLICATION TO TIME-SERIES FORECASTING

We can also apply the proposed method to time-forecasting. Applying the idea of Wang et al. (2023);
Liu et al. (2023), we can decompose the Koopman operators into time-invariant and time-variant
parts. By extracting time-invariant features of the dynamics using the approximated Koopman
operators (e.g., time-invariant eigenvectors or singular vectors), we can combine it with time-variant
Koopman operators constructed by local time-series to construct the forecast. More precisely, we can
decompose the Koopman operatorKt for time t asKt = Kinv+K

t
var, whereKinv =

∑n
i=1 σiviu

∗
i

andKvar =
∑m

i=1 σ̃iṽiũ
∗
i , σi, vi, ui are time-invariant singular values and the corresponding singular

vectors of the approximated Koopman operators for j = 1, . . . , J , ṽi are the singular vectors of
the local Koopman operator that is orthogonal to vi, and σ̃i and ũi are singular values and singular
vectors corresponding to ṽi. Since we can use the time-invariant property of t ≤ tJ , we can forecast
time-series well even for t > tJ .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

j = 1 j = 2 j = 3 j = 4 j = 5
(a) Common dictionary functions for five Koopman generators

j = 1 j = 2 j = 3 j = 4 j = 5
(b) Separate dictionary functions for each Koopma generator

j = 1 j = 2 j = 3 j = 4 j = 5
(c) Separate dictionary functions for each Koopma generator with forward-backward extended DMD

Figure 6: Eigenvalues of the estimated Koopman operators with learned representation spaces for the
nonautonomous damping oscillator.

G DETERMINING AN OPTIMAL NUMBER J OF LAYERS

Although providing thorough discussion of determining an optimal number J of layers is future work,
we provide examples of heuristic approaches to determining J . Heuristically, we can use validation
data to determine an optimal number of layers. For example, we begin by one layer and compute the
validation loss. Then, we set two layers and compute the validation loss, and continue with more
layers. We can set the number of layers as the number that achieves the minimal validation loss.
Another way is to set a sufficiently large number of layers and train the model with the validation
data. As we discussed in Section 6.2, we can add a regularization term to the loss function so that the
Koopman layers next to each other become close. After the training, if there are Koopman layers next
to each other and sufficiently close, then we can regard them as one Koopman layer and determine an
optimal number of layers.

H DETAILS OF REMARK 5.4

In our setting, we assume that the flow g(t, ·) is invertible and the Jacobian Jg−1
t of g−1

t is bounded
for any t. Here, we denote gt = g(t, ·). In this case, the Koopman operator Kt is bounded. Indeed,
we have

∥Kth∥2 =

∫
Td

|h(g(t, x))|2dx =

∫
Td

|h(x)|2|det Jg−1
t (x)|dx ≤ ∥h∥2 sup

x∈Td

|det Jg−1
t (x)|.

19

	Introduction
	Preliminary
	Notations
	L2 space and Reproducing kernel Hilbert space on the torus
	Koopman generator and operator

	Deep Koopman-layered model
	Multiple dynamical systems and Koopman generators
	Approximation of Koopman generators using Toeplitz matrices

	Universality
	Generalization bound
	Numerical results and practical implementation
	Training deep Koopman-layered model with time-series data
	Representation power and generalization
	Eigenvalues of the Koopman-layers for nonautonomous systems
	Measure-preserving dynamical system
	Damping oscillator with external force

	Connection with other methods
	Deep Koopman-layered model as a neural ODE-based model
	Connection with neural network-based Koopman approaches

	Conclusion and discussion
	Proofs
	Details of Remark 3.2
	Reduction to the analysis on Td
	Generalization of Td to more general domain

	Details of Remark 4.4
	Algorithmic details of training deep Koopman-layered model
	Additional numerical results
	Comparison to neural ODE
	Comparison to Koopman-based approach with learned representation spaces

	Application to time-series forecasting
	Determining an optimal number J of layers
	Details of Remark 5.4

