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Abstract. In recent years, neural network based image denoising ap-
proaches have revolutionized the analysis of biomedical microscopy data.
Self-supervised methods, such as Noise2Void (N2V), are applicable to
virtually all noisy datasets, even without dedicated training data being
available. Arguably, this facilitated the fast and widespread adoption of
N2V throughout the life sciences. Unfortunately, we observed that the
blind-spot training underlying N2V can lead to rather visible checker-
board artifacts, thereby reducing the quality of final predictions consider-
ably. In this work, we present two modifications to the vanilla N2V setup
that both help to reduce the unwanted artifacts considerably. Firstly, we
propose a modified network architecture i.e., using BlurPool instead of
MazxPool layers throughout the used U-Net, rolling back the residual-
U-Net to a non-residual U-Net, and eliminating the skip connections at
the uppermost U-Net level. Additionally, we propose new replacement
strategies to determine the pixel intensity values that fill in the elected
blind-spot pixels. We validate our modifications on a range of microscopy
and natural image data. Based on added synthetic noise from multiple
noise types and at varying amplitudes, we show that both proposed mod-
ifications push the current state-of-the-art for fully self-supervised image
denoising.

1 Introduction

Fluorescence microscopy is one of the major drivers for discovery in the life
sciences. The quality of possible observations is limited by the optics of the
used microscope, the chemistry of used fluorophores, and the maximum light
exposure tolerated by the imaged sample. This necessitates trade-offs, frequently
leading to rather noisy acquisitions as a consequence of preventing ubiquitous
effects such as photo toxicity and/or bleaching. While the light efficiency in
fluorescence microscopy can be optimized by specialized hardware, e.g., by using
Light Sheet or Lattice Light Sheet microscopes, software solutions that restore
noisy or distorted images are a popular additional way to free up some of the
limiting photon budget.

Algorithmic image restoration is the reconstruction of clean images from
corrupted versions as they were acquired by various optical systems. A plethora
of recent work shows that CNNs can be used to build powerful content-aware
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N2V [7] N2V2 (Ours)

Fig.1: Self-supervised denoising of noisy data (left). Results obtained with
N2V [7] (here shown without residual connection and with sampling without
the center point) are subject to clearly visible checkerboard artifacts (2°¢ col-
umn). Our proposed method, N2V2, visibly reduces these artifacts, leading to
improved quality results (3¢ column, here shown with median center pixel re-
placement). The last column shows ground truth (not available to either method)

image restoration (CARE) methods [18,19,20,21,10,3]. However, when using su-
pervised CARE approaches, as initially proposed in [19], pairs of clean and dis-
torted images are required for training the method. For many applications in the
life-sciences, imaging such clean ground truth data is either impossible or comes
at great extra cost, often rendering supervised approaches as being practically
infeasible [7].

Hence, self-supervised training methods like Noise2Void (N2V) by Krull et
al. [7], which operate exclusively on single noisy images, are frequently used
in life-science research [1,7,9,8,15]. Such blind-spot approaches are enabled by
excluding/masking the center (blind-spot) of a network’s receptive field and
then training the network to predict the masked intensity. These approaches
collectively assume that the noise to be removed is pixel-wise independent (given
the signal) and that the true intensity of a pixel can be predicted after learning
a content-aware prior of local image structures from a body of noisy data [7].

More recently, methods that can sample the space of diverse interpretations
of noisy data were introduced [14,13]. While these approaches show great per-
formance on denoising and even artifact removal tasks, the underlying network
architectures and training procedures are space and time demanding [13] and
can typically not be used on today’s typical consumer workstations and laptops.
Hence, comparatively small blind-spot networks like N2V are available via con-
sumer solutions such as Fiji [17,4], ZeroCostDL4Mic [0], or the Biolmage.IO
Model Zoo [12], and are therefore still the most commonly used self-supervised
denoising methods.

Still, one decisive problem with blind-spot approaches such as Noise2Void
is that checkerboard artifacts can commonly be observed (see Figure 1 for an
illustrative example). Hence, in this work we present Noise2Void v2 (N2V2), a
variation of N2V that addresses the problem with checkerboard artifacts by a
series of small but decisive tweaks.

More concretely, the contributions of our work are: (i) showcasing and in-
specting the short-comings of Noise2Void, (i) introduction of blind-spot pixel
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replacement strategies, (i4¢) proposal of an adapted U-Net architecture that re-
places maz-pooling layers with max-blur-pooling layers and omits the top-most
skip-connection. (iv) a systematic evaluation of our proposed replacement strate-
gies and architectural changes on the BSD68 dataset [7], the Mouse, Convallaria
and Flywing datasets from [14,15] and two newly added salt and pepper (S&P)
noise regimes. (v) proposal of a new variation on the Convallaria dataset from [15]
that addresses what we believe to be non-ideal setup choices.

2 Related Work

The original CARE work by Weigert et al. [19] steered our field away from more
established and non-trained denoising methods towards modern data-driven deep
denoising methods. When supervised, such methods train neural networks on
pairs of low-quality and high-quality images that are pixel-perfectly aligned and
contain the exact same objects (or ‘scene’).

Such pairs need to be carefully acquired at the microscope, typically by
varying parameters such as exposure time and illumination intensity. In certain
modalities, e.g., cryo-TEM, acquisition of high-exposure images is impossible
and even the acquisition of pairs of noisy images is undesirable [3].

However, if such pairs of independently noisy images are available, Noise2Noise
training [10] can be applied and high quality predictions are still achievable.
Later, Buchholz et al. [2], extended these ideas to full cryo-ET workflows [11].

Still, clean ground truth data or a second set of independently noisy images is
typically not readily available. This motivated the introduction of self-supervised
methods such as Noise2Void [7] and Noise2Self [1]. The simplicity and applica-
bility of these methods makes them, to-date, the de-facto standard approach
used by many microscopists on a plethora of imaging modalities and biological
samples. All such blind-spot approaches exploit the fact that for noise which is
independent per pixel (given the signal), the intensity value of any given pixel
can in principle be estimated from examining the pixels image context (sur-
rounding). This is precisely what content-aware image restoration approaches
do. Pixel-independent noise, instead, can by definition not be predicted, leading
to a situation where the loss minimizing prediction does, in expectation, coincide
with the unknown signal at the predicted pixel [7,1,10].

An interesting extension of N2V was introduced by Krull et al. [3]. Their
method, called Probabilistic Noise2Void (PN2V), does not only predict a single
(maximum likelihood) intensity value per pixel, but instead an entire distribution
of plausible pixel intensity values (prior). Paired with an empirical (measured)
noise-model [3,15], i.e., the distributions of noisy observations for any given
true signal intensity (likelihood), PN2V computes a the posterior distribution of
possible predicted pixel intensities and returns, for example, the MMSE of that
posterior.

A slightly different approach to unsupervised image denoising was proposed
by Prakashet al. [14,13]. Their method is called (Hierarchical) DivNoising and
employs a variational auto-encoder (VAE), suitably paired with a noise model
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Fig.2: Left: the N2V architecture in [7] is a standard U-Net [16] with a residual
connection. Right: our N2V2 architecture drops the residual connection, removes

the top-most skip-connection and replaces the max-pooling layers with max-blur-
pooling layers [21]

of the form described above [8,15], that can be used to sample diverse inter-
pretations of the noisy input data. Note that this is quite different from being
able to predict or sample different intensities per pixel. DivNoising is sampling
different multi-pixel structures that are () in-line with the noisy observation,
and (i¢) consistent with the learned content-aware structural prior given the full
body of noisy training data.

2.1 Particularities of the Publicly Available Convallaria Dataset

Self-supervised denoising methods are built to operate on data for which no high-
quality ground truth exists. This makes them notoriously difficult to evaluate
quantitatively, unless when applied on data for which ground truth is obtainable.

To enable a fair comparison between existing and newly proposed methods,
several benchmark datasets have been made available over the years. One ex-
ample is the Convallaria data, first introduced by Lalit et al. [15]. This dataset
consists of 100 noisy short exposure fluorescence acquisitions of the same 1024 x
1024px field of view of the same sample. The corresponding ground truth im-
age used to compare against was created by pixel-wise averaging of these 100
independently noisy observations.

In later work [15,14], the proposed methods were trained on 95 of the indi-
vidual noisy images, while the remaining 5 images have been used for validation
purposes. For the PSNR values finally reported in these papers, the predictions
of the top left 512 x 512 pixels of all 100 noisy are compared to the corresponding
part of the averaged ground truth image. In this paper we refer to this dataset
and associated train/validation/test sets as Convallaria_95.

We are convinced that training self-supervised image denoising methods on
95 noisy observations of the exact same field of view is leading to slightly mislead-
ing results (that overestimate the performance to be expected form the tested
method in cases where only one noisy image per sample exists. Also note that in
cases where already as few as two noisy observations per sample are available,
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Fig.3: The original Noise2Void replacement strategy in [7] chooses a random
pixel from the center pixel’s local neighborhood, which may lead to artifacts like
checkerboard patterns in denoised images (see Fig. 5)

a network can be trained via Noise2Noise [10]. With 95 such instances avail-
able, one could even average those and use the average as ground truth for fully
supervised training CARE training [19].

Hence, we propose here to use the Convallaria data differently, namely by
selecting one of the 100 images and tiling it into 64 tiles of 128 x 128px. Of
these tiles, 56, 4, and 4 are then used for training, validation and testing respec-
tively. See the supplementary material for more information. We refer to this
data and train/validation/test split as Convallaria_1 Please see Section 4 for a
thorough evaluation of achievable denoising results when using Conwvallaria_95
versus Convallaria_1.

3 Method

As can be seen in Fig. 1, denoising predictions from a vanilla N2V model can
exhibit considerable amounts of unwanted checkerboard artifacts. After investi-
gating this phenomenon on several datasets, our hypothesis is that these artifacts
are caused by two effects in the vanilla N2V design: (¢) missing high-frequency
suppression techniques to counteract strongly noisy pixel values that really stick
out with respect to their close neighbors, and (i¢) an amplification of this effect
due to N2V’s self-supervised input replacement scheme (blind-spots). Below we
describe to measures we introduce in N2V2 to mitigate these problems.

3.1 A Modified Network Architecture for N2V2

The default Noise2Void configuration employs a residual U-Net with 2 x 2 max-
pooling layers throughout the encoder [7]. We propose to change this architecture
in three decisive ways by (¢) removing the residual connection and instead use
a regular U-Net, (¢4) removing the top-most skip-connection of the U-Net to
further constrain the amount of high-frequency information available for the final
decoder layers, and (#i¢) replacing the standard max-pooling layers by max-blur-
pool layers [21] to avoid unwanted shifting of structures. In Figure 2 we highlight
all proposed architectural changes we propose for N2V2.
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mean:

Fig.4: The average center pixel replacement strategy calculates the mean or
median of the pixel’s local neighborhood while excluding the center pixel itself

3.2 New Sampling Strategies to Cover Blind-Spots

As mentioned before, self-supervised denoising methods introduce blind-spots,
effectively asking the network to perform content-aware single pixel inpaint-
ing [7,1,8,15].

During training, a self-supervised loss is employed that compares measured
(and left out) pixel values with the corresponding pixel values predicted by the
trained network (to which only the local neighborhood of the respective blind-
spot pixels is given).

Let X € MY*" be a patch in a given input image with intensity range 91.
W.lLo.g., let z; be a single pixel in X. As loss for a given patch X, Noise2Void [7]
starts with proposing

LN2V-naive (X, f ()) = (f (X \{xl})z - xi)2 ’ (1)

where X \{z;} denotes the exclusion of pixel z; from X. This exclusion operation
would be computational inefficient when being implemented naively in convo-
lutional networks. Krull et al. have therefore proposed not to exclude x;, but
rather to replace x;’s value and thereby hiding the true intensity of blind-spot
pixels:

Snov(X,£()) = (F(r (X)), —a)° 2)

where r (X) assigns a new value to z; in X. While Eq. (2) can be evaluated
efficiently compared to Eq. (1), it turns out that the choice of r(X) is more
sensitive than originally believed, with some choices leading to emphasized visual
artifacts like the ones shown in Figure 1.

Default N2V Pixel Sampling Strategies (uwCP and uwoCP). In [7],
Krull et al. analyze different blind-spot pixel replacement methods and settle
for one default method in their public implementation'. This default method,
called UPS, is ubiquitously used by virtually all users world-wide and samples a
pixel z; uniformly at random from a small neighborhood N C X of size w’ x b’

! https://github.com/juglab/n2v
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around a blind-spot pixel z; (including z; itself). We refer to this replacement
technique as uwCP, and illustrate it in Figure 3.

The first obvious observation is that with probability of 1/ (w'- k'), 7 will
equal 7, i.e., no replacement is happening. In these cases, the best solution to any
model f (-) will be the identity, which is clearly not intended for denoising tasks.
Therefore, in Probabilistic Noise2Void (PN2V) [5], the available implementation?
started using a slightly altered sampling strategy that excludes the center pixel
from being sampled, i.e., i # j, which we refer to as uwoCP.

Blind-Spot Replacement Strategies for N2V2. In contrast to the blind-
spot replacement strategies via sampling from N, we propose to compute replace-
ment strategies computed from the entire pixel neighborhood N. Specifically, we
propose I'mean(N) = mean(IN \{z;}) and rpedian(IN) = median(N \{z;}) as re-
placement strategies, and refer to them as mean and median replacement strate-
gies, respectively.

Note that the exclusion of the center pixel is important in order to fully
remove any residual information about the blind-spot pixels to be masked. Please
refer to Figure 4 for a visual illustration.

4 Evaluation

We evaluate our proposed pixel replacement strategies and the architectural
changes on multiple datasets and perform different ablation studies. The covered
datasets with their experiment details are described in Section 4.1. Evaluation
metrics are listed in Section 4.2. Results on data with S&P noise are given in Sec-
tion 4.3. Complementary results with other noise types are given in Section 4.4.
In Section 4.5, we finally shed light on aspects on generalization and evaluation
in scenarios where only single noisy recordings are available.

4.1 Dataset Descriptions and Training Details

All dataset simulation and method evaluation code, together with the used train-
ing configurations, is publicly available on GitHub?.

General Settings In all network trainings, we use an Adam optimizer with a
learning rate scheduler which halves the learning rate after hitting a plateau with
a patience of 10. In each patch, 0.198% of pixels are randomly chosen as blind-
spots and subject to pixel replacement with a neighborhood of size w’ = h’ = 5.

2 https://github.com/juglab/pn2v

3 https://github.com/****censored-for-reviewskkktskkkkxkk
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Method Mouse SP3 Mouse SP6 Mouse SP12
Input 20.03 18.72 17.76

~  N2Vasin[7] 2132 2069 2099
N2V w/ uwoCP as in [3] 35.17 34.24 33.49

Fully 2y w/ores, w/uwoCP 3544 3489 ¢ 34.12_
self. N2V w/o res w/ mean 35.29 34.71 33.66
supervised N2V w/o res w/ median 35.23 35.07 33.45
N2V2 w/ uwCP 35.74 35.32 34.19
N2V2 w/ uwoCP 35.91 35.47 34.52
N2V2 w/ mean 35.51 35.01 34.17
N2V2 W/ median 35.81 35.50 34.54

©Sel-  PN2V [ 2967  N/A 1 N/A
supervised DivNoising [14] 36.21 N/A N/A

Supervised CARE [19] 3703  N/A ] N/AT T

Table 1: Quantitative results on data with simulated salt and pepper noise. Re-
sults are given in dB of averaged PSNR on test data. Overall best is underlined.
Best fully self-supervised is in bold

BSD68 An evaluation on natural images is done with the BSD68 dataset as
used in the original Noise2Void paper [7]. For training, we use the same 400
natural gray scale images of size 180 x 180px from [20]. From those, 396 are
used as training data and 4 for validation as described in Noise2Void. BSD68
networks are of depth 2 with 96 initial feature maps and are trained for 200
epochs, with 400 steps per epoch, a batch size of 128, and an initial learning
rate of 0.0004.

Convallaria We evaluate on the fluorescence imaging dataset Convallaria by
[15]. Due to its specialities as described in Section 2.1, we call it Convallaria_95.
Additionally, we introduce the Convallaria_1 dataset where the input corresponds
to only one single noisy observation of 1024 x 1024px and the corresponding
ground truth is the average of the 100 noisy Convallaria observations. This image
pair is divided into non-overlapping patches of 128 x 128px, resulting in 64
patches. These patches are shuffled and 56, 4, and 4 patches are selected as
training, validation and test data respectively (see Supplementary Figure S3).
We train Convallaria_95 and Convallaria_1 networks with depth 3, with 64 initial
feature maps, and for 200 epochs, with 10 steps per epoch, a batch size of 80,
and an initial learning rate of 0.001.

Mouse We further conduct evaluations based on the ground truth Mouse
dataset from the DenoiSeg paper [5], showing cell nuclei in the developing mouse
skull. The dataset consists of 908 training and 160 validation images of size
128 x 128px, with another 67 test images of size 256 x 256px. From this data, we
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Method Flywing G70 Mouse G20 BSD68
Input 17.67 22.52 21.32
~ N2Vasin[7] 2520 3412 27.70
N2V w/ uwoCP as in [3] 25.04 33.94 27.37
N2V w/o res, w/ uwoCP 25.24 34.20 26.95
Fully N2V w/o res w/ mean 2554 3449 2825
self. N2V w/o res w/ median 25.57 34.41 27.49
supervised N2V w/ bp w/ uwCP 25.30 34.17 27.69
N2V w/o sk w/ uwCP 25.49 34.63 27.88
N2V2 w/ uwCP 25.42 34.65 28.04
N2V2 w/ uwoCP 25.49 34.59 27.97
N2V2 w/ mean 25.48 34.61 28.31
N2V2 w/ median 25.46 34.74 28.32
© Self-  PN2V [ 2485 3419  N/A
supervised DivNoising [14] 25.02 34.13 N/A
Supervised CARE [19] 2579 3511  29.06

Table 2: Quantitative results: simulated Gaussian noise. Results are given in
dB of averaged PSNR on test data. Overall best is underlined. Best fully self-
supervised is in bold

simulate Mouse_G20 by adding Gaussian noise with zero-mean and standard de-
viation of 20. Furthermore, we simulate Mouse_sp3, Mouse_sp6 and Mouse_sp12,
three datasets dominated by Salt&Pepper noise. More specifically, we apply Pois-
son noise directly to the ground truth intensities, then add Gaussian noise with
zero-mean and standard deviation of 10, and clip these noisy observations to
the range [0,255]. Then, we randomly select p% of all pixels (p € [3,6,12]) and
set them to either 0 or 255 with a probability of 0.5. We train networks on the
Mouse dataset with depth 3, with 64 initial feature maps, and for 200 epochs,
with 90 steps per epoch, a batch size of 80 and an initial learning rate of 0.001.

Flywing Finally, we report results on the Flywing dataset from the DenoiSeg [5],
showing membrane labeled cells in a flywing. We follow the data generation pro-
tocol described in [14], i.e., we add zero-mean Gaussian noise with a standard
deviation of 70 to the clean recordings of the dataset. The data consists of 1428
training and 252 validation patches of size 128 x 128px, with additional 42 im-
ages of size 512 x 512px for testing. On the flywing dataset, we train networks
with of depth 3, with 64 initial feature maps, and for 200 epochs, with 142 steps
per epoch, a batch size of 80 and an initial learning rate of 0.001.

Data Augmentation All training data is 8-fold augmented by applying three
90 deg rotations and flipping. During training, random 64 x 64 crops are selected
from the provided training patches as described in [7].
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N2V N2V N2V
w/o res w/o res, w/o res, N2V2
Input w/ uwoCP  w/ mean w/ median w/ median
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Fig. 5: Qualitative results on Mouse SP12 dataset. This data is dominated by
12% S&P noise, as can be seen in the input image (15*). The results of the N2V
method without residual connection and sampling without the center point (279,
PSNR 33.10) show checkerboard artifacts. These remain when using median
replacement (4", PSNR 32.43), are reduced in the results when using mean
replacement (3", PSNR 33.01) and eliminated in the N2V2 results with median
replacement (5%, PSNR 33.34)

4.2 Evaluation Metrics

We compute peak signal-to-noise ratio (PSNR) in all conducted experiments,
evaluated with respect to the corresponding high-SNR images. For the BSD68
dataset, the target range of the PSNR computation is set to [0, 255]. For all other
datasets, the range is obtained by computing the min and max values of each
corresponding ground truth image. We finally report PSNR values averaged over
the entire test data.

4.3 Results on Mouse SP3, SP6, and SP12 (Salt&Pepper noise)

The results for the salt and pepper datasets are shown in Table 1. First of all, we
see the striking impact of excluding the center pixel from the replacement sam-
pling for S&P noise: while N2V as in [7] can barely increase the PSNR, we see
clearly improved results when excluding the center pixel from random sampling
for replacement. In addition, a non-residual U-Net further improves the result
compared to the residual U-Net that is used by default in the Noise2Void config-
uration. In a similar line, also our other architecture adaptations yield increased
PSNR values. While the proposed replacement strategies mean and median do
not result in better quantitative results, we are surprised to see that the mean re-
placement strategy clearly reduces checkerboard artifacts qualitatively as can be
seen in Figure 5. We finally observe that the best fully self-supervised results in
the medium and high noise regime are obtained by combining both architecture
and replacement adaptations.
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N2V N2V N2V
w/o res w/o res, w/o res, N2V2

w/ uwoCP  w/ mean w/ median w/ median

Fig.6: Qualitative results on the BSD68 dataset. After applying the trained
N2V model without residual connection and sampling without the center point
to the noisy input (1), the result shows undesirable checkerboard artifacts (29,
PSNR 29.01).These remain when using median replacement (4", PSNR 28.79),
are reduced with mean replacement (34, PSNR 29.27), and eliminated when
using N2V2 with median replacement (5", PSNR 29.24) method

4.4 Evaluation Flywing G70, Mouse G20, BSD68

We report results for the datasets with simulated Gaussian noise in Table 2. In
contrast to the results for simulated salt and pepper noise, we interestingly see
that results do not improve simply by excluding the center pixel from the window
for sampling replacement. Also, not using a residual U-Net only yields slight
improvements for the microscopy datasets and none for the natural image dataset
BSD68, where PSNR even drops. However, the alternative replacement strategies
mean and median lead to improved PSNR values, as well as the architecture
adaptations bp sk. Combining both adaptations leads to the best self-supervised
results for the Mouse G20 and BSD68 datasets.

This is in line with qualitative results shown in Figure 6 for the BSD dataset,
where we clearly see checkerboard artifacts in the N2V standard setting, but sig-
nificantly cleaner predictions with the proposed adaptations. Additional quali-
tative results for given in the supplementary material section S1.

4.5 Evaluation of Real Noisy Data: Convallaria_95 and Convallaria_1

As displayed in Table 3, both the median replacement strategy as well as the
N2V2 architecture adaptations improve the results for both Convallaria datasets.
This can also be seen in the qualitative example in Figure 7. N2V2 with median
replacement strategy yields the best fully self-supervised results for both cases.
Interestingly, according to PSNR values, the mean replacement method does not
improve when compared to the baseline N2V performance.

Comparing the two columns in Table 3, a considerable difference in PSNR
is apparent, with the denoising results when using the reduced Convallaria_1
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N2V N2V N2V
w/o res w/o res, w/o res, N2V2
Input w/ uwoCP  w/ mean w/ median w/ median

Fig. 7: Qualitative results on the convallaria dataset. After applying the trained
N2V model without residual connection and sampling without the center point to
the noisy input (1), the result shows undesirable checkerboard artifacts (279,
PSNR 35.78). These are eliminated when using mean (3'¢, PSNR 35.91) and
median replacement (4", PSNR 36.39 and as well with the N2V2 with median
replacement (5", PSNR. 36.37)

dataset being poorer. This leads to two possible interpretations, namely () hav-
ing 95 noisy images of the same field of view allows for better results of the
self-supervised denoising methods or (i¢) results are poorer on the hold-out tiles
of the Convallaria_1 test set because they represent parts of the field of view
that were not seen during training. However, judging by Table 4, which displays
a comparison of the results on the train vs the test tiles, this seems not to be
the case. A similar conclusion is suggested by Figure 8, showing a qualitative
comparison between denoised train and test tiles. Please also refer to the supple-
mentary material section S2 for additional qualitative results obtained for the
whole slide.

5 Discussion & Conclusions

In this work, we introduced N2V2, an improved setup for the self-supervised
denoising method Noise2Void by Krull et al. [7]. N2V2 which is build around two
complementary contributions: (¢) a new network architecture, and (i:) modified
pixel value replacement strategies for blind-spot pixels.

We showed that N2V2 reduces previously observed checkerboard artifacts,
which have been responsible for reduced quality of predictions from Noise2Void.
While we observed in qualitative examples that the mean replacement strategy
is overall more successful than the median replacement strategy, we did not find
this trend consistently in all quantitative results. Nonetheless, we have shown
that only changing the architecture or only switching to one of our sampling
strategies does already lead to improved results. Still, the combination of both
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Method Convallaria_ 95 Convallaria_1
Input 29.40 25.81

~ N2Vasin[] 3580 3143
N2V w/ uwoCP as in [3] 35.58 31.24

Fully 2y W/ores, w/uwoCP 3576 __ 3127
self. N2V w/o res w/ mean 35.90 31.34
supervised N2V w/o res w/ median 36.39 31.77
N2V2 w/ uwCP 36.26 31.45
N2V2 w/ uwoCP 36.31 31.51
N2V2 w/ mean 36.27 31.48
N2V2 w/ median 36.36 31.28

©Self-  PN2V [y 3647 N/A
supervised DivNoising [14] 36.90 N/A

Supervised CARE [19] 367 N/A

Table 3: Quantitative results on real Convallaria data. Results are given in dB of
averaged PSNR on test data. Overall best is underlined. Best fully self-supervised
is in bold

Method Convallaria_1 train Convallaria 1 test
Input 25.21 25.81
S N2V w/o res, w/ uwoCP 3052 3127
Fully N2V w/ores, w/ mean 3137 3134
self- N2V w/o res, w/ median 31.35 31.77
supervised N2V2 w/ mean 31.10 31.48
N2V2 w/ median 31.06 31.28

Table 4: Quantitative results on the Convallaria_1 train and test sets. Results
are given in dB of averaged PSNR

yields best overall denoising results (measured by means of PSNR to ground
clean truth images).

Another important observation is that the residual connections, which are by
default used in N2V, can lead to worse results. This is most apparent in the S&P
noise setting, where denoising with a residual U-Net and sampling replacement
with inclusion of the center pixel (uwCP) yields at best a marginal improve-
ment over the input. Additionally, we saw similar behaviour when combining
the residual U-Net with the average replacement method (not shown).

When using a residual U-Net, pixels altered by a huge amount of noise appear
at times to be strongly biased by the residual input and denoising is therefore
negatively effected. Without residual connections, on the other hand, this bias
is removed and performance therefore improved.
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Fig.8: Does prediction on training data impact N2V quality? Predictions on
data which used for training N2V (left) and hold-out data (right)

Additionally, we have introduced a modified Convallaria data set (Conval-
laria_1), now featuring (i) a clean split between train, validation and test sets,
and offering (i7) a more realistic scenario to test self-supervised denoising meth-
ods. The newly proposed dataset includes only one noisy input image instead the
previously used 99 noisy acquisitions of the same field of view of the same sample.
We strongly urge future methods to be evaluated on this improved Convallaria
setup.

As a final point of discussion, we note that since we decided to train all N2V
and N2V2 setups much longer than in previous publications (e.g., [8]), even
the baselines we have simply re-run now outperform the corresponding results
as reported in the respective original publications. This indicates that original
training times were chosen too low and urges all future users of self-supervised
denoising methods to ensure that their training runs have indeed converged
before stopping them®.

We have presented an improved version of N2V, namely N2V2, a self-supervised
denoising method leading to denoising results of improved quality on virtually
all biomedical microscopy data. At the same time, N2V2 is equally elegant, does
not require more or additional training data, and is equally computationally ef-
ficient as N2V. Hence, we hope that N2V2 will mark an important update of
N2V and will continue the success which N2V has celebrated in the past three
years.

4 Note that this is harder to judge for self-supervised compared to supervised methods
since loss plots report numbers that are computed between predicted values and noisy
blind-spot pixel values.
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Abstract. In this supplementary document, we provide additional qual-
itative results to further strengthen our findings as reported in the main

paper.

S.1 Additional qualitative results for BSD68

In the main paper, we report quantitative and qualitative results in Section 4.4
for the BSD68 natural images dataset. In Figure S.1 and Figure S.2, we add
more qualitative results to further underline the benefits of N2V2.

S.2 Whole slide results on the Convallaria_ 1 dataset

In the main paper, we report results on the Convallaria_1 dataset in Section
4.5. We discuss that although a clear separation of training data and test data
is a sound experimental setup even for self-supervised training scenarios, no
clear differences for denoising results have been observed. In Figure S.3, we
show additional qualitative results obtained with N2V2 w/ mean by visualizing
denoising results on the entire Convallaria slide in Figure S.3. The origin of each
patch, i.e., if being used in the training set, validation set, or test set, is further
indicated by the colored frame.
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N2V N2V N2V
w/o res w/o res, w/o res, N2V2
Input w/ uwoCP  w/ mean w/ median w/ median GT

Fig.S.1: Additional qualitative results on the BSD68 dataset. After applying
the trained N2V model without residual connection and sampling without the
center point to the noisy input (1%¢), the result shows undesirable checkerboard
artifacts (2°4).These remain when using median replacement (4'"), are reduced
with mean replacement (3'%), and eliminated when using N2V2 with median
replacement (5'%) method
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N2V N2V N2V
w/o res w/o res, w/o res, N2V2

w/ uwoCP  w/ mean w/ median w/ median

Fig.S.2: Even more qualitative results on the BSD68 dataset. After applying
the trained N2V model without residual connection and sampling without the
center point to the noisy input (15¢), the result shows undesirable checkerboard
artifacts (2°¢). These remain when using median replacement (4'1), are reduced
with mean replacement (3'4), and eliminated when using N2V2 with median
replacement (5'") method
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Fig.S.3: What is used for train and test? Red: used for training. Blue: used

for validation (i.e., , not for network parameter optimization during training of
: only used

N2V, but we still create a val-set due to historical reasons).
for testing
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