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ABSTRACT

We study goal-conditioned RL through the lens of generalization, but not in the
traditional sense of random augmentations and domain randomization. Rather,
we aim to learn goal-directed policies that generalize with respect to the horizon:
after training to reach nearby goals (which are easy to learn), these policies should
succeed in reaching distant goals (which are quite challenging to learn). In the
same way that invariance is closely linked with generalization is other areas of
machine learning (e.g., normalization layers make a network invariant to scale,
and therefore generalize to inputs of varying scales), we show that this notion
of horizon generalization is closely linked with invariance to planning: a policy
navigating towards a goal will select the same actions as if it were navigating to a
waypoint en route to that goal, implying that a policy trained to reach nearby goals
would succeed at reaching arbitrarily distant goals. Our theoretical analysis proves
that both horizon generalization and planning invariance are possible, under some
assumptions. We present new experimental results and recall findings from prior
work in support of our theoretical results. Taken together, our results open the door
to studying how techniques for invariance and generalization developed in other
areas of machine learning might be adapted to achieve this alluring property.

1 INTRODUCTION
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Figure 1: Horizon generalization. A policy generalizes
over the horizon if optimality over all start-goal pairs
(s, s′) a small temporal distance d(s, s′) < c apart (say,
in the training set) leads to optimality over all possible
start-goal pairs.

Reinforcement learning (RL) remains alluring
for its capacity to use data to determine optimal
solutions to long-horizon reasoning problems.
However, it is precisely this horizon that makes
solving the RL problem difficult — the number
of possible solutions to a control problem of-
ten grows exponentially in the horizon (Kakade,
2003). Indeed, the requirement of collecting
long horizon data precludes several potential
applications of RL (e.g., health care, robotic ma-
nipulation). As a result, RL systems tend to only
solve short horizon tasks, or long horizon tasks
characterized by repetitive motion.

The classical solution to the “curse of horizon” is
dynamic programming (Bellman, 1966; Dijkstra,
1959) (i.e., temporal difference learning (Sutton,
2018)): stitching together data to find new solutions. However, TD methods can be complex to
implement and challenging to stabilize in high-dimensional settings. There is also a more subtle
challenge with these methods: adopting TD methods typically means forgoing mental models
associated with “standard” ML problems, such as generalization and invariance. This paper will
discuss how these tools provide new ways of thinking about long-horizon problems.

While there is ample prior work studying generalization in RL, prior work almost exclusively focuses
on either (i) perceptual changes (e.g., changes in lighting conditions) (ii) simple randomizations of
simulator parameters, or (iii) mapping together states and actions with the same reward or value
function. In this paper, we will discuss a different sort of generalization: generalization with respect
to horizon. We will study this notion of horizon generalization within the setting of goal-conditioned
RL: after training the RL agent on nearby goals, can the agent succeed at reaching more distant goals
(see Fig. 1)? While these goals have been seen in different contexts before (e.g., reaching this goal
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from a different, closer state within the training set), they have never been used in learning long-
horizon tasks. Horizon generalization is a type of extrapolation (Packer et al., 2018); however, while
extrapolation is sometimes seen as alchemy, in some settings horizon generalization is guaranteed
(proof: Dijkstra’s algorithm does this).

Our key mathematical tool for understanding horizon generalization is a notion of planning invariance
(Fig. 2): that a RL agent selects similar actions when headed towards a goal as when headed towards
a subgoal (i.e., a waypoint) along the route to that goal. In the same way that an image classification
model that is invariant to image brightness will generalize to images of varying brightness, we will
show how RL agents that are invariant to planning will generalize to goal-reaching tasks of varying
horizons. When a policy is invariant to planning, tasks of length n and length 2n will be mapped
to similar internal representations, as will tasks of length 4n, and 8n, and so on (see Fig. 3). This
reasoning also explains how a policy exhibiting horizon generalization must solve problems: by
recursion, the policy maps a task of length n to an (isomorphic) task of length n/2 to a task of length
n/4 and so on, until the task is simple and similar to one seen during training.

The main contributions of this paper are precise definitions and proofs of existence for horizon
generalization and invariance to planning. We theoretically show that policies defined with respect to a
quasimetric are planning invariant and can exhibit horizon generalization. We support these theoretical
results with experiments, where we demonstrate horizon generalization in learned, planning-invariant
policies in a high-dimensional, standard RL benchmark: policies trained to navigate between nearby
start-goal pairs can successfully navigate between far apart start-goal pairs, despite having never seen
such long-horizon start-goal pairs during training.

The main takeaway from this paper is that there are rich notions of generalization over the horizon
unique to the RL problem (and not the exclusive purview of TD methods). In addition, existing
quasimetric methods already exhibit this form of generalization in high-dimensional settings. By
theoretically and empirically linking planning with this form of generalization, our work suggests
practical ways (i.e. quasimetric methods) to achieve powerful notions of generalization from short to
long horizons.

2 RELATED WORK

Our work builds upon prior work in goal-conditioned RL and generalization in RL. Section 5 returns
to the discussion of prior work in light of our analysis.

Goal-conditioned RL. The problem of goal-conditioned RL, or learning goal-oriented behavior,
dates to the early days of AI (Laird et al., 1987; Newell, 1959) but has received renewed attention
in recent years (Chane-Sane et al., 2021; Chen et al., 2021; Colas et al., 2022; Janner et al., 2021;
Ma et al., 2022; Schroecker and Isbell, 2020; Yang et al., 2022). Goal-conditioned RL relieves the
burden of specifying rewards, allowing users to instead provide a single goal observation. Some
of the excitement in goal-conditioned RL is a reflection of the recent success of self-supervised
methods in computer vision (e.g., stable diffusion (Rombach et al., 2022)) and NLP (GPT-4 (OpenAI
et al., 2024)): if these methods can achieve intriguing emergent properties, might a self-supervised
approach to RL unlock emergent properties for RL?

Generalization in RL. Prior work on generalization in RL mostly focuses on variations in percep-
tion (Cobbe et al., 2019; Laskin et al., 2020; Stone et al., 2021) (or, similarly, e.g., across levels of a
game (Farebrother et al., 2018; Justesen et al., 2018; Nichol et al., 2018; Zhang et al., 2018)). Simi-
larly, work on robust RL (which measures a worst-case notion of generalization) usually randomly
perturbs the physics parameters (Eysenbach and Levine, 2022; Igl et al., 2019; Moos et al., 2022;
Packer et al., 2018; Tessler et al., 2019)). Our paper will study a different form of generalization:
without changing the dynamics or the observations, can a policy trained on nearby goals succeed in
reaching distant goals?

This form of generalization is related to yet distinct from other state abstractions for goal-conditioned
learning such as bisimulation Castro and Precup (2010); Ferns et al. (2011); Hansen-Estruch et al.
(2022); Zhang et al. (2021a), which assume a reward structure in the environment, and various state
representation approaches Anand et al. (2019); Castro et al. (2021); Ghosh et al. (2019); Jain et al.
(2023); Rakelly et al. (2021) which focus on learning representations helpful for selecting actions
without consideration for long-horizon tasks. However, unlike prior work which maps MDPs with
similar dynamics over some fixed horizon to the same latents, horizon generalization is from short to
long horizons — by only training over short horizon tasks, can the policy generalize to long-horizon
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tasks over the covered state space? This form of generalization (to our knowledge) has not been
directly addressed by other state abstraction methods. Prior work that has specifically looked at
performing out-of-distribution long-horizon tasks have made assumptions about the environment,
such as access to external planners Myers et al. (2024b); Shah and Levine (2022); Singh et al. (2023)
or human demonstrations Mandlekar et al. (2021). Our contribution is to tackle the problem of
generalization over the time-horizon in the context of modern, scalable deep RL methods without
these additional structural assumptions. Instead of assuming structure in the environment, we study
how planning invariance can be enforced over the state representation geometry used for decision-
making.

3 PRELIMINARIES

We consider a controlled Markov process M with state space S, action space A, and dynamics
p(s′ | s, a). The agent interacts with the environment by selecting actions according to a policy
π(a | s), i.e., a mapping from S to distributions over A. We further assume the state and action
spaces are compact.

We equipM with an additional notion of distances between states. At the most basic level, a distance
S × S → R must be positive everywhere except for a zero diagonal (positive definiteness). We will
denote the set of all distances as D:

D ≜ {d : S × S → R : d(s, s) = 0, d(s, s′) > 0 for each s, s′ ∈ S where s ̸= s′}. (1)

A desirable property for distances to satisfy is the triangle inequality. A distance satisfying this
property is known as a quasimetric, and we define the set of all quasimetric functions as

Q ≜ {d ∈ D : d(s, g) ≤ d(s, w) + d(w, g) for all s, g, w ∈ S}. (2)

If we further restrict distances to be symmetric (d(x, y) = d(y, x)), we obtain the set of traditional
metrics over S . However, we wish to preserve this asymmetry over interchange of start and end states
with a quasimetric: navigating s→ g may be a completely different task from navigating g → s.

A particular quasimetric of note here is the successor state distance (Myers et al., 2024a), dγSD, defined
as

d
γ
SD(s, g) ≜ min

π

[
log

pπγ (sK = g | s0 = g)

pπγ (sK = g | s0 = s)

]
, where K ∼ Geom(1− γ). (3)

where the discounted state occupancy measure pπγ (sK = g | s0 = s) is defined as

pπγ (sK = g | s0 = s) ≜
∞∑
t=0

γtpπ(st = g | s0 = s). (4)

The distance dγSD is interesting because minimizing the distance to the goal dγSD(s, g) with respect to
s corresponds to optimal goal reaching with a discount factor γ. Formally, if we augmentM with
the goal-conditioned reward function rg(s) = δ(s,g), a Kronecker delta function which evaluates to 1
if s = g and 0 otherwise, we obtain an MDP under which the dγSD-minimizing policy is the optimal
policy. The related successor distance with actions dγSD(s, a, g) (Myers et al., 2024a) allows us to
optimize this distance over actions, where the dγSD(s, a, g)-minimizing action is the optimal action
over the same MDP:

d
γ
SD(s, a, g) ≜ min

π

[
log

pπγ (sK = g | s0 = g)

pπγ (sK = g | s0 = s, a)

]
, where K ∼ Geom(1− γ) (5)

where the discounted state occupancy measure with actions is defined as

pπγ (sK = g | s0 = s, a) ≜
∞∑
t=0

γtpπ(st = g | s0 = s, a). (6)

4 PLANNING INVARIANCE AND HORIZON GENERALIZATION

Our analysis will focus on the goal-conditioned setting. We will start by providing intuition for our
key definitions (planning invariance and horizon generalization) and then prove that these properties
can exist.
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4.1 INTUITION FOR PLANNING INVARIANCE AND HORIZON GENERALIZATION

Many prior works have found that augmenting goal-conditioned policies with planning can signifi-
cantly boost performance (Park et al., 2024; Savinov et al., 2018): instead of aiming for the final goal,
these methods use planning to find a waypoint en route to that goal and aim for that waypoint instead.
In effect, the policy chooses a closer, easier waypoint that will naturally bring the agent closer to
the final goal. We say that a policy is invariant to planning if it takes similar actions when directed
towards this waypoint as when directed towards the final goal (see Fig. 2).

no planning invariance planning invariance

or

Figure 2: Visualizing planning invariance. Planning invariance
(Definition 1) means that a policy should take similar actions when
directed towards a goal (purple arrow and purple star) as when
directed towards an intermediate waypoint (brown arrow and brown
star). We visualize a policy with (Right) and without (Left) this
property via the misalignment and alignment of actions towards
the waypoint and the goal, where the optimal path is tan and the
suboptimal path is gray.

Invariance to planning is an appeal-
ing property for several reasons. First,
it implies that the policy realizes the
benefits of planning without the com-
plex machinery typically associated
with hierarchical and model-based
methods. Second, it implies that the
policy will exhibit horizon general-
ization: given a training dataset of
short trajectories covering some state
space S , it will succeed at performing
long-horizon tasks over the same state
space S (see Fig. 1). Say, for example,
a given policy exhibits horizon gener-
alization, and the policy succeeds at
reaching a goal that is n steps (“tem-
poral distance”) away from any initial
state in S. Then, the horizon general-
ization property means that this same
policy should be able to reach any new
goal in S for which that original goal
is a waypoint, capturing the set of goal states 2n steps away from the initial state. Importantly, we
can apply this argument again, reasoning that the policy must also be able to reach goals 4n steps
away. This simple recursive argument suggests that a policy with horizon generalization, assuming it
can reach very close goals that span a desired state space, must also be able to reach the most distant
goals available in this space. Taking a “forward” looking perspective, a policy will generalize from
an initial narrow set of seen tasks to vastly more distant goals with trajectories composed of these
seen tasks.

A similar argument can also be applied in reverse, providing intuition on how a planning invariant
policy selects actions. In the broad context of machine learning, a model that is invariant to some
transformation (i.e. brightness) assigns similar internal representations to inputs that differ by this
transformation (i.e. darkened and brightened version of the same image); these invariances lead to
generalization over the transformed inputs (Benton et al. (2020); Cohen and Welling (2016); Rowley
et al. (1998)). The same applies for planning invariant policies: a start-goal pair n steps apart and
a start-waypoint pair n/2 steps apart have the same representation when the waypoint is along the
shortest path to that goal (Fig. 3). We can repeatedly apply this argument until mapping the original
start-goal pair to a start-waypoint pair that is just one action (in deterministic settings) apart from
each other, explaining how the policy solves tasks that appear to be out of distribution.

With this motivation in hand, how do we actually construct methods that are planning invariant and
lead to horizon generalization? To answer this question, we build upon prior work on quasimetric
neural network architectures (Liu et al., 2023; Wang and Isola, 2022a;b) and show that quasimetric
policies, where latents obey the triangle inequality, are invariant to planning.

4.2 DEFINITIONS OF PLANNING INVARIANCE AND HORIZON GENERALIZATION

To construct general definitions of planning invariance and horizon generalization, we will need to
define a general notion of a planning operator which proposes waypoints at a given state to reach a
target distribution of goals.

We denote by
plan ≜ {PLAN : S ×A× P(S) 7→ P(S)} (7)

4
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latent space

s0 s1 s2 s4

s′￼

s3

planplan

∼ ϕ(s0, s1)ϕ(s0, s′￼)

action spacea0

start at s0

policy

s0 s1 s2 s4s3

plan

∼ ϕ(s1, s2)

a1

after reaching s1

f : Rk æ A fi : S ◊ S æ A

„ : S ◊ S æ Rk

Figure 3: Invariance to planning leads to horizon generalization. (Left) Invariance to planning maps
(s0, {s1, s2, s4}) together in latent space, which results in a shared optimal action. (Right) After successfully
reaching the closest waypoint s1 in 1 step, the next optimal action is also shared, meaning any trajectory of
length 2 is optimal. We can repeat this argument for trajectories of length 4, 8, . . . until the entire reachable state
space is covered.

the class of “planning functions” that given a state, action, and goal distribution, produce a distribution
of possible waypoints. In the special case of a fixed waypoint and goal we write

planFIX ≜ {PLANFIX : S ×A× S 7→ S} ⊂ plan . (8)

Our analysis in the rest of this section will focus on the simpler “fixed” setting of PLANFIX ∈
planFIX . We will use w or wPLAN to denote the waypoint produced by PLANFIX(s, g). The proofs
and quasimetric objects in the stochastic settings are slightly more complicated, but carry the same
structure and takeaways as this simpler case; the general stochastic proofs and definitions are presented
in Appendix C.

There are several different types of planning algorithms one might consider (e.g., Dijkstra’s algo-
rithm (Dijkstra, 1959), A* (Hart et al., 1968), RRT (LaValle and Kuffner, 2001)). Importantly, the
constraints of a quasimetric (see Section 3) and the related idea of path relaxations from Dijkstra’s
algorithm provide clues for specifying our planning operator later in our analysis. We use this
planning operator in one of our key definitions (visualized in Fig. 2):

Definition 1 (Planning invariance). Let an MDP with states S, actions A, and goal-conditioned
Kronecker delta reward function rg(s) = δ(s,g) be given. For any given goal-conditioned policy
π(a | s,G) where G ∈ P(S), we say that π(a | s,G) is invariant under planning operator
PLAN ∈ plan if and only if

π(a | s,G) = π(a | s,W ), where W ∼ PLAN(s, a,G). (9)

In the single-goal, controlled (“fixed”) case,

π(a | s, g) = π(a | s, w), where w = PLANFIX(s, g). (10)

Our second key definition is horizon generalization (see Fig. 1):

Definition 2 (Horizon generalization). In the single-goal, controlled (“fixed") case, a policy π(a |
s, g) generalizes over the horizon if optimality over Bc = {(s, g) ∈ S × S | d(s, g) < c} for
some finite c > 0 implies optimality over the entire state space S, where d(s, g) is any arbitrary
quasimetric over the state and goal distribution space S × S .

We highlight the key base case assumption: optimality over shorter trajectories where start-goal
pairs cover the entire desired state space S can generalize over the horizon across the same space S
(optimal trajectories are contained within S) — without additional assumptions about the symmetries
of the MDP, it is beyond the scope of this work to consider horizon generalization to completely
unseen states. Rather, we analyze generalization to unseen, long-horizon (s, g) state pairs.

4.3 EXISTENCE OF PLANNING INVARIANCE

With these notions of planning invariance and horizon generalization in hand, we will consider
planning algorithms PLANFIX

d ∈ planFIX that acquire a quasimetric d(s, g) and output a single
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waypoint w ∈ S:

PLANFIX
d (s, g) = wPLAN ∈ argmin

w∈S
d(s, w) + d(w, g). (11)

where, by the triangle inequality, we have d(s, wPLAN) + d(wPLAN, g) = d(s, g).
Theorem 1 (Planning invariance exists). Assume a controlled, fixed goal setting. For every quasi-
metric d(s, g) over state space S, there exists a policy πFIX

d (a | s, g) and planning operator
PLANFIX

d ∈ planFIX such that πFIX
d (a | s, g) = πFIX

d

(
a | s, w for w = PLANFIX

d (s, g)
)
.

The proof is in Appendix C.1. In practice, we measure planning invariance by comparing the relative
performance of algorithms with and without planning. For this condition, we do not necessarily
need πd(a | s, g) = πd(a | s, wPLAN); rather, the weaker condition d(s, πd(a | s, g), g) = d(s, πd(a |
s, wPLAN), wPLAN) is sufficient and necessary for planning invariance when there are no errors from
function approximation, noise, etc. We extend this result to stochastic settings in Appendix C.3.

4.4 HORIZON GENERALIZATION EXISTS

Finally, we prove the existence of horizon generalization using induction, where the inductive step
invokes planning invariance. We begin by defining a quasimetric policy.

Definition 3 (Quasimetric policy). We define the quasimetric policy as some policy πFIX
d (a | s, g)

where πFIX
d (a | s, g) ∈ OPTd(s, g) ≜ argmin

a∈A
d(s, a, g)

and d(s, a, g) is the successor distance with actions (Eq. 5). We can extend this definition to stochastic
settings (see Definition 8) where πd(a | s,G) is defined over state-goal distribution pairs.

Theorem 2 (Horizon generalization exists). A quasimetric policy πFIX
d (a | s, g) that is optimal over

Bc = {(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 implies optimality over the entire state
and goal space S × S .

The idea of the proof is to begin with a ball of states Dc = {s′ ∈ S | d(s, s′) < c} for some arbitrary
s ∈ S; we assume policy πFIX

d (a | s, ·) is optimal over this ball by the base case. Then, we use
planning invariance and the triangle inequality to show that policy optimality over Dn = {s′ ∈ S |
d(s, s′) < 2nc} implies optimality over Dn+1, a ball with double the radius. This proof shows that a
goal-conditioned, planning invariant policy with optimality over pairs of close states (with respect to
the quasimetric) covering state space S can be optimal over pairs drawn arbitrarily from the entire
state space S; the complete proof, extended to stochastic settings and thus applicable to the fixed
setting, is in Appendix C.4.
Importantly, this property is not guaranteed for any arbitrary optimal goal-reaching policy on some
restricted horizon:
Remark 3 (Horizon generalization is nontrivial). For an arbitrary policy, optimality over Bc =
{(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 is not a sufficient condition for optimality over
the entire state space S.

To prove this remark, we construct policies that are optimal over horizon H but suboptimal over
horizon H + 1. The complete proof is in Appendix C.5.
Combined, these results show that (1) planning invariance and horizon generalization, as defined in
Section 4.2, exist, (2) planning invariance and local policy optimality and coverage are sufficient
conditions to achieve horizon generalization, and (3) horizon generalization is not a trivially achievable
property.

4.5 LIMITATIONS AND ASSUMPTIONS

Despite our theoretical results proving that both horizon generalization and planning invariance do
exist, we expect that practical algorithms will not perfectly achieve these properties. This section
highlights the assumptions that belie our key results, and our experiments in Section 6 will empirically
study the degree to which current methods achieve these properties.
The main assumption behind our inductive proof is that horizon generalization is unlikely to be a
binary category, but rather exists on a spectrum. As such, each application of the inductive argument
is likely to incur some error, such that the argument (and, hence, the degree of generalization) will not
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extend infinitely. To make this a bit more concrete, define SUCCESS(c) as the success rate for reaching
goals in radius c, and assume that we choose constant c0 small enough that SUCCESS(c0) = 1. Then,
let us assume that each time the horizon is doubled (c0 → 2c0 → 4c0 → · · · ), the success rate
decreases by a factor of η. We will refer to η as the degree of planning invariance. In addition, we
assume that SUCCESS(c) is monotonically decreasing; goals further in time should be harder. We
can now define the REACH as the sum of SUCCESS(c) over c ≥ c0. With the above constraints on
SUCCESS(c), in the worst case,

REACHwc = 1+ η(2− 1) + η2(4− 2) + η3(8− 4) + · · · =

{
1 + η 1

1−2η if 0 < η < 1/2

∞ if η ≥ 1/2
. (12)

We visualize this simple analysis in Fig. 8. When the degree of horizon generalization has a low value
of (say) η = 0.1 (i.e., it generalizes for only 1 out of every 10 goals), the Reach is 1.125, not much
bigger than that of a policy without horizon generalization. Once the degree of horizon generalization
reaches η = 1/2 (i.e., generalizes for 1 out of every two goals), the Reach is infinite. In short, the
potential reach of horizon generalization is infinite, even when each step of the recursive argument
incurs a non-negligible degree of error.

A second important assumption behind our analysis is that very easy goals that cover the desired
space of possible hard goals (and waypoints to these hard goals) can be reached 100% of the time.
In terms of our induction proof, we need the base case to hold. If the base case does not hold (poor
performance on easy goals, or easy goals do not have sufficient state coverage to capture harder goals
or their waypoints) but planning invariance holds, then we should not expect to see optimality over
arbitrary harder goals. We will observe this empirically with a random policy in our experiments
(Fig. 4): a random policy is invariant to planning (it always selects random actions, regardless of the
goal) yet its performance on nearby goals is mediocre, so it is not surprising that this policy fails to
exhibit horizon generalization.

5 METHODS FOR PLANNING INVARIANCE: OLD AND NEW

In this section we discuss how planning invariance relates to several classes of RL algorithms.
Appendix D discusses several new directions for designing RL algorithms that are invariant to
planning. Appendix F recalls figures from prior works in search of evidence for horizon generalization.

Dynamic programming and temporal difference (TD) learning. The capacity for TD methods to
“stitch” (Ziebart et al., 2008) together trajectories offers one route for obtaining policies with horizon
generalization. Indeed, our definition of planning invariance is very closely tied with the optimal
substructure property (Cormen et al., 2022, pp. 382-387) of dynamic programming problems, and
likely could be redefined entirely in terms of optimal substructure. Viewing horizon generalization and
planning invariance through the lens of machine learning allows us to consider a broader set of tools
for achieving invariance and generalization (e.g., special neural network layers, data augmentation).

Quasimetric Architectures (implicit planning). Prior methods that employ special neural net-
works may have some degree of horizon generalization. For example, some prior methods (Myers
et al., 2024a; Pitis et al., 2020; Wang et al., 2023) use quasimetric networks to represent a dis-
tance function. As the correct distance function satisfies the triangle inequality, it makes sense
to use special architectures that are guaranteed to satisfy the triangle inequality. However, prior
work rarely examines the generalization or invariance properties of these quasimetric architectures.
One way of thinking about quasimetric architectures is that they are invariant to path relaxation
(d(s, g) ← minw d(s, w) + d(w, g)) (Cormen et al., 2022, p. 609). This path relaxation is exactly
the notion of planning used in our theoretical construction (Theorem 1). Thus, these architectures are,
by construction, invariant to planning! We use these architectures in our experiments in Section 6.

While quasimetric architectures are invariant to path relaxation, other prior methods (Lee et al., 2018;
Tamar et al., 2016) have proposed architectures that perform value iteration internally and (hence)
may be invariant to the Bellman operator. Because Bellman optimality implies planning invariance
(c.f. optimal substructure), we expect that these value iteration networks may exhibit some degree
of horizon generalization as well.

Explicit planning methods. While our proof of planning used a specific notion of planning,
prior work has proposed RL methods that employ many different styles of planning: graph search
methods (Beker et al., 2022; Chane-Sane et al., 2021; Savinov et al., 2018; Zhang et al., 2021b),
model-based methods (Chua et al., 2018; Lowrey et al., 2018; Nagabandi et al., 2018; Sutton, 1991;
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Table 1: Summary of methods and modifications tested

Method Description Losses Critics
CRL Contrastive RL (Eysenbach et al., 2022) {Lfwd,Lbwd,Lsym} {dℓ2 , dMLP}
SAC Soft Actor-Critic (Haarnoja et al., 2018) {Lsac} {QMLP}
CMD-1 Contrastive metric distillation (Myers et al., 2024a) {Lbwd} {dMRN}

(a) Losses

Lfwd InfoNCE loss: predict goal g from
current state-action (s, a) pair (Sohn,
2016)

Lbwd Backward InfoNCE loss: predict cur-
rent state and action (s, a) from future
state g (Bortkiewicz et al., 2024)

Lsym Symmetric contrastive loss: combine
the forward and backward contrastive
losses (Radford et al., 2021)

Lsac Temporal difference loss (Haarnoja
et al., 2018)

(b) Architectures

dℓ2 L2-distance parameterized architec-
ture, uses ∥ϕ(s) − ψ(g)∥ as a dis-
tance/critic (Eysenbach et al., 2024)

dMLP Uses multi-layer perceptron (MLP) to
parameterize the distance/critic (Burr,
1986; Rosenblatt, 1961)

dMRN Metric residual network, uses a quasi-
metric architecture to parameterize
the distance/critic (Liu et al., 2023)

QMLP MLP-parameterized Q-function
(Haarnoja et al., 2018)
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CMD-1 (Lbwd + dMRN) CRL (Lfwd + dℓ2)
CRL (Lbwd + dℓ2) CRL (Lsym + dℓ2)
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no planning planning

Figure 4: Quantifying horizon generalization and invariance to planning. On a simple navigation task, we
collect short trajectories and train two goal-conditioned policies, comparing both to a random policy. (Left) We
evaluate on (s, g) pairs of varying distances, observing that metric regression with a quasimetric exhibits strong
horizon generalization. (Right) In line with our analysis, the policy that has strong horizon generalization is
also more invariant to planning: combining that policy with planning does not increase performance. Appendix
Fig. 6 shows a version of this plot that also includes the tabular setting.

Williams et al., 2017), collocation methods (Rybkin et al., 2021), and hierarchical methods (Kulkarni
et al., 2016; Nasiriany et al., 2019; Parascandolo et al., 2020; Pertsch et al., 2020). Insofar as
these methods approximate the method used in our proof, it is reasonable to expect that they may
achieve some degree of planning invariance and horizon generalization (see Fig. 10). Prior methods
in this space are typically evaluated on the training distribution, so their horizon generalization
capabilities are typically not evaluated. However, the improved generalization properties might have
still contributed to the faster learning on the training tasks: after just learning the easier tasks, these
methods would have already solved the complex tasks, leading to higher average success rates.

Data augmentation. Finally, prior work (Chane-Sane et al., 2021; Ghugare et al., 2024) has argued
that data augmentation provides another avenue for achieving the benefits typically associated with
planning or dynamic programming.

6 EXPERIMENTS

The aim of our experiments is to provide intuition into what horizon generalization and planning
invariance are, why it should be possible to achieve these properties, and to study the extent to
which existing methods already achieve these properties. We also present an experiment highlighting
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(a) Ant Environment
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Horizon Generalization in Ant Continuous Control Domain
CRL (dℓ2 ,Lfwd) CRL (dℓ2 ,Lbwd)
CRL (dℓ2 ,Lsym) CMD-1 (dMRN,Lbwd)

SAC (QMLP,Ltd)

short train tasks long eval tasks

(b) Success rates stratified by distance to goal

Figure 5: Measuring horizon generalization in a high-dimensional (27D observation, 8DoF control) task.
(Left) We use an enlarged version of the quadruped “ant” environment, training all goal-conditioned RL methods
on (start, goal) pairs that are at most 10 meters apart. (Right) We evaluate several RL methods, measuring the
horizon generalization of each. These results reveal that (i) some degree of horizon generalization is possible; (ii)
the learning algorithm influences the degree of generalization; (iii) the value function architecture influences the
degree of generalization; and (iv) no method achieves perfect generalization, suggesting room for improvement
in future work. The ratio of success at 10m vs 5m and 20m vs 10m corresponds to η from Section 4.5. Results
are plotted with standard errors across random seeds.

why horizon generalization is a useful notion even when considering temporal difference methods
(Section 6.2).
We start with a didactic, tabular navigation task (Fig. 11), connecting short horizon trajectories and
evaluating performance on long-horizon tasks. In our first experiment, we measure the empirical
average hitting time distance between all pairs of states. We define a policy that acts greedily with
respect to these distances, measuring performance of this “metric regression” policy in Fig. 6 (Top
Left). The degree of horizon generalization can be quantified by comparing its success rate on nearby
(s, g) pairs to more distant pairs. We compare to a “metric regression with quasimetric” method that
projects the empirical hitting times into a quasimetric by performing path relaxation updates until
convergence (d(s, g)← minw d(s, w) + d(w, g)). Fig. 6 (Top Left) shows that this policy achieves
near perfect horizon generalization. While this result makes intuitive sense (this algorithm is very
similar to Dijkstra’s algorithm), it nonetheless highlights one way in which a method trained on
nearby start-goal pairs can generalize to more distant pairs.
We study planning invariance of these policies by comparing the success rate of each policy (on distant
start-goal pairs) when the policy is conditioned on the goal versus on a waypoint. See Appendix G
for details. As shown in Fig. 6 (Top Right), the “metric regression with quasimetric” policy exhibits
stronger planning invariance, supporting our theoretical claim that (Theorem 1) planning invariance
is possible.
We next study whether these properties exist when using function approximation. For this experiment,
we adopt the contrastive RL method (Eysenbach et al., 2022) for estimating the distances, comparing
different architectures and loss functions. The results in Fig. 4 (Left) show that both the architecture
and the loss function can influence horizon generalization, with the strongest generalization being
achieved by a CMD-1 (Myers et al., 2024a). Intuitively this makes sense, as this method was explicitly
designed to exploit the triangle inequality, which is closely linked to planning invariance. Fig. 4
(Right) shows the degree of planning invariance for these policies. Supporting our analysis, the policy
most invariant to planning trained over short horizon tasks shows the strongest horizon generalization.
To better understand the relationship between planning invariance and horizon generalization, we
used the data from Fig. 4 (Left) to estimate the horizon generalization parameter η, and used the
data from the (Right) to compute the ratio of performance with and without planning. Fig. 7 shows
these data as a scatter plot. These two quantities are well correlated, supporting Theorem 2’s claim
that horizon generalization is closely linked to planning invariance. Note that methods that use an
L2-distance parameterized architecture demonstrate stronger horizon generalization and planning
invariance than that which uses an MLP, suggesting that some degree of planning invariance might be
had even without a quasimetric architecture. Intriguingly, these methods using the L2 architecture
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have a value of η ≈ 0.5, right at the critical point between bounded and unbounded reach (see
Section 4.5). The CMD-1 method, which is explicitly designed to incorporate the triangle inequality,
exhibits much stronger planning invariance and horizon generalization (η ≈ 0.8≫ 0.5), well above
the critical point. Finally, note that the random policy is an outlier: it achieves perfect planning
invariance (it always takes random actions, regardless of the goal) yet poor horizon generalization.
This random policy highlights a key assumption in our analysis: that the policy always succeeds at
reaching nearby goals (in Fig. 4, note that the success rate on the easiest goals is strictly less than 1).

6.1 EMPIRICALLY STUDYING HORIZON GENERALIZATION IN A HIGH-DIMENSIONAL
SETTING

Our next set of experiments study horizon generalization and planning invariance in the context of a
high-dimensional quadrupedal locomotion task (see Fig. 5). We start by running a series of experi-
ments to compare the horizon generalization of different learning algorithms (CRL (Eysenbach et al.,
2022) and SAC (Haarnoja et al., 2018)) and distance metric architectures (details in Appendix G). The
results in Fig. 5 highlight that both the learning algorithm and the architecture can play an important
role in horizon generalization, while also underscoring that achieving high horizon generalization in
high-dimensional settings remains an open problem. See Section 5 for a summary of the methods
used in these experiments.

6.2 IMPACT OF HORIZON GENERALIZATION ON BELLMAN ERRORS

Why should someone using a temporal difference method care about horizon generalization, if TD
methods are supposed to provide this property for free? One hypothesis is that methods for achieving
horizon generalization will also help decrease the Bellman error, especially for unseen start-goal
pairs. We test this hypothesis by measuring the Bellman error throughout training of the contrastive
RL method (same method as Fig. 4), with two different architectures. The results in Fig. 9 show that
the architecture that exhibits stronger horizon generalization (dℓ2) also has a lower Bellman error
throughout training. Thus, while TD methods may achieve horizon generalization at convergence (at
least in the tabular setting with infinite data), a stronger understanding of horizon generalization may
nonetheless prove useful for designing architectures that enable faster convergence of TD methods.

7 CONCLUSION

The aim of this paper is to give a name to a type of generalization that has been observed before, but
(to the best of our knowledge) has never been studied in its own right: the capacity to generalize from
nearby start-goal pairs to distant goals. Seen from one perspective, this property is trivial — it is an
application of the optimal substructure property, and the original Q-learning method (Watkins and
Dayan, 1992) already achieves this property. Seen from another perspective, this property may seem
magical: how can one guarantee that a policy trained over easy tasks can extrapolate from easy tasks
to hard tasks?
Our contribution in this paper is to provide a theoretical framework for understanding this property as
a form of self-consistency over model architecture, and show how we can obtain and measure this
property in practice. The experiments in Section 6 then connect these insights to concrete advice for
structuring the representation for goal-reaching.
1. Policies defined over metric architectures that measure state dissimilarity have planning invariance.
2. Planning invariance is a desirable feature that is correlated with the notion of horizon generaliza-

tion.
3. Quasimetric architectures provide a realistic approach to achieve planning invariance and horizon

generalization.
In Appendix E, we discuss further implications of these notions of invariance on self-consistent
models for decision-making.
Limitations and Future Work. Future work should examine how the properties of planning invari-
ance and horizon generalization are conserved in more complex decision-making environments, such
as robotic manipulation and language-based agents. Which versions of the distance parameterizations
in Section 5 are most effective at scale should be investigated with larger-scale empirical experiments.
In this paper, we assume a goal-conditioned setting, but there are meany alternative forms of task
specification (rewards, language, preferences, etc.) that could similarly benefit from generalization
over long horizons. Future work should explore how planning-invariant geometry could be extended
or mapped onto these task spaces.
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Figure 6: Quantifying horizon generalization and invariance to planning. On a simple navigation task,
we collect short trajectories and train two goal-conditioned policies, comparing both to a random policy. (Top
Left) We evaluate on (s, g) pairs of varying distances, observing that metric regression with a quasimetric
exhibits strong horizon generalization. (Top Right) In line with our analysis, the policy that has strong horizon
generalization is also more invariant to planning: combining that policy with planning does not increase
performance. (Bottom Row) We repeat these experiments using function approximation (instead of a tabular
model), observing similar trends.
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A ADDITIONAL FIGURES

For brevity, we include some of the figures referenced in the main text within this section.
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Figure 9: Impact of horizon generalization on Bellman errors. (Left) Two goal-reaching methods exhibit
different horizon generalization. (Right) Despite neither method being trained with the Bellman loss, we observe
that the method with stronger horizon generalization has a lower Bellman loss. Thus, understanding horizon
generalization may be important even when using TD methods (which guarantee horizon generalization at
convergence).
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B DEFINITION OF PATH RELAXATION

Definition 4 (Path relaxation operator). Let PATHd(s,G) be the path relaxation operator over
quasimetric d(s,G). For any triplet of state and state distributions (s,W,G) ∈ S × P(S)× P(S),

PATHd(s,G) ≜ min
W

d(s,W ) + d(W,G). (13)

In the controlled, fixed goal setting, define

PATHFIX
d (s, g) ≜ min

w
d(s, w) + d(w, g). (14)

Thus, invariance to the path relaxation operator is a form of self-consistency; any triplet of predictions
should satisfy the following identity:

d(s,G) ≤ d(s,W ) + d(W,G)

or in the controlled, fixed goal setting
d(s, g) ≤ d(s, w) + d(w, g).

which is the familiar triangle inequality. Conveniently, the quasimetric neural network architec-
ture (Liu et al., 2023; Wang and Isola, 2022a;b) innately satisfies the triangle inequality before seeing
any training data.
Definition 5 (Path relaxation operator with actions). Let PATHd(s, a,G) be the path relaxation
operator over quasimetric d(s, a,G). For any triplet of state and state distributions (s,W,G) ∈
S × S × S, PATHd(s,G) ≜ min

w
d(s,W ) + d(W,G). (15)

In the controlled, fixed goal setting, define

PATHFIX
d (s, g) ≜ min

w
d(s, w) + d(w, g). (16)

C PROOFS

In this section, we prove results discussed in Section 4.3 and versions of results in Section 4 for the
general stochastic, distributional setting.

C.1 PLANNING INVARIANCE EXISTS

Theorem 1 (Planning invariance exists). Assume a controlled, fixed goal setting. For every quasi-
metric d(s, g) over state space S, there exists a policy πFIX

d (a | s, g) and planning operator
PLANFIX

d ∈ planFIX such that πFIX
d (a | s, g) = πFIX

d

(
a | s, w for w = PLANFIX

d (s, g)
)
.

Proof. Let s, g ∈ S and the action-free distance function be d(s, g) = mina d(s, a, g); this statement
is true for the constrastive successor distances (Eq. 3). Define the (deterministic) planned waypoint as

wPLAN ← PLANFIX
d (s, g) ∈ argmin

w∈S
d(s, w) + d(w, g). (17)

We can then construct the following policy:

πFIX
d (a | s, g) ∈ OPTd(s, g) ≜ argmin

a∈A
d(s, a, g). (18)

and later restrict the selection of the action to reach waypoint wPLAN to get planning invariance, where
wPLAN ∈ argminw∈S d(s, w) + d(w, g). Applying this policy to (s, wPLAN),

πFIX
d (a | s, wPLAN) ∈ OPTd(s, wPLAN) ≜ argmin

a∈A
d(s, a, wPLAN)

= argmin
a∈A

d(s, a, wPLAN) + d(wPLAN, g)

= d(s, wPLAN) + d(wPLAN, g)

⊆ argmin
a∈A

d(s, a, g)

= OPTd(s, g). (19)
Thus, for a given deterministic planning algorithm defined as in Eq. (17), there exists some determin-
istic policy πFIX

d (a | s, g) = πFIX
d (a | s, wPLAN) ∈ OPTd(s, wPLAN) ⊆ OPTd(s, g) which is planning

invariance.
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C.2 QUASIMETRIC OVER DISTRIBUTIONS

Definition 6 (Quasimetric over distributions). For a given quasimetric dQM ∈ S, we define the
quasimetic over distributions as

dQMD(L,M) =
(∫

S×S
pL(l)pM (m)dQM(L,M) dl dm

)
×

(
1−

∫
S

√
pL(s)pM (s) ds

)
. (20)

We show Definition 6 is a valid quasimetric.

Proof. Note that we can rewrite d(L,M) = f(L,M) · g(L,M) where

f(L,M) =

∫
S×S

pL(l)pM (m)d(L,M) dl dm (21)

g(L,M) = 1−
∫
S

√
pL(s)pM (s) ds. (22)

We note that g(L,M) is also known as the Hellinger distance, which is a valid metric defined over
probability distributions (Hellinger, 1909). Checking the quasimetric conditions,

1. Positive semi-definiteness: d(M,M) = 0 trivially because g(M,M) = 0. For M ̸= N ,
d(L,M) > 0 given d(L,M) is a quasimetric and g(L,M) is a metric.

2. Triangle inequality: Both g(L,M) and f(L,M) satisfy the triangle inequality. So
g(L,M) + g(M,N) ≥ g(L,N) and f(L,M) + f(M,N) ≥ f(L,N) because d(s, g)
is a quasimetric. Multiplying the two sides of these two inequalities, we get d(L,M) +
d(M,N) ≥ d(L,N) as desired.

Note that, here, we could replace g(L,M) with any metric defined over two probability distributions
(i.e. Jensen-Shannon divergence) – the resulting d(L,M) would still be a quasimetric.

C.3 QUASIMETRICS, POLICIES, AND PLANNING INVARIANCE (STOCHASTIC SETTING)

Utilizing a quasimetric over distributions d(L,M) like one defined in Definition 6, we can define a
distributional quasimetric over actions. This is the stochastic generalization of the successor distance
with actions in Eq. (5).

Definition 7 (Quasimetric over actions in general stochastic setting). Assume d(s, g) is the Contrastive
Successor Distance Myers et al. (2024a). Define the stochastic-setting quasimetric over actions as

d(s, a,G) ≜
∫
S
p(s′ | s, a)(d(s, s′) + d(s′, G)) ds′

where p(s′ | s, a) is the distribution over next-step states after taking action a from state s.

Definition 8 (Quasimetric policy in general stochastic setting). Extending the deterministic quasimet-
ric policy to stochastic settings,

πd(a | s,G) ∈ OPTd(s,G) ≜ argmin
a

d(s, a,G).

The existence of planning invariance in stochastic settings follows from these quasimetric definitions.

Lemma 4 (Planning invariance exists in general stochastic setting). For every quasimetric d(s,G)
where G ∈ P(S), there exists a policy

πd(a | s,G) ∈ argmin
a∈A

d(s, a,G)

where πd(a | s,G) = πd(a | s,W ), and planning operator

PLANd(s, a,G) =WPLAN ∈ argmin
W∈P(S)

(d(s, a,W ) + d(W,G)).
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Proof. For any s,G pairs,

min
a
d(s, a,G) = min

a

∫
S
p(s′ | s, a)(d(s, s′) + d(s′, G)) ds′ (23)

= min
W

min
a

∫
S
p(s′|s, a)(d(s, s′) + d(s′,W ) + d(W,G)) ds′ (△-ineq.)

= min
a

min
W∼p(w|s)

∫
S
p(s′|s, a)(d(s, s′) + d(s′,W )) ds′ + d(W,G) (24)

= min
a

min
W∼p(w|s)

d(s, a,W ) + d(W,G) (25)

Now, applying this policy to state-waypoint pair (s,WPLAN),

π(a|s,WPLAN) ∈ OPTd(s,WPLAN)

≜ argmin
a∈A

d(s, a,WPLAN)

= argmin
a∈A

d(s, a,WPLAN) + d(WPLAN, G)

⊆ argmin
a∈A

d(s, a,G)

as desired. Thus, for the given stochastic planning algorithm, there exists some policy πd(a | s,G) =
πd(a | s,WPLAN) ∈ OPTd(s,WPLAN) ⊆ OPTd(s,G), which is planning invariance.

C.4 HORIZON GENERALIZATION EXISTS

Theorem 2 (Horizon generalization exists). A quasimetric policy πFIX
d (a | s, g) that is optimal over

Bc = {(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 implies optimality over the entire state
and goal space S × S .

Proof. We use induction and prove the following more general result for policies πd(a | s,G) defined
over state-goal distribution pairs (s,G). See earlier sections in Appendix C.3 for quasimetric, policy,
and planning definitions over distributions:

Lemma 5 (Horizon generalization exists, stochastic settings). A quasimetric policy πd(a | s,G) that
is optimal over Bc = {(s,G) ∈ S × P(S) | d(s,G) < c} for some finite c > 0 implies optimality
over the entire state and goal distribution space S × P(S).

Note that we can set G to a Delta function at a single goal g to recover the fixed policy πd(a | s,G).
Assume optimality over Bn = {(s,G) ∈ S × P(S) | d(s,G) < 2nc} for arbitrary n ∈ Z+. Without
loss of generality, consider arbitrary state s ∈ S and all goal distributions Dn = {G ∈ P(S) |
d(s,G) < 2nc}.
We can consider the space of distributions D′

n that are 2nc distance away from goal distribution
G ∈ Dn:

D′
n = {S′ ∈ P(S) | d(G,S′) < 2nc,G ∈ Dn} = {S′ ∈ P(S) | d(s, S′) < 2n+1c}.

where
B′n = {(s, S′) | S′ ∈ D′

n} = Bn+1.

Invoking the definition of the quasimetric policy πd(a | S, S′), for some waypoint distribution
WPLAN ∈ argminW∈D′

n
(d(s, a,W ) + d(W,G)) over distributions G ∈ D′

n:

πd(a | s,G) ∈ argmin
a∈A

d(s, a,WPLAN).

To show that there always exists some planned waypoint distribution WPLAN within the region of
assumed optimality Dn from the inductive assumption, we consider the case WPLAN /∈ Dn and show
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that there exists some WPLAN, IN ∈ Dn such that d(s, a,WPLAN, IN) + d(WPLAN, IN, G) = d(s, a,G).
By the triangle inequality,

d(s, a,G) = min
W∈D′

n

(d(s, a,W ) + d(W,G))

= d(s, a,WPLAN) + d(WPLAN, G)

= min
WOUT∈D′

n\Dn

d(s, a,WOUT) + d(WOUT, G)

= min
WOUT∈D′

n\Dn

min
WIN∈Dn

(d(s, a,WIN) + d(WIN,WOUT)) + d(WOUT, G)

= min
WIN∈Dn

min
WOUT∈D′

n\Dn

d(s, a,WIN) + (d(WIN,WOUT) + d(WOUT, G))

= min
WIN∈Dn

d(s, a,WIN) + d(WIN, G) (△-ineq)

= d(s, a,WPLAN, IN) + d(WPLAN, IN, G),

so there always exists an optimal state-waypoint distribution pair within the assumed optimality
region Bn; we can then restrict (s,WPLAN) ∈ Bn. Therefore, with the previously defined quasimetric
policy πd(a | s,G),

πd(a | (s,WPLAN) ∈ Bn) ∈ argmin
a∈A

d(s, a,WPLAN) (inductive assumption)

⊆ argmin
a∈A

d(s, a,G). (Lemma 4: planning invariance)

Therefore,e, policy πd(a | s,G) is optimal over Bn+1 following the inductive assumption, and,
since d(s,G) is finite for all (s,G) ∈ S × S ′s where goal distribution G is reachable from state s,
Theorem 2 follows.

C.5 HORIZON GENERALIZATION IS NONTRIVIAL

Remark 3 (Horizon generalization is nontrivial). For an arbitrary policy, optimality over Bc =
{(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 is not a sufficient condition for optimality over
the entire state space S.

Proof. We restrict our proof to the fixed, controlled setting and let quasimetric d(s, g) be the successor
distance dSD(s, g)— this assumption lets us directly equate the optimal horizon H to the distance
dSD(s, g), but note that similar arguments can be applied by treating d(s, g) as a generalized notion
of horizon.
Consider goal-conditioned policy π∗,H(a | s, g) that is optimal for (s, g) pairs over some horizon
H . Assume there is at least one goal g′ that is optimally H + 1 actions away from s, and that there
exists some optimal waypoint s′ en route to g′ reachable via actions A′ ⊂ A (where A \ A′, the set
of suboptimal actions, is nonempty).
We can then construct a policy πH+1 where πH+1(a | s, g′) returns an action in the suboptimal set
A \ A′, and πH+1 restricted to state-goal pairs horizon H away is equivalent to π∗,H . Therefore, an
arbitrary optimal goal-reaching policy over some restricted horizon H does not necessarily exhibit
horizon generalization.

D NEW METHODS FOR PLANNING INVARIANCE

While the aim of this paper is not to propose a new method, we will discuss several new directions
that may be examined for achieving planning invariance.
Representation learning. As shown in Fig. 2, planning invariance implies that some internal rep-
resentation inside a policy must map start-goal inputs and start-waypoint inputs to similar repre-
sentations. What representation learning objective would result in representations that, when used
for a policy, guarantee horizon generalization?1 The fact that plans over representations sometimes
correspond to geodesics (Eysenbach et al., 2024; Tenenbaum et al., 2000) hints that this may be
possible.

1The construction in our proof is a degenerate case of this, where the internal representations are equal to the
output actions.
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Flattening hierarchical methods. While hierarchical methods often achieve higher success rates in
practice, it remains unclear why flat methods cannot achieve similar performance given the same data.
While prior work has suggested that hierarchicies may aid in exploration (Nachum et al., 2019), it
may be the case that they (somehow) exploit the metric structure of the problem. Once this inductive
bias is identified, it may be possible to imbue it into a “flat” policy so that it can achieve similar
performance (without the complexity of hierarchical methods).
Policies that learn to plan. While explicit planning methods may be invariant to planning, recent
work has suggested that certain policies can learn to plan when trained on sufficient data (Chane-Sane
et al., 2021; Lee et al., 2024). Insofar as neural networks are universal function approximators, they
may learn to approximate a planning operator internally. The best way of learning such networks that
implicitly learn to perform planning remains an open question.
MDP reductions. Finally, is it possible to map one MDP to another MDP (e.g., with different
observations, with different actions) so that any RL algorithm applied to this transformed MDP
automatically achieves the planning invariance property?

E SELF-CONSISTENT MODELS

In machine learning, we usually strive for consistent models: ones that faithfully predict the training
data. Sometimes (often), however, a model that is consistent with the training data may be inconsistent
with other yet-to-be-seen training examples. In the absence of infinite data, one way of performing
model selection is to see whether a model’s predictions are self-consistent with one another. This
is perhaps most easily seen in the case of metric learning, as studied in this paper. If we are trying
to learn a metric d(x, y), then the properties of metrics tell us something about the predictions that
our model should make, both on seen and unseen inputs. For example, even on unseen inputs, our
model’s predictions should obey the triangle inequality. Given many candidate models that are all
consistent with the training data, we may be able to rule out some of those models if their predictions
on unseen examples are not “logically” consistent (e.g., if they violate the triangle inequality). One
way of interpreting quasimetric neural networks is that they are architecturally constrained to be
self-consistent. We will discuss a few implications of this observation.

Do self-consistent models know what they know? What if we assume that quasimetric networks
can generalize? That is, after learning that (say) s1 and s2 are 5 steps apart, it will predict that similar
states s′1 and s′2 are also 5 steps apart. Because the model is architecturally constrained to be a
quasimetric, this prediction (or “hallucination”) could also result in changing the predictions for other
s-g pairs. That is, this new “hallucinated” edge s′1 −→ s′2 might result in path relaxation for yet other
edges.

What other sorts of models are self-consistent? There has been much discussion of self-
consistency in the language-modeling literature (Huang et al., 2022; Irving et al., 2018). Many
of these methods are predicated on the same underlying as self-consistency in quasimetric networks:
checking whether the model makes logically consistent predictions on unseen inputs. Logical consis-
tency might be used to determine that a prediction is unlikely, and so the model can be updated or
revised to make a different prediction instead.

There is an important difference between this example and the quasimetrics. While the axiom used
for checking self-consistency in quasimetrics was the triangle inequality, in this language modeling
example self-consistency is checked using the predictions from the language model itself. In the
example of quasimetrics, our ability to precisely write down a mathematical notion of consistency
enabled us to translate that axiom into an architecture that is self-consistent with this property. This
raises an intriguing question: Can we quantify the rules of logic in such a way that they can be
translated into a logically self-consistent language model? What makes this claim seem alluringly
tangible is that there is abundant literature from mathematics and philosophy on quantifying logical
rules (Whitehead and Russell, 1927).

F EVIDENCE OF HORIZON GENERALIZATION AND PLANNING INVARIANCE
FROM PRIOR WORK

Not only do the experiments in Section 6 provide evidence for horizon generalization and planning
invariance, but we also can find evidence of these properties in the experiments run by prior work.
This section reviews three such examples, with the corresponding figures from prior work in Fig. 10:
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Figure 10: Evidence of Horizon Generalization and Planning Invariance from Prior work. (a) Prior work
has observed that if policies are trained in an online setting and perform planning during exploration, then those
policies see little benefit from doing planning during evaluation. This observation suggests that these policies
may have learned to be planning invariant. While results are not stratified into training and testing tasks, we
speculate that the faster learning of that method (relative to baselines, not shown) may be explained by the policy
generalizing from easy tasks (which are learned more quickly) to more difficult tasks. (b) Prior work studies how
data augmentation can facilitate combinatorial generalization. While the notion of combinatorial generalization
studied there is slightly from horizon generalization, a method that performs combinatorial generalization would
also achieve effective horizon generalization.

1. Zhang et al. (2021b) propose a method for goal-conditioned RL in the online setting that performs
planning during exploration. While not the main focus of the paper, an ablation experiment in
that paper hints that their method may have some degree of planning invariance: after training,
the policy produced by their method is evaluated both with and without planning, and achieves
similar success rates. This experiment hints at another avenue for achieving planning invariance:
rather than changing the architecture or learning rule, simply changing how data are collected may
be sufficient.

2. Ghugare et al. (2024) propose a method for goal-conditioned RL in the offline setting that performs
temporal data augmentation. Their key result, reproduced above, is that the resulting method
generalizes better to unseen start-goal pairs, as compared with a baseline. While this notion of
generalization is not exactly the same as horizon generalization (unseen start-goal pairs may still
be close to one another), the high success rates of the proposed method suggest that method
does not just generalize to nearby start-goal pairs, but also exhibits horizon generalization by
succeeding in reaching unseen distant start-goal pairs.

G EXPERIMENT DETAILS

The following subsections discuss the environment details for the figures in the main text.

G.1 FIGURE 2

This task is a gridworld of size 30 x 30, with walls shown as in Fig. 2. The dynamics are deterministic.
There are 5 actions, corresponding to the cardinal directions and a no-op action.

For this plot, we generated data from a random policy, using 1000 trajectories of length 200. We
estimated distances using Monte Carlo regression. The left two subplots were generated by selecting
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actions uses these Monte Carlo distances. We computed the true distances by running Dijkstra’s
algorithm. The right two subplots show actions selected using Dijkstra’s algorithm.

G.2 FIGURE 6 (TOP)
This plot used the same environment as described in Appendix G.1. For this plot, we generated 3000
trajectories of length 50 using a random policy. Only 14% of start-goal pairs have any trajectory
between them, meaning that the vast majority of start-goal pairs have never been seen together during
training. Thus, this is a good setting for studying generalization.
We first estimated distances using Monte Carlo regression. We select actions using a Boltzmann
policy with temperature 0.1 (i.e., π(a | s, g) ∝ e−0.1d(s,g)). Evaluation is done over 1000 randomly-
sampled start-goal pairs. The X axis is binned based on the shortest path distance. The data are
aggregated so that start-goal pairs with distance between (say) 20 and 30 get plotted at x = 30.
The “metric regression + quasimetric” distances are obtained by performing path relaxation on these
Monte Carlo distances until convergence. The corresponding policy is again a Boltzmann policy with
temperature 0.1.
For the Top Right subplot, we perform planning using Dijkstra’s algorithm. We first identify a set of
candidate midpoint states where d(s, w) and d(w, g) are both within one unit of half the shortest path
distance. We then randomly sample a midpoint state. This planning is done anew at every timestep.

G.3 FIGURE 6 (BOTTOM)
This plot used the same environment as described in Appendix G.1. The CRL method refers
to (Eysenbach et al., 2022) and CMD refers to (Myers et al., 2024a). We used a representation
dimension of 16, a batch size of 256, neural networks with 2 hidden layers of width 32 and Swish
activations, γ = 0.9, and Adam optimizer with learning rate 3e-3. The loss functions and architectures
are based on those from (Bortkiewicz et al., 2024).
For the Bottom Right subplot, we performed planning in the same way as for the Top Right subplot.

G.4 FIGURE 5
For this task we directly used the ant maze task as well as loss functions and architectures
from Bortkiewicz et al. (2024). All other hyperparameters are kept as the defaults from that paper.
Training is done for 100M steps

G.5 FIGURE 9

Figure 11: S-shaped maze.

For this experiment we used an S-shaped maze,
shown in Fig. 11.2 The dynamics are the same
as those of Fig. 2.
We collected 3000 trajectories of length 10 and
applied CRL with a representation dimension of
16, a batch size of 256, neural networks with 2 hidden layers of width 32 and Swish activations, the
backward NCE loss (Bortkiewicz et al., 2024), γ = 0.9, using the Adam optimizer with learning rate
3e-3. We measured the Bellman error as follows, where x0, x1, xT are the current, immediate next,
and future states:

pdist = metric_fn.apply(params, x0[:, None], xT[None])
pdist1 = metric_fn.apply(params, x1[:, None], xT[None])
td_target = (1 - gamma) * (x1 == xT[None, :, 0])

+ gamma * jax.nn.softmax(pdist1, axis=1)
bellman = optax.kl_divergence(

td_target, jax.nn.softmax(pdist, axis=1)
).mean()

For the success rates in the Left subplot, we stratify goals into “easy” (less than 100 steps away, under
an optimal policy) and “distant” (more than 100 steps away).
We repeated this experiment 10 times for generate the standard errors shown in both the Left and
Right subplots.

2We used this maze in preliminary versions of other experiments, but opted for the larger maze in the other
paper experiments because the results were easier to visualize.
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