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Abstract

Detecting hallucinations in natural language
processing (NLP) is a critical undertaking that
demands a deep understanding of both the se-
mantic and pragmatic aspects of languages.
Cognitive approaches that leverage users’ be-
havioural signals, such as gaze, have demon-
strated effectiveness in addressing NLP tasks
with similar linguistic complexities. However,
their potential in the context of hallucination
detection remains largely unexplored. In this
paper, we propose a novel cognitive approach
for hallucination detection that leverages gaze
signals from humans. We first collect and intro-
duce an eye tracking corpus (IITB-HGC: IITB-
Hallucination Gaze corpus) consisting of 500
instances, annotated by five annotators for hal-
lucination detection. Our analysis reveals that
humans selectively attend to relevant parts of
the text based on distributional similarity, sim-
ilar to the attention bias phenomenon in psy-
chology. We identify two attention strategies
employed by humans: global attention, which
focuses on the most informative sentence, and
local attention, which focuses on important
words within a sentence. Leveraging these in-
sights, we propose a novel cognitive framework
for hallucination detection that incorporates
these attention biases. Experimental evalua-
tions on the FactCC dataset demonstrate the
efficacy of our approach, obtaining a balanced
accuracy of 87.1%. Our study highlights the po-
tential of gaze-based approaches in addressing
the task of hallucination detection and sheds
light on the cognitive processes employed by
humans in identifying inconsistencies.

1 Introduction

Hallucination detection in text refers to the task
of identifying and validating information that is
inaccurately or falsely represented within textual
content. Detection of hallucination involves ex-
amining the claims made in the text and assessing
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their alignment with the surrounding context and
external knowledge. Addressing hallucinations has
become paramount, particularly in the context of
automatically generated text utilizing powerful lan-
guage models (LLMs), which often exhibit human-
like fluency but are prone to hallucinatory outputs
(Zhang et al., 2023; Alkaissi and McFarlane, 2023).

Many existing methods for hallucination detec-
tion depend on knowledge sources that are explicit
such as Wikipedia or knowledge graphs (Manakul
et al., 2023; Santhanam et al., 2021; Dziri et al.,
2021; Ji et al., 2023) or ingrained in language en-
coders such as BERT or RoBERTa (Shen et al.,
2023; Zhou et al., 2020). While these traditional
approaches can reasonably detect hallucinations in
a text when supplemented with knowledge sources,
they face sustainability challenges due to the con-
stant need for up-to-date knowledge. Obtaining
the latest information for hallucination detectors is
often impractical, as it requires readily available
and current sources of knowledge. To address this
issue, we propose an alternative approach that lever-
ages cognitive and behavioural information from
humans in the form of gaze patterns while they
analyze text for potential hallucinations.

Our work is motivated by the notion that humans,
while reading text for hallucination identification
would naturally employ their cognitive faculties
to navigate the intricate relationship between lan-
guage and real-world knowledge. Linguistically,
this involves scrutinizing whether (a) entities in the
text are adequately placed (e.g., is Canada a right
choice of entity) (b) the semantic roles played by
the entities are valid w.r.t the context (e.g, Pluto is
a planet). This critical examination would often
manifest as prolonged fixations1 on specific sec-
tions of text (e.g., longer fixations on entities and
phrases such as Canada, Pluto and a planet) that
require closer evaluation, resulting in denser and

1A fixation occurs when the eye is focused on a particular
part of the screen



more extensive fixation activities. In essence, fixa-
tions may serve as invaluable indicators, acting as
a reliable surrogate for knowledge-based validation
of contextual information pertaining to potential
hallucinations. This may open up possibilities for
the development of a hallucination detector that can
leverage gaze data as a primary input, alleviating
the reliance on supplementary external knowledge.

To validate this, we first collect a first-of-its-kind
eye-tracking data of 5 annotators annotating 500
instances of claim-context pairs, carefully derived
from the FactCC dataset (Kryscinski et al., 2020).
During the annotation process, we capture the fix-
ation patterns of annotators on both the claim and
context texts, along with their corresponding la-
bels. Notably, our inter-annotator agreement (IAA)
Kappa score reaches 0.60, indicating substantial
agreement. Behavioural analysis of the annotated
data reveals a recurrent pattern where annotators
tend to skim through somewhat irrelevant context
while selectively focusing on information crucial
for establishing or refuting hallucinations. Building
upon insights gained from this behavioural analy-
sis, we term this selective reading phenomenon as
"attention bias". Furthermore, our observations
indicate that attention bias can manifest as either
a "global" approach, involving the extraction of
sentences containing relevant information about
hallucinations, or a "local" approach, focusing on
specific phrases within sentences to evaluate the
alignment of semantic roles between the claim and
the selected phrases.

Building upon these insights, we propose a mod-
ular architecture that incorporates global and lo-
cal attention bias using transformer-based deep
learning techniques (Vaswani et al., 2017) and a
gaze-based attention saliency module (Sood et al.,
2020b). Experimental evaluations on the FactCC
dataset demonstrate the efficacy of our approach,
outperforming baseline models while attaining bet-
ter interpretability. We have open-sourced our code,
data and results for academic usage 2.

Our contributions are summarised as follows:

• We create and share a first-of-its-kind eye-
tracking corpus (Section 3) for hallucination
detection: IITB-HGC (IITB-Hallucination
Gaze Corpus) consisting of 500 instances of
context and claim pairs, where five annota-
tors label the claim as hallucinated or non-
hallucinated with respect to the context. We

2Github Link

obtained an IAA Kappa score of 0.60, which
indicates substantial agreement.

• We introduce a novel concept of attention bias
derived by analyzing human annotators’ gaze
patterns while they carry out the task of hallu-
cination detection.

• We propose and evaluate a cognitively in-
spired BERT-based deep learning framework
(Figure 2) for hallucination detection driven
by different forms of attention biases seen
in human reading. The framework offers su-
perior performance (Table 2), and better in-
terpretability (Figure 4) against baseline ap-
proaches and shows competitive performance
with SOTA by attaining the balanced accuracy
of 87.1% (Table 2).

2 Related Work

2.1 Hallucination / Inconsistency Detection
Prior work in understanding hallucination includes
a survey by Ji et al. (2022) which discusses hallu-
cination arising from data, training approach, and
inference. Hallucination detection in various NLG
tasks has been tackled previously using statisti-
cal methods (Wang et al. (2020b), Shuster et al.
(2021)) and model-based methods. Model based
methods include QA-based approaches (Scialom
et al. (2021), Wang et al. (2020a), Honovich et al.
(2021)) and NLI-based approaches (Kryscinski
et al. (2020), Mishra et al. (2021), Laban et al.
(2022a)). Recently, prompt based methods (Arora
et al. (2022), Manakul et al. (2023), Agrawal et al.
(2023), Dhuliawala et al. (2023)) are being used to
detect hallucinations in the text produced by LLMs.
Usage of gaze signals in hallucination detection
remains an unexplored field, although there is prior
work which uses gaze in other NLP tasks (as men-
tioned in Section 2.2).

Kryscinski et al. (2020) proposed a weakly-
supervised model for verifying factual consistency
and released a dataset FactCC which contains
claim-context pairs. We use this dataset to con-
duct our experiments. To the best of our knowledge,
the usage of gaze signals has not been explored in
the past for the task of hallucination detection.

2.2 Gaze in deep learning-based architectures
In recent years, various attempts have been made
to investigate the correlation of human attention
with the machine attention of a pre-trained large
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language model (Eberle et al. (2022), Sood et al.
(2020a), Bensemann et al. (2022)). Eberle et al.
(2022) highlighted the inability of cognitive models
to account for the higher level cognitive activities
like semantic role matching, hence motivating the
use of large language models (LLMs) for modelling
the human gaze. Hollenstein et al. (2021) showed
the efficacy of LLMs in predicting the gaze features
for multiple languages, including English, Russian,
Dutch and German. Barrett et al. (2018) used nat-
ural reading eye-tracking corpus for regularizing
attention function in a multi-task setting.

The work most similar to us is Sood et al.
(2020b), which investigates the integration of the
gaze-based text saliency model with vanilla trans-
formers (Vaswani et al., 2017) for directly incor-
porating gaze predictions into the attention mecha-
nisms for paraphrase detection and sentence com-
pression tasks. However, their proposed architec-
ture heavily relies on BiLSTM and vanilla trans-
formers, lacking pre-training benefits. In contrast,
our approach utilizes pre-trained language models
and does not impose constraints on the attention
functions of these language models. Instead, we
focus on learning the space for contextual embed-
ding transformation based on saliency modelling
grounded by human gaze data.

3 Collection of IITB-HGC
(IITB-Hallucination Gaze Corpus)

We collect eye-tracking data from annotators while
they perform the task of hallucination detection.
For the data collection process, we use 500 claim-
context pairs from the FactCC dataset (Kryscinski
et al., 2020) as stimuli. The annotators are given
a claim-context pair and are asked to assess the
faithfulness of the claim in relation to the context.
To the best of our knowledge, no eye-tracking
corpus is available for hallucination detection.

300 pairs are chosen from the training set, 100
from the validation set, and 100 from the test set
of the FactCC dataset and are used in similar splits
during the training of the local attention bias model
to avoid data leaks. The acquisition of the IITB-
Hallucination Gaze Corpus is then carried out in
three phases, in which we presented annotators
with 180, 160, and 160 instances respectively.

The average number of words in the claim-
context pair is 105, the shortest claim having 6
words and the most extended claim having 32. On
average, each claim consists of 13 words. The con-

text length ranges from a minimum of 56 words to
132 words, with 92 words per context on average.

3.1 Experimental Settings
Participants were provided with detailed task in-
structions, including two example claim-context
pairs and their expected annotations, displayed on
the computer screen for guidance. The annotation
guidelines are described in Appendix B.2. Partici-
pants completed the tasks individually in a moni-
tored room, assisted by a research assistant. More
details about the experiments and other environ-
mental settings for the eye-tracking data collection
can be found in Appendix B.1.

3.2 Participant/Annotator details
The annotation process involved five participants
aged 21-25 (two male, three female) with English
as a primary language of academic instruction.
Among them, one participant had a Bachelor’s de-
gree, one held a Doctorate, and three had Master’s
degrees from universities with English as the pri-
mary language of instruction. All the participants
had valid TOEFL scores with a minimum of 100
and an average of 107.2 out of 120, demonstrating
acceptable English proficiency.

Figure 1: Heatmap of human gaze fixation for a claim-
context instance while performing the task of halluci-
nation detection (red signifies higher values). Fixations
are seen only on the most similar sentence. Relatively
higher fixation is seen on the words responsible for hal-
lucination (i.e., "remains are discovered").

3.3 Behavioural Analysis
Participants exhibit a hierarchical approach when
searching for and matching the claim within the
context. They begin by thoroughly reading and
encoding the claim into memory, either in its en-
tirety or by noting key elements like numbers and
proper nouns. Subsequently, they scan the con-
text sentences from the first to the last, searching



for a sentence corresponding to their remembered
claim or key elements. When a potential match is
found, they focus on that specific sentence, engag-
ing in a more detailed reading to verify its coher-
ence with the claim. Notably, there is a strong bias
towards sentences distributionally similar to the
claim within the context. This bias can be linked
to the initial lexical processing stage of the reading
theory (Just and Carpenter, 1980). It is notewor-
thy to mention that semantic similarity’s influence
is less pronounced than distributional similarity.
Given the nature of the task, where there is a possi-
bility of semantic contradiction between the claim
and the relevant sentence in the context, human
annotators learn to rely on distributional similarity
as a guiding factor. This behaviour of humans can
be seen via heat maps of the fixation of the human
gaze on context words. One such example is shown
in Figure 1. It can be seen that the relevant sentence
is fixated on the most number of times whereas the
other sentences have zero/very-low fixation.

4 Methodology

Building upon our theory of attention bias, our
proposed cognitive framework addresses the hallu-
cination task by integrating this behaviour. Figure
2 provides an overview of the framework, featuring
the modelling of global and local attention bias.

4.1 Attention Bias

Attention bias is a goal-driven cognitive mecha-
nism in which humans while making decisions se-
lectively focus on relevant information while dis-
regarding irrelevant or less salient stimuli (Fadardi
et al., 2016). They search for distributionally simi-
lar sentences and then verify the semantics at the
token level. Figure 1 illustrates this behaviour.
Upon deeper examination of gaze behaviour in
IITB-HGC, two distinct types of attention bias
were observed - global and local attention bias,
which we describe in the following subsections.

4.1.1 Modeling Global Attention Bias

Global attention bias represents the human incli-
nation to prioritize the most informative sentence
in a given context. By simulating human atten-
tion bias, our approach effectively identifies the
most relevant context sentence for a given claim.
To emulate this behaviour, we propose an ensem-
ble approach that utilizes multiple cutting-edge

sentence-transformer models3. Specifically, we se-
lect the following models for computing similarity
scores: all-roberta-large-v1 (Liu et al., 2019), all-
mpnet-base-v1 (Song et al., 2020), gtr-t5-large (Ni
et al., 2021), all-mpnet-base-v2 (Song et al., 2020),
and LaBSE (Feng et al., 2020). These models are
chosen for their ability to generate high-quality
sentence embeddings while maintaining moderate
model sizes. Appendix (Section A.1) gives details
on their performances and model sizes.

To identify the optimal mechanism for utilizing
similarity scores from various models, we employ
the following methodology. Using IITB-HGC (de-
tailed in Section 3), we leverage fixation data col-
lected during the claim labelling process by humans
to extract the sentence with the longest fixation du-
ration. This sentence, serving as the ground truth
for our global attention model, guides our objective
of determining the optimal combination of simi-
larity scores from five different models based on
the most fixated sentence by humans. Upon ana-
lyzing the results, we find that a voting mechanism
yields the highest accuracy for these 500 instances
(Table 5). This voting mechanism involves select-
ing the sentence that receives the highest similarity
scores from the majority of the models. Based on
a manual analysis, we find that the voting mecha-
nism consistently captures the correct relevant sen-
tence, surpassing other alternatives. As a result, we
adopt the voting-based ensembling of sentence en-
coders as our global attention bias model. Interest-
ingly, we also observe that using the sentence with
the maximum score from only the LaBSE model
achieves the second-best accuracy. Thus, LaBSE
model can also be used as an alternative cost ef-
fective approach. In summary, given a claim and
context, our pipeline first employs the ensemble
global attention model to identify the most relevant
sentence. This sentence is then utilized as input
for the subsequent steps in our end-to-end hallu-
cination detection model (Figure 2). Notably, the
global attention bias model also helps in reducing
the number of tokens given as input to the subse-
quent model. Figure 6 in Appendix Section A.2
shows a visual representation of how the global
attention bias model is implemented.

4.1.2 Modeling Local Attention Bias

Local attention bias refers to the annotator’s in-
clination to prioritize salient words essential for

3Documentation for sentence-transformer models
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Figure 2: Overview of the end-to-end model incorporating global attention and local attention bias for detecting
hallucination given a claim and a context. Figure 6 shows the details of the global attention bias model (1).

hallucination detection, while disregarding irrele-
vant words. Modeling local attention bias provides
a means to influence the self-attention components
(Vaswani et al., 2017) of transformer-based deep
encoders (Devlin et al., 2018) employed in down-
stream tasks such as hallucination classification.
This guided attention approach enhances token-
level model interpretability (see Section 6).

We model the local attention bias by learning the
token level saliency score using eye-tracking data
in a separate module called Local Attention Bias.
The LAB module is jointly trained alongside the
sentence pair classifier to adapt to the task-specific
parameters. The overall flow of information is
depicted in Figure 2 in blocks labelled (2), (3) and
(4) and the training process is described below.

Let the Cl and Ct be the vectors representing the
claim and context pair respectively:

Cl : {l1, l2, l3, ....lp}, Ct : {t1, t2, t3, ....tq} (1)

The input vector is the concatenation of claim
and context separated by a special [SEP] token.

I : [Cl;[SEP ];Ct] (2)

The output vector of the LAB model, represent-
ing token level importance scores, is defined as:

Flab : {f1, f2, f3, ....fp+q+1} (3)

The first phase of the training involves learning
the normalized fixation duration at the token level
from the gaze data. These learned parameters are
checkpointed and used to instantiate the local at-
tention bias model in the next phase of training.
The next phase of training involves the joint learn-
ing of the hallucination detection model (sentence
pair classifier) and local attention bias model. This
phase begins with the initialization of the local at-
tention bias model with the parameters learned in
the previous phase and proceeds with the training
by hallucination detection data on a single objec-
tive function optimized with binary cross entropy
loss on the final output. The output of the final
model can be defined mathematically as :

Y = Sigmoid(W · (Flab ◦ Eembed) + b) (4)

Here W and b are the parameters of the feed-
forward network, Eembed represents the contextual
embedding and Y represents the final output. By



incorporating both global and local attention bi-
ases, we aim to simulate the cognitive processes
observed in humans during hallucination detection.

5 Experiments

5.1 Dataset Details

FactCC Dataset: We use the FactCC dataset re-
leased by Kryscinski et al. (2020) which consists of
∼1M instances. The data distribution is mentioned
in Table 1. Kryscinski et al. (2020) prepare this
dataset by introducing perturbations (e.g., entity
swapping, pronoun swapping, negation, back trans-
lation etc.) in a sentence taken from the context.
We specifically selected the FactCC dataset for our
study for several compelling reasons. Firstly, the
dataset exhibits a wide range of topics, providing
diverse contexts to analyze. This diversity ensures
that our experimental design captures a broad spec-
trum of claim-context relationships. Secondly, the
FactCC dataset includes well-defined perturbations,
which can be leveraged to precisely examine the
process of verifying claims based on the given con-
text which facilitated a clear and controlled experi-
mental setup for our eye-tracking experiment.

Split H NH Total

Train 499,623 503,732 1,003,355
Test 62 441 503
Validation 132 799 931
Total 499,817 504,972 1,004,789

Table 1: Distribution of different types of instances (hal-
lucinated (H) and non-hallucinated (NH)) in different
splits of FactCC dataset (train, test and validation).

Eye-Tracking Corpus: This is the curated eye-
tracking corpus (IITB-Hallucination Gaze Corpus)
we explained in Section 3. The corpus is divided
into the train, validation, and test sets, with a 60%,
20%, and 20% split, respectively and used as the
source of supervision for the local and global at-
tention models. It should be noted that the purpose
of gaze data was to do a behavioural analysis of
humans during hallucination detection. This makes
500 instances enough to gather and validate the
insights from this study, which were used to design
the proposed cognitive framework and ground the
global attention bias model. However, for finetun-
ing the local attention bias model, we leverage two
other published datasets for pre-training our local

attention models - the PROVO Corpus 4(Luke and
Christianson, 2018) and the GECO corpus5 (Cop
et al., 2017). These datasets are collected for the
task of reading comprehension and encompass gaze
patterns during general-purpose reading, which we
believe would be beneficial in effectively initializ-
ing our local attention model. In Appendix E, we
show a word-level comparison with other publicly
available gaze datasets.

5.2 Experimental Details

In our experimental setup, we conducted training
using a single NVIDIA A100-SXM4-80GB GPU
with batch size of 128, and a learning rate of 2e-5
was used during the training process. To capture the
majority of the FactCC data, we set the sequence
length to 320, covering approximately 95% of the
dataset. For training, we used the Binary Cross
Entropy Loss as the loss function and utilized the
Adam optimizer with a weight decay of 1e-2.

At run-time, the detection of hallucination hap-
pens as follows. The most relevant context sen-
tence is first selected using global attention bias,
aiding claim verification. The output of the global
attention bias model, combined with the claim, is
passed to the local attention bias model trained on
eye-tracking data. The local attention bias model
assigns fixation scores to each token, indicating
their saliency for hallucination detection. Simul-
taneously, the sentence pair classifier model gen-
erates contextual embeddings for each token. The
embeddings are then weighted using the fixation
scores and passed through the feed-forward and sig-
moid layers to generate output class labels. Train-
ing of the model employs a similar forward flow of
information as above, and the updation of weights
happens through backpropagation, details of which
are skipped for brevity.

6 Results

Table 2 displays our experimental results in differ-
ent experimental settings as described below:

BERT+GAB: BERT architecture integrated
with Global Attention Bias model.

BERT+GAB+LAB: BERT architecture inte-
grated with Global Attention Bias and Local Atten-
tion Bias models.

BERT+GAB+LAB+GAZE: BERT architecture
integrated with Global Attention Bias and Local

4https://osf.io/sjefs
5https://expsy.ugent.be/downloads/geco/
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Model Balanced Accuracy

BERT MNLI 0.5151
BERT FEVER 0.5207
NER Overlap 0.55
MNLI-doc 0.613
FactCC-CLS 0.759
DAE 0.759
FEQA 0.536
QuestEval 0.666
ChatGPT-ZS 0.747
ChatGPT-COT 0.795
SummaCZS 0.838
SummaC-Conv 0.895

BERT+GAB∗ 0.69455
BERT+GAB+LAB∗ 0.86371
BERT+GAB+LAB
+Gaze∗

0.87103

Table 2: Comparison of our work (marked with *)
with baselines. Here, GAB and LAB refer to Global
Attention Bias and Local Attention Bias respectively.
BERT+GAB+LAB+Gaze refers to the model with
global and local attention bias trained on the complete
gaze data (PROVO+GECO+IITB-HGC)

Attention Bias finetuned on complete gaze data.
We observe improvements by incorporating

global attention bias over the baselines, which high-
lights the importance of noise filtering in founda-
tional large language models. Furthermore, we
observed significant enhancements over the previ-
ous setting after incorporating the local attention
bias model. Notably, the local attention bias model
demonstrated further improvements upon the in-
troduction of gaze data. However, both the Mc-
Nemar and t-tests report no statistically significant
difference between the two model outputs as the p-
values never go below 0.05. Table 2 compares our
model with all the baselines described in the Ap-
pendix C. We observe that the proposed approach
shows significant improvements over the baselines
(including ChatGPT-ZS and ChatGPT-COT)6 and
competitive results with the state-of-the-art (Laban
et al., 2022b).

7 Analysis

We perform analysis on the fixation data from IITB-
HGC and present it in Section 7.1. We also show
that including complete gaze data increases inter-

6https://openai.com/blog/chatgpt

pretability in Section 7.2. We perform an error
analysis (Section D) to understand the scenarios in
which our model gives incorrect responses. Our
comparative study with the SummaC-Conv model
(Section 7.4) shows that our model performs better
in 92% of the cases in which SummaC-conv makes
erroneous predictions.

Figure 3: This figure shows a histogram depicting the
percentage of context words that are being fixated upon
by annotators over the IITB-HGC. It can be seen that
only 10-30% of context words are being fixated the most
number of times.

Error Cate-
gory

No. of Instances
(%)

Instances where
our model is cor-
rect (%)

Exact claim 34 (45.9%) 34/34 (100%)
Paraphrased
claim

19 (25.7%) 18/19 (94.73%)

Ambiguous
claim

7 (8.1%) 7/7 (100%)

Coreference
in claim

8 (9.5%) 8/8 (100%)

Incorrect
true label

7 (10.8%) 2/7 (37.5%)

Table 3: The distribution of each type of SummaC-
Conv error category. The last column shows the number
of instances in which our model gives correct prediction
for each error category.

7.1 Fixation Analysis

Figure 3 shows the percentage of words being fix-
ated upon by annotators in the IITB-HGC. For each
instance, we compute the percentage of words that
are being fixated upon. It is observed that the major-
ity of words in each instance are not fixated upon at
all. Figure 3 shows that only 10-30% of the words

https://openai.com/blog/chatgpt


(a) Heatmap for BERT + global attention bias + local attention bias model finetuned on
gaze data. The predicted label is ’Hallucinated’

(b) Heatmap for BERT + global attention bias + local attention bias model without gaze
data fine-tuning. The predicted label is ’Hallucinated’

(c) Heatmap for BERT + global attention bias based on raw attentions. The predicted label
is ’Not Hallucinated’

Figure 4: The figure displays heatmaps depicting the local attention bias scores for all three settings for an example
marked as ’hallucinated’. Darker colours indicate higher scores, while lighter colours indicate lower scores.

in the entire IITB-HGC are fixated the most num-
ber of times. We also compute the sentence-wise
fixation for every instance. We observe that on
average, for every instance, 78% of the total fixa-
tion is on only 1-2 sentences of the context. Other
sentences have very less or no fixation.

7.2 Interpretability Analysis

Let us consider the following example:
Claim: “she was the one who was remembered

at his memorial service by these words: " big heart,
big smiles, big service”

Context: “and for Sean Collier, who was remem-
bered at his memorial service by these words: " big
heart, big smiles, big service"

The above claim is hallucinated with respect to
the context due to the entity replacement of “Sean
Collier” with the pronoun “she”. Figure 4 displays
heatmaps depicting the importance of each words.
We observe that the LAB model correctly high-
lights the pronoun “she” in both the scenarios of
with gaze and without gaze. In comparison, after
removing the LAB bias model the word "and" is
incorrectly highlighted and the word "she" is not
highlighted at all. Moreover, the signal strength on
important words ("she" in this example) weakens
after removing the gaze and completely goes away
after removing the LAB module.

7.3 Error Analysis

Significant errors in predictions are observed due
to the high semantic overlap between the claim and
context which were labelled as hallucinated.

For example:

Claim: “The movie is first in the rampaging-
dino franchise since "Jurassic Park iii" Pratt’s sci-
entist Chris Pratt is the movie’s new trailer.”

Context: “The movie is first in the rampaging-
dino franchise since "Jurassic Park III" in 2001."

The true label of the current example is “Hallu-
cinated" while the prediction by our model is “Not
Hallucinated". We can see that there is a significant
semantic overlap between the claim and context
which could have resulted in the prediction of “Not
Hallucinated". It is interesting to note that similar
errors (refer to Appendix D) were also made by
humans during the process of annotation.

7.4 Comparison with SummaC-Conv

To analyze the performance of SummaC-Conv, we
reproduced the model and ran it on the test set
of FactCC (by following their paper Laban et al.
(2022b)). We perform an error analysis to under-
stand where the SummaC-Conv model makes er-
rors. We find that out of 504 instances in the test set
of FactCC dataset, SummaC-Conv model makes er-
roneous predictions in 75 instances. We categorize
these errors into 5 categories: Exact claim, Para-
phrased clain, Ambiguous claim, Coreference in
claim and Incorrect true label. We describe these
categories with examples for each error category in
Figure 5. Table 3 shows the distribution of these
categories. The last column of Table 3 shows in the
number of error instances in each category in which
our model performs correctly. It can be seen that
our model shows superior performance in all cate-
gories. The majority of the error cases (∼71.6%)
in SummaC-Conv belong to the category of "Ex-



Figure 5: The five different types of scenarios in which SummaC-Conv gives incorrect predictions. An example for
each category is shown along with the predictions made by SummaC-Conv and Our Model. Here, the darker colours
depict higher importance scores while the light colours depict lower importance scores. The format is [CLS] <claim>
[SEP] <context> [SEP]. The last column shows the true label, i.e. H: Hallucinated and NH: Non-hallucinated.

act claim" and "Paraphrased claim". Our model
gives the correct prediction in 52 out of 53 of these
cases, which is due to the global attention bias mod-
ule that enables our model to focus on the relevant
parts of the context and give correct output whereas
SummaC-Conv lacks that ability. Similarly, in the
cases of ambiguous claims or co-reference, our
model performs better. The last error category, In-
correct true label, includes 8 cases where the true
label is itself found to be wrong. Here, in 5 out of
7 cases, we find that our model gives the same pre-
diction as the true label. Figure 5 shows examples
for each error category, with the heat maps of our
model for each example. The heat maps depict the
local attention bias scores generated by our model
where more scores to the necessary tokens, which
helped in making a correct prediction.

8 Conclusion and Future Work

Hallucination detection is a pertinent and unre-
solved task in computational linguistics, often
necessitating the incorporation of extralinguistic
information into models. While traditional ap-
proaches benefit from leveraging diverse knowl-
edge sources, we recognize the limitations of rely-
ing on outdated information and propose a rather

orthogonal and cognitive-inspired approach that
harnesses human eye-gaze patterns for hallucina-
tion detection. To support our approach, we cre-
ated and analyzed an eye-tracking corpus, which
revealed various attention biases exhibited by hu-
mans during hallucination searches. Building upon
this insight, we designed a deep learning archi-
tecture that combines gaze data and hallucination
classification data for training. Our experiments
demonstrate promising results, indicating that a
gaze-driven model exhibits superior performance
and improved interpretability. Moving forward, we
intend to explore deeper cognitive features, such
as progressive and regressive saccades, to further
enhance hallucination detection. Additionally, ex-
tending this work to multilingual and multimodal
settings is a key objective on our agenda.

Limitations

The existing cognitive framework falls short when
it comes to addressing situations of internal incon-
sistency where multiple sentences within a given
context contradict one another. Moreover, the cur-
rent research overlooks intricate linguistic phenom-
ena such as sarcasm and thwarting, focusing exclu-
sively on hallucinations that emerge from perturba-



tions. Recognizing the diverse origins of halluci-
nations is crucial, and effectively addressing this
challenge may require datasets encompassing a
wider range of real-world scenarios and pragmatic
instances.

Ethics Statement

Conducting eye-tracking experiments for hallucina-
tion detection tasks requires a commitment to ethi-
cal principles, respect for participants’ rights and
well-being, and the responsible use and reporting
of the collected data. To this end, we took several
steps. Prior to conducting such experiments, we ob-
tained informed consent from participants, clearly
explained the purpose, procedures, and potential
risks involved. Privacy and confidentiality was en-
sured by safeguarding participants’ personal infor-
mation and anonymizing their data. To minimize
any discomfort or potential harm to participants
during the eye-tracking sessions, adequate breaks
and measures to prevent eye strain were provided.
Participants were informed about their right to with-
draw from the study at any point without penalty
or consequence. After collection, participants’ eye
movement data have been treated with utmost re-
spect and handled in accordance with applicable
data protection regulations. It is also worth not-
ing that while selecting examples from the FactCC
dataset for the eye-tracking experiments, we strived
for diversity and inclusivity to avoid perpetuating
or reinforcing any social, cultural, or gender biases.
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A Global Attention Bias

A.1 Models Used for Ensembling

As mentioned in Section 4.1.1, we employ an en-
semble approach using the following sentence-
transformer models: all-roberta-large-v1 (Liu
et al., 2019), all-mpnet-base-v1 (Song et al., 2020),
gtr-t5-large (Ni et al., 2021), all-mpnet-base-v2
(Song et al., 2020), and LaBSE (Feng et al., 2020).
Table 4 describes the model sizes and perfor-
mances7 on generating sentence embeddings.

Model Performance Model Size

all-roberta-
large-v1

70.23 1360 MB

all-mpnet-
base-v1

69.98 420 MB

gtr-t5-large 69.90 640 MB
all-mpnet-
base-v2

69.57 420 MB

Table 4: Model sizes and performance on generating
sentence embeddings for different sentence-transformer
models. The performance is the average performance
(%) on encoding sentences over 14 diverse tasks from
different domains.

The LaBSE model is a multilingual embedding
model but shows good Semantic Textual Similarity

7Source: https://www.sbert.net/docs/pretrained_
models.html
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Approach Accuracy

Voting 0.9608
Only LaBSE 0.9589
Linear Regression 0.9512
Uniform Distribution 0.9501

Table 5: Accuracy of various ensembling mechanisms
used to determine the most accurate way to simulate
human global attention bias.

(STS) benchmark (Cer et al., 2017) performance
(72.8) as measured by Pearson’s r.

A.2 Implementation of Global Attention Bias

Section 4.1.1 discussed how global attention bias
is modelled. Figure 6 shows a visualization of this
modelling indicating how the global attention bias
model has been incorporated into our framework.
Table 5 shows the accuracy of various ensembling
mechanisms which we explored to determine the
most accurate way to simulate human global atten-
tion bias.

B Eye tracking Experiment for
IITB-Hallucination Gaze corpus

B.1 Experimental and Environmental Settings

We use the SR Research Experiment Builder soft-
ware8 for the eye-tracking data collection experi-
ment. It should be noted that while sampling in-
stances from the FactCC dataset, we ensured mini-
mal variance in the length of selected instances.
During data acquisition, careful measures were
taken to minimize sound and light interference
in the room. Participants were positioned 70 cm
away from a 24-inch BenQ XL2420Z Widescreen
LED Backlit TN Monitor, which had display di-
mensions of 569x337.8mm and a resolution of
1920x1080 pixels, resulting in a display area of
531.36x298.89mm. The monitor had a vertical re-
fresh rate of 144 Hz. Sentences were presented
in black font on a light grey background using a
20-point Arial font, equating to a letter height of
0.8mm. To ensure stability, a chin rest was pro-
vided, and participants were instructed to maintain
their head position throughout the experiment to
avoid motor artefacts. Refreshments and breaks
were provided to participants to promote relaxation
between iterations.

8http://www.sr-research.com/

Throughout the annotation process, eye position,
and pupil size were meticulously tracked using an
infrared video-based eye tracker (Eyelink 1000 plus
Head Supported Version 5.03, SR Research) at a
sampling rate of 2000 Hz for both eyes. The eye
tracker had an instrumental spatial resolution of
0.01º and a microsaccade resolution of 0.05º. Be-
fore each iteration, the eye tracker was calibrated
using a 9-point grid. Participants were instructed to
sequentially fixate their gaze on the dot presented
at each of the nine locations in random order. The
calibration process was repeated until the discrep-
ancy between two measurements at any point was
below 0.5º, or the average error across all points
was less than 1º.

B.2 Annotation Guidelines

The instructions outlined a task that involves read-
ing a claim and determining its faithfulness or con-
sistency with respect to a given context. Partici-
pants were instructed to press the "+" key if the
claim was faithful and the "-" key if unfaithful.
The task emphasized the importance of careful
reading and attention to detail. Before starting
the annotation session, participants were asked to
count the times the letter "F" occurred in a given
text as a warm-up exercise. This exercise was in-
tended to ensure that participants read the upcom-
ing instances carefully. During the annotation ses-
sion, participants were presented with examples
of claims and corresponding contexts. They were
expected to evaluate the faithfulness of each claim
based on the highlighted text in the given context.
Participants were reminded that their judgments
should be based on the provided context and not
require additional information. The examples pro-
vided demonstrated the expected annotation pro-
cess. In Example 1, the claim accurately reflected
the information given in the context, leading to
an accurate annotation. In Example 2, the claim
contradicted the information in the context, result-
ing in an unfaithful annotation. Participants were
encouraged to maintain efficiency regarding time
and accuracy while annotating. The task was to
be approached as a search and matching exercise,
focusing on the highlighted text within the context.
Once participants familiarized themselves with the
instructions and examples, they could click to start
the annotation session.

http://www.sr-research.com/


Figure 6: Modelling global attention bias using an ensemble approach. Each model m1,m2,...,m5 computes
sentence embeddings for claim and context sentences. The sentence which is most similar to the claim is found by
using cosine similarity between the claim embedding and sentence embedding for each model. The context sentence
voted as most similar by the majority of models is taken as the output of the global attention model.

C Baselines Definition

In Section 6 we show a comparison study of the
results of our model with other baseline models.
The details of those baseline models are given in
this section. We have considered the following
models as a baseline for comparison defined in
(Luo et al., 2023) for the given task.

• BERT + MNLI (Kryscinski et al., 2020):
BERT trained on MNLI dataset (Williams
et al., 2018)

• BERT + FEVER (Kryscinski et al., 2020):
BERT trained on FEVER dataset (Thorne
et al., 2018)

• MNLI-doc (Liu et al., 2019): finetunes
Roberta model on MNLI dataset and incor-
porates entailment-based approach for hallu-
cination detection

• NER Overlap (Laban et al., 2021): incorpo-
rates named entity matching from claim to
context

• FACTCC-CLS (Kryscinski et al., 2020):
Roberta model finetuned on FACTCC dataset

• DAE (Goyal and Durrett, 2020): incorporates
NLI based approaches in dependency arc for
detecting hallucination

• FEQA (Durmus et al., 2020): incorporates
question answering based approach to detect
the inconsistency from the extracted answers
from document summary pair.

• QuestEval (Scialom et al., 2021): incorporates
QA based metrics in the FEQA approach.

• ChatGPT-ZS(Luo et al., 2023): Chat-GPT in
zero shot setting

• ChatGPT-COT (Luo et al., 2023): Chat-GPT
in chain of thought setting (Wei et al., 2022)

• SummaCZS (Laban et al., 2022b): incorpo-
rates the NLI-based approaches for generating
entailment scores at sentence level granularity
followed by statistical aggregations like mean,
median etc.

• SummaC-Conv (Laban et al., 2022b): incor-
porates convolution layer for aggregation in
the previous approach

D Human Error evaluations

In this section, we provide a further example in
Figure 7 to describe the case of semantic overlap.

The actual label for the specific claim-context
pair provided in Figure 7 is "Hallucinated," while
the prediction by the human annotator is "Not Hal-
lucinated." This mismatch can be attributed to the



Task Dataset Tokens (words)

Natural Reading Zuco 1.0 (Hollenstein et al., 2018) 21,629
Natural Reading Dundee (Kennedy et al., 2013) 56,212
Natural Reading PSC (Kliegl et al., 2004) 1,138
Natural Reading GECO (Cop et al., 2017) 114,080
Natural Reading Provo (Luke and Christianson, 2018) 2,689
Natural Reading CopCo (Hollenstein et al., 2022) 34,897
Natural Reading + Relation Extraction Zuco 2.0 (Hollenstein et al., 2020) 15,138
Sarcasm Detection Sarcasm corpus (Mishra et al., 2016) ∼25,000
Cognate Detection Cognate Corpus (Kanojia et al., 2021) 3,195

Hallucination IITB-Hallucination Gaze corpus* 52,000

Table 6: Summary of Gaze Datasets and Word Counts for Various NLP Tasks

Figure 7: Example showing a higher semantic similarity between the claim and the context. For this example, the
true label is hallucinated and the predicted label by the annotator is non-hallucinated.

considerable semantic similarity between the "Mar-
riage Protection Act" of the claim and the "Defence
of Marriage Act" of the context, leading to the an-
notator’s prediction of "Not Hallucinated."

Claim: Disputes over the constitutionality of the
Marriage Protection Act gathered similar crowds
on Wednesday.

Context: (CNN) – Publicly expressing deeply
held emotions is not always easy. When attending
a rally, displaying a clever sign can attract more
attention than even the most powerful chant. Tues-
day’s protests in front of the U.S. Supreme Court
attracted outspoken crowds on both sides of the
debate over same-sex marriage. The arguments
Wednesday on the constitutionality of the Defense

of Marriage Act drew similar crowds. Here are 16
signs that mixed bravery and humor with a strong
point of view. Share your images of the rallies by
tagging cnnireport on Instagram, or share your re-
action to the hearings. Mobile users click here to
see the Storify. .

E Comparison with Other Datasets

As mentioned in the Dataset Details section 5.1,
we provide a word-level comparison with other
publicly available gaze datasets.


