
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARAMETER-EFFICIENT FINE-TUNING VIA CIRCULAR
CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large founda-
tion models, leveraging low-rank matrices A and B to represent weight changes
(i.e., ∆W = BA). This method reduces trainable parameters and mitigates heavy
memory consumption associated with full delta matrices by sequentially multiply-
ing A and B with the activation. Despite its success, the intrinsic low-rank charac-
teristic may limit its performance. Although several variants have been proposed
to address this issue, they often overlook the crucial computational and mem-
ory efficiency brought by LoRA. In this paper, we propose Circular Convolution
Adaptation (C3A), which not only achieves high-rank adaptation with enhanced
performance but also excels in both computational power and memory utilization.
Extensive experiments demonstrate that C3A consistently outperforms LoRA and
its variants across various fine-tuning tasks.

1 INTRODUCTION

Acc.

MCC

PCC

-#Param

-Memory

BitFit
(IA)3

LoRA
VeRA

BOFT
C3A

Figure 1: Relative comparison of C3A and
baselines on RoBERTa-Base. The Pear-
son Correlation Coefficient (PCC) is eval-
uated on STS-B and the Matthew’s Cor-
relation Coefficient (MCC) on CoLA. Ac-
curacies across SST-2, MRPC, QNLI, and
RTE are averaged and reported as Acc.
-#Param shows the reduced number of
learnable parameters compared to LoRA,
and -Memory indicates the decrease in
peak GPU memory usage during training,
also compared to LoRA. The metrics in
blue pertain to performance-related val-
ues, whereas those shadowed in red corre-
spond to values associated with resource
consumption. All metrics are the higher
the better. See Table 2 for more statistics.

In recent years, Large Foundation Models (LFMs) have
witnessed a pronounced ascendance in both scholarly
and practical realms, attributable to their exceptional ef-
ficacy across diverse tasks in natural language process-
ing (NLP) (Brown et al., 2020; Touvron et al., 2023),
computer vision (CV) (Radford et al., 2021; Kirillov
et al., 2023), and other domains (Li et al., 2024). Distin-
guished by an extensive parameter count and significant
computational requisites, these models have established
unprecedented benchmarks in both accuracy and ver-
satility. Nonetheless, their considerable size and intri-
cate structure present formidable obstacles for efficient
fine-tuning, especially within resource-constrained en-
vironments (Malladi et al., 2023; Zhang et al., 2024b).
To mitigate these challenges, parameter-efficient fine-
tuning (PEFT) techniques (Mangrulkar et al., 2022), ex-
emplified by Low-Rank Adaptation (LoRA) (Hu et al.,
2021), have emerged as highly effective solutions.

LoRA reduces the number of trainable parameters by
leveraging low-rank matrices to approximate alterations
in weights, thereby facilitating fine-tuning without de-
grading the model’s efficacy. Specifically, LoRA can be
articulated mathematically as follows:

Wx = (W0 +∆W)x = W0x+B(Ax),

where W,W0,∆W ∈ Rd1×d2 are weight matrices,
B ∈ Rd1×r,A ∈ Rr×d2 are low-rank matrices for-
mulated to construct ∆W, and x ∈ Rd2 are the activa-
tions. The number of trainable parameters is r(d1+d2),
thereby motivating the selection of r ≪ min(d1, d2)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(e.g., r = 8 for d1 = d2 = 1024) to attain elevated parameter efficiency. Nonetheless, as elaborated
by Zeng & Lee (2023), the potential of LoRA to encapsulate a target model is inherently con-
strained by r. In an effort to reconcile the dichotomy between performance and efficiency, Kopiczko
et al. (2023) introduced Vector Random Matrix Adaptation (VeRA). VeRA attains comparable per-
formance with a markedly reduced count of trainable parameters via fixed random-matrix projec-
tions. However, despite its minimal parameter count, VeRA demands considerable computational
resources and memory capacity due to the extensive nature of the random matrices employed for
projection. As depicted in Figure 1, other representative works share the same resource problem.
This precipitates the following open research question within the scope of PEFT:

Beyond low parameter counts, how to achieve high-rank adaptation
without incurring significant costs of time and memory?

To address this question, we introduce Circular Convolution Adaptation (C3A), which incorporates
the circular convolution operator (Bamieh, 2018). Circular convolution has garnered significant at-
tention in both signal processing (Li et al., 2020) and cryptography (Dworkin et al., 2001) due to its
exceptional efficiency and compactness. This operator can be equivalently expressed as multiplica-
tion by a circulant matrix, providing rank flexibility that is independent of the number of trainable
parameters. Furthermore, by employing the Fast Fourier Transform (FFT), C3A achieves superior
time and memory efficiency compared to the direct multiplication of the circulant matrix (Bamieh,
2018), which makes it competitive with LoRA in terms of efficiency.

In addition, as explicated by Dosovitskiy et al. (2020), dense linear layers exhibit a deficiency of
inductive biases, engendering a complex optimization landscape. Consequently, this hampers the
effectiveness of transformers in comparison to Convolutional Neural Networks (CNNs) under con-
ditions of limited data availability. Within the framework of a constrained training dataset for the
downstream task, we postulate that a robust inductive bias could potentially augment adaptiation
performance. The circular pattern in C3A serves precisely as such an inductive bias.

In summary, circular convolution presents a promising solution for circumventing the rank limita-
tions of LoRA at minimal costs. Our contributions can be summarized as follows:

❶ We introduce C3A, a novel approach for PEFT. This method leverages the circular convolution
operation and its equivalent circulant matrix to provide a flexible rank, which is free of linear con-
straint by the number of trainable parameters, for the delta matrix.

❷ Leveraging the elegant diagonalization of the circulant matrix, we implement both the forward
pass and backpropagation using FFT. With the incorporation of FFT, the computation and memory
efficiency of C3A excels. C3A strikes a unique balance between performance an efficiency.

❸ To offer greater flexibility in controlling the number of trainable parameters, we extend C3A by
incorporating block-circular convolution, which results in block-circulant matrices. This extension
allows C3A to achieve fully customizable parameter counts as well as adaptable rank configurations.

❹ We validate C3A through comprehensive fine-tuning experiments across diverse tasks including
natural language understanding, instruction tuning and image classification. Experiments demon-
strate C3A’s outstanding accuracy and memory merits compared to existing state-of-the-art methods.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Research on PEFT has generally progressed along three main directions. The first direction involves
partially updating the pre-trained neural network (e.g., the layer norm (Basu et al., 2024) or the
biases (Zaken et al., 2021)). Traditional methods relied on hand-crafted heuristics (Raghu et al.,
2019) to identify which parameters are crucial and should be fine-tuned. More advanced approaches
employ optimization techniques (Guo et al., 2020; Xu et al., 2021; Fu et al., 2023). For example, Guo
et al. (2020) reformulated such a discrete optimization problem into a continuous one by employing
Bernoulli masks and the Gumbel-softmax approximation (Jang et al., 2016).

The second direction emerged to maintain the integrity of the pre-trained model while enabling a
high degree of parameter sharing through adapter-based methods (He et al., 2021; Rebuffi et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2017; Rücklé et al., 2020; Liu et al., 2022; Lian et al., 2022). These works focus on integrating
additional modules, termed adapters, to fit the downstream task, effectively decoupling the pre-
trained model parameters from those specific to the downstream task. Prompt Tuning (Brown et al.,
2020; Gao et al., 2020; Chen et al., 2023; Zhang et al., 2024a) and Prefix Tuning (Li & Liang, 2021;
Jia et al., 2022) also fall into this category, despite ignoring potential semantic meanings.

The final direction is characterized by delta-weight-based methods, such as Low-Rank Adaptation
(LoRA) (Hu et al., 2021) and Orthogonal Fine-tuning (OFT) (Qiu et al., 2023). These methods
bridge the gap between the pre-trained model and the downstream task by adaptive delta weights,
which are stored separately while used in combination with the pre-trained weights. This unique
design enables disentanglement of the pretrained and downstream-specific weights. Namely, it
achieves parameter sharing and preserves the ability to integrate without additional inference cost.
LoRA models the delta-weights by an additive matrix while OFT does it by a multiplicative one.
To further improve either parameter efficiency or performance, many variants has been proposed for
both of the methods (Kopiczko et al., 2023; Liu et al., 2024; 2023; Yuan et al., 2024; Hayou et al.,
2024b; Gao et al., 2024). However, these methods can hardly achieve high parameter efficiency and
performance without incurring heavy computation and memory usage.

2.2 CIRCULAR CONVOLUTION

Circular convolution has been extensively studied in signal processing (Rabiner et al., 1978;
McGillem & Cooper, 1984; Li et al., 2020) and cryptography (Dworkin et al., 2001; Gong et al.,
2024). Owing to its computational advantages, circular convolution has also been explored in
machine learning for generating long embeddings of high-dimensional data (Yu et al., 2014) and
compressing heavily parameterized layers (Cheng et al., 2015; Ding et al., 2017). Remarkably, it
achieves these efficiencies without significant performance degradation, which makes it a promising
technique for fine-tuning applications.

Despite its success in small neural networks such as LeNet (Cheng et al., 2015), circular convolution
has not demonstrated lossless performance in modern large foundational models (LFMs) or even in
their base architecture, the transformer. This limitation may be attributed to the conflict between its
high intrinsic bias (i.e., the circulant pattern) and the vast amount of data required for training LFMs.
Conversely, when fine-tuning LFMs, it is often impractical to collect as much data as needed for
training from scratch. In such scenarios, the intrinsic bias of circular convolution could potentially
serve as a regularization mechanism, thereby benefiting the optimization process of fine-tuning.

3 METHOD

In this section, we present C3A (see an overview in Figure 2), a novel PEFT approach based on
the circular convolution. C3A follows LoRA’s setting of learning an additive linear operation over
the original dense linear transformation. However, instead of using low-rank decomposition and the
matrix multiplication operator, C3A resorts to circular convolution as this additive linear operation.
Section 3.1 introduces the notations we use. Section 3.2 discusses the circular convolution operator,
its equivalent circulant matrix, and its calculation in the frequency domain. Section 3.3 details an
efficient method for backpropagation. Section 3.4 describes block-wise convolution for controlling
the number of trainable parameters. Finally, Section 3.5 analyzes the computational complexity.

3.1 NOTATIONS

The adapted weight matrix, the original weight matrix, and the delta matrix are denoted by W,
W0, and ∆W, respectively (W,W0,∆W ∈ Rd1×d2). The activation vector of the previous layer
is denoted by x ∈ Rd2 . The post-transformation vector is z, where z = Wx ∈ Rd1 , and the
incremental part is denoted by ∆z, where ∆z = ∆Wx ∈ Rd1 . The matrices A and B are low-rank
matrices introduced by LoRA to represent ∆W, with r being their rank. rv specifies the rank of the
random projection matrix used in VeRA. The circular convolution kernel of C3A is denoted by ∆w
and the circular convolution operator by ⋆. The loss function is represented by L. The Fast Fourier
Transform and its inverse are denoted by FFT and iFFT, respectively. The Hadamard product is
denoted by ◦.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Activation

𝐱 ∈ ℝ𝑑2

Pretrained

Weights

𝐖 ∈ ℝ𝑑1×𝑑2

𝐀 ∈ ℝ𝑟×𝑑2

𝐁 ∈ ℝ𝑑1×𝑟

𝐀𝐱
∈ ℝ𝑟

Post-Transform

𝐳 ∈ ℝ𝑑1

Activation

𝐱 ∈ ℝ𝑑2

Pretrained

Weights

𝐖 ∈ ℝ𝑑1×𝑑2

C3A Kernel

Δ𝐰 ∈ ℝ𝑏

Post-Transform

𝐳 ∈ ℝ𝑑1

Activation

𝐱 ∈ ℝ𝑑2

Pretrained

Weights

𝐖 ∈ ℝ𝑑1×𝑑2

Post-Transform

𝐳 ∈ ℝ𝑑1

𝐱1
∈ ℝ𝑏

𝐱𝑑2
𝑏

∈ ℝ𝑏

iFFT

FFT

𝐳1
∈ ℝ𝑏

𝐳𝑑1
𝑏

∈ ℝ𝑏

C3A Kernels

Δ𝐰 ∈ ℝ
𝑑1
𝑏
×
𝑑2
𝑏
×𝑏

(A) LoRA (B) C3A (𝑏 = 𝑑1 = 𝑑2) (C) C3A (𝑏 ∈ CD(𝑑1, 𝑑2))

Blk-iFFT

Blk-FFT

Trainable

Frozen

…

…

Figure 2: Overview of LoRA (A) and our C3A (B,C) method. In LoRA, only low-rank matrices
A and B are trained and the delta weight is represented by their product (i.e., ∆W = BA). The
total trainable parameter number is r(d1+d2), which is assosiated with the rank of the delta weight.
In C3A, circular convolution kernels ∆w are tuned to adapt to the downstream task and the delta
weight is represented by the (block-)circular matrix they construct (i.e., ∆W = C(blk)(∆w)). The
total trainable parameter count is d1d2

b , which disentangles with the rank of the delta weight. Here, b
is the block size of the block-circular matrix and it should be a common divisor (CD) of d1 and d2.

3.2 CIRCULAR CONVOLUTION

Firstly, for simplicity, we assume d1 = d2 = d and ∆w ∈ Rd. The circular convolution operator is
defined as ∆z = ∆w ⋆ x = C(∆w)x, where C(·) is a function which takes a vector and outputs the
corresponding circulant matrix. Concretely, the first row of C(∆w) is ∆w and the following rows
are equal to the row above them periodically shifted to the right by one element. In math,

C(∆w) =

∆w1 ∆w2 · · · ∆wd−1 ∆wd

∆wd ∆w1 · · · ∆wd−2 ∆wd−1

· · · · · · · · · · · · · · ·
∆w3 ∆w4 · · · ∆w1 ∆w2

∆w2 ∆w3 · · · ∆wd ∆w1

 .

Theoretically, the rank of C(∆w) is given by d− Deg(gcd(f(x), xd − 1)) (Ingleton, 1956), where
Deg(·) denotes the degree of a polynomial, f(x) is the polynomial associated with ∆w (i.e.,
f(x) =

∑d
i=1 ∆wix

i−1), and gcd(·) represents the greatest common divisor. Consequently, the
theoretical upper bound on the rank of C(∆w) is d. By learning ∆w in the Rn oracle, C3A au-
tomatically achieves dynamic rank selection, which is not linearly constrained by the number of
learnable parameters, unlike LoRA.

To achieve high efficiency, enlightened by Ding et al. (2017), we leverage the beautiful circulant
structure of C(∆w), which makes it diagonalizable by the Fourier basis (F) . In math, it can be
described as C(∆w) = FΛ

dF
−1 (Golub & Van Loan, 1996), where Λ is its eigenvalues and can

be calculated by a Fourier transform of the first row (i.e., Λ = diag(F∆w)). Therefore, we can
calculate ∆w ⋆ x as

∆w ⋆ x = Fdiag(
F∆w

d
)F−1x

= FFT(FFT(∆w) ◦ iFFT(x)).
(1)

3.3 BACKPROPAGATION

To effectuate backpropagation with optimal efficiency, it is imperative to obtain the analytical deriva-
tives of the loss function L with respect to ∆w and x. Following the approach outlined in Ding et al.
(2017), we aim to explain backpropagation using simpler language. By applying the chain rule, these

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

derivatives are delineated as follows:
∂L
∂x

=
∂∆z

∂x

∂L
∂∆z

,
∂L
∂∆w

=
∂∆z

∂∆w

∂L
∂∆z

. (2)

Given that ∆z = C(∆w)x, it logically follows that ∂∆z
∂x = C(∆w). Concerning ∂∆z

∂∆w , we observe
the commutative property of the circular convolution operation (i.e., C(∆w)x = C(x)∆w), which
implies ∂∆z

∂∆w = C(x). Substituting these findings into Equation 2, we derive:

∂L
∂x

= C(∆w)
∂L
∂∆z

,
∂L
∂∆w

= C(x) ∂L
∂∆z

.

These expressions can also be interpreted as circular convolutions:

∂L
∂x

= ∆w ⋆
∂L
∂∆z

,
∂L
∂∆w

= x ⋆
∂L
∂∆z

.

By meticulously executing this derivative computation in accordance with Equation 1, backpropa-
gation can harness the computational efficacy facilitated by the FFT algorithm.

3.4 BLOCK-CIRCULAR CONVOLUTION

Notwithstanding the elegance and efficiency of the circular convolution operator, it is subject to
two fundamental limitations stemming from the constraint that the convolution kernel must match
the dimensions of the activation vector: ① It is inapplicable to non-square weight matrices. ②
The count of learnable parameters remains fixed. The first restriction hampers its applicability in
scenarios such as fine-tuning a LLaMA3-8B model, where the weight matrix dimensions include
4096 × 1024. The second constraint diminishes the adaptability of C3A, presenting challenges in
addressing complex downstream tasks that necessitate a greater number of learnable parameters. To
mitigate these limitations, we employ block-circular convolution (Ding et al., 2017). By partitioning
the activation vector x and the post-transformation vector ∆z into blocks of identical size, unique
convolution kernels can be allocated to each pair of these blocks. Specifically,

x =
[
x1 x2 · · · x d2

b

]
, ∆z =

[
∆z1 ∆z2 · · · ∆z d1

b

]
,

where b is the block size and b need to be a common divisor of d1 and d2. We will need d1d2

b2

convolution kernels to densely connect these blocks, which can be expressed in math as

∆zi =

d2
b∑

j=1

∆wij ⋆ xj , i ∈ {1, 2, · · · , d1
b
}.

This calculation can be represented by a block-circular matrix:

∆z = Cblk(∆w)x, Cblk(∆w) =

C(∆w11) C(∆w12) · · · C(∆w

1
d2
b
)

C(∆w21) C(∆w22) · · · C(∆w
2

d2
b
)

· · · · · · · · · · · ·
C(∆w d1

b 1
) C(∆w d1

b 2
) · · · C(∆w d1

b
d2
b
)

 . (3)

We refer our readers to Algorithm A1 in Appendix C for a Pytorch implementation. In this context,
∆wij ∈ Rb, and it follows that d1d2

b2 b = d1d2

b represents the number of learnable parameters. No-
tably, the parameter b serves as a hyperparameter modulating the quantity of learnable parameters,
analogous to the role of r in LoRA. It is imperative to distinguish, however, that whereas r simulta-
neously governs the rank of the delta matrix and the number of learnable parameters, b exclusively
influences the latter. This disentanglement of matrix rank and parameter count facilitates greater
adaptability and potentially yields superior outcomes.

3.5 COMPLEXITY ANALYSIS

We compare the time complexity and space complexity of LoRA, VeRA and C3A in Table 1. De-
tailed analysis follows in this section.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.5.1 TIME COMPLEXITY

LoRA integrates low-rank matrices A and B, which are successively multiplied with the activation
vector, resulting in a computational complexity of O(r(d1 + d2)). Generally, r ≪ min(d1, d2).
In contrast, VeRA, despite its high-rank structure and relatively few trainable parameters, suffers
from a prohibitive computational complexity of O(rv(d1 + d2)), where rv can exceed max(d1, d2).
Consequently, striking an optimal balance between high rank and computational efficiency remains
an elusive task.

On GPUs, the cuFFT backend automatically parallelizes FFT operations along the axes not being
transformed, with the degree of parallelism p determined by the available resources. Thanks to the
O(n log n) complexity of the FFT algorithm used in Equation 1, C3A achieves a time complexity
of O((d1+d2)

p log b + d1d2

b). The first term is the time complexity for FFT and the second term is
for aggregation. In practical scenarios, b is chosen as the greatest common divisor of d1 and d2 to
achieve a high compression ratio. Given that, C3A is comparable to LoRA in time complexity.

3.5.2 SPACE COMPLEXITY

Table 1: Time and space complexity comparison of LoRA, VeRA and
C3A. We split the space complexity into Parameter number and Other
auxiliary tensors to help better understand the differences. We highlight
that in practice, to achieve similar performance, max(d1,d2)

b ≤ r ≪ rv .

Method Time # Param # Other # Total

LoRA O(r(d1 + d2)) r(d1 + d2) 0 r(d1 + d2)
VeRA O(rv(d1 + d2)) rv + d1 rv(d1 + d2) rv(d1 + d2) + rv + d1
C3A O(d1+d2

p log b+ d1d2

b) d1d2

b pb d1d2

b + pb

We analyze the space
complexity of LoRA,
VeRA, and C3A during
training. The differences
among these methods
primarily arise from the
trainable parameters and
the auxiliary tensors
required for the forward
pass and backpropaga-
tion. LoRA does not
rely on auxiliary tensors,
while VeRA necessitates 2 random projection matrices, with a total size of rv(d1 + d2). Since rv is
by no means negligible, the memory usage of VeRA is significantly larger than that of LoRA.

In terms of C3A, the only additional auxiliary tensor would be of size pb ≤ min(d1, d2), which is
reserved by the FFT algorithm. By selecting an appropriate b, which is often close to the greatest
common divisor of d1 and d2, the space complexity of C3A is optimized. Furthermore, because p
scales with the available resources, the algorithm inherently manages dynamic memory consumption
without additional effort.

4 EXPERIMENT

We first experiment on a synthetic dataset to show C3A’s superior expressiveness over LoRA. Next,
we evaluate C3A in both NLP and CV. For NLP, we show C3A’s effectiveness using the GLUE
benchmark with RoBERTa-Base and RoBERTa-Large, and fine-tune the LLaMA family models.
For CV, we test classification tasks using Vision Transformers (ViTs) on various datasets. Finally,
we perform ablation studies on C3A kernel initialization.

4.1 SYNTHETIC DATA

Settings. We distribute 8 points evenly on a 2D plane as cluster centers and randomly sample 30
points from the 8 corresponding multivariate Gaussian distributions. A 3-layer MLP is then used
to classify these point clusters. To compare the expressiveness of 2 types of layers, we replace the
middle layer with either a low-rank layer or a circulant layer, ensuring that both layers have the same
number of trainable parameters for a fair comparison.

Results. The results are presented in Figure 3. We observe that LoRAr=1 struggles with this simple
classification task. In contrast, C3Ab=128/2, despite using the same number of parameters, achieves
a perfect classification, comparable to a standard linear layer. This demonstrates the high expres-
siveness of C3A given the same parameter budget.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 10 20 30

0

5

10

0 100 200 300 400
Epoch

0.2

0.4

0.6

0.8

1.0

Tr
ain

in
g

Ac
cu

ra
cy

C3Ab= 128/2

LoRAr= 1

Linear

Figure 3: Expressiveness test on synthetic data. The left figure shows the synthetic data used for
the experiment, while the right figure illustrates the training accuracy curves of a 3-layer MLP,
incorporating C3A, LoRA, and standard linear layers, respectively.

4.2 NATURAL LANGUAGE UNDERSTANDING

Baselines. We compare our C3A with several representative PEFT methods, including BitFit (Za-
ken et al., 2021), (IA)3 (Liu et al., 2022), LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023),
and BOFT (Liu et al., 2023). BitFit selectively fine-tunes existing parameters, specifically the bi-
ases. (IA)3 is the state-of-the-art method that adds additional adapters. LoRA is a widely known
PEFT method that employs low-rank decomposition to compress additive delta matrices. VeRA is a
recent approach that focuses on further reducing trainable parameters of LoRA while preserving a
high rank. BOFT is another innovative method in PEFT research, compressing multiplicative delta
matrices using orthogonal decomposition and butterfly factorization.

Table 2: Performance of different PEFT methods on the GLUE benchmark. We fine-tune pre-trained
RoBERTa-Base and -Large models on 6 datasets. We report the Matthew’s Correlation Coefficient
(MCC) for CoLA, Pearson Correlation Coefficient (PCC) for STS-B, and accuracy (Acc.) for all the
remaining tasks. For each metric, a higher score indicates better performance. “Avg.” denotes the
average score of each method across all datasets. The best results for each dataset are highlighted in
bold. # Trainable parameters does not include the classification head since each method uses a head
of the same size. Memory Cost is measured on fixed length (i.e., 256) data with a batchsize of 64.

Method # Trainable
Parameters

Memory
Cost (GB) SST-2 MRPC CoLA QNLI RTE STS-B Avg.

B
A

S
E

Full 124M 17.19 94.01±0.39 87.10±0.79 62.00±1.16 92.40±0.28 77.33±2.68 90.70±0.14 83.92
BitFit 0.102M 12.60 93.30±0.30 85.80±0.21 59.21±1.74 91.96±0.18 73.07±1.34 90.18±0.17 82.25
(IA)3 0.111M 19.86 92.98±0.34 85.86±0.59 60.49±1.09 91.56±0.17 69.10±1.18 90.06±0.21 81.67
LoRAr=8 0.295M 13.75 94.50±0.41 85.68±0.74 60.95±1.57 92.54±0.20 76.68±1.42 89.76±0.39 83.35
VeRAr=1024 0.043M 15.51 93.97±0.17 86.23±0.41 62.24±1.91 91.85±0.17 75.74±1.56 90.27±0.25 83.38
BOFTm=2

b=8 0.166M 14.11 93.23±0.50 84.37±0.54 59.50±1.25 91.69±0.12 74.22±0.84 89.63±0.37 82.11
C3Ab=768/1 0.018M 12.83 93.42±0.26 86.33±0.32 61.83±0.96 91.83±0.04 76.17±1.39 90.46±0.29 83.34
C3Ab=768/6 0.111M 12.72 94.20±0.16 86.67±0.54 62.48±1.20 92.32±0.25 77.18±1.41 90.16±0.42 83.84

L
A

R
G

E

Full 354M 43.40 95.75±0.45 88.35±0.64 64.87±1.25 92.40±0.28 84.48±1.14 91.65±0.14 86.25
BitFit 0.271M 30.65 95.09±0.27 88.10±0.76 65.40±0.76 94.06±0.14 82.60±1.15 91.73±0.20 86.16
(IA)3 0.295M 48.81 95.32±0.20 87.06±0.57 66.52±1.10 94.18±0.15 84.33±2.38 91.58±0.39 86.50
LoRAr=8 0.786M 34.12 95.53±0.35 86.12±0.86 65.16±0.76 93.73±0.30 83.75±0.51 91.46±0.21 85.96
VeRAr=256 0.061M 34.16 95.83±0.43 87.72±0.55 63.66±1.45 94.11±0.20 83.03±1.65 91.12±0.37 85.91
BOFTm=2

b=8 0.442M 34.98 95.76±0.41 88.28±0.33 64.72±2.37 93.89±0.14 82.82±1.40 91.03±0.32 86.08
C3Ab=1024/1 0.049M 31.83 95.78±0.05 88.02±0.62 66.59±1.20 94.22±0.25 82.89±0.67 91.86±0.14 86.56
C3Ab=1024/8 0.393M 31.79 95.78±0.15 88.09±0.47 67.18±1.92 94.26±0.19 84.62±1.36 91.81±0.36 86.96

Settings. We evaluate our proposed C3A on the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018), which encompasses a wide range of natural language un-
derstanding (NLU) tasks, including single-sentence classification, similarity and paraphrase, and
natural language inference. More dataset specifications can be found in Table A1 in Appendix A. To
enhance practicality, we split these datasets following the train-validation-test approach. The best-
performing model is selected based on validation set performance across the fine-tuning epochs, and
the reported performance corresponds to its performance on the test set. For this evaluation, we fine-
tune the pre-trained RoBERTa-Base and RoBERTa-Large models (Liu et al., 2019). For the unique

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

hyperparameters of different baselines, we adopt the values suggested in the original papers (e.g.,
VeRA’s r and BOFT’s b and m). The number of trainable parameters excludes the classification
head, as each method uses one of the same size. The shared hyperparameters (i.e., the learning rate
for classification head and for other trainable parameters, separately) are found by hyperparameter
search. For the memory cost, to ensure fairness and consistency, we fix the length of input data to
256 tokens and use a batchsize of 64.

Results. The results are presented in Table 2. Overall, C3Ab=768/1 and C3Ab=1024/1 achieve supe-
rior or comparable performance to baseline methods, despite using an exceptionally small number of
trainable parameters. As the number of trainable parameters increases, models like C3Ab=768/6 and
C3Ab=1024/8 significantly outperform the baselines. Moreover, compared to (IA)3, LoRA, VeRA,
and BOFT, C3A distinguishes itself with remarkable memory efficiency. The only method demon-
strating better memory efficiency is BitFit, which serves as an upper bound since it introduces no
new parameters. Additionally, most of the circulant delta matrices identified by C3A are of full
rank, indicating maximal capacity (Zeng & Lee, 2023) and providing a theoretical basis for the
outstanding performance.

4.3 INSTRUCTION TUNING

Settings. For a comprehensive comparison, we further conduct instruction tuning on LLaMA
families, the prevalent large language models. Specifically, we evaluate C3A against LoRA and
DoRA (Liu et al., 2024), a variant of LoRA sensitive to learning direction. Specifically, we fine-tune
LLaMA2-7B/13B (Touvron et al., 2023) and LLaMA3-8B (Dubey et al., 2024) among 7 datasets
covering 3 prevalent tasks: ① Arithmetic reasoning on GSM8k (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2020); ② Functional representation generation on ViGGO (Juraska et al., 2019),
and SQL (Zhong et al., 2017); and ③ Commonsense reasoning on BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020) and SIQA (Bisk et al., 2020). For the SQL dataset, we preprocess it by selecting
25% of the data and apply a 4:1 train-test split, resulting in a training set of 16K samples. To ensure
a fair comparison, we maintain LoRA parameters with r = 32, α = 32, and a dropout rate of 0.05,
while exploring various learning rates as suggested by (Hu et al., 2021). Please refer to Table A4 in
Appendix B for more details.

Results. In Table 3, our principal experimental observations are summarized. The C3A framework
consistently surpasses LoRA within the LLaMA series, with particular efficacy demonstrated in
the most recent model, LLaMA3-8B. Noteworthy is the significant enhancement in the efficacy of
LLaMA3-8B as a foundational model following the implementation of more sophisticated post-
training techniques. This underscores the criticality of optimizing the fine-tuning protocols for this
advanced model. It is also remarkable that C3A achieves such results while employing less than half
the parameter count of LoRA. Taken together, the findings robustly underscore the superior efficacy
of the C3A methodology. We refer readers to Appendix D for examples of models after different
tuning methods.

Table 3: Comparison of C3A and LoRA on fine-tuning LLaMA2 and LLaMA3 models in terms of
accuracy and trainable parameters. The best results for each dataset are highlighted in bold. “Avg.”
denotes the average accuracy of each method across all datasets.

Model Method # Trainable
Parameters

GSM8k MATH ViGGO SQL BoolQ PIQA SIQA Avg.

LLaMA2-7B
LoRAr=32 16.8M 39.57 5.65 96.48 79.66 75.60 85.26 82.09 66.33
DoRAr=32 17.0M 39.05 6.00 96.85 79.66 75.41 85.64 81.93 66.36
C3Ab=4096/32 8.4M 40.18 6.00 97.05 79.28 75.02 85.53 81.62 66.38

LLaMA2-13B
LoRAr=32 26.2M 49.02 8.55 97.10 79.97 77.09 87.36 83.21 68.90
DoRAr=32 26.6M 50.02 9.00 97.32 79.66 77.16 87.70 82.60 69.07
C3Ab=5120/32 13.1M 49.66 8.85 97.34 80.12 76.91 87.98 83.05 69.13

LLaMA3-8B
LoRAr=32 13.6M 62.80 21.05 96.50 80.61 77.37 89.72 82.19 72.89
DoRAr=32 13.8M 62.95 22.15 96.54 81.22 77.09 90.21 82.44 73.24
C3Ab=4096/32 5.2M 64.22 21.60 96.58 80.73 77.04 90.33 82.60 73.30

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.4 IMAGE CLASSIFICATION

Settings. In this study, we concentrate on the task of image classification leveraging Vision Trans-
former (ViT) models. Specifically, we employ both the Base and Large variants of this prominent
foundational computer vision model, as delineated by (Dosovitskiy et al., 2020). These ViT mod-
els undergo pre-training on the expansive ImageNet-21K dataset (Ridnik et al., 2021). During the
fine-tuning phase, we use an eclectic array of datasets encompassing Pets (Parkhi et al., 2012), Cars
(Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC (Maji et al.,
2013), and RESISC (Cheng et al., 2017). Comprehensive statistics for these datasets are provided
in Table A2 in Appendix A.

Table 4: Fine-tuning results with ViT-Base and ViT-Large models on various image classification
datasets. The models are fine-tuned for 10 epochs, and the best-performing model, based on valida-
tion set accuracy, is selected. The reported accuracy corresponds to the performance on the test set.
The best results between LoRA and C3A for each dataset are highlighted in bold. “Avg.” denotes
the average accuracy of each method across all datasets.

Method # Trainable
Parameters

Pets Cars DTD EuroSAT FGVC RESISC Avg.

B
A

S
E

Head - 90.28±0.43 25.76±0.28 69.77±0.67 88.72±0.13 17.44±0.43 74.22±0.10 61.03
Full 85.8M 92.82±0.54 85.10±0.21 80.11±0.56 99.11±0.07 61.60±1.00 96.00±0.23 85.79

LoRAr=16 0.59M 93.76±0.44 78.04±0.33 78.56±0.62 98.84±0.08 56.64±0.55 94.66±0.17 83.42
C3Ab=768/12 0.22M 93.88±0.22 79.05±0.35 80.57±0.53 98.88±0.07 54.31±0.79 94.54±0.23 83.54

L
A

R
G

E Head - 91.11±0.30 37.91±0.27 73.33±0.26 92.64±0.08 24.62±0.24 82.02±0.11 66.94
Full 303M 94.30±0.31 88.15±0.50 80.18±0.66 99.06±0.10 67.38±1.06 96.08±0.20 87.53

LoRAr=16 1.57M 94.62±0.47 86.11±0.42 80.09±0.42 98.99±0.03 63.64±0.83 95.52±0.21 86.56
C3Ab=1024/16 0.79M 94.48±0.30 84.94±0.39 82.62±0.52 98.75±0.19 63.80±0.37 95.94±0.16 86.69

Results. Table 4 delineates a comprehensive summary of the outcomes derived from six distinct
image classification datasets employing the ViT Base and Large models. The LoRA and C3A
techniques exhibit significant enhancements in performance relative to Head Tuning, thereby un-
derscoring their efficacy within the realm of image classification. Remarkably, our methodology
demonstrates a performance on par with LoRA while necessitating only half of the parameter count.

4.5 INITIALIZATION STUDY

Table 5: Performance of C3A with Different Initial-
ization Strategies. The tasks on CoLA and STS-
B were performed using the RoBERTa-Base model,
while those on Cars and DTD utilized the ViT-Base
model. All other settings are consistent with those in
Table 2 and Table 4.

Task Zero Gaussian Kaiming Xavier Range

CoLA 60.95±0.88 61.07±1.09 60.82±1.48 62.48±0.74 1.66
STS-B 90.23±0.23 90.13±0.16 90.19±0.34 90.31±0.31 0.18
Cars 78.70±0.60 78.64±0.67 79.18±0.37 78.96±0.25 0.54
DTD 80.82±0.86 79.58±0.41 79.76±1.14 79.95±0.72 1.24

LoRA is known to be sensitive to initial-
ization, primarily due to the distinct roles
of its matrices A and B (Hayou et al.,
2024a). In contrast, C3A possesses a sim-
pler structure based on circulant matrices,
which may reduce sensitivity to initializa-
tion. To investigate this, we focused on the
initialization strategies for the convolution
kernels that define the circulant matrices in
C3A. We conducted experiments compar-
ing four initialization methods: zero ini-
tialization, Gaussian initialization, Kaiming
uniform, and Xavier uniform. We observe
that the variations across different initializa-
tion points are mostly within the intrinsic standard deviations, highlighting the robustness of C3A to
initialization strategies. Our findings indicate that C3A maintains robust performance across these
different initialization strategies, highlighting its resilience to initialization points.

5 CONCLUSION

In this manuscript, we present C3A, a novel method for Parameter-Efficient Fine-Tuning (PEFT).
In contrast to LoRA, which employs low-rank decomposition, C3A leverages circular convolution
and its equavelent circulant matrix to represent the delta weight matrix. This methodology aims

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to independently control the rank of the delta weight matrix and the number of trainable parame-
ters, facilitating high-rank adaptation while preserving a constrained parameter size. Using the Fast
Fourier Transform (FFT) during both the forward and backward propagation phases, C3A attains
notable computational and memory efficiency. In short, C3A emerges as a persuasive alternative to
LoRA for model fine-tuning.

REFERENCES

Bassam Bamieh. Discovering transforms: A tutorial on circulant matrices, circular convolution, and
the discrete fourier transform. arXiv preprint arXiv:1805.05533, 2018.

Samyadeep Basu, Shell Hu, Daniela Massiceti, and Soheil Feizi. Strong baselines for parameter-
efficient few-shot fine-tuning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11024–11031, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, and Sijia Liu. Understanding and improv-
ing visual prompting: A label-mapping perspective. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 19133–19143, 2023.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An
exploration of parameter redundancy in deep networks with circulant projections. In Proceedings
of the IEEE international conference on computer vision, pp. 2857–2865, 2015.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao Wang, Xuehai
Qian, Yu Bai, Geng Yuan, Xiaolong Ma, Yipeng Zhang, Jian Tang, Qinru Qiu, Xue Lin, and
Bo Yuan. Circnn: accelerating and compressing deep neural networks using block-circulant
weight matrices. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-50 ’17, pp. 395–408, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450349529. doi: 10.1145/3123939.3124552. URL
https://doi.org/10.1145/3123939.3124552.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

10

https://doi.org/10.1145/3123939.3124552

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham, E. Roback, and
James Dray. Advanced encryption standard (aes), 2001-11-26 2001.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 12799–12807, 2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins University
Press, USA, 1996. ISBN 0801854148.

Yanwei Gong, Xiaolin Chang, Jelena Mišić, Vojislav B Mišić, Jianhua Wang, and Haoran Zhu.
Practical solutions in fully homomorphic encryption: a survey analyzing existing acceleration
methods. Cybersecurity, 7(1):5, 2024.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
arXiv preprint arXiv:2406.08447, 2024a.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024b.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

A. W. Ingleton. The rank of circulant matrices. Journal of the London Mathe-
matical Society, s1-31(4):445–460, 1956. doi: https://doi.org/10.1112/jlms/s1-31.4.445.
URL https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/
jlms/s1-31.4.445.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Juraj Juraska, Kevin K Bowden, and Marilyn Walker. Viggo: A video game corpus for data-to-text
generation in open-domain conversation. arXiv preprint arXiv:1910.12129, 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

11

https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-31.4.445
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-31.4.445

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Changli Li, Hon Keung Kwan, and Xinxin Qin. Revisiting linear convolution, circular convolution
and their related methods. 2020 13th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI), pp. 1124–1131, 2020. URL https:
//api.semanticscholar.org/CorpusID:227220098.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. arXiv preprint arXiv:2402.11235, 2024.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in Neural Information Processing Systems, 35:
109–123, 2022.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
factorization. arXiv preprint arXiv:2311.06243, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Clare D. McGillem and George R. Cooper. Continuous and discrete signal and system analysis.
1984. URL https://api.semanticscholar.org/CorpusID:117907785.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

L. R. Rabiner, B. Gold, and C. K. Yuen. Theory and application of digital signal processing. IEEE
Transactions on Systems, Man, and Cybernetics, 8(2):146–146, 1978. doi: 10.1109/TSMC.1978.
4309918.

12

https://api.semanticscholar.org/CorpusID:227220098
https://api.semanticscholar.org/CorpusID:227220098
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:117907785

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
arXiv preprint arXiv:2109.05687, 2021.

Felix Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang. Circulant binary embedding. In
International conference on machine learning, pp. 946–954. PMLR, 2014.

Shen Yuan, Haotian Liu, and Hongteng Xu. Bridging the gap between low-rank and orthogonal
adaptation via householder reflection adaptation. arXiv preprint arXiv:2405.17484, 2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. arXiv preprint
arXiv:2310.17513, 2023.

Yihua Zhang, Hongkang Li, Yuguang Yao, Aochuan Chen, Shuai Zhang, Pin-Yu Chen, Meng Wang,
and Sijia Liu. Visual prompting reimagined: The power of activation prompts, 2024a. URL
https://openreview.net/forum?id=0b328CMwn1.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024b.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

13

https://openreview.net/forum?id=0b328CMwn1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A DATASET DETAILS

Table A1: Task descriptions and dataset statistics of the GLUE benchmark (Wang et al., 2018).

Corpus Task # Train # Val # Test # Labels Metrics Domain

Single-Sentence Tasks

CoLA Acceptability 8.55k 1.04k 1.06k 2 Matthews Corr. misc.
SST-2 Sentiment 67.3k 872 1.82k 2 Accuracy Movie reviews

Similarity and Paraphrase Tasks

MRPC Paraphrase 3.67 408 1.73k 2 Accuracy/F1 News
STS-B Sentence similarity 5.75k 1.5k 1.38k 1 Pearson/Spearman Corr. misc.
QQP Paraphrase 364k 40.4k 391k 2 Accuracy/F1 Social QA

Inference Tasks

MNLI NLI 393k 19.65k 19.65k 3 Accuracy misc.
QNLI QA/NLI 105k 5.46k 5.46k 2 Accuracy Wikipedia
RTE NLI 2.49k 277 3k 2 Accuracy News & Wikipedia

Table A2: Details about the vision datasets.

Dataset #Train #Validation #Test #Class Rescaled resolution

Pets (Parkhi et al., 2012) 3,312 368 3,669 37

224× 224

Cars (Krause et al., 2013) 7,329 815 8,041 196
DTD (Cimpoi et al., 2014) 4,060 452 1,128 47
EuroSAT (Helber et al., 2019) 16,200 5,400 5,400 10
FGVC (Maji et al., 2013) 3,000 334 3,333 100
RESISC (Cheng et al., 2017) 18,900 6,300 6,300 45

B HYPERPARAMETERS

Table A3: Hyperparameter setup of C3A for the GLUE benchmark.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

B
ot

h

Optimizer AdamW
LR Schedule Linear
Warmup Ratio 0.06
C3A Initialization Xavier Uniform
Max Seq. Len 512

B
as

e

Epochs 40 80 80 40 80 80
Batch Size 128 128 128 64 64 128
Learning Rate (C3Ab=768/6) 2E-1 3E-1 2E-1 7E-2 3E-1 2E-1
Learning Rate (Head) 2E-4 4E-6 3E-2 8E-6 6E-3 4E-2

L
ar

ge

Epochs 10 80 70 30 60 40
Batch Size 128 128 128 32 64 128
Learning Rate (C3Ab=1024/8) 9E-2 3E-1 2E-1 7E-2 5E-2 2E-1
Learning Rate (Head) 2E-4 5E-6 3E-3 8E-6 3E-3 5E-4

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table A4: Hyperparameter setup of LoRA and C3A for instruction tuning.

Model Hyperparameter GSM8k MATH ViGGO SQL BoolQ PIQA SIQA

Optimizer AdamW
LR Scheduler Cosine
Batch Size 16
Warmup Ratio 0.05
Dropout 0.05
Epoch 3

LLaMA2-7B
Learning Rate (LoRA) 5E-4 5E-4 5E-4 6E-4 5E-4 4E-4 6E-4
Learning Rate (DoRA) 4E-4 5E-4 4E-4 6E-4 4E-4 5E-4 5E-4
Learning Rate (C3A) 8E-1 5E-1 5E-1 9E-1 7E-1 4E-1 3E-1

LLaMA2-13B
Learning Rate (LoRA) 5E-4 6E-4 5E-4 6E-4 5E-4 5E-4 4E-4
Learning Rate (DoRA) 4E-4 6E-4 5E-4 6E-4 4E-4 4E-1 5E-1
Learning Rate (C3A) 6E-1 4E-1 8E-1 1 4E-1 4E-1 8E-1

LLaMA2-8B
Learning Rate (LoRA) 5E-4 5E-4 4E-4 5E-4 4E-4 4E-4 5E-4
Learning Rate (DoRA) 6E-4 2E-4 5E-4 5E-4 4E-4 4E-4 4E-4
Learning Rate (C3A) 5E-1 3E-1 6E-1 4E-1 3E-1 3E-1 4E-1

Table A5: Hyperparameter setup of C3A for image classification tasks.

Model Hyperparameter Pets Cars DTD EuroSAT FGVC RESISC

B
ot

h

Optimizer AdamW
LR Schedule None
C3A Initialization Xavier Uniform
Epochs 10
Batch Size 64

B
as

e Learning Rate (C3Ab=768/12) 4E-1 4E+0 2E+0 2E+0 7E+0 2E+0
Learning Rate (Head) 1E-2 1E-2 2E-2 8E-3 1E-2 2E-2
Weight Decay 3E-4 5E-4 6E-5 2E-5 1E-5 2E-5

L
ar

ge Learning Rate (C3Ab=1024/16) 7E-1 4E+0 2E+0 2E+0 4E+0 3E+0
Learning Rate (Head) 3E-3 8E-3 7E-3 2E-2 1E-1 4E-3
Weight Decay 4E-3 1E-5 2E-4 5E-4 2E-5 9E-5

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C IMPLEMENTATIONS

Algorithm A1 Block-Circular Convolution PyTorch Implementation

import torch
from torch.autograd import Function
from torch.fft import fft, ifft

class BlockCircularConvolution(Function):
@staticmethod
def forward(ctx, x, w):

m, n, b = w.shape
x = x.reshape(*x.shape[:-1], n, b)
ctx.save_for_backward(x, w)
x = torch.einsum("...nb,mnb->...mb", ifft(x), fft(w))
x = fft(x).real
x = x.reshape(*x.shape[:-2], -1)
return x

@staticmethod
def backward(ctx, grad_output):

x, w = ctx.saved_tensors
m, n, b = w.shape
grad_output = grad_output.reshape(*grad_output.shape[:-1], m, b)
grad_output_fft = fft(grad_output)
x_grad = fft(torch.einsum("...mb,mnb->...nb", grad_output_fft, ifft(w))).real
x_grad = x_grad.reshape(*x_grad.shape[:-2], -1)
w_grad = fft(torch.einsum("...mb,...nb->mnb", grad_output_fft, ifft(x))).real
return x_grad, w_grad

We present the PyTorch implementation of Block-Circular Convolution in Algorithm A1. Further-
more, due to the inefficiency of directly assigning entries (as shown in Equation 3), we derive an
alternative algorithm to compute the ∆W more efficiently. Rather than direct assignment, we em-
ploy a forward process on the Identity matrix. Mathematically, this can be expressed as

∆W = Cblk(∆w)

= Cblk(∆w) · Id2

= Cblk(∆w) · [e1, e2, · · · , ed2
]

= [Cblk(∆w)e1, Cblk(∆w)e2, · · · , Cblk(∆w)ed2]

= [∆w ⋆ e1,∆w ⋆ e2, · · · ,∆w ⋆ ed2
] .

Where Id2
∈ Rd2×d2 represents an Identity matrix and ei is the ith column of it. In pytorch, we

can efficiently compute the iFFT of {ei}i=1,2,··· ,d2
by a column-wise iFFT of Id2

. We present the
Pytorch implementation in Algorithm A2 as well.

Algorithm A2 Fast Algorithm of Getting ∆W

import torch
from torch.fft import fft, ifft

def get_circulant_fast(w):
m, n, b = w.shape
x = torch.eye(n*b, dtype=w.dtype, device=w.device)
x = x.reshape(*x.shape[:-1], n, b)
x = torch.einsum("...nb,mnb->...mb", ifft(x), fft(w))
x = fft(x).real.flatten(start_dim=1).T
return x

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D INSTRUCTION TUNING EXAMPLES

LLaMA3-8B (MATH)

Find the number of square units bounded by the x-axis, the y-axis and the line x+ y = 6.
Answer the above question. First think step by step and then answer the final number.

Response

Methods Response
LoRA The line x+ y = 6 intersects the x-axis at x = 6 and the y-axis at y = 6.

So, the line divides the square with side length 6 into two triangles.
The area of each triangle is 1

2
× 6× 6 = 18.

So, the area of the square is 2× 18 = 36 .
The final answer is: 36

C3A The line x+ y = 6 intersects the x-axis at (6, 0) and the y-axis at (0, 6).
Thus, the line divides the first quadrant into two triangles, one with base 6 and height 6
and the other with base 6 and height 0.
The area of the first triangle is (6 × 6)/2 = 18 square units, and the area of the second
triangle is (6× 0)/2 = 0 square units.
Thus, the total area is 18 + 0 = 18 square units.
The final answer is: 18

LLaMA3-8B (GSM8K)

Tim makes a special honey and jam mix. To make 1 jar of the mixture it takes 2 pounds of passion fruit
and 1.5 pounds of jackfruit. It also takes 2 pounds of special honey. The passion fruit costs $6 per pound,
the jackfruit is $8 per pound, and the honey is $10 per pound. He sells each jar for $50. How much profit
does he make selling 10 jars?
Answer the above question. First think step by step and then answer the final number.

Response

Methods Response
LoRA The passion fruit costs 6× 2 = 12.

The jackfruit costs 8× 1.5 = 12.
The honey costs 10× 2 = 20.
So the total cost is 12 + 12 + 20 = 44.
So he makes a profit of 50× 10− 44 = 460.
The final answer is: 460

C3A The passion fruit costs 6× 2 = 12.
The jackfruit costs 8× 1.5 = 12.
So the fruit costs 12 + 12 = 24.
The honey costs 10× 2 = 20.
So the total cost per jar is 24 + 20 = 44.
So he makes a profit of 50− 44 = 6 per jar.
So he makes a profit of 6× 10 = 60.
The final answer is: 60

17

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning
	Circular Convolution

	Method
	Notations
	Circular Convolution
	Backpropagation
	Block-Circular Convolution
	Complexity Analysis
	Time Complexity
	Space Complexity

	Experiment
	Synthetic Data
	Natural Language Understanding
	Instruction Tuning
	Image Classification
	Initialization Study

	Conclusion
	Dataset Details
	Hyperparameters
	Implementations
	Instruction Tuning Examples

