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ABSTRACT

This paper presents a novel machine learning-based approach to fragment-based
antibiotic drug design. We introduce a tool called FILTER, which uses chemical
structure data, pathway information, and protein targets to predict pharmacoki-
netic properties of existing and novel drugs. We report on three distinct experi-
ments using FILTER. The first experiment is an in-silico analysis that recreates
the historical discovery of penicillin derivatives, validating our approach against
known outcomes. The second experiment explores the combination of functional
groups from different antibiotic classes to create molecules with multiple mech-
anisms of action. We refer to this approach as hybridization as all synthesized
molecules are composed of fragments from both classes. Our final experiment is
forward-looking as it explores new chemical spaces to build a library of promising
compounds for further antibiotic development. In each of these experiments, FIL-
TER serves as an oracle, predicting physical properties and potential therapeutic
efficacy of the new molecular architectures, aiming to accelerate the drug devel-
opment process and address the challenge of antibiotic resistance. Our approach
represents an ongoing, significant shift from traditional drug discovery methods,
emphasizing the role of innovative technologies in combating the urgent global
threat of antimicrobial resistance.

Keywords: fragment-based drug design, antibiotic resistance, pharmacokinetics, hybrid antibiotics,
in silico analysis, retrosynthesis, chemical space, machine learning, antibiotic discovery, protein
targets

1 INTRODUCTION

Since the discovery of penicillin, antibiotics have become a cornerstone of modern medicine. How-
ever, the relentless emergence of antibiotic resistance has significantly undermined their efficacy,
presenting a formidable challenge in the treatment of bacterial infections. Traditional drug discov-
ery pathways, characterized by long timelines and high costs, are proving inadequate in the face of
the rapid evolution of resistant bacterial strains. Innovative technologies are imperative to accelerate
the discovery of new antibiotics. By integrating machine learning (ML) and artificial intelligence
(AI) into chemical synthesis and drug discovery, researchers can leverage computational power to
uncover novel compounds and predict their effectiveness, thereby streamlining the development
pipeline and reducing both time and expense.

This paper presents a tool, FILTER, and proposes experimental methodologies to explore the antibi-
otic space in search of antibiotic compounds. By ”antibiotic space,” we refer to the vast chemical
landscape that emerges from the combination and modification of molecular fragments derived from
existing antibiotics. This space includes both well-established and unexplored derivatives, offering
the potential to uncover new compounds with enhanced antibacterial properties. Borrowing from a
concept in organic chemistry involving the deconstruction of known chemical structures into simpler
precursor components, our first experiment employs a historical retrosynthetic analysis revisiting the
evolution of the discovery of antibiotics like penicillin. By taking early precursors within the peni-
cillin class, we recreate and extend the historical trajectory of the development of the penicillin
antibiotic class and its derivatives. This retrosynthesis validates our methodology but also sets a
precedent for its application to other classes of antibioticss. Such experiments can lead to a rapid
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expansion of the known chemical space and the creation of further modern antibiotics and deriva-
tives.

Furthermore, this leads to a second experiment in which we call hybrid antibiotic design. The hybrid
antibiotic design uses the insights gained from the historical analysis of antibiotic modifications and
the predictive capacity of FILTER to guide the synthesis of hybrid molecules combining multiple
mechanisms of action. This strategy aims to produce treatments that are effective against a broad
spectrum of bacterial pathogens, including those resistant to current therapies. Hybridization in-
volves combining functional groups from multiple antibiotic classes into single molecules. These
hybrids will be specifically designed to incorporate multiple mechanisms of action, potentially lead-
ing to more effective broad-spectrum treatments against a range of bacterial pathogens, including
those resistant to existing therapies.

The ability to generate viable antibiotic candidates from historical data means that the vast records
of antibiotic development are no longer just a repository of information but a dynamic toolkit for
innovation. This can significantly expedite the drug development process, reducing the timeline
from concept to clinical application, which is crucial in addressing the urgent global challenge of
antibiotic resistance.

Our final experiment is structured similarly to our second experiment with one major difference: the
antibiotics of interest. In this experiment, we diverge from a historical analysis by choosing newer
antibiotic compounds and exploring the resulting fragment-based space of molecules.

FILTER and the dynamic framework described in this paper not only enhances our understanding
of antibiotic evolution but also drives the innovation of new compounds that can be fast-tracked
into clinical testing. Our strategy represents a shift from traditional discovery methods to a more
integrated, technology-driven approach that accelerates the development of vital new antibiotics to
combat the growing threat of antimicrobial resistance.

The code and the datasets for this paper are available at https://anonymous.4open.science/r/FILTER/.

2 REPRESENTATION LEARNING WITH OUR CHEMICAL ORACLE: FILTER

A pivotal tool in our study is FILTER, an AI tool designed to predict the physical properties and
therapeutic efficacy of new molecular architectures. FILTER leverages comprehensive chemical
structure data, pathway information, and protein targets to identify potential pharmacokinetic prop-
erties and interactions within biological systems. FILTER employs predictive modeling techniques
that focus on the anticipated protein and protein pathway targets of the synthesized molecules. By
integrating data from various biological databases, FILTER can anticipate how new compounds will
interact with specific biological pathways, providing insights into their potential efficacy and safety
profiles. Additionally, FILTER distinguishes itself from other ‘oracle’ software Alhossary et al.
(2015) by incorporating a docking-based oracle which allows for direct analysis of a generated an-
tibiotic to bind to known targets within its expected antibiotic class Li et al. (2019). FILTER is
essential for extending analyses of under-explored antibiotic classes Centers for Disease Control
and Prevention (2022). It aids in the prediction of novel compounds that may exhibit distinct mech-
anisms of action compared to current clinical antibiotics, thereby addressing the growing issue of
antibiotic resistance. By identifying molecules that interact with novel targets or utilize different
biological pathways, FILTER enhances the likelihood of discovering effective treatments against
resistant bacterial strains.

2.1 MECHANISMS OF ACTION

A mechanism of action (MoA) (or ‘mode of action’) Parker et al. (2024) refers to the specific bio-
chemical interaction through which a drug substance produces its pharmacological effect. In the
context of antibiotics, the MoA typically involves disrupting essential bacterial processes, such as
cell wall synthesis, protein synthesis, or DNA replication . Understanding the MoA is crucial for de-
termining both the efficacy of a compound and its potential to overcome existing bacterial resistant
mechanisms.

FILTER predicts whether a synthesized molecule will engage its target in a manner that disrupts key
bacterial functions, thereby defining its MoA. This analysis is pivotal in determining if the compound
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will exhibit therapeutic effects similar to existing antibiotics or if it can introduce novel mechanisms
that circumvent current bacterial resistance strategies Sun & Chen (2024). By predicting MoAs
that involve novel targets or alternative biological pathways, FILTER supports the development of
antibiotics capable of overcoming resistant bacterial strains.

Our methodology addresses several limitations in current approaches to antibiotic discovery: data
scarcity, model scalability, and synthesis efficiency. By leveraging historical antibiotic data and
employing semi-supervised learning, we compensate for the lack of labeled data often encountered
in early-stage drug discovery. The architecture of FILTER allows for efficient processing of large
molecular datasets, enabling rapid screening of extensive chemical libraries. The integration of AI-
driven retrosynthesis with predictive analytics streamlines the process of identifying and evaluating
potential antibiotic candidates.

FILTER is also a docking-based oracle since it further refines MoA predictions by virtually sim-
ulating the binding interactions between molecules and target proteins. This simulation ensures
that the predicted MoA aligns with the molecule’s ability to physically interact with protein targets,
thereby enhancing the accuracy and reliability of the MoA predictions. By confirming the feasibility
of molecular binding, the docking analysis provides a critical layer of validation for the predicted
therapeutic actions of the compounds.

2.2 DATASETS

Our study utilizes a comprehensive set of datasets to train and validate the predictive models within
FILTER. These datasets encompass a wide range of chemical, biological, and structural information
essential for accurate property prediction and determination of MoAs.

• DrugBank Wishart et al. (2024). This database provides experimentally-derived physical proper-
ties and SMILES (Simplified Molecular Input Line Entry System) representations of molecules.
DrugBank serves as a foundational dataset for training models on drug-likeness and pharmacoki-
netic property predictions.

• Reactome Jassal et al. (2020). Reactome offers detailed information on protein-correlated path-
ways and their associated biological processes. This dataset is instrumental in mapping the inter-
actions between synthesized molecules and biological pathways, aiding in MoA prediction.

• Protein Data Bank (PDB) Berman et al. (2000). PDB contains high-resolution 3D structures of
protein targets, which are essential for the docking-based oracle component of FILTER.

• ANTIV Siamese Network Embeddings Redaction (YEARb). The ANTIV Siamese Network
(SNet) model was trained using ASCII string representation that describes the structure of an
input molecule representation (i.e., SMILES: Simplified Molecular Input Line Entry System
Weininger (1988)). The output of the SNet are embeddings that capture the structural and
functional similarities between molecules in the form of a high-dimensional vector represent-
ing molecular structures thus facilitating efficient comparison and clustering. In this way, we are
transferring the learning from the SNet (which considers context of protein-protein interactions,
pathways, and more) to a model that learn from input SMILES. By leveraging these embed-
dings, FILTER enhances its predictive capabilities, allowing for more accurate assessments of
drug-likeness, pharmacokinetic properties, and MoAs.

2.3 PREDICTION MODELS AND FEATURES

Prediction Models and properties predicted by FILTER. FILTER employs a suite of predictive
models to evaluate and predict various physical properties and biological interactions of synthesized
molecules. The integration of multiple models ensures a robust and comprehensive analysis of
each compound’s potential properties and efficacy. The prediction models used within FILTER are
listed and described in Table 1. Given physical properties predicted by our models, we then assess
the drug-likeness and pharmacokinetic profiles of synthesized molecules; these are enumerated in
Table 2 in Section A.1 of the Appendix.

Select features and their relevance. While FILTER calculates a broad spectrum of physical prop-
erties, certain features are particularly influential in determining a molecule’s drug-likeness and
therapeutic potential. Some of the most salient features are considered below.
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Table 1: Prediction models employed in FILTER.

Component Description

Neural Network (NN)
Predictions

Use SMILES representation of molecules to predict a range of
physical properties. NNs are adept at capturing complex, non-
linear relationships within the data, making them suitable for ac-
curate property prediction based on the structure.

XGBoost Predictions This XGBoost Chen & Guestrin (2016) gradient boosting frame-
work predict physical properties using the last layer of the neural
network. XGBoost enhances prediction accuracy by effectively
handling feature interactions and preventing overfitting.

Predicted Embeddings Built around the SNet model, this component generates embed-
dings from input SMILES, capturing essential chemical features
in a high-dimensional space. These embeddings facilitate down-
stream clustering and pathway analysis.

SNet Embedding
Clustering

Using HDBScan Campello et al. (2013), we cluster similar
embeddings to identify protein pathways associated with near-
neighbor molecules. This clustering aids in predicting potential
biological interactions and MoAs using the Reactome dataset.

Quick Vina 2 (Autodock)
Analysis

Integrates input SMILES and protein targets to output dock-
ing scores. This analysis simulates the physical binding
of molecules to target proteins, measuring binding affinity
Copeland (2000) and specificity through a docking score.

• Rule of Five Lipinski et al. (1997): This heuristic evaluates drug-likeness by assessing molecular
weight, lipophilicity (logP), and hydrogen bonding capabilities. Compounds adhering to the Rule
of Five are more likely to exhibit favorable absorption and permeation characteristics.

• Polar Surface Area (PSA): PSA is pivotal in predicting a molecule’s ability to permeate cell
membranes and its overall bioavailability. Molecules with lower PSA values typically exhibit
better membrane permeability.

• Bioavailability: Measures the proportion of a drug that enters systemic circulation, providing
insight into its potential efficacy. High bioavailability is desirable for effective therapeutic action.

• Rotatable Bond Count: Influences the molecule’s flexibility, which can affect binding affin-
ity and specificity to target proteins. A balanced number of rotatable bonds ensures sufficient
flexibility without compromising binding stability.

• caco2 Permeability Kus et al. (2023): Predicts the molecule’s ability to cross the intestinal ep-
ithelium, a critical factor for oral bioavailability. High permeability suggests efficient absorption
and systemic distribution.

2.4 FILTER AS A REPRESENTATION LEARNING TOOL

FILTER plays a central role in our representation learning framework by providing high-quality,
predicted features that enhance the ability of the model to make accurate predictions about novel
compounds. FILTER facilitates the incorporation of domain-specific knowledge, bridging the gap
between chemical structure and biological activity. Our approach aims to develop a methodology
and a library of lead chemicals that pharmacologists can utilize to facilitate their research and discov-
ery of novel therapeutic agents. This synergy between FILTER and our learning models facilitates
the discovery of promising antibiotic candidates with optimized properties and novel mechanisms
of action. FILTER works in tandem with GEN Redaction (YEARa), our tool for synthesizing com-
pounds. While GEN generates potential molecular structures based on retrosynthetic analysis, FIL-
TER evaluates these structures for their drug-like properties and potential efficacy. This integration
allows for rapid iteration of molecule generation and evaluation, significantly accelerating the drug
discovery process.
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Figure 1: Retrosynthetic analysis of the penicillin class: modeling historical discoveries of deriva-
tives ampicillin and amoxicillin using Penicillin G and Methicillin.

Figure 2: Chemical space exploration of new or unexplored antibiotic classes.

3 EXPERIMENTAL METHODS

In this section we consider three experiments using FILTER as a computational oracle, each aimed
at furthering our understanding of antibiotic development through an in silico approach.

3.1 EXPERIMENT 1: RETROSYNTHETIC ANALYSIS OF PENICILLIN DERIVATIVES

As depicted in Figure 1, the first experiment focuses on the retrosynthetic analysis of the penicillin
class with the aim of reconstructing the development history of penicillin derivatives. This approach
demonstrates the methodical advancement of antibiotic design and validates the effectiveness of
retrosynthetic techniques. GEN is used for to reconstruct more advanced derivatives from simpler
antecedents. The output library of compounds is then processed by FILTER to evaluate efficacy and
predict potential protein interactions. By cross-referencing AI-generated synthetic pathways with
documented historical synthesis routes, we assess the predictive success of the tool.

3.2 EXPERIMENT 2: HYBRIDIZATION OF FUNCTIONAL GROUPS FROM MULTIPLE
ANTIBIOTIC CLASSES

The second experiment focuses on the design of hybrid antibiotics by strategically combining func-
tional groups from different classes of antibiotics with the aim of creating compounds with multiple
mechanisms of action. We selected functional groups on the based on their known efficacy and
mechanism of action from the chemical space exploration phase as well as historical domain knowl-
edge. Each synthesized hybrid molecule is analyzed using FILTER to rank leads based on predicted
efficacy, expected spectrum of activity (i.e., pathway involvement), and potential resistance evasion
capabilities derived from hybridization. In silico docking is conducted to evaluate the interactions
of these hybrids with various bacterial targets, further evaluating their broad-spectrum activity and
efficacy against resistant strains. The ultimate goal of this approach is to develop a comprehensive li-
brary of hybrid antibiotics. This library may contain compounds that not only demonstrate enhanced
efficacy, but also incorporate novel or expanded mechanisms of action, thus offering promising can-
didates for further development.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 EXPERIMENT 3: CHEMICAL SPACE EXPLORATION: PATHWAY ANALYSIS

The third experiment involves exploring new chemical spaces by analyzing the biochemical path-
ways affected and predicted effects of synthesized compounds from novel antibiotic classes. As
depicted in Figure 2, our methodology for this experiment is similar to the second experiment.
However, in this case, we synthesize compounds from fragments of antibiotic classes in which the
derivative space is ill-explored. We again leverage FILTER to assess the potential efficacy of these
compounds by simulating their interactions within bacterial metabolic pathways, including docking
simulations to predict binding affinities to target proteins. The primary goal of this approach is to
build a library of promising compounds, some with novel mechanisms of action and others that
expand known mechanisms.

4 RESULTS

We present a comprehensive analysis of the FILTER model’s performance across multiple tasks and
methodologies. We begin by evaluating the model’s ability to predict various physical properties of
molecules by comparing the performance of neural networks, XGBoost, and a combined approach.
Next, we explore the application of Siamese Network embeddings to cluster newly synthesized
molecules and to infer their potential biological pathways. Finally, we assess the antibacterial po-
tential of our synthesized compounds through molecular docking simulations.

4.1 PHYSICAL PROPERTIES

We evaluated the performance of FILTER across several binary classification and regression tasks
for predicting physical properties. These evaluations were conducted using neural networks (NN),
XGBoost (XGB), and a combined model that integrates both approaches. A detailed comparison of
performance across all target properties is summarized in Table 3 in Section A.2 of the Appendix.

As an example of each task type, we consider bioavailability and PSA predictions. All models exhib-
ited strong performance predicting bioavailability with ROC AUC values above 0.90. The combined
model achieved the highest ROC AUC of 0.9104, slightly outperforming both individual models.
Additionally, it demonstrated high precision (0.9653), recall (0.8385), and an F1 score of 0.8975,
suggesting reliable performance in predicting bioavailability. For predicting polar surface area, XG-
Boost again provided the best results with an RMSE of 0.8453 and MAE of 0.4361. Although the
combined model reduced some prediction error compared to the neural network, XGBoost was the
most accurate for this task.

Overall, the combined model consistently provided the best results for binary classification tasks,
while XGBoost was the most effective for regression tasks. These findings demonstrate the flexibil-
ity and utility of FILTER in predicting both categorical and continuous molecular properties.

4.2 CLUSTERING BY SIAMESE NETWORK EMBEDDINGS

Having established the effectiveness of FILTER in predicting physical properties, we next investi-
gated its capacity to capture more complex biological relationships through the use of ANTIV SNet
embeddings.

SNet Model Overview Redaction (YEARb). The SNet model utilizes Node2Vec Grover & Leskovec
(2016) to generate embeddings for drugs and antiviral peptides (AVPs) from a multigraph of drug-
protein and protein-protein interactions. Node2Vec performs random walks through the graph, cap-
turing topological and functional information about each node. The resulting embeddings map drugs
and AVPs into a continuous feature space where proximity between vectors represents similarity in
biological function.

The SNet is trained using these embeddings to predict the similarity between drug and AVP pairs.
The SNet consists of two identical subnetworks that process the drug and AVP embeddings in paral-
lel. During training, the model minimizes a contrastive loss function, encouraging the embeddings
of similar drug-AVP pairs to be close together, while pushing dissimilar pairs apart. This enables
the model to create meaningful embeddings that reflect the likelihood of a drug sharing antiviral
properties with an AVP, such as inhibiting viral entry, fusion, or replication.
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Figure 3: t-SNE plot of SNet embeddings showing clustering of known molecules and newly syn-
thesized molecules; clusters correspond to biological similarity and potential pathway interactions.

Embedding prediction and pathway clustering. To predict the pathways for newly synthesized
molecules, we trained a model to predict the embeddings of the SNet using only SMILES repre-
sentations of molecules as input (see Figure 4 in Section A.2 of the Appendix). Importantly, this
is knowledge transfer from the SNet–which requires protein-protein interaction (PPI) and pathway
data–into a model that can predict similar embeddings based solely on chemical structure.

We then use this model to predict SNet embeddings for our newly synthesized molecules. These
predicted embeddings are placed into the same vector space as known drugs, which has pathway
information from the Reactome database. By embedding newly synthesized molecules alongside
known drugs, we apply the HDBScan clustering algorithm Campello et al. (2013) to group them
according to their proximity to drugs with known pathway interactions. This allows us to infer the
likely pathways for the new molecules on the basis of their clustering with known compounds.

As depicted in Figure 3, we reduce the dimensionality of the SNet embedding space to visualize
this process using t-SNE (t-distributed stochastic neighbor embedding) plot. The plot provides an
overview of how newly synthesized molecules are positioned relative to known molecules in the
SNet space. Distinct clusters in this space correspond to specific protein pathways and biological
functions, offering valuable insight into the functional relevance of these newly synthesized com-
pounds.

By predicting SNet embeddings for new molecules and clustering with known compounds, we are
able to assign functional similarities and hypothesize potential protein-pathway interactions, even
for molecules without prior biological data. This methodology is especially valuable for prioritizing
newly synthesized compounds for further in vitro or in vivo validation.

4.3 DOCKING PREDICTIONS WITH QUICKVINA 2

We further evaluate the specific antibacterial potential of our newly synthesized molecules through
molecular docking simulations against key antibiotic protein targets. We used QuickVina 2 (qv-
ina02) Alhossary et al. (2015) to perform molecular docking simulations against five E. coli protein
targets, specifically penicillin-binding proteins (PBPs), which play a critical role in the efficacy of
penicillin-class antibiotics. QuickVina 2 is an advanced docking tool that combines the speed of
QuickVina 1 with the accuracy and reliability of AutoDock Vina, making it highly suitable for high-
throughput screening of large compound libraries.

QuickVina 2 outputs negative scores, with more negative values indicating stronger binding affini-
ties. To facilitate intuitive comparison, we inverted these scores, making higher values correspond
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to stronger binding affinities, which are typically associated with greater antibacterial potential. The
primary objective was to identify synthesized molecules most likely to behave similarly to known
antibiotics in the penicillin class.

Our focus on PBPs as docking targets is driven by the historical significance and diversity of peni-
cillin as the longest-known antibiotic class. This approach enables us to recreate and evaluate known
penicillin derivatives in silico using QuickVina 2 as an oracle for docking predictions, but also test
newly synthesized molecules. We ranked the synthesized molecules based on their predicted binding
strength to the PBPs. Molecules with docking profiles closely resembling those of known penicillin
antibiotics were prioritized as candidates for further experimental validation. This method allows
pharmacologists to efficiently narrow down the pool of synthesized compounds, focusing on those
with the highest likelihood of exhibiting penicillin-like antibacterial activity. More broadly, the
broader goal of the FILTER model is to provide pharmacologists with a framework to evaluate any
protein target associated with an antibiotic class of interest, not just penicillin.

The results of our QuickVina 2 simulations revealed a range of binding affinities to our selected
PBPs. Top candidates show scores comparable to those of known penicillin-class antibiotics. For
example, our highest-scoring novel compound exhibited a binding score of 13.2 compared to ampi-
cillin’s score of 10.2 under the same docking conditions. docking shows the predicted binding sites
of the proteins we analyzed in our docking simulations.

For the third experiment, we focused on synthesizing molecules similar to the recently discovered
antibiotic, Halicin, known for its role as a JNK inhibitor. Using a chemical space exploration ap-
proach, we targeted fragments of antibiotic classes that are under-explored. We employed docking
simulations to evaluate the interactions of the synthesized compounds. The results, as shown in
the Table 4 in Section A.2 of the Appendix, highlight a range of binding affinities, with several
compounds exhibiting strong inhibition across multiple JNK proteins. Notably, the top-performing
compound showed a binding score of 13.4 against JNK1, closely resembling the binding affinities
of Halicin analogs, indicating promising potential for further exploration and optimization.

The results of our QuickVina 2 simulations have significant implications for the field of drug discov-
ery, particularly in the realm of antibacterial drug development. These findings provide a valuable
in silico screening method, accelerating the drug discovery process by pinpointing molecules with
high potential for antibacterial efficacy. By identifying several promising candidates with strong
binding affinities to PBPs, we have demonstrated the potential of FILTER to accelerate early-stage
drug discovery.

5 RELATED WORKS

Several key studies have laid the foundation for these innovations. One of the contributions in
this area is the work by Zhang et al. (2019), which developed a Bayesian semi-supervised graph
convolutional neural network (GCN) for predicting molecular properties and improving uncertainty
quantification. Although the model showed strong performance in predicting bioactivity, it relied
heavily on a large labelled dataset. This approach presents challenges in early-stage drug discovery
where labelled data is scarce. Furthermore, while the Bayesian framework enhanced uncertainty
estimates, the model’s application was limited to molecular structures and lacked integration with
chemical retrosynthesis.

Similarly, Schor et al. (2022) introduced the deepFPlearn tool, a deep learning-based model de-
signed to predict chemical-gene associations. While deepFPlearn addressed the challenge of pre-
dicting chemical effects at a large scale by combining autoencoders and deep feed-forward neu-
ral networks (FNN), it suffered from limitations in capturing interactions between more complex
molecular architectures. Additionally, the performance of the tool was optimized for toxicology
applications and not for antibiotic design, thus limiting its applicability in drug discovery for novel
antibiotic compounds.

In recent years, fragment based drug design has been applied with two main strategies for antibi-
otic discovery: top-down and bottom-up. The top-down approach focuses on repurposing exist-
ing molecules, where existing drug-like molecules are incrementally pruned or refined to identify
key substructures with antibiotic potential. This method, exemplified by the discovery of Halicin,
where AI was used to screen known chemical libraries, leading to the identification of a structurally
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unique compounds with novel mechanisms of action, such as disrupting bacterial proton motive
force Stokes et al. (2020). This strategy streamlines the search for novel antibiotics by mining exist-
ing drug spaces and exploring their potential new applications. In contrast, the bottom-up approach,
which our team adopted, focuses on constructing new molecules from smaller fragments derived
from known antibiotics. This synthesis-driven method enables the exploration of structurally unique
molecules, expanding the chemical space beyond known antibiotics, enabling the construction of
structurally unique antibiotics with potentially different mechanisms of action. Using this approach,
new classes of antibiotics can be designed and tested in silico before laboratory validation, address-
ing the need for antibiotics with novel mechanisms to combat resistant strains.

Nicolaou (2014) highlighted advancements in synthetic organic chemistry, particularly in the repli-
cation and synthesis of complex bioactive molecules. While this work provides valuable insights
into organic synthesis, it focuses primarily on the manual design and synthesis of analogs without
leveraging computational tools to accelerate these processes. The study’s focus on the synthetic
methodology also limited its scope in terms of using AI to predict therapeutic efficacy and phys-
ical properties of molecules, a gap we aim to address by integrating AI-based retrosynthesis with
predictive analytics.

The MoleculeNet benchmark, introduced by Wu et al. (2018), addresses the need for standardized
evaluation of molecular machine learning methods by curating multiple datasets and providing high-
quality implementations of molecular featurization and learning algorithms. While this benchmark
has enabled significant advancements in molecular property prediction, it still faces challenges in
data scarcity and imbalanced classification, particularly for quantum mechanical and biophysical
datasets. The use of physics-aware featurizations, such as those leveraging quantum chemistry,
has shown promise, but limitations remain in handling more complex molecular architectures and
predicting novel compounds.

Our study proposes an AI-driven retrosynthetic approach that not only recreates historical synthesis
pathways, such as those used in penicillin production, but also expands them through AI-guided
exploration of new chemical spaces. This addresses the data limitations found in Zhang et al.’s
Bayesian GCN Zhang et al. (2019), as our semi-supervised learning model leverages historical an-
tibiotic data to compensate for the lack of labeled data. By integrating retrosynthesis with AI tools
like FILTER, we also overcome the limitations seen in previous studies by addressing the imbalance
problem by focusing on underexplored antibiotic classes and their potential hybrid structures and
also by broadening the application of AI to complex antibiotics with hybrid structures. In short, our
study bridges these gaps by combining historical retrosynthesis with AI-driven exploration of new
antibiotics, addressing limitations in data availability, model scalability, and synthesis efficiency.

6 DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSIONS

FILTER offers significant advantages in the context of antibiotic discovery. By integrating neural
networks, gradient boosting, and docking simulations, FILTER achieves enhanced predictive accu-
racy in both property and mechanism of action predictions. This multifaceted approach allows for
the comprehensive assessment of a wide array of physical properties and biological interactions,
providing a holistic view of each molecule’s potential. Moreover, FILTER demonstrates remark-
able scalability, efficiently processing large datasets of molecular structures and enabling the rapid
screening of extensive chemical libraries. This capability is crucial for accelerating the discovery
process and managing the vast chemical space associated with antibiotic compounds.

This approach enables rapid in silico screening of large compound libraries, significantly reducing
the time and resources typically required for initial lead compound identification. Moreover, the
ability to predict binding affinities to specific protein targets enables a more targeted approach to
drug design, potentially increasing the success rate of subsequent experimental phases. Our findings
suggest that combining machine learning techniques with molecular docking simulations can bridge
the gap between computational prediction and experimental validation, offering a powerful tool
for rational drug design. This methodology not only streamlines the discovery of penicillin-like
antibiotics but also presents a versatile framework adaptable to other antibiotic targets or protein
classes, potentially revolutionizing the drug discovery pipeline across various therapeutic areas.
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A particularly noteworthy feature of FILTER is its ability to identify novel compounds with unique
mechanisms of action by predicting interactions with previously unexplored protein targets and path-
ways. This feature is essential for combating antibiotic resistance, as it facilitates the discovery of
antibiotics that can overcome existing resistance mechanisms by targeting new biological pathways
or utilizing alternative modes of action. Additionally, the integration of structural data from the
PDB into docking simulations by FILTER enhances the reliability of MoA predictions by incorpo-
rating structural biology insights. This integration ensures that the predicted interactions are not only
theoretically plausible but also structurally feasible thereby increasing the likelihood of successful
therapeutic outcomes.

While FILTER provides a robust foundation for property prediction and MoA determination, sev-
eral avenues for future enhancements could further augment its capabilities. Incorporating additional
datasets, such as genomic and transcriptomic data, could refine MoA predictions by offering a more
comprehensive understanding of biological interactions and resistance mechanisms. Furthermore,
implementing more sophisticated docking algorithms and molecular dynamics simulations could
improve the accuracy of binding affinity predictions, providing deeper insights into molecular in-
teractions. Developing real-time learning capabilities would enable FILTER to continuously update
and refine its predictive models based on ongoing experimental data, ensuring that the tool remains
current with the latest scientific advancements. Additionally, creating a user-friendly interface would
facilitate easier access to FILTER’s predictive insights and allow researchers to customize models
according to their specific needs, thereby broadening its applicability and impact in the field of
antibiotic discovery.

FILTER serves as a cornerstone in our representation learning framework, effectively bridging the
gap between chemical structure and biological function. By accurately predicting physical prop-
erties and mechanisms of action, FILTER enables the efficient discovery of novel antibiotics with
optimized therapeutic profiles. Its integration of comprehensive datasets, advanced predictive mod-
els, and structural analysis tools positions FILTER as an invaluable asset in the ongoing fight against
antibiotic resistance.

The application of AI-based techniques, such as those embodied in FILTER, to underexplored an-
tibiotic classes opens new avenues for treatment options, further expanding the arsenal available to
combat resistant bacterial infections. The actionable nature of this methodology suggests its poten-
tial for broader applications beyond antibiotics, extending to other therapeutic areas where historical
compound development can inform future innovations.

In summary, the integration of retrosynthetic analysis and AI not only redefines the boundaries
of traditional drug discovery but also sets a new standard for the rapid, efficient, and innovative
exploration of therapeutic compounds and chemical spaces. This represents a significant stride
toward overcoming some of the most pressing health challenges of our time, offering a promising
pathway for the development of next-generation antibiotics capable of addressing the escalating
threat of antimicrobial resistance.
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