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ABSTRACT

Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large founda-
tion models, leveraging low-rank matrices A and B to represent weight changes
(i.e., ∆W = BA). This method reduces trainable parameters and mitigates heavy
memory consumption associated with full delta matrices by sequentially multiply-
ing A and B with the activation. Despite its success, the intrinsic low-rank charac-
teristic may limit its performance. Although several variants have been proposed
to address this issue, they often overlook the crucial computational and mem-
ory efficiency brought by LoRA. In this paper, we propose Circular Convolution
Adaptation (C3A), which not only achieves high-rank adaptation with enhanced
performance but also excels in both computational power and memory utilization.
Extensive experiments demonstrate that C3A consistently outperforms LoRA and
its variants across various fine-tuning tasks.

1 INTRODUCTION

Acc.

MCC

PCC

-#Param

-Memory

BitFit
(IA)3

LoRA
VeRA

BOFT
C3A

Figure 1: Relative comparison of C3A and
baselines on RoBERTa-Base. The Pear-
son Correlation Coefficient (PCC) is eval-
uated on STS-B and the Matthew’s Cor-
relation Coefficient (MCC) on CoLA. Ac-
curacies across SST-2, MRPC, QNLI, and
RTE are averaged and reported as Acc.
-#Param shows the reduced number of
learnable parameters compared to LoRA,
and -Memory indicates the decrease in
peak GPU memory usage during training,
also compared to LoRA. The metrics in
blue pertain to performance-related val-
ues, whereas those shadowed in red corre-
spond to values associated with resource
consumption. All metrics are the higher
the better. See Table 2 for more statistics.

In recent years, Large Foundation Models (LFMs) have
witnessed a pronounced ascendance in both scholarly
and practical realms, attributable to their exceptional ef-
ficacy across diverse tasks in natural language process-
ing (NLP) (Brown et al., 2020; Touvron et al., 2023),
computer vision (CV) (Radford et al., 2021; Kirillov
et al., 2023), and other domains (Li et al., 2024). Distin-
guished by an extensive parameter count and significant
computational requisites, these models have established
unprecedented benchmarks in both accuracy and ver-
satility. Nonetheless, their considerable size and intri-
cate structure present formidable obstacles for efficient
fine-tuning, especially within resource-constrained en-
vironments (Malladi et al., 2023; Zhang et al., 2024b).
To mitigate these challenges, parameter-efficient fine-
tuning (PEFT) techniques (Mangrulkar et al., 2022), ex-
emplified by Low-Rank Adaptation (LoRA) (Hu et al.,
2021), have emerged as highly effective solutions.

LoRA reduces the number of trainable parameters by
leveraging low-rank matrices to approximate alterations
in weights, thereby facilitating fine-tuning without de-
grading the model’s efficacy. Specifically, LoRA can be
articulated mathematically as follows:

Wx = (W0 +∆W)x = W0x+B(Ax),

where W,W0,∆W ∈ Rd1×d2 are weight matrices,
B ∈ Rd1×r,A ∈ Rr×d2 are low-rank matrices for-
mulated to construct ∆W, and x ∈ Rd2 are the activa-
tions. The number of trainable parameters is r(d1+d2),
thereby motivating the selection of r ≪ min(d1, d2)
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(e.g., r = 8 for d1 = d2 = 1024) to attain elevated parameter efficiency. Nonetheless, as elaborated
by Zeng & Lee (2023), the potential of LoRA to encapsulate a target model is inherently con-
strained by r. In an effort to reconcile the dichotomy between performance and efficiency, Kopiczko
et al. (2023) introduced Vector Random Matrix Adaptation (VeRA). VeRA attains comparable per-
formance with a markedly reduced count of trainable parameters via fixed random-matrix projec-
tions. However, despite its minimal parameter count, VeRA demands considerable computational
resources and memory capacity due to the extensive nature of the random matrices employed for
projection. As depicted in Figure 1, other representative works share the same resource problem.
This precipitates the following open research question within the scope of PEFT:

Beyond low parameter counts, how to achieve high-rank adaptation
without incurring significant costs of time and memory?

To address this question, we introduce Circular Convolution Adaptation (C3A), which incorporates
the circular convolution operator (Bamieh, 2018). Circular convolution has garnered significant at-
tention in both signal processing (Li et al., 2020) and cryptography (Dworkin et al., 2001) due to its
exceptional efficiency and compactness. This operator can be equivalently expressed as multiplica-
tion by a circulant matrix, providing rank flexibility that is independent of the number of trainable
parameters. Furthermore, by employing the Fast Fourier Transform (FFT), C3A achieves superior
time and memory efficiency compared to the direct multiplication of the circulant matrix (Bamieh,
2018), which makes it competitive with LoRA in terms of efficiency.

In addition, as explicated by Dosovitskiy et al. (2020), dense linear layers exhibit a deficiency of
inductive biases, engendering a complex optimization landscape. Consequently, this hampers the
effectiveness of transformers in comparison to Convolutional Neural Networks (CNNs) under con-
ditions of limited data availability. Within the framework of a constrained training dataset for the
downstream task, we postulate that a robust inductive bias could potentially augment adaptiation
performance. The circular pattern in C3A serves precisely as such an inductive bias.

In summary, circular convolution presents a promising solution for circumventing the rank limita-
tions of LoRA at minimal costs. Our contributions can be summarized as follows:

❶ We introduce C3A, a novel approach for PEFT. This method leverages the circular convolution
operation and its equivalent circulant matrix to provide a flexible rank, which is free of linear con-
straint by the number of trainable parameters, for the delta matrix.

❷ Leveraging the elegant diagonalization of the circulant matrix, we implement both the forward
pass and backpropagation using FFT. With the incorporation of FFT, the computation and memory
efficiency of C3A excels. C3A strikes a unique balance between performance an efficiency.

❸ To offer greater flexibility in controlling the number of trainable parameters, we extend C3A by
incorporating block-circular convolution, which results in block-circulant matrices. This extension
allows C3A to achieve fully customizable parameter counts as well as adaptable rank configurations.

❹ We validate C3A through comprehensive fine-tuning experiments across diverse tasks including
natural language understanding, instruction tuning and image classification. Experiments demon-
strate C3A’s outstanding accuracy and memory merits compared to existing state-of-the-art methods.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Research on PEFT has generally progressed along three main directions. The first direction involves
partially updating the pre-trained neural network (e.g., the layer norm (Basu et al., 2024) or the
biases (Zaken et al., 2021)). Traditional methods relied on hand-crafted heuristics (Raghu et al.,
2019) to identify which parameters are crucial and should be fine-tuned. More advanced approaches
employ optimization techniques (Guo et al., 2020; Xu et al., 2021; Fu et al., 2023). For example, Guo
et al. (2020) reformulated such a discrete optimization problem into a continuous one by employing
Bernoulli masks and the Gumbel-softmax approximation (Jang et al., 2016).

The second direction emerged to maintain the integrity of the pre-trained model while enabling a
high degree of parameter sharing through adapter-based methods (He et al., 2021; Rebuffi et al.,
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2017; Rücklé et al., 2020; Liu et al., 2022; Lian et al., 2022). These works focus on integrating
additional modules, termed adapters, to fit the downstream task, effectively decoupling the pre-
trained model parameters from those specific to the downstream task. Prompt Tuning (Brown et al.,
2020; Gao et al., 2020; Chen et al., 2023; Zhang et al., 2024a) and Prefix Tuning (Li & Liang, 2021;
Jia et al., 2022) also fall into this category, despite ignoring potential semantic meanings.

The final direction is characterized by delta-weight-based methods, such as Low-Rank Adaptation
(LoRA) (Hu et al., 2021) and Orthogonal Fine-tuning (OFT) (Qiu et al., 2023). These methods
bridge the gap between the pre-trained model and the downstream task by adaptive delta weights,
which are stored separately while used in combination with the pre-trained weights. This unique
design enables disentanglement of the pretrained and downstream-specific weights. Namely, it
achieves parameter sharing and preserves the ability to integrate without additional inference cost.
LoRA models the delta-weights by an additive matrix while OFT does it by a multiplicative one.
To further improve either parameter efficiency or performance, many variants has been proposed for
both of the methods (Kopiczko et al., 2023; Liu et al., 2024; 2023; Yuan et al., 2024; Hayou et al.,
2024b; Gao et al., 2024). However, these methods can hardly achieve high parameter efficiency and
performance without incurring heavy computation and memory usage.

2.2 CIRCULAR CONVOLUTION

Circular convolution has been extensively studied in signal processing (Rabiner et al., 1978;
McGillem & Cooper, 1984; Li et al., 2020) and cryptography (Dworkin et al., 2001; Gong et al.,
2024). Owing to its computational advantages, circular convolution has also been explored in
machine learning for generating long embeddings of high-dimensional data (Yu et al., 2014) and
compressing heavily parameterized layers (Cheng et al., 2015; Ding et al., 2017). Remarkably, it
achieves these efficiencies without significant performance degradation, which makes it a promising
technique for fine-tuning applications.

Despite its success in small neural networks such as LeNet (Cheng et al., 2015), circular convolution
has not demonstrated lossless performance in modern large foundational models (LFMs) or even in
their base architecture, the transformer. This limitation may be attributed to the conflict between its
high intrinsic bias (i.e., the circulant pattern) and the vast amount of data required for training LFMs.
Conversely, when fine-tuning LFMs, it is often impractical to collect as much data as needed for
training from scratch. In such scenarios, the intrinsic bias of circular convolution could potentially
serve as a regularization mechanism, thereby benefiting the optimization process of fine-tuning.

3 METHOD

In this section, we present C3A (see an overview in Figure 2), a novel PEFT approach based on
the circular convolution. C3A follows LoRA’s setting of learning an additive linear operation over
the original dense linear transformation. However, instead of using low-rank decomposition and the
matrix multiplication operator, C3A resorts to circular convolution as this additive linear operation.
Section 3.1 introduces the notations we use. Section 3.2 discusses the circular convolution operator,
its equivalent circulant matrix, and its calculation in the frequency domain. Section 3.3 details an
efficient method for backpropagation. Section 3.4 describes block-wise convolution for controlling
the number of trainable parameters. Finally, Section 3.5 analyzes the computational complexity.

3.1 NOTATIONS

The adapted weight matrix, the original weight matrix, and the delta matrix are denoted by W,
W0, and ∆W, respectively (W,W0,∆W ∈ Rd1×d2 ). The activation vector of the previous layer
is denoted by x ∈ Rd2 . The post-transformation vector is z, where z = Wx ∈ Rd1 , and the
incremental part is denoted by ∆z, where ∆z = ∆Wx ∈ Rd1 . The matrices A and B are low-rank
matrices introduced by LoRA to represent ∆W, with r being their rank. rv specifies the rank of the
random projection matrix used in VeRA. The circular convolution kernel of C3A is denoted by ∆w
and the circular convolution operator by ⋆. The loss function is represented by L. The Fast Fourier
Transform and its inverse are denoted by FFT and iFFT, respectively. The Hadamard product is
denoted by ◦.
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Figure 2: Overview of LoRA (A) and our C3A (B,C) method. In LoRA, only low-rank matrices
A and B are trained and the delta weight is represented by their product (i.e., ∆W = BA). The
total trainable parameter number is r(d1+d2), which is assosiated with the rank of the delta weight.
In C3A, circular convolution kernels ∆w are tuned to adapt to the downstream task and the delta
weight is represented by the (block-)circular matrix they construct (i.e., ∆W = C(blk)(∆w)). The
total trainable parameter count is d1d2

b , which disentangles with the rank of the delta weight. Here, b
is the block size of the block-circular matrix and it should be a common divisor (CD) of d1 and d2.

3.2 CIRCULAR CONVOLUTION

Firstly, for simplicity, we assume d1 = d2 = d and ∆w ∈ Rd. The circular convolution operator is
defined as ∆z = ∆w ⋆ x = C(∆w)x, where C(·) is a function which takes a vector and outputs the
corresponding circulant matrix. Concretely, the first row of C(∆w) is ∆w and the following rows
are equal to the row above them periodically shifted to the right by one element. In math,

C(∆w) =


∆w1 ∆w2 · · · ∆wd−1 ∆wd

∆wd ∆w1 · · · ∆wd−2 ∆wd−1

· · · · · · · · · · · · · · ·
∆w3 ∆w4 · · · ∆w1 ∆w2

∆w2 ∆w3 · · · ∆wd ∆w1

 .

Theoretically, the rank of C(∆w) is given by d− Deg(gcd(f(x), xd − 1)) (Ingleton, 1956), where
Deg(·) denotes the degree of a polynomial, f(x) is the polynomial associated with ∆w (i.e.,
f(x) =

∑d
i=1 ∆wix

i−1), and gcd(·) represents the greatest common divisor. Consequently, the
theoretical upper bound on the rank of C(∆w) is d. By learning ∆w in the Rn oracle, C3A au-
tomatically achieves dynamic rank selection, which is not linearly constrained by the number of
learnable parameters, unlike LoRA.

To achieve high efficiency, enlightened by Ding et al. (2017), we leverage the beautiful circulant
structure of C(∆w), which makes it diagonalizable by the Fourier basis (F) . In math, it can be
described as C(∆w) = FΛ

dF
−1 (Golub & Van Loan, 1996), where Λ is its eigenvalues and can

be calculated by a Fourier transform of the first row (i.e., Λ = diag(F∆w)). Therefore, we can
calculate ∆w ⋆ x as

∆w ⋆ x = Fdiag(
F∆w

d
)F−1x

= FFT(FFT(∆w) ◦ iFFT(x)).
(1)

3.3 BACKPROPAGATION

To effectuate backpropagation with optimal efficiency, it is imperative to obtain the analytical deriva-
tives of the loss function L with respect to ∆w and x. Following the approach outlined in Ding et al.
(2017), we aim to explain backpropagation using simpler language. By applying the chain rule, these
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derivatives are delineated as follows:
∂L
∂x

=
∂∆z

∂x

∂L
∂∆z

,
∂L
∂∆w

=
∂∆z

∂∆w

∂L
∂∆z

. (2)

Given that ∆z = C(∆w)x, it logically follows that ∂∆z
∂x = C(∆w). Concerning ∂∆z

∂∆w , we observe
the commutative property of the circular convolution operation (i.e., C(∆w)x = C(x)∆w), which
implies ∂∆z

∂∆w = C(x). Substituting these findings into Equation 2, we derive:

∂L
∂x

= C(∆w)
∂L
∂∆z

,
∂L
∂∆w

= C(x) ∂L
∂∆z

.

These expressions can also be interpreted as circular convolutions:

∂L
∂x

= ∆w ⋆
∂L
∂∆z

,
∂L
∂∆w

= x ⋆
∂L
∂∆z

.

By meticulously executing this derivative computation in accordance with Equation 1, backpropa-
gation can harness the computational efficacy facilitated by the FFT algorithm.

3.4 BLOCK-CIRCULAR CONVOLUTION

Notwithstanding the elegance and efficiency of the circular convolution operator, it is subject to
two fundamental limitations stemming from the constraint that the convolution kernel must match
the dimensions of the activation vector: ① It is inapplicable to non-square weight matrices. ②
The count of learnable parameters remains fixed. The first restriction hampers its applicability in
scenarios such as fine-tuning a LLaMA3-8B model, where the weight matrix dimensions include
4096 × 1024. The second constraint diminishes the adaptability of C3A, presenting challenges in
addressing complex downstream tasks that necessitate a greater number of learnable parameters. To
mitigate these limitations, we employ block-circular convolution (Ding et al., 2017). By partitioning
the activation vector x and the post-transformation vector ∆z into blocks of identical size, unique
convolution kernels can be allocated to each pair of these blocks. Specifically,

x =
[
x1 x2 · · · x d2

b

]
, ∆z =

[
∆z1 ∆z2 · · · ∆z d1

b

]
,

where b is the block size and b need to be a common divisor of d1 and d2. We will need d1d2

b2

convolution kernels to densely connect these blocks, which can be expressed in math as

∆zi =

d2
b∑

j=1

∆wij ⋆ xj , i ∈ {1, 2, · · · , d1
b
}.

This calculation can be represented by a block-circular matrix:

∆z = Cblk(∆w)x, Cblk(∆w) =


C(∆w11) C(∆w12) · · · C(∆w

1
d2
b
)

C(∆w21) C(∆w22) · · · C(∆w
2

d2
b
)

· · · · · · · · · · · ·
C(∆w d1

b 1
) C(∆w d1

b 2
) · · · C(∆w d1

b
d2
b
)

 . (3)

We refer our readers to Algorithm A1 in Appendix C for a Pytorch implementation. In this context,
∆wij ∈ Rb, and it follows that d1d2

b2 b = d1d2

b represents the number of learnable parameters. No-
tably, the parameter b serves as a hyperparameter modulating the quantity of learnable parameters,
analogous to the role of r in LoRA. It is imperative to distinguish, however, that whereas r simulta-
neously governs the rank of the delta matrix and the number of learnable parameters, b exclusively
influences the latter. This disentanglement of matrix rank and parameter count facilitates greater
adaptability and potentially yields superior outcomes.

3.5 COMPLEXITY ANALYSIS

We compare the time complexity and space complexity of LoRA, VeRA and C3A in Table 1. De-
tailed analysis follows in this section.
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3.5.1 TIME COMPLEXITY

LoRA integrates low-rank matrices A and B, which are successively multiplied with the activation
vector, resulting in a computational complexity of O(r(d1 + d2)). Generally, r ≪ min(d1, d2).
In contrast, VeRA, despite its high-rank structure and relatively few trainable parameters, suffers
from a prohibitive computational complexity of O(rv(d1 + d2)), where rv can exceed max(d1, d2).
Consequently, striking an optimal balance between high rank and computational efficiency remains
an elusive task.

On GPUs, the cuFFT backend automatically parallelizes FFT operations along the axes not being
transformed, with the degree of parallelism p determined by the available resources. Thanks to the
O(n log n) complexity of the FFT algorithm used in Equation 1, C3A achieves a time complexity
of O( (d1+d2)

p log b + d1d2

b ). The first term is the time complexity for FFT and the second term is
for aggregation. In practical scenarios, b is chosen as the greatest common divisor of d1 and d2 to
achieve a high compression ratio. Given that, C3A is comparable to LoRA in time complexity.

3.5.2 SPACE COMPLEXITY

Table 1: Time and space complexity comparison of LoRA, VeRA and
C3A. We split the space complexity into Parameter number and Other
auxiliary tensors to help better understand the differences. We highlight
that in practice, to achieve similar performance, max(d1,d2)

b ≤ r ≪ rv .

Method Time # Param # Other # Total

LoRA O(r(d1 + d2)) r(d1 + d2) 0 r(d1 + d2)
VeRA O(rv(d1 + d2)) rv + d1 rv(d1 + d2) rv(d1 + d2) + rv + d1
C3A O(d1+d2

p log b+ d1d2

b ) d1d2

b pb d1d2

b + pb

We analyze the space
complexity of LoRA,
VeRA, and C3A during
training. The differences
among these methods
primarily arise from the
trainable parameters and
the auxiliary tensors
required for the forward
pass and backpropaga-
tion. LoRA does not
rely on auxiliary tensors,
while VeRA necessitates 2 random projection matrices, with a total size of rv(d1 + d2). Since rv is
by no means negligible, the memory usage of VeRA is significantly larger than that of LoRA.

In terms of C3A, the only additional auxiliary tensor would be of size pb ≤ min(d1, d2), which is
reserved by the FFT algorithm. By selecting an appropriate b, which is often close to the greatest
common divisor of d1 and d2, the space complexity of C3A is optimized. Furthermore, because p
scales with the available resources, the algorithm inherently manages dynamic memory consumption
without additional effort.

4 EXPERIMENT

We first experiment on a synthetic dataset to show C3A’s superior expressiveness over LoRA. Next,
we evaluate C3A in both NLP and CV. For NLP, we show C3A’s effectiveness using the GLUE
benchmark with RoBERTa-Base and RoBERTa-Large, and fine-tune the LLaMA family models.
For CV, we test classification tasks using Vision Transformers (ViTs) on various datasets. Finally,
we perform ablation studies on C3A kernel initialization.

4.1 SYNTHETIC DATA

Settings. We distribute 8 points evenly on a 2D plane as cluster centers and randomly sample 30
points from the 8 corresponding multivariate Gaussian distributions. A 3-layer MLP is then used
to classify these point clusters. To compare the expressiveness of 2 types of layers, we replace the
middle layer with either a low-rank layer or a circulant layer, ensuring that both layers have the same
number of trainable parameters for a fair comparison.

Results. The results are presented in Figure 3. We observe that LoRAr=1 struggles with this simple
classification task. In contrast, C3Ab=128/2, despite using the same number of parameters, achieves
a perfect classification, comparable to a standard linear layer. This demonstrates the high expres-
siveness of C3A given the same parameter budget.

6
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Figure 3: Expressiveness test on synthetic data. The left figure shows the synthetic data used for
the experiment, while the right figure illustrates the training accuracy curves of a 3-layer MLP,
incorporating C3A, LoRA, and standard linear layers, respectively.

4.2 NATURAL LANGUAGE UNDERSTANDING

Baselines. We compare our C3A with several representative PEFT methods, including BitFit (Za-
ken et al., 2021), (IA)3 (Liu et al., 2022), LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023),
and BOFT (Liu et al., 2023). BitFit selectively fine-tunes existing parameters, specifically the bi-
ases. (IA)3 is the state-of-the-art method that adds additional adapters. LoRA is a widely known
PEFT method that employs low-rank decomposition to compress additive delta matrices. VeRA is a
recent approach that focuses on further reducing trainable parameters of LoRA while preserving a
high rank. BOFT is another innovative method in PEFT research, compressing multiplicative delta
matrices using orthogonal decomposition and butterfly factorization.

Table 2: Performance of different PEFT methods on the GLUE benchmark. We fine-tune pre-trained
RoBERTa-Base and -Large models on 6 datasets. We report the Matthew’s Correlation Coefficient
(MCC) for CoLA, Pearson Correlation Coefficient (PCC) for STS-B, and accuracy (Acc.) for all the
remaining tasks. For each metric, a higher score indicates better performance. “Avg.” denotes the
average score of each method across all datasets. The best results for each dataset are highlighted in
bold. # Trainable parameters does not include the classification head since each method uses a head
of the same size. Memory Cost is measured on fixed length (i.e., 256) data with a batchsize of 64.

Method # Trainable
Parameters

Memory
Cost (GB) SST-2 MRPC CoLA QNLI RTE STS-B Avg.

B
A

S
E

Full 124M 17.19 94.01±0.39 87.10±0.79 62.00±1.16 92.40±0.28 77.33±2.68 90.70±0.14 83.92
BitFit 0.102M 12.60 93.30±0.30 85.80±0.21 59.21±1.74 91.96±0.18 73.07±1.34 90.18±0.17 82.25
(IA)3 0.111M 19.86 92.98±0.34 85.86±0.59 60.49±1.09 91.56±0.17 69.10±1.18 90.06±0.21 81.67
LoRAr=8 0.295M 13.75 94.50±0.41 85.68±0.74 60.95±1.57 92.54±0.20 76.68±1.42 89.76±0.39 83.35
VeRAr=1024 0.043M 15.51 93.97±0.17 86.23±0.41 62.24±1.91 91.85±0.17 75.74±1.56 90.27±0.25 83.38
BOFTm=2

b=8 0.166M 14.11 93.23±0.50 84.37±0.54 59.50±1.25 91.69±0.12 74.22±0.84 89.63±0.37 82.11
C3Ab=768/1 0.018M 12.83 93.42±0.26 86.33±0.32 61.83±0.96 91.83±0.04 76.17±1.39 90.46±0.29 83.34
C3Ab=768/6 0.111M 12.72 94.20±0.16 86.67±0.54 62.48±1.20 92.32±0.25 77.18±1.41 90.16±0.42 83.84

L
A

R
G

E

Full 354M 43.40 95.75±0.45 88.35±0.64 64.87±1.25 92.40±0.28 84.48±1.14 91.65±0.14 86.25
BitFit 0.271M 30.65 95.09±0.27 88.10±0.76 65.40±0.76 94.06±0.14 82.60±1.15 91.73±0.20 86.16
(IA)3 0.295M 48.81 95.32±0.20 87.06±0.57 66.52±1.10 94.18±0.15 84.33±2.38 91.58±0.39 86.50
LoRAr=8 0.786M 34.12 95.53±0.35 86.12±0.86 65.16±0.76 93.73±0.30 83.75±0.51 91.46±0.21 85.96
VeRAr=256 0.061M 34.16 95.83±0.43 87.72±0.55 63.66±1.45 94.11±0.20 83.03±1.65 91.12±0.37 85.91
BOFTm=2

b=8 0.442M 34.98 95.76±0.41 88.28±0.33 64.72±2.37 93.89±0.14 82.82±1.40 91.03±0.32 86.08
C3Ab=1024/1 0.049M 31.83 95.78±0.05 88.02±0.62 66.59±1.20 94.22±0.25 82.89±0.67 91.86±0.14 86.56
C3Ab=1024/8 0.393M 31.79 95.78±0.15 88.09±0.47 67.18±1.92 94.26±0.19 84.62±1.36 91.81±0.36 86.96

Settings. We evaluate our proposed C3A on the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018), which encompasses a wide range of natural language un-
derstanding (NLU) tasks, including single-sentence classification, similarity and paraphrase, and
natural language inference. More dataset specifications can be found in Table A1 in Appendix A. To
enhance practicality, we split these datasets following the train-validation-test approach. The best-
performing model is selected based on validation set performance across the fine-tuning epochs, and
the reported performance corresponds to its performance on the test set. For this evaluation, we fine-
tune the pre-trained RoBERTa-Base and RoBERTa-Large models (Liu et al., 2019). For the unique
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hyperparameters of different baselines, we adopt the values suggested in the original papers (e.g.,
VeRA’s r and BOFT’s b and m). The number of trainable parameters excludes the classification
head, as each method uses one of the same size. The shared hyperparameters (i.e., the learning rate
for classification head and for other trainable parameters, separately) are found by hyperparameter
search. For the memory cost, to ensure fairness and consistency, we fix the length of input data to
256 tokens and use a batchsize of 64.

Results. The results are presented in Table 2. Overall, C3Ab=768/1 and C3Ab=1024/1 achieve supe-
rior or comparable performance to baseline methods, despite using an exceptionally small number of
trainable parameters. As the number of trainable parameters increases, models like C3Ab=768/6 and
C3Ab=1024/8 significantly outperform the baselines. Moreover, compared to (IA)3, LoRA, VeRA,
and BOFT, C3A distinguishes itself with remarkable memory efficiency. The only method demon-
strating better memory efficiency is BitFit, which serves as an upper bound since it introduces no
new parameters. Additionally, most of the circulant delta matrices identified by C3A are of full
rank, indicating maximal capacity (Zeng & Lee, 2023) and providing a theoretical basis for the
outstanding performance.

4.3 INSTRUCTION TUNING

Settings. For a comprehensive comparison, we further conduct instruction tuning on LLaMA
families, the prevalent large language models. Specifically, we evaluate C3A against LoRA and
DoRA (Liu et al., 2024), a variant of LoRA sensitive to learning direction. Specifically, we fine-tune
LLaMA2-7B/13B (Touvron et al., 2023) and LLaMA3-8B (Dubey et al., 2024) among 7 datasets
covering 3 prevalent tasks: ① Arithmetic reasoning on GSM8k (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2020); ② Functional representation generation on ViGGO (Juraska et al., 2019),
and SQL (Zhong et al., 2017); and ③ Commonsense reasoning on BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020) and SIQA (Bisk et al., 2020). For the SQL dataset, we preprocess it by selecting
25% of the data and apply a 4:1 train-test split, resulting in a training set of 16K samples. To ensure
a fair comparison, we maintain LoRA parameters with r = 32, α = 32, and a dropout rate of 0.05,
while exploring various learning rates as suggested by (Hu et al., 2021). Please refer to Table A4 in
Appendix B for more details.

Results. In Table 3, our principal experimental observations are summarized. The C3A framework
consistently surpasses LoRA within the LLaMA series, with particular efficacy demonstrated in
the most recent model, LLaMA3-8B. Noteworthy is the significant enhancement in the efficacy of
LLaMA3-8B as a foundational model following the implementation of more sophisticated post-
training techniques. This underscores the criticality of optimizing the fine-tuning protocols for this
advanced model. It is also remarkable that C3A achieves such results while employing less than half
the parameter count of LoRA. Taken together, the findings robustly underscore the superior efficacy
of the C3A methodology. We refer readers to Appendix D for examples of models after different
tuning methods.

Table 3: Comparison of C3A and LoRA on fine-tuning LLaMA2 and LLaMA3 models in terms of
accuracy and trainable parameters. The best results for each dataset are highlighted in bold. “Avg.”
denotes the average accuracy of each method across all datasets.

Model Method # Trainable
Parameters

GSM8k MATH ViGGO SQL BoolQ PIQA SIQA Avg.

LLaMA2-7B
LoRAr=32 16.8M 39.57 5.65 96.48 79.66 75.60 85.26 82.09 66.33
DoRAr=32 17.0M 39.05 6.00 96.85 79.66 75.41 85.64 81.93 66.36
C3Ab=4096/32 8.4M 40.18 6.00 97.05 79.28 75.02 85.53 81.62 66.38

LLaMA2-13B
LoRAr=32 26.2M 49.02 8.55 97.10 79.97 77.09 87.36 83.21 68.90
DoRAr=32 26.6M 50.02 9.00 97.32 79.66 77.16 87.70 82.60 69.07
C3Ab=5120/32 13.1M 49.66 8.85 97.34 80.12 76.91 87.98 83.05 69.13

LLaMA3-8B
LoRAr=32 13.6M 62.80 21.05 96.50 80.61 77.37 89.72 82.19 72.89
DoRAr=32 13.8M 62.95 22.15 96.54 81.22 77.09 90.21 82.44 73.24
C3Ab=4096/32 5.2M 64.22 21.60 96.58 80.73 77.04 90.33 82.60 73.30
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4.4 IMAGE CLASSIFICATION

Settings. In this study, we concentrate on the task of image classification leveraging Vision Trans-
former (ViT) models. Specifically, we employ both the Base and Large variants of this prominent
foundational computer vision model, as delineated by (Dosovitskiy et al., 2020). These ViT mod-
els undergo pre-training on the expansive ImageNet-21K dataset (Ridnik et al., 2021). During the
fine-tuning phase, we use an eclectic array of datasets encompassing Pets (Parkhi et al., 2012), Cars
(Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC (Maji et al.,
2013), and RESISC (Cheng et al., 2017). Comprehensive statistics for these datasets are provided
in Table A2 in Appendix A.

Table 4: Fine-tuning results with ViT-Base and ViT-Large models on various image classification
datasets. The models are fine-tuned for 10 epochs, and the best-performing model, based on valida-
tion set accuracy, is selected. The reported accuracy corresponds to the performance on the test set.
The best results between LoRA and C3A for each dataset are highlighted in bold. “Avg.” denotes
the average accuracy of each method across all datasets.

Method # Trainable
Parameters

Pets Cars DTD EuroSAT FGVC RESISC Avg.

B
A

S
E

Head - 90.28±0.43 25.76±0.28 69.77±0.67 88.72±0.13 17.44±0.43 74.22±0.10 61.03
Full 85.8M 92.82±0.54 85.10±0.21 80.11±0.56 99.11±0.07 61.60±1.00 96.00±0.23 85.79

LoRAr=16 0.59M 93.76±0.44 78.04±0.33 78.56±0.62 98.84±0.08 56.64±0.55 94.66±0.17 83.42
C3Ab=768/12 0.22M 93.88±0.22 79.05±0.35 80.57±0.53 98.88±0.07 54.31±0.79 94.54±0.23 83.54

L
A

R
G

E Head - 91.11±0.30 37.91±0.27 73.33±0.26 92.64±0.08 24.62±0.24 82.02±0.11 66.94
Full 303M 94.30±0.31 88.15±0.50 80.18±0.66 99.06±0.10 67.38±1.06 96.08±0.20 87.53

LoRAr=16 1.57M 94.62±0.47 86.11±0.42 80.09±0.42 98.99±0.03 63.64±0.83 95.52±0.21 86.56
C3Ab=1024/16 0.79M 94.48±0.30 84.94±0.39 82.62±0.52 98.75±0.19 63.80±0.37 95.94±0.16 86.69

Results. Table 4 delineates a comprehensive summary of the outcomes derived from six distinct
image classification datasets employing the ViT Base and Large models. The LoRA and C3A
techniques exhibit significant enhancements in performance relative to Head Tuning, thereby un-
derscoring their efficacy within the realm of image classification. Remarkably, our methodology
demonstrates a performance on par with LoRA while necessitating only half of the parameter count.

4.5 INITIALIZATION STUDY

Table 5: Performance of C3A with Different Initial-
ization Strategies. The tasks on CoLA and STS-
B were performed using the RoBERTa-Base model,
while those on Cars and DTD utilized the ViT-Base
model. All other settings are consistent with those in
Table 2 and Table 4.

Task Zero Gaussian Kaiming Xavier Range

CoLA 60.95±0.88 61.07±1.09 60.82±1.48 62.48±0.74 1.66
STS-B 90.23±0.23 90.13±0.16 90.19±0.34 90.31±0.31 0.18
Cars 78.70±0.60 78.64±0.67 79.18±0.37 78.96±0.25 0.54
DTD 80.82±0.86 79.58±0.41 79.76±1.14 79.95±0.72 1.24

LoRA is known to be sensitive to initial-
ization, primarily due to the distinct roles
of its matrices A and B (Hayou et al.,
2024a). In contrast, C3A possesses a sim-
pler structure based on circulant matrices,
which may reduce sensitivity to initializa-
tion. To investigate this, we focused on the
initialization strategies for the convolution
kernels that define the circulant matrices in
C3A. We conducted experiments compar-
ing four initialization methods: zero ini-
tialization, Gaussian initialization, Kaiming
uniform, and Xavier uniform. We observe
that the variations across different initializa-
tion points are mostly within the intrinsic standard deviations, highlighting the robustness of C3A to
initialization strategies. Our findings indicate that C3A maintains robust performance across these
different initialization strategies, highlighting its resilience to initialization points.

5 CONCLUSION

In this manuscript, we present C3A, a novel method for Parameter-Efficient Fine-Tuning (PEFT).
In contrast to LoRA, which employs low-rank decomposition, C3A leverages circular convolution
and its equavelent circulant matrix to represent the delta weight matrix. This methodology aims
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to independently control the rank of the delta weight matrix and the number of trainable parame-
ters, facilitating high-rank adaptation while preserving a constrained parameter size. Using the Fast
Fourier Transform (FFT) during both the forward and backward propagation phases, C3A attains
notable computational and memory efficiency. In short, C3A emerges as a persuasive alternative to
LoRA for model fine-tuning.
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APPENDIX

A DATASET DETAILS

Table A1: Task descriptions and dataset statistics of the GLUE benchmark (Wang et al., 2018).

Corpus Task # Train # Val # Test # Labels Metrics Domain

Single-Sentence Tasks

CoLA Acceptability 8.55k 1.04k 1.06k 2 Matthews Corr. misc.
SST-2 Sentiment 67.3k 872 1.82k 2 Accuracy Movie reviews

Similarity and Paraphrase Tasks

MRPC Paraphrase 3.67 408 1.73k 2 Accuracy/F1 News
STS-B Sentence similarity 5.75k 1.5k 1.38k 1 Pearson/Spearman Corr. misc.
QQP Paraphrase 364k 40.4k 391k 2 Accuracy/F1 Social QA

Inference Tasks

MNLI NLI 393k 19.65k 19.65k 3 Accuracy misc.
QNLI QA/NLI 105k 5.46k 5.46k 2 Accuracy Wikipedia
RTE NLI 2.49k 277 3k 2 Accuracy News & Wikipedia

Table A2: Details about the vision datasets.

Dataset #Train #Validation #Test #Class Rescaled resolution

Pets (Parkhi et al., 2012) 3,312 368 3,669 37

224× 224

Cars (Krause et al., 2013) 7,329 815 8,041 196
DTD (Cimpoi et al., 2014) 4,060 452 1,128 47
EuroSAT (Helber et al., 2019) 16,200 5,400 5,400 10
FGVC (Maji et al., 2013) 3,000 334 3,333 100
RESISC (Cheng et al., 2017) 18,900 6,300 6,300 45

B HYPERPARAMETERS

Table A3: Hyperparameter setup of C3A for the GLUE benchmark.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

B
ot

h

Optimizer AdamW
LR Schedule Linear
Warmup Ratio 0.06
C3A Initialization Xavier Uniform
Max Seq. Len 512

B
as

e

Epochs 40 80 80 40 80 80
Batch Size 128 128 128 64 64 128
Learning Rate (C3Ab=768/6) 2E-1 3E-1 2E-1 7E-2 3E-1 2E-1
Learning Rate (Head) 2E-4 4E-6 3E-2 8E-6 6E-3 4E-2

L
ar

ge

Epochs 10 80 70 30 60 40
Batch Size 128 128 128 32 64 128
Learning Rate (C3Ab=1024/8) 9E-2 3E-1 2E-1 7E-2 5E-2 2E-1
Learning Rate (Head) 2E-4 5E-6 3E-3 8E-6 3E-3 5E-4
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Table A4: Hyperparameter setup of LoRA and C3A for instruction tuning.

Model Hyperparameter GSM8k MATH ViGGO SQL BoolQ PIQA SIQA

Optimizer AdamW
LR Scheduler Cosine
Batch Size 16
Warmup Ratio 0.05
Dropout 0.05
Epoch 3

LLaMA2-7B
Learning Rate (LoRA) 5E-4 5E-4 5E-4 6E-4 5E-4 4E-4 6E-4
Learning Rate (DoRA) 4E-4 5E-4 4E-4 6E-4 4E-4 5E-4 5E-4
Learning Rate (C3A) 8E-1 5E-1 5E-1 9E-1 7E-1 4E-1 3E-1

LLaMA2-13B
Learning Rate (LoRA) 5E-4 6E-4 5E-4 6E-4 5E-4 5E-4 4E-4
Learning Rate (DoRA) 4E-4 6E-4 5E-4 6E-4 4E-4 4E-1 5E-1
Learning Rate (C3A) 6E-1 4E-1 8E-1 1 4E-1 4E-1 8E-1

LLaMA2-8B
Learning Rate (LoRA) 5E-4 5E-4 4E-4 5E-4 4E-4 4E-4 5E-4
Learning Rate (DoRA) 6E-4 2E-4 5E-4 5E-4 4E-4 4E-4 4E-4
Learning Rate (C3A) 5E-1 3E-1 6E-1 4E-1 3E-1 3E-1 4E-1

Table A5: Hyperparameter setup of C3A for image classification tasks.

Model Hyperparameter Pets Cars DTD EuroSAT FGVC RESISC

B
ot

h

Optimizer AdamW
LR Schedule None
C3A Initialization Xavier Uniform
Epochs 10
Batch Size 64

B
as

e Learning Rate (C3Ab=768/12) 4E-1 4E+0 2E+0 2E+0 7E+0 2E+0
Learning Rate (Head) 1E-2 1E-2 2E-2 8E-3 1E-2 2E-2
Weight Decay 3E-4 5E-4 6E-5 2E-5 1E-5 2E-5

L
ar

ge Learning Rate (C3Ab=1024/16) 7E-1 4E+0 2E+0 2E+0 4E+0 3E+0
Learning Rate (Head) 3E-3 8E-3 7E-3 2E-2 1E-1 4E-3
Weight Decay 4E-3 1E-5 2E-4 5E-4 2E-5 9E-5
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C IMPLEMENTATIONS

Algorithm A1 Block-Circular Convolution PyTorch Implementation

import torch
from torch.autograd import Function
from torch.fft import fft, ifft

class BlockCircularConvolution(Function):
@staticmethod
def forward(ctx, x, w):

m, n, b = w.shape
x = x.reshape(*x.shape[:-1], n, b)
ctx.save_for_backward(x, w)
x = torch.einsum( "...nb,mnb->...mb", ifft(x), fft(w) )
x = fft(x).real
x = x.reshape(*x.shape[:-2], -1)
return x

@staticmethod
def backward(ctx, grad_output):

x, w = ctx.saved_tensors
m, n, b = w.shape
grad_output = grad_output.reshape(*grad_output.shape[:-1], m, b)
grad_output_fft = fft(grad_output)
x_grad = fft(torch.einsum( "...mb,mnb->...nb", grad_output_fft, ifft(w))).real
x_grad = x_grad.reshape(*x_grad.shape[:-2], -1)
w_grad = fft(torch.einsum( "...mb,...nb->mnb", grad_output_fft, ifft(x))).real
return x_grad, w_grad

We present the PyTorch implementation of Block-Circular Convolution in Algorithm A1. Further-
more, due to the inefficiency of directly assigning entries (as shown in Equation 3), we derive an
alternative algorithm to compute the ∆W more efficiently. Rather than direct assignment, we em-
ploy a forward process on the Identity matrix. Mathematically, this can be expressed as

∆W = Cblk(∆w)

= Cblk(∆w) · Id2

= Cblk(∆w) · [e1, e2, · · · , ed2
]

= [Cblk(∆w)e1, Cblk(∆w)e2, · · · , Cblk(∆w)ed2 ]

= [∆w ⋆ e1,∆w ⋆ e2, · · · ,∆w ⋆ ed2
] .

Where Id2
∈ Rd2×d2 represents an Identity matrix and ei is the ith column of it. In pytorch, we

can efficiently compute the iFFT of {ei}i=1,2,··· ,d2
by a column-wise iFFT of Id2

. We present the
Pytorch implementation in Algorithm A2 as well.

Algorithm A2 Fast Algorithm of Getting ∆W

import torch
from torch.fft import fft, ifft

def get_circulant_fast(w):
m, n, b = w.shape
x = torch.eye(n*b, dtype=w.dtype, device=w.device)
x = x.reshape(*x.shape[:-1], n, b)
x = torch.einsum( "...nb,mnb->...mb", ifft(x), fft(w) )
x = fft(x).real.flatten(start_dim=1).T
return x

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D INSTRUCTION TUNING EXAMPLES

LLaMA3-8B (MATH)

Find the number of square units bounded by the x-axis, the y-axis and the line x+ y = 6.
Answer the above question. First think step by step and then answer the final number.

Response

Methods Response
LoRA The line x+ y = 6 intersects the x-axis at x = 6 and the y-axis at y = 6.

So, the line divides the square with side length 6 into two triangles.
The area of each triangle is 1

2
× 6× 6 = 18.

So, the area of the square is 2× 18 = 36 .
The final answer is: 36

C3A The line x+ y = 6 intersects the x-axis at (6, 0) and the y-axis at (0, 6).
Thus, the line divides the first quadrant into two triangles, one with base 6 and height 6
and the other with base 6 and height 0.
The area of the first triangle is (6 × 6)/2 = 18 square units, and the area of the second
triangle is (6× 0)/2 = 0 square units.
Thus, the total area is 18 + 0 = 18 square units.
The final answer is: 18

LLaMA3-8B (GSM8K)

Tim makes a special honey and jam mix. To make 1 jar of the mixture it takes 2 pounds of passion fruit
and 1.5 pounds of jackfruit. It also takes 2 pounds of special honey. The passion fruit costs $6 per pound,
the jackfruit is $8 per pound, and the honey is $10 per pound. He sells each jar for $50. How much profit
does he make selling 10 jars?
Answer the above question. First think step by step and then answer the final number.

Response

Methods Response
LoRA The passion fruit costs 6× 2 = 12.

The jackfruit costs 8× 1.5 = 12.
The honey costs 10× 2 = 20.
So the total cost is 12 + 12 + 20 = 44.
So he makes a profit of 50× 10− 44 = 460.
The final answer is: 460

C3A The passion fruit costs 6× 2 = 12.
The jackfruit costs 8× 1.5 = 12.
So the fruit costs 12 + 12 = 24.
The honey costs 10× 2 = 20.
So the total cost per jar is 24 + 20 = 44.
So he makes a profit of 50− 44 = 6 per jar.
So he makes a profit of 6× 10 = 60.
The final answer is: 60
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