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Abstract

One often wants to take an existing, trained001
NLP model and use it on data from a new do-002
main. While fine-tuning or few-shot learning003
can be used to adapt the base model, there is004
no one simple recipe to getting these working;005
moreover, one may not have access to the orig-006
inal model weights if it is deployed as a black007
box. To this end, we study how to improve a008
black box model’s performance on a new do-009
main given examples from the new domain by010
leveraging explanations of the model’s behav-011
ior. Our approach first extracts a set of features012
combining human intuition about the task with013
model attributions generated by black box in-014
terpretation techniques, and then uses a simple015
model to calibrate or rerank the model’s pre-016
dictions based on the features. We experiment017
with our method on two tasks, extractive ques-018
tion answering and natural language inference,019
covering adaptation from several pairs of do-020
mains. The experimental results across all the021
domain pairs show that explanations are useful022
for calibrating these models. We show that the023
calibration features transfer to some extent be-024
tween tasks and shed light on how to effectively025
use them.026

1 Introduction027

With recent breakthroughs in pre-trained modeling,028

NLP models are showing increasingly promising029

performance on real-world tasks, leading to their030

deployment at scale for settings such as translation,031

sentiment analysis, and question answering. These032

models are sometimes used as black boxes, espe-033

cially if they are only available as a service through034

APIs1 or if end users do not have the resources035

to fine-tune the models themselves. This poses036

a challenge when users try to deploy models on a037

1Google Translate, the Perspective API https://
perspectiveapi.com/, and MonkeyLearn https://
monkeylearn.com/monkeylearn-api/ being three
examples.

new domain that diverges from the training domain, 038

usually resulting in performance deterioration. 039

To this end, we investigate the task of domain 040

adaptation of black box models: given a black box 041

model and a small number of examples from a new 042

domain, how can we improve the model’s gener- 043

alization performance on the new domain? In this 044

setting, we are not able to update the model param- 045

eters, which makes transfer and few-shot learning 046

techniques inapplicable. Furthermore, we cannot 047

even access the model parameters, ruling out tech- 048

niques requiring model internal representations. 049

This paper explores how explanations can help 050

address this task. We leverage black box feature 051

attribution techniques (Ribeiro et al., 2016; Lund- 052

berg and Lee, 2017) to interpret a model’s internal 053

reasoning process. As shown in Figure 1, we use 054

this knowledge in a calibrator, or a separate model 055

to make a binary decision of whether the black box 056

model is likely to be correct or not on a given in- 057

stance. While not fully addressing the domain adap- 058

tation problem, calibrating the model can make it 059

more useful in practice, as we can recognize when 060

it is likely to make mistakes (Guo et al., 2017; Ka- 061

math et al., 2020; Desai and Durrett, 2020) and 062

modify our deployment strategy accordingly. 063

We calibrate by connecting model interpretations 064

with hand-crafted heuristics to extract a set of fea- 065

tures describing the reasoning of the model. Fig- 066

ure 1 shows an example for question answering: 067

we believe the answers are more reliable when the 068

tokens of a particular set of tags (e.g., proper nouns) 069

in the question are strongly considered. We extract 070

a set of features describing the attribution values 071

of different tags. Using a small number of exam- 072

ples in the target domain, we can train a simple 073

calibrator for the black box model. 074

Our approach is closely related to the recent line 075

of work on model behavior and explanations. Chan- 076

drasekaran et al. (2018); Hase and Bansal (2020) 077

shows explanations can help users predict model 078
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Question

Context

Where was the practice place the Panthers used for the Super Bowl ?

The Panthers used the San Jose State practice facility and stayed at 


the San Jose Marriott . The Vikings used Stark Industries to practice 


for the Champ Bowl .

Question

Context

Who did the  Panthers  face in the  NFC Championship Game  ? 

The Panthers then blew out the Arizona Cardinals in the NFC 


Championship Game , forcing seven turnovers . The Vikings faced 


the Packers in the 1st round of the NFC Playoffs .

Attributions to NNP 
in Question: 0.32

Attributions to V* 

in Context: 0.02

Attributions to NNP 
in Question: 0.10

Attributions to V* 
in Context: 0.25

Answer PredictionArizona Cardinals Arizona Cardinals

Answer PredictionSan Jose Stark Industries

Example

Explanations

Features Calibrator
prediction is


correct / incorrect

Figure 1: Pipeline and examples from the SQUAD-ADV
dataset. A ROBERTA model trained on SQUAD re-
sists the attack on the first example but fails on the sec-
ond. Features that inspect attribution values produced
by LIME can differentiate these two on the basis of attri-
butions to NNP in the question and V* in the context. A
calibrator can use these features to predict whether the
original black box model was right or wrong.

decisions in some ways and Ye et al. (2021) show079

how these explanations can be semi-automatically080

connected to model behavior. Our approach goes081

further by using a model to learn these heuristics,082

instead of handcrafting them or having a human083

inspect the explanations.084

We test whether our method can improve model085

generalization performance on two tasks, extrac-086

tive question answering (QA) and natural language087

inference (NLI). We construct generalization tasks088

for 5 pairs of source and target domains across the089

two tasks. Compared to existing baselines (Ka-090

math et al., 2020) and our own ablations, we find091

explanations are indeed helpful for this task, suc-092

cessfully improving model generalization perfor-093

mance among all pairs. Although the number of094

examples needed for training a calibrator is some-095

times sufficient to adapt a trained model, we still096

find occasions where explanation-based calibrators097

outperform even methods that have full access to098

the models. Our analysis demonstrates promising099

cross-domain generalization ability of explanation-100

based calibrators: our calibrator trained on a new101

domain can transfer to another new domain in some102

cases. Moreover, our calibrator can also substan-103

tially improves model performance in the Selective104

QA setting.105

2 Using Explanations for Black Box 106

Model Calibration 107

Let x = x1, x2, ..., xn be a set of input tokens 108

and ŷ = f(x) be a prediction from our black box 109

model under consideration. Our task in calibration2 110

is to assess whether the model prediction on x 111

matches its ground truth y. We represent this 112

with the variable t, i.e., t ≜ 1{f(x) = y}. 113

We explore various calibrator models to perform 114

this task, with our main focus being on calibra- 115

tor models that leverage explanations in the form 116

of feature attribution. Specifically, an explana- 117

tion ϕ for the input x assigns an attribution score 118

ϕi for each input token xi, which represents the 119

importance of that token. Next, we extract fea- 120

tures u(x, ϕ) depending on the input and expla- 121

nation, and use the features to learn a calibrator 122

c : u(x, ϕ) → t for predicting whether a predic- 123

tion is valid. We compare against baselines that do 124

not use explanations in order to answer the core 125

question posed by our paper’s title. 126

Our evaluation focuses on binary calibration, or 127

classifying whether a model’s initial prediction is 128

correct. Following recent work in this setting Ka- 129

math et al. (2020), we particularly focus on domain 130

transfer settings where models make frequent mis- 131

takes. A good calibrator can identify instances 132

where the model has likely made a mistake, so we 133

can return a null response to the user instead of an 134

incorrect one. 135

In the remainder of this section, we’ll first intro- 136

duce how we generate the explanations and then 137

how to extract the features u for the input x. 138

2.1 Generating Explanations 139

Since we are calibrating black box models, we 140

adopt LIME (Ribeiro et al., 2016) and SHAP (Lund- 141

berg and Lee, 2017) for generating explanations for 142

models instead of other techniques that require ac- 143

cess to the model details (e.g., integrated gradients 144

(Sundararajan et al., 2017)). 145

The rest of this work only relies on LIME and 146

SHAP to map an input sequence x and a model pre- 147

diction y to a set of importance weights ϕ. We will 148

briefly summarize the unified framework shared by 149

2We follow Kamath et al. (2020) in treating calibration
as a binary classification task. Devising a good classifier
is connected to the goal of accurate estimation of posterior
probabilities that calibration has more historically referred
to (Guo et al., 2017), but our evaluation focuses on binary
accuracy rather than real-valued probabilities.
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both methods, and refer readers to the respective150

papers for additional details.151

LIME and SHAP generate local explanations by152

approximating the model’s predictions on a set of153

perturbations around the base data point x. In this154

setting, a perturbation x′ with respect to x is a155

simplified input where some of the input tokens156

are absent (replaced with a <mask> token). Let157

z = z1, z2, ..., zn be a binary vector with each zi158

indicating whether xi is present (using value 1) or159

absent (using value 0), and hx(z) be the function160

that maps z back to the simplified input x′. Both161

methods seek to learn a local linear classifier g on162

z which matches the prediction of original model163

f by minimizing:164

g(z) = ϕ0 +

n∑
i=1

ϕizi165

ξ = argmin
g

∑
z∈Z

πx(z)[f(hx(z)) − g(z)]
2
+ Ω(g)166

167

168
where πx is a local kernel assigning weight to each169

perturbation z, and Ω is the L2 regularizer over the170

model complexity. The learned feature weight ϕi171

for each zi then represents the additive attribution172

(Lundberg and Lee, 2017) of each individual token173

xi. LIME and SHAP differ in the choice of the174

local kernel πx. Please refer to the supplementary175

materials for details of the kernel.176

2.2 Extracting Features by Combining177

Explanations and Heuristics178

Armed with these explanations, we now wish to179

connect the explanations to the reasoning we expect180

from the task: if the model is behaving as we ex-181

pect it, it may be better calibrated. A human might182

look at the attributions of some important features183

and decide whether the model is trustworthy in a184

similar fashion (Doshi-Velez and Kim, 2017). Past185

work has explored such a technique to compare ex-186

planation techniques (Ye et al., 2021), or even used187

actual human users to do this task (Chandrasekaran188

et al., 2018; Hase and Bansal, 2020).189

Our method automates this process by learn-190

ing what properties of explanations are impor-191

tant. We first assign each token xi with one or192

more human-understandable properties V (xi) =193

{vj}mi
j=1. Each property vj ∈ V is an element in194

the property space, which includes indicators like195

POS tags and is used to describe an aspect of xi196

whose importance might correlate with the model’s197

robustness. We intend to conjoin these properties198

with aspects of the explanation to render our cal-199

ibration judgment. Figure 1 shows examples of200

properties such as whether a token is a proper noun 201

(NNP). 202

We now construct the feature set for the predic- 203

tion made on x. For every property v ∈ V , we 204

extract a single feature F (v, x, ϕ) by aggregating 205

the attributions of the tokens associated with v: 206

F (v, x, ϕ) =
n∑

i=1

∑
v̄∈V (xi)

1{v̄ = v}ϕi

where 1 is the indicator function, and ϕi is the 207

attribution value. In this way, an individual feature 208

represents the total attributions with respect to prop- 209

erty v when the model is making the predictions 210

for x. The complete feature set u for x, given as 211

u = {F (v, x, ϕ)}v∈V , can summarize model ratio- 212

nales from the perspective of the properties defined 213

in V . 214

Properties We use several types of heuristic 215

properties for calibrating QA and NLI models. 216

Segments of the Input (QA and NLI): In both 217

of our tasks, an input sequence can naturally be 218

decomposed into two parts, namely a question 219

and a context (QA) or a premise and a hypothe- 220

sis (NLI). We assign each token with the corre- 221

sponding segment name, which yields features like 222

Attributions to Question. 223

POS Tags (QA and NLI): We also use tags from 224

the English Penn Treebank (Marcus et al., 1993) to 225

implement a group of properties. We hypothesize 226

that tokens of some specific tags should be more 227

important, like proper nouns in the questions of the 228

QA tasks. If a model fails to consider proper nouns 229

of a QA pair, it is more likely to make incorrect 230

predictions. 231

Overlapping Words (NLI): Word overlapping 232

strongly affects model prediction (McCoy et al., 233

2019). We assign each token with a property of 234

Overlapping or Non-Overlapping. 235

Conjunction of Groups: We can further 236

produce higher-level properties by taking the 237

Cartesian product of two or more groups. We 238

conjoin Segment and Pos-Tags, which yields 239

higher-level features like Attributions to NNP 240

in Question. Such a feature aggregates attribu- 241

tions of tokens that are tagged with NNP and also 242

required to be in the question (marked with orange). 243

2.3 Calibrator Model 244

We train the calibrator on a small number of sam- 245

ples in our target domain. Each sample is la- 246

beled using the prediction of the original model 247

compared to the ground truth. Using our feature 248
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Figure 2: Illustration of different settings in the experi-
ments. In black box settings, a calibrator is trained for
improving model performance on OOD data; in glass
box settings, the model is finetuned on OOD data from
a base model or vanilla ROBERTA LM model.

set F (v, x, ϕ), we learn a random forest classifier,249

shown to be effective for a similar data-limited set-250

ting in Kamath et al. (2020), to predict t (whether251

the prediction is correct). This classifier returns a252

score, which overrides the model’s original confi-253

dence score with respect to that prediction.254

In Section 4, we discuss several baselines for our255

approach. Whenever we vary the features used by256

the model, all the other details of the classifier and257

setup remain the same.258

3 Tasks and Datasets259

Our task setup involves transferring from a source260

domain/task A to a target domain/task B. Figure 2261

shows the data condition we operate in. Our pri-262

mary experiments focus on using our features to263

either calibrate or selectively answer in the black264

box setting (top-left in Figure 2). In this setting,265

we have a black box model trained on an source266

domain A and a small amount of data from the tar-267

get domain B. Our task is to train a calibrator using268

data from domain B to identify instances where the269

model potentially fails in the large unseen test data270

in domain B. We contrast this black box setting271

with glass box settings (right column in Figure 2).272

In glass box settings, we directly have access to the273

model parameters, making it possible to finetune a274

model on domain B or train on B from scratch.275

Question Answering We experiment with do-276

main transfer from SQUAD (Rajpurkar et al., 2016)277

to three different settings: SQUAD-ADV (Jia and278

Liang, 2017), HOTPOTQA (Yang et al., 2018), and279

TRIVIAQA (Joshi et al., 2017).280

SQUAD-ADV is an adversarial setting based on281

SQUAD, which constructs adversarial QA exam-282

ples based on SQUAD by appending a distractor283

sentence at the end of each example’s context. The284

added sentence contains a spurious answer and usu-285

ally has high surface overlapping with the question286
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Figure 3: Coverage-F1 curves of different approaches
on SQUAD-ADV. As more low-confidence questions
are answered, the average F1 scores decrease. We use
AUC to evaluate calibration performance.

so as to fool the model. We use the ADDSENT 287

setting from Jia and Liang (2017). 288

Similar to SQUAD, HOTPOTQA also contains 289

passages extracted from Wikipedia, but HOT- 290

POTQA asks questions requiring multiple reason- 291

ing steps. TRIVIAQA is collected from Web snip- 292

pets, which present a different distribution of ques- 293

tions and passages than SQUAD. For HOTPOTQA 294

and TRIVIAQA, we directly use the pre-processed 295

version of dataset from the MRQA Shared Task 296

(Fisch et al., 2019). 297

NLI For the task of NLI, we transfer a model 298

trained on MNLI (Williams et al., 2018) to MRPC 299

(Dolan and Brockett, 2005) and QNLI (Wang et al., 300

2019), similar to the settings in Ma et al. (2019). 301

QNLI contains a question and context sentence 302

pair from SQUAD, and the task is to verify whether 303

a sentence contains the answer to the paired ques- 304

tion. MRPC is a paraphrase detection dataset 305

presenting a binary classification task to decide 306

whether two sentences are paraphrases of one an- 307

other. Note that generalization from MNLI to 308

QNLI or MRPC not only introduces shift in terms 309

of the distribution of the input text, but in terms 310

of the nature of the task itself, since QNLI and 311

MRPC aren’t strictly NLI tasks despite sharing 312

some similarity. Both are binary classification tasks 313

rather than three-way. 314

4 Experiments 315

Baselines We compare our calibrator against ex- 316

isting baselines as well as our own ablations. 317

MAXPROB simply uses the probability of the 318

top prediction to assess whether the prediction is 319

trustworthy. 320

KAMATH (Kamath et al., 2020) (for QA only) is 321

a baseline initially proposed to distinguish out-of- 322

distribution data points from in-domain data points 323
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in the SELECTIVE QA setting, but it can also be324

applied in our settings. It trains a random forest325

classifier to learn whether a model’s prediction is326

correct based on several heuristic features, includ-327

ing the probabilities of the top 5 predictions, the328

length of the context, and the length of the pre-329

dicted answer. Since we are calibrating black box330

models, we do not use dropout-based features in331

Kamath et al. (2020).332

CLSPROB (for NLI only) uses more de-333

tailed information than MAXPROB: it uses334

the predicted probability for Entailment,335

Contradiction, and Neutral as the features336

for training a calibrator instead of only using the337

maximum probability.338

BOWPROP adds a set of heuristic property fea-339

tures on top of the KAMATH method. These are340

the same as the features used by the full model341

excluding the explanations. We use this baseline to342

give a baseline for using general “shape” features343

on the inputs not paired with explanations.344

Implementation of Our Method We refer our345

explanation-based calibration method using expla-346

nations produced by LIME and SHAP as LIMECAL347

and SHAPCAL respectively. We note that these348

methods also take advantages of the bag-of-word349

features in BOWPROP. For QA, the property space350

is the union of low-level Segment and Segment ×351

Pos-Tags. For NLI, we use the union of Segment352

and Segment × Pos-Tags × Overlapping Words353

to label the tokens. Details number of features can354

be found in the Appendix.355

4.1 Main Results: QA356

Setup We train a ROBERTA (Liu et al., 2019)357

QA model on SQUAD as the base model, which358

achieves 85.5 exact match and 92.2 F1 score. For359

the experiments on HOTPOTQA and TRIVIAQA,360

we split the dev set and sample 500 examples for361

training, and the rest for testing.3 For experiments362

on SQUAD-ADV, we remove the unmodified data363

points in the ADD-SENT setting and also use 500364

examples for training. For the experiments across365

all pairs, we randomly generate the splits, test the366

methods 20 times, and average the results to allevi-367

ate the influence of randomness.368

Metrics In addition to calibration accuracy369

(ACC) that measures the accuracy of the cali-370

brator, we also use the area under coverage-F1371

3Details of hyperparameters can be found in the Appendix.

curve (AUC) to evaluate the calibration perfor- 372

mance for QA tasks in particular. The coverage-F1 373

curve (Figure 3) plots the average F1 score of the 374

model achieved when the model only chooses to an- 375

swer varying fractions (coverage) of the examples 376

ranked by the calibrator-produced confidence. A 377

better calibrator should assign higher scores to the 378

questions that the models are sure of, thus resulting 379

in higher area under the curve; note that AUC of 380

100 is impossible since the F1 is always bounded 381

by the base model when every question is answered. 382

We additionally report the average scores when an- 383

swering the top 25%, 50%, and 75% questions, for 384

a more intuitive comparison of the performance. 385

Results Table 1 summarizes the results for QA. 386

First, we show that using explanations are help- 387

ful for calibrating black box QA models out-of- 388

domain. Our method using LIME substantially im- 389

proves the calibration AUC compared to KAMATH 390

by 7.1, 2.1 and 1.4 on SQUAD-ADV, TRIVIAQA, 391

and HOTPOTQA, respectively. In particular, LIME- 392

CAL achieves an average F1 score of 92.3 at a 393

coverage of 25% on SQUAD-ADV, close to the 394

performance the base model on original SQUAD 395

examples. Our explanation-based approach is ef- 396

fective at identifying the examples that are robust 397

with respect to the adversarial attacks. 398

Comparing LIMECAL against BOWPROP, we 399

find that the explanations themselves do indeed 400

help. On SQUAD-ADV and HOTPOTQA, BOW- 401

PROP performs on par with or only slightly better 402

than KAMATH. These results show that connect- 403

ing explanations with annotations is a path towards 404

building better calibrators. 405

Finally, we compare the performance of our 406

methods based on different explanation techniques. 407

LIMECAL slightly outperforms SHAPCAL in all 408

three settings. As discussed in Section 2.1, SHAP 409

assigns high instance weights to those perturba- 410

tions with few activated features. While such a 411

choice of the kernel is effective in tasks involving 412

tabular data (Lundberg and Lee, 2017), this might 413

not be appropriate for the task of QA when such 414

perturbations may not yield meaningful examples. 415

4.2 Main Results: NLI 416

Setup Our base NLI model is a ROBERTA clas- 417

sification model trained on MNLI and achieves 418

87.7% accuracy on the development set. We 419

collapse contradiction and neutral into 420

non-entailment when evaluating on QNLI 421
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SQUAD-ADV TRIVIAQA HOTPOTQA
Approach Acc AUC F1@25 F1@50 F1@75 Acc AUC F1@25 F1@50 F1@75 Acc AUC F1@25 F1@50 F1@75

MAXPROB 62.6 70.9 72.4 72.1 70.4 67.0 76.7 82.1 76.3 71.0 63.1 75.7 79.7 75.9 72.2
KAMATH 63.2 76.8 81.4 75.2 71.2 70.6 76.6 82.1 77.9 71.1 64.5 76.8 80.8 77.2 72.8

BOWPROP 63.6 77.4 82.9 76.1 71.7 71.2 77.6 84.2 79.1 71.6 64.7 76.6 80.3 76.9 72.4
LIMECAL 70.3 83.9 92.3 84.2 75.9 72.0 78.7 85.4 79.6 72.3 65.7 78.2 82.6 78.4 73.8
SHAPCAL 69.3 82.9 91.2 82.8 75.0 71.8 78.2 84.7 79.4 72.3 65.3 77.8 82.0 78.0 73.5

Table 1: Main results on QA tasks. Our explanation-based methods (LIMECAL and SHAPCAL) successfully
calibrate a ROBERTA QA model trained on SQUAD when transferring to three new domains, and outperform a
prior approach (KAMATH) as well as our ablation using only heuristic labels (BOWPROP).

QNLI MRPC
Approach Acc AUC Acc AUC

MAXPROB 50.5 41.2 57.0 50.0
CLSPROB 56.7 59.5 71.5 77.9

BOWPROP 74.0 82.0 71.8 79.3
LIMECAL 75.0 82.6 73.6 81.0
SHAPCAL 74.2 81.9 73.5 80.7

Table 2: Main results on NLI tasks. LIMECAL mod-
erately improves the performance of the base MNLI
model on QNLI and MRPC, despite how different these
tasks are from the base MNLI setting.

and MRPC. We also use random forests as the422

calibrator model. We evaluate the generalization423

performance on the development sets of QNLI and424

MRPC. Similar to the settings in QA, we use 500425

examples to train the calibrator and test on the rest426

for each of the 20 random trials.427

Metrics Because QNLI and MRPC are binary428

classification tasks, predicting whether a model is429

correct (our calibration setting) is equivalent to the430

original prediction task. We can therefore measure431

calibrator performance with standard classification432

accuracy and AUC.433

Results We show results on NLI tasks in Table 2.434

The base MNLI model utterly fails when transfer-435

ring to QNLI and MRPC and achieves an accuracy436

of 49% and 57%, respectively, whereas the major-437

ity class is 50% (QNLI) and 65% (MRPC). With438

heuristic annotations, BOWPROP is able to solve439

74% of the QNLI instances and 72% of the MRPC440

instances. Our heuristic itself is strong for QNLI441

compared to MAXPROB. LIMECAL is still the best442

in both settings, moderately improving accuracy443

by 1% and 2% over BOWPROP using explanations.444

The results on NLI tasks suggest our method can445

still learn useful signals for indicating model relia-446

bility even if the underlying tasks are very different.447

4.3 Analysis448

Cross-Domain Generalization of Calibrators449

Our calibrators so far are trained on individual450

transfer settings. Is the knowledge of a calibrator 451

learned on some initial domain transfer setting, e.g., 452

SQuAD → TRIVIAQA, generalizable to another 453

transfer setting, e.g. → HOTPOTQA? This would 454

enable us to take our basic QA model and a calibra- 455

tor and apply that pair of models in a new domain 456

without doing any new training or adaptation. We 457

explore this hypothesis on QA.4 458

For comparison, we also give the performance 459

a ROBERTA-model first finetuned on SQUAD and 460

then finetuned on domain A (ADAPT, Figure 2). 461

ADAPT requires access to the model architecture 462

and is an unfair comparison for other approaches. 463

We show the results in Table 5. None of the 464

approaches can generalize between SQUAD-ADV 465

and the other domains (either trained or tested on 466

SQUAD-ADV), which is unsurprising given the syn- 467

thetic and very specific nature of SQUAD-ADV. 468

Between TRIVIAQA and HOTPOTQA, both the 469

LIMECAL and KAMATH calibrators trained on one 470

domain can generalize to the other, even though 471

BOWPROP is not effective. Furthermore, our LIME- 472

CAL exhibits a stronger capability of generalization 473

compared to KAMATH. We then compare LIME- 474

CAL against ADAPT. ADAPT does not always work 475

well, which has also been discussed in Kamath et al. 476

(2020); Talmor and Berant (2019). ADAPT leads to 477

a huge drop in terms of performance when being 478

trained on HOTPOTQA and tested on TRIVIAQA, 479

whereas LIMECAL is the best in this setting. From 480

TRIVIAQA to HOTPOTQA, ADAPT works well, 481

but LIME is almost as effective. 482

Overall, the calibrator trained with explana- 483

tions as features exhibits successful generalizabil- 484

ity across the two realistic QA tasks. We believe 485

this can be attributed to the features used in the 486

explanation-based calibrator. Although the task is 487

different, the calibrator can rely on some common 488

rules to decide the reliability of a prediction. 489

4We also tested the hypothesis on the NLI-paraphrase trans-
fer, but did not see evidence of transferability there, possibly
due to the fact that these tasks fundamentally differ.
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SQUAD-ADV TRIVIAQA HOTPOTQA QNLI MRPC
100 300 500 100 300 500 100 300 500 100 300 500 100 300 500

MAXPROB 70.9 76.7 75.7 41.2 50.0
KAMATH 72.7 75.6 76.8 74.8 76.2 76.6 75.2 76.5 76.8 56.4 58.1 59.5 73.7 76.8 77.9
BOWPROP 75.0 76.0 77.4 76.1 77.4 77.6 74.9 76.3 76.6 79.0 81.5 82.0 69.4 77.5 79.3
LIMECAL 78.7 82.7 83.9 77.2 78.2 78.7 76.5 77.7 78.2 79.1 81.8 82.8 76.1 79.9 81.0

Table 3: AUC scores of the calibrators trained with varying training data size. Explanation-based calibrators can
still learn even with limited training resource, whereas KAMATH and BOWPROP are not effective and underperform
the MAXPROB baseline on TRIVIAQA and HOTPOTQA.

SQUAD-ADV TRIVIAQA HOTPOTQA QNLI MRPC

Model Performance Ex F1 Ex F1 Ex F1 Acc Acc
BASE QA/NLI 62.1 68.0 53.2 62.1 50.7 66.3 50.5 57.2
FINETUNE ROBERTA 32.3 42.0 28.5 34.8 39.5 54.8 81.2 79.8
ADAPT BASE QA/NLI 77.3 84.3 56.2 64.0 54.3 70.8 80.7 79.1
INDOMAIN QA/NLI − − 62.1 68.1 59.7 77.2 92.0 87.2

Calibration Results Acc AUC Acc AUC Acc AUC Acc Acc
FINETUNE ROBERTA + MAXPROB − 41.1 − 37.6 − 67.0 81.2 79.8
ADAPT BASE QA/NLI + MAXPROB − 92.7 − 77.6 − 82.5 80.7 79.1
LIMECAL 69.3 82.9 72.0 78.7 65.7 78.2 74.9 73.6

Table 4: Model performance and calibration performance of LIMECAL and glass box methods. On QA tasks,
LIMECAL is better than FINETUNING ROBERTA and even outperforms ADAPT BASE QA/NLI on TRIVIAQA.
LIMECAL under-performs glass box methods on NLI due to its easy nature and the poor base-model performance.

Source \ Target SQ-ADV TRIVIA HOTPOT

S
Q

-A
D

V ADAPT

70.9

76.1 65.8
KAMATH 73.3 75.1
BOWPROP 71.9 74.1
LIMECAL 72.9 71.4

T
R

IV
IA

ADAPT 64.2

76.7

77.2
KAMATH 70.5 76.7
BOWPROP 67.1 75.0
LIMECAL 69.3 77.0

H
O

T
P

O
T ADAPT 56.6 74.0

75.7KAMATH 70.6 77.0
BOWPROP 69.1 76.9
LIMECAL 68.8 77.9

Table 5: Area under Coverage-F1 curve for cross-
domain calibration results. The numbers along the di-
agonal shows the MAXPROB performance. A better
performance than MAXPROB suggests the calibrator is
able to usefully generalize.

Impacts of Training Data Size Calibrating a490

model for a new domain becomes cumbersome491

if large amounts of annotated data are necessary.492

We experiment with varying the amount of train-493

ing data the calibrator is exposed to, with results494

shown in Table 3. Our explanation-based calibrator495

is still the best in every setting with as few as 100496

examples. With 100 examples, KAMATH and BOW-497

PROP perform worse than the MAXPROB baseline498

on TRIVIAQA and HOTPOTQA, indicating that499

more data is needed to learn to use their features.500

4.4 Comparison to Finetuned Models501

Throughout this work, we have assumed a black502

box model that cannot be fine-tuned on a new do-503

main. In this section, we compare calibration-based504

approaches with glass-box methods that require ac- 505

cess to the model architectures and parameters. We 506

evaluate two glass-box methods in two different set- 507

tings (Figure 2): (1) finetuning a base ROBERTA 508

model (FINETUNE ROBERTA), which needs the 509

access to the model architectures but not param- 510

eters; and (2) finetuning a base QA/NLI model, 511

which requires both model architectures as well as 512

parameters. All these models are finetuned with 513

500 examples, the same as LIMECAL. We also 514

give the performance of a model trained with full 515

in-domain training data for different tasks as refer- 516

ences (INDOMAIN QA/NLI). 517

We present the model performance (measured 518

with Exact Match and F1 for QA and Acc for NLI) 519

and calibration results in Table 4. Note that there 520

are no calibrators for glass box methods, so we only 521

report AUC scores for calibration performance. 522

On QA tasks, the limited training data is not 523

sufficient for successfully finetuning a ROBERTA 524

model. Consequently, FINETUNE ROBERTA does 525

not achieve credible performance. Finetuning a 526

base QA model greatly improves the performance, 527

surpassing LIMECAL on SQUAD-ADV and HOT- 528

POTQA. However, we still find that on TRIVIAQA, 529

LIMECAL slightly outperforms ADAPT. This is a 530

surprising result, and shows that explanation-based 531

calibrators can still be beneficial in some scenarios, 532

even if we have full access to the model. 533

On NLI tasks that are substantially easier than 534

QA, finetuning either a ROBERTA LM model or a 535

base NLI model can reach an accuracy of roughly 536
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Kown \ Unknown SQ-ADV TRIVIA HOTPOT

S
Q

-A
D

V MAXPROB 85.0 88.7 87.5
KAMATH 88.8 89.5 88.9
BOWPROP 91.5 90.6 89.0
LIMECAL 94.5 91.7 91.9

T
R

IV
IA

MAXPROB 85.0 88.7 87.6
KAMATH 85.6 91.9 88.7
BOWPROP 85.3 92.1 89.9
LIMECAL 90.9 92.5 92.1

H
O

T
P

O
T MAXPROB 85.0 88.7 87.6

KAMATH 86.1 91.4 89.4
BOWPROP 85.1 91.8 91.6
LIMECAL 91.7 92.3 92.5

Table 6: Area under Coverage-F1 curve in the Selective
QA setting. Our explanation-based approach is also
strong in this setting, substantially outperforming exist-
ing baseline and our own ablation.

80%. Our explanation-based approach largely lags537

glass-box methods, likely because the base NLI538

model utterly fails on QNLI (50.5% accuracy) and539

MRPC (55.0% accuracy) and does not grant much540

support for the two tasks. Nonetheless, the results541

on NLI still support our main hypothesis: explana-542

tions can be useful for calibration.543

5 Selective QA Setting544

Our results so far have shown that a calibrator can545

use explanations to help make binary judgments of546

correctness for a model running in a new domain.547

We now test our model on the selective QA setting548

from Kamath et al. (2020) (Figure 2). This experi-549

ment allows us to more directly compare with prior550

work and see performance in a setting where in-551

domain (ID) and out-of-domain (OOD) examples552

are mixed together.553

Given a QA model trained on source domain554

data, the goal of selective QA is to train a cali-555

brator on a mixture of ID source data and known556

OOD data, and test the calibrator to work well on a557

mixture of in-domain and an unknown OOD data.558

We follow the similar experimental setup as in559

Kamath et al. (2020). The detailed setting is in-560

cluded in the supplementary material.561

Results As shown in Table 6, similar to the562

main QA results. Our explanation-based approach,563

LIMECAL, is consistently the best among all set-564

tings. We point out our approach outperforms KA-565

MATH especially in settings that involve SQUAD-566

ADV as known or unkown OOD distribution. This567

can be attributed the similarity between SQUAD568

and SQUAD-ADV which can not be well distin-569

guished with features used in KAMATH (Context570

Length, Answer Length, and etc.). The strong571

performance of our explanation-based approach in572

the selective QA setting further verifies our assump- 573

tion: explanation can be useful and effective for 574

calibrating black box models. 575

6 Related Work 576

Our approach is inspired by recent work on the 577

simulation test (Doshi-Velez and Kim, 2017), i.e., 578

whether humans can simulate a model’s prediction 579

on an input example based on the explanations. 580

Simulation tests has been carried out in various 581

tasks (?Nguyen, 2018; Chandrasekaran et al., 2018; 582

Hase and Bansal, 2020) and give positive results in 583

some tasks (Hase and Bansal, 2020). Our approach 584

tries to mimic the process that humans would use to 585

judge a model’s prediction by combining heuristics 586

with attributions instead of having humans actually 587

do the task. 588

Using “meta-features” to judge a model also ap- 589

pears in literature on system combination for tasks 590

like machine translation (Bojar et al., 2017), ques- 591

tion answering (Kamath et al., 2020; Zhang et al., 592

2021), constituency parsing (Charniak and John- 593

son, 2005; Fossum and Knight, 2009) and semantic 594

parsing (Yin and Neubig, 2019). The work of Ra- 595

jani and Mooney (2018) in VQA is most relevant to 596

ours; they also use heuristic features, but we further 597

conjoin heuristic with model attributions. 598

7 Discussion & Conclusion 599

Limitations Despite showing promising results 600

in improving model generalization performance, 601

our attribution-based approach does suffer from 602

intensive computation cost. Using either LIME 603

or SHAP to generate attributions requires running 604

inference a fair number of perturbations when the 605

input size is large (see Appendix for details), which 606

limits our method’s applicability. But this doesn’t 607

undermine the main contribution of this paper, an- 608

swering the question in the title, and our approach 609

is still applicable as-is in the scenarios where we 610

pay for access to the model but not per query. 611

Conclusion We have explored whether model at- 612

tributions can be useful for calibrating black box 613

models. The answer is yes. By connecting attri- 614

butions with light human heuristics, we success- 615

fully improve model generalization performance 616

on new domains, or even different tasks. Besides, 617

it exhibits promising generalization performance 618

in some settings (cross-domain generalization and 619

Selective QA). 620
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,622
Yvette Graham, Barry Haddow, Shujian Huang,623
Matthias Huck, Philipp Koehn, Qun Liu, Varvara624
Logacheva, Christof Monz, Matteo Negri, Matt Post,625
Raphael Rubino, Lucia Specia, and Marco Turchi.626
2017. Findings of the 2017 conference on machine627
translation (WMT17). In Proceedings of the Second628
Conference on Machine Translation.629

Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav,630
Prithvijit Chattopadhyay, and Devi Parikh. 2018. Do631
explanations make VQA models more predictable632
to a human? In Proceedings of the Conference on633
Empirical Methods in Natural Language Processing634
(EMNLP).635

Eugene Charniak and Mark Johnson. 2005. Coarse-636
to-fine n-best parsing and MaxEnt discriminative637
reranking. In Proceedings of the 43rd Annual Meet-638
ing of the Association for Computational Linguistics639
(ACL’05).640

Shrey Desai and Greg Durrett. 2020. Calibration of641
pre-trained transformers. In Proceedings of the 2020642
Conference on Empirical Methods in Natural Lan-643
guage Processing (EMNLP).644

William B. Dolan and Chris Brockett. 2005. Automati-645
cally constructing a corpus of sentential paraphrases.646
In Proceedings of the Third International Workshop647
on Paraphrasing (IWP2005).648

Finale Doshi-Velez and Been Kim. 2017. Towards a649
rigorous science of interpretable machine learning.650
arXiv preprint arXiv:1702.08608.651

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eun-652
sol Choi, and Danqi Chen. 2019. MRQA 2019 shared653
task: Evaluating generalization in reading compre-654
hension. In Proceedings of 2nd Machine Reading655
for Reading Comprehension (MRQA) Workshop at656
EMNLP.657

Victoria Fossum and Kevin Knight. 2009. Combining658
constituent parsers. In Proceedings of Human Lan-659
guage Technologies: The 2009 Annual Conference660
of the North American Chapter of the Association661
for Computational Linguistics, Companion Volume:662
Short Papers.663

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-664
berger. 2017. On calibration of modern neural net-665
works. In Proceedings of the 34th International Con-666
ference on Machine Learning (ICML).667

Peter Hase and Mohit Bansal. 2020. Evaluating explain-668
able AI: Which algorithmic explanations help users669
predict model behavior? In Proceedings of the An-670
nual Meeting of the Association for Computational671
Linguistics (ACL).672

Robin Jia and Percy Liang. 2017. Adversarial examples673
for evaluating reading comprehension systems. In674
Proceedings of the Annual Meeting of the Association675
for Computational Linguistics (ACL).676

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke 677
Zettlemoyer. 2017. TriviaQA: A large scale distantly 678
supervised challenge dataset for reading comprehen- 679
sion. In Proceedings of the 55th Annual Meeting of 680
the Association for Computational Linguistics (Vol- 681
ume 1: Long Papers). 682

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se- 683
lective question answering under domain shift. In 684
Proceedings of the Annual Meeting of the Association 685
for Computational Linguistics (ACL). 686

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar 687
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke 688
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: 689
A robustly optimized bert pretraining approach. 690
ArXiv, abs/1907.11692. 691

Scott Lundberg and Su-In Lee. 2017. A unified ap- 692
proach to interpreting model predictions. In Pro- 693
ceedings of the Conference on Advances in Neural 694
Information Processing Systems (NeurIPS). 695

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nalla- 696
pati, and Bing Xiang. 2019. Domain adaptation 697
with BERT-based domain classification and data se- 698
lection. In Proceedings of the 2nd Workshop on 699
Deep Learning Approaches for Low-Resource NLP 700
(DeepLo 2019). 701

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 702
Marcinkiewicz. 1993. Building a Large Annotated 703
Corpus of English: The Penn Treebank. Computa- 704
tional Linguistics, 19(2):313–330. 705

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right 706
for the wrong reasons: Diagnosing syntactic heuris- 707
tics in natural language inference. In Proceedings 708
of the 57th Annual Meeting of the Association for 709
Computational Linguistics. 710

Dong Nguyen. 2018. Comparing automatic and human 711
evaluation of local explanations for text classification. 712
In Proceedings of the 2018 Conference of the North 713
American Chapter of the Association for Computa- 714
tional Linguistics: Human Language Technologies 715
(NAACL-HLT). 716

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram- 717
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel, 718
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin- 719
cent Dubourg, Jake Vanderplas, Alexandre Passos, 720
David Cournapeau, Matthieu Brucher, Matthieu Per- 721
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma- 722
chine learning in python. Journal of Machine Learn- 723
ing Research, 12(85):2825–2830. 724

Nazneen Fatema Rajani and Raymond Mooney. 2018. 725
Stacking with auxiliary features for visual question 726
answering. In Proceedings of the 2018 Conference 727
of the North American Chapter of the Association 728
for Computational Linguistics: Human Language 729
Technologies, Volume 1 (Long Papers), New Orleans, 730
Louisiana. 731

9

https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004


Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and732
Percy Liang. 2016. SQuAD: 100,000+ questions733
for machine comprehension of text. In Proceedings734
of the Conference on Empirical Methods in Natural735
Language Processing (EMNLP), pages 2383–2392,736
Austin, Texas. Association for Computational Lin-737
guistics.738

Marco Tulio Ribeiro, Sameer Singh, and Carlos739
Guestrin. 2016. “Why should I trust you?” Explain-740
ing the predictions of any classifier. In Proceedings741
of the ACM SIGKDD international conference on742
knowledge discovery and data mining (KDD).743

Lloyd S Shapley. 1997. A value for n-person games.744
Classics in game theory, 69.745

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.746
Axiomatic attribution for deep networks. In Pro-747
ceedings of the International Conference on Machine748
Learning (ICML).749

Alon Talmor and Jonathan Berant. 2019. MultiQA: An750
empirical investigation of generalization and trans-751
fer in reading comprehension. In Proceedings of the752
57th Annual Meeting of the Association for Compu-753
tational Linguistics.754

Alex Wang, Amanpreet Singh, Julian Michael, Felix755
Hill, Omer Levy, and Samuel R. Bowman. 2019.756
GLUE: A multi-task benchmark and analysis plat-757
form for natural language understanding. In Proceed-758
ings of the International Conference on Learning759
Representations (ICLR).760

Adina Williams, Nikita Nangia, and Samuel Bowman.761
2018. A broad-coverage challenge corpus for sen-762
tence understanding through inference. In Proceed-763
ings of the 2018 Conference of the North American764
Chapter of the Association for Computational Lin-765
guistics: Human Language Technologies (NAACL-766
HLT).767

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-768
gio, William W. Cohen, Ruslan Salakhutdinov, and769
Christopher D. Manning. 2018. HotpotQA: A dataset770
for diverse, explainable multi-hop question answer-771
ing. In Conference on Empirical Methods in Natural772
Language Processing (EMNLP).773

Xi Ye, Rohan Nair, and Greg Durrett. 2021. Connect-774
ing attributions and QA model behavior on realistic775
counterfactuals. In Proceedings of the 2021 Con-776
ference on Empirical Methods in Natural Language777
Processing.778

Pengcheng Yin and Graham Neubig. 2019. Reranking779
for neural semantic parsing. In Proceedings of the780
57th Annual Meeting of the Association for Compu-781
tational Linguistics. Association for Computational782
Linguistics.783

Shujian Zhang, Chengyue Gong, and Eunsol Choi. 2021.784
Knowing more about questions can help: Improving785
calibration in question answering. In Findings of786
the Association for Computational Linguistics (ACL787
Findings).788

10

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264


A Details of the Kernel used in LIME and789

SHAP790

LIME heuristically sets πx as an exponential kernel791

(with bandwith σ) defined on the cosine distance792

function between the perturbation and original in-793

put, i.e.,794

πx(z) = exp(−dcos(x, hx(z))/σ
2
)

That is, LIME assigns higher instance weights for795

perturbations that are closer to the original input,796

and so prioritizes classifying these correctly with797

the approximation.798

SHAP derives the πx so the ϕ can be interpreted799

as Shapley values (Shapley, 1997):800

πx(z) =
n − 1(N

|z|
)
|z|(n − |z|)

where |z| denotes the number of activated tokens801

(sum of z). This kernel assigns high weights to802

perturbations with few or many active tokens, as803

the predictions when a few tokens’ effects are iso-804

lated are important. This distinguishes SHAP from805

LIME, since LIME will place very low weight on806

perturbations with few active tokens.807

B Detailed Setup of Selective QA Setting808

We follow the similar experimental setup as in Ka-809

math et al. (2020). We train a ROBERTA QA810

model on SQUAD, and use on a mixture of 1,000811

SQUAD dev examples + 1,000 known OOD exam-812

ples to train the calibrator. We report test results813

on both the same type of mixture (1,000 SQUAD +814

1,000 known OOD, diagonal blocks) and a mixture815

of 4000 SQUAD examples + 4,000 unkown OOD816

(2,560 SQUAD + 2,560 SQUAD-ADV as SQUAD-817

ADV only contains 2,560 examples).818

C Feature Importance819

We analyze the important features learned by the820

calibrator. We find explanation-based features are821

indeed generally among the top used features and822

more important than Bag-of-Word-based features823

(see the Appendix for a detailed list). All QA cal-824

ibrators heavily rely on attribution values of the825

proper nouns (NNP) and wh-words in the question.826

BoW features of overlapping nouns are consid-827

ered important on QNLI, but the top feature is828

still attribution-based.829

These factors give insights into which parts of830

the QA or NLI reasoning processes are important831

for models to capture. E.g., the reliance on NNPs in832

SQUAD-ADV matches our intuitive understanding833

of this task: distractors typically have the wrong 834

named entities in them, so if the model pays atten- 835

tion to NNPs on an example, it is more likely to be 836

correct, and the calibrator can exploit this. 837

Table 7 shows the most important features 838

learned by LIMECAL for QA and NLI. For brevity, 839

we present the features related to the probabili- 840

ties of the top predictions into one feature (Prob). 841

Explanation-based features are indeed generally 842

among the top used features and more important 843

than raw property features. 844

D Details of POS Tag Properties 845

We use tagger implemented in spaCy API.5 The 846

tag set basically follows the Penn Treebank tag set 847

except that we merge some related tags to reduce 848

the number of features given the limited amount of 849

training data.6 Specifically, we merge JJ,JJR,JJS 850

into JJ, NN,NNS into NN, NNP,NNPS into NNP, 851

RB,RBR,RBS into RB, VB,VBD,VBG,VBN,VBP,VBZ 852

into VB, and WDT,WP,WP$,WRB into W. In this way, 853

we obtain a tag set of 25 tags in total. 854

E Details of Black Box Calibrators 855

Number of Feature for QA 856

• KAMATH (Kamath et al., 2020): we use the 7 857

features described in (Kamath et al., 2020), 858

including Probability for the top 5 pre- 859

dictions, Context Length, and Predicted 860

Answer Length. 861

• BOWPROP: In addition to the 7 features used 862

in KAMATH. We construct the property space 863

V as the union of low-level Segment and 864

Segment × Pos-Tags. Since there are 3 seg- 865

ments question, context, answer in the 866

input, and 25 tags (Section D), the size of 867

the property space |V| is thereby given as 868

3 + 3× 25 = 78. Therefore the total number 869

of features (including the 7 from KAMATH) is 870

85. 871

• LIMECAL and SHAPCAL: Recall that the size 872

of the property space is 78. LIMECAL and 873

SHAPCAL uses 78 features describing the at- 874

tribution related to the corresponding prop- 875

erties in addition to the 85 features used in 876

BOWPROP. The total number of features is 877

therefore 163. 878
5https://spacy.io/api
6https://www.ling.upenn.edu/courses/

Fall_2003/ling001/penn_treebank_pos.html
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SQ-ADV TRIVIA HOTPOT QNLI MRPC

Attr to NNP in Q Prob of Top Pred Prob of Top Pred Attr Overlapping NN in H Prob of Top Pred
Attr to VB in C Answer Length Attr to Q BOW Overl- NN in H Attr to P
Prob of Top Pred Attr NNP in Q Attr Wh- in Q BOW Overl- NN in P Attr to H
Attr to NN in Q Attr Wh- in Q Attr to C Attr to Non-Overl- NN in P Attr to Non-Overl- NNP in H
Answer Length Attr to Question Attr to NNP in Q Prob of Top Pred Attr to Overl- SYM in P

Table 7: Most important features used by the LIMECAL in different tasks. For QA, Attribution of NNP

in the question and Attribution of Wh- in the question are generally important. For NLI, features
related to overlapping/non-overlapping nouns are more effective.

Features Numbers for NLI879

• CLSPROB (Kamath et al., 2020): we880

use 2 features in practice, Probability881

of Entailment and Probability of882

Contradiction. We do not include883

Probability of Neutral since it can be884

inferred from the probabilities of two other885

classes.886

• BOWPROP: In addition to the 2 features887

used in CLSPROB, we construct the property888

space V as the union of low-level Segment889

and Segment × Pos-Tags × Overalapping890

Words. Since there are 2 segments (Premise,891

Hypothesis), 25 tags (Section D), and892

2 properties for overlapping Overlapping,893

Non-Overlapping, the size of the property894

space |V| is given as 2 + 2 × 25 × 2 = 102.895

Therefore the total number of features (includ-896

ing the 2 from CLSPROB) is 104.897

• LIMECAL and SHAPCAL: LIMECAL and898

SHAPCAL add another 102 features in addi-899

tion to the 104 features used in BOWPROP.900

The total number of features are therefore 206.901

Costs for Generating Explanations For QA902

tasks which have relatively long inputs, we sample903

2048 perturbations and run inference over them for904

each example. For simpler NLI tasks, we use about905

512 model queries for each example.906

Hyperparameters We use the RandomForest im-907

plementation from Scikit-Learn (Pedregosa et al.,908

2011). We list the hyper-parameters used in each909

approach in Table 8. The hyperparameters are de-910

termined through grid search using 400 training ex-911

amples and 100 validation examples. The choices912

of numbers of trees are [200, 300, 400, 500], and913

choices of max depth are [4, 6, 8, 10, 15, 20]. Then,914

for the experimental results in Table 1, Table 2, and915

Table 3, we always fix the hyper-parameters, and916

do not perform any further hyper-parameter tuning.917

QA NUM. TREE MAX DEPTH

S
Q

-A
D

V KAMATH 300 6
BOWPROP 300 20
LIMECAL 300 20
SHAPCAL 300 20

T
R

IV
IA

KAMATH 300 6
BOWPROP 300 10
LIMECAL 300 20
SHAPCAL 300 20

H
O

T
P

O
T KAMATH 300 4

BOWPROP 300 10
LIMECAL 300 10
SHAPCAL 300 10

NLI NUM. TREE MAX DEPTH

Q
N

L
I KAMATH 300 4

BOWPROP 300 6
LIMECAL 400 20
SHAPCAL 400 20

M
R

P
C

KAMATH 300 6
BOWPROP 300 8
LIMECAL 400 20
SHAPCAL 400 20

Table 8: Hyper-parameters used to train RandomForest
classifier for different approaches.

F Details of Glass Box Methods 918

Finetuning RoBERTa For QA, we finetune the 919

ROBERTA-base model with a learning rate of 1e-5 920

for 20 epochs (We also try finetuning for 3 epochs, 921

but the objective does not converge with 500 exam- 922

ples.) We set the batch size to be 32, and warm-up 923

ratio to be 0.06. 924

For MNLI, we finetune a ROBERTA-base model 925

with a learning rate of 1e-5 for 10 epochs. We set 926

the batch size to be 32, and warm-up ratio to be 927

0.06, following the hyper-parameters in Liu et al. 928

(2019). 929

Adapt Base QA/NLI Model For QA, we adapt 930

the base ROBERTA QA model trained on SQUAD 931

with a learning rate of 1e-5 for 2 epochs. 932

For MNLI, we finetune base ROBERTA NLI 933

model trained on MNLI with a learning rate of 1e- 934
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5 for 10 epochs. The objective does not converge935

when finetuning for 2 epochs, as the MNLI task is936

too different from QNLI and MRPC.937
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