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Abstract

We focus on addressing the object counting limitations of vision-language models, with a
particular emphasis on Contrastive Language-Image Pre-training (CLIP) models. Centered
on our hypothesis that counting knowledge can be abstracted into linear vectors within the
text embedding space, we develop a parameter-efficient fine-tuning method and several zero-
shot methods to improve CLIP’s counting accuracy. Through comprehensive experiments,
we demonstrate that our learning-based method not only outperforms full-model fine-tuning
in counting accuracy but also retains the broad capabilities of pre-trained CLIP models.
Our zero-shot text embedding editing techniques are also effective in situations where
training data is scarce, and can be extended to improve Stable Diffusion’s ability to generate
images with precise object counts. We also contribute two specialized datasets to train
and evaluate CLIP’s counting capabilities. Our code is available at https://github.com/
UW-Madison-Lee-Lab/CLIP_Counting.

1 Introduction

Recent advancement of deep learning techniques has led to significant progress in vision-language mod-
els (Alayrac et al., 2022; Chen et al., 2023; Radford et al., 2021; Singh et al., 2022; Liu et al., 2023; Li
et al., 2023a). One such breakthrough is the development of Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021), which is trained on a wide range of internet text-image pairs (Schuhmann
et al., 2021). CLIP has demonstrated strong performance in zero-shot learning tasks and serves as a backbone
for text-to-image generative models like Stable Diffusion. (Rombach et al., 2021).

Despite its extensive deployment, CLIP exhibits limitations in certain areas (Radford et al., 2021; Liu et al.,
2021; Thrush et al., 2022; Paiss et al., 2022), such as counting objects in images (Paiss et al., 2023). Counting
is a fundamental skill that requires the integration of visual and linguistic understanding, and it plays a
crucial role in numerous practical applications. Existing works have attempted to address the object counting
limitations with CLIP models or CLIP-based models (Paiss et al., 2023; Jiang et al., 2023a; Mestha et al.,
2024; Binyamin et al., 2024). However, these methods often require extensive training on large datasets.

Our work seeks a deeper understanding of CLIP’s object counting capability and introduces a data-efficient
and compute-efficient approach to enhancing it. We contribute two specialized datasets for training and
evaluating CLIP’s counting capabilities.
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Our key idea hypothesizes that counting knowledge can be abstracted as vectors in the text embedding space,
distinct from non-counting information. Our method seeks to find an object-agnostic counting vector that
represents the concept of a count (e.g., “five”), which is not necessarily the text embedding of the count word.
Once such a vector representation is identified, it is added to the text embedding of the original caption
(e.g., “an image of five dogs”) to reinforce the counting signal. This idea of finding counting-specific vectors
also provides a parameter-efficient and scalable solution that avoids extensive model training, and can be
universally applied in tasks that involve counting any given type of object.

In our paper, we develop a learning-based method and several zero-shot methods to obtain the counting
representation. First, we employ a counting-specific contrastive loss (Paiss et al., 2023) to train these
vectors. Our experiments reveal that this counting vector training not only outperforms traditional full-model
fine-tuning methods in terms of counting accuracy but also avoids the issue of the pre-trained CLIP model
losing its broad capabilities when fine-tuning the entire model on new data.

Furthermore, in scenarios where direct training data is scarce, we demonstrate that a counting vector can be
formulated following simple rules or can be extracted from objects that CLIP counts more proficiently. To
demonstrate the benefits of improved counting accuracy of CLIP, we also test the fidelity on text-to-image
models. In particular, we test our zero-shot method on Stable Diffusion models (Rombach et al., 2021) and
provide examples to show that it helps Stable Diffusion models generate images with precise object counts as
specified in the caption.

Our contributions include: (i) a parameter-efficient training method that enhances CLIP’s counting accuracy
while preserving its capabilities; (ii) zero-shot text embedding editing techniques effective without training
data; (iii) two novel datasets for fine-tuning and evaluating CLIP’s counting ability; and (iv) a demonstration
of how our zero-shot approach guides text-to-image models like Stable Diffusion to generate images with
accurate object counts.

2 Related Work

Vision-language models Vision-language models (VLMs) have achieved significant success in multimodal
tasks by training on massive image-text datasets and excelling in zero-shot or fine-tuned downstream
tasks (Alayrac et al., 2022; Chen et al., 2023; Radford et al., 2021; Singh et al., 2022; Liu et al., 2023; Li et al.,
2023a). In this work, we will focus on the Contrastive Language-Image Pre-training (CLIP) model trained by
OpenAI (Radford et al., 2021). CLIP is trained on 400 million image-caption pairs (Schuhmann et al., 2021),
using a contrastive objective where matching text-image pairs are optimized to have a low cosine distance,
while mismatched pairs are pushed further apart. CLIP has demonstrated notable success across a range of
visual tasks due to its zero-shot capabilities. It also underpins text-to-image alignment in generative models
like Stable Diffusion (Rombach et al., 2021).

Limitations of vision-language models on counting While VLMs perform impressively across various
tasks, they struggle with specific challenges, such as counting objects in images (Radford et al., 2021; Liu
et al., 2021; Thrush et al., 2022; Paiss et al., 2022), like counting objects within pictures (Paiss et al., 2023).
In fact, the object counting problem has always been one of the important issues in the visual question
answering (VQA) field, and several studies have attempted to address it (Jiang et al., 2023b; Xu et al., 2023;
Zhang et al., 2018; Nguyen et al., 2021; Acharya et al., 2019).

One reason for CLIP’s limitations in object counting may stem from its mini-batch contrastive pre-training
process. Typically, these models rarely process images of the same object in varying counts within a single
training batch. As a result, CLIP models have minimal exposure to learning nuanced differences in object
counts during pre-training. While full-batch training could address this issue, it is often prohibitively costly
and impractical.

One potential solution during pre-training is to strategically select mini-batches under certain conditions,
allowing them to mimic full-batch optimization (Sreenivasan et al., 2023). Using a tailored training set
and loss function can better guide models in learning to count. (Paiss et al., 2023; Mestha et al., 2024).
For example, Paiss et al. (2023) fine-tunes pre-trained CLIP models using a counting-specific loss on a
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counting-relevant dataset filtered from the LAION-400M dataset (Schuhmann et al., 2021). It also introduces
a new image-text counting benchmark, CountBench, used to evaluate a model’s understanding of object
counting, which we also utilized in our experiments. Mestha et al. (2024) make further improvements by
redesigning the contrastive loss. Another work, CrowdCLIP (Liang et al., 2023), focuses on the crowd counting
problem, fine-tuning CLIP in an unsupervised manner to map crowd patches to count text. Concurrent
research has focused on enabling VLM-driven image generation models to produce images with accurate item
counts (Paiss et al., 2023; Li et al., 2023b; Kang et al., 2023).

Table 1: The counting evaluation of the fine-tuned CLIP-Count model varies across diverse
objects. We use a CLIP-Count model checkpoint following its Visual Prompt Tuning and evaluate the Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) on our benchmark dataset ObjectCount. For
comparison, we also compute MAE and RMSE for the pretrained CLIP-base-32 model. The results indicate
that CLIP-Count struggles with small-count tasks, performing poorly and showing a significant gap compared
to the pretrained CLIP model.

dogs cats lions chairs goats cows cherries roses boats

CLIP-Count
MAE 9.87 50.02 16.59 28.59 35.56 34.16 13.01 25.53 56.32
RMSE 10.98 60.02 22.55 54.95 38.17 38.17 19.01 28.93 106.2

CLIP-base-32
MAE 0.29 0.41 0.78 0.77 1.25 0.52 0.58 0.94 0.75
RMSE 0.58 0.70 1.16 1.06 1.60 0.76 0.89 1.23 1.16

Density estimation framework vs. classification-based approaches in object counting Open-
world counting tasks are often addressed using density estimation frameworks, which treat counting as a
continuous regression problem, as demonstrated by CLIP-Count (Jiang et al., 2023b). In these methods, the
model predicts a density map over an image, with performance typically evaluated using mean square error
(MSE). This framework works well for large-scale object counting in high-density scenarios, where continuous
approximations are often sufficient. This approach optimally suits high-count datasets, where density maps
and MSE are effective evaluators of performance.

In contrast, classification-based approaches like ours formulate counting as a discrete classification task. Here,
each potential object count is treated as a separate class, allowing the model to explicitly predict specific,
integer-based counts. This task formulation is particularly well-suited for low-count scenarios, where the
focus is on discrete accuracy rather than a smooth approximation.

While density estimation frameworks are powerful in high-density, large-count settings, they do not effectively
capture the model’s reasoning abilities in low-count scenarios, as shown in Table 1 Classification-based
approaches offer a more nuanced assessment, emphasizing object type recognition and specific count accuracy.
Thus, our work extends prior research by highlighting the distinct advantages of classification frameworks for
low-count precision and reasoning in vision-language models.

Linear word analogies and embedding editing Since word2vec (Mikolov et al., 2013a) was developed,
researchers have found that the differences between word embedding vectors could capture relationships
between words (Mikolov et al., 2013b; Drozd et al., 2016; Ethayarajh et al., 2018; Allen & Hospedales, 2019).
For instance, the vector direction from “queen” to “king” captures a semantic transition from female to
male. Building on this foundation, researchers have applied text embedding editing techniques to the field
of image editing. Two works have explored the application of text embedding editing methods to image
editing. One work (Parmar et al., 2023) discovers editing directions in the text embedding space and applies
them to image edits, while leveraging cross-attention guidance to preserve the structure of image content.
Another work (Nguyen et al., 2023) uses example pairs of ’before’ and ’after’ edits to infer text-based editing
directions, which are then applied to new images, similar to (Parmar et al., 2023). Our research makes
distinct contributions: (i) Using orthogonal projections, we filter extraneous details to achieve precise text
embedding edits; (ii) Instead of focusing solely on image editing, we transfer CLIP’s counting ability across
objects to improve counting-related tasks, such as classification and generation.
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3 Methods

In this section, we outline our approach to investigating and validating the hypothesis that the knowledge
related to counting in images can be represented in a direction in the text embedding space such that
it is independent of the object’s embedding. Our approach enhances CLIP’s counting abilities through
learning-based methods that leverage new datasets and zero-shot text embedding editing techniques. We
introduce the representation of counting concepts as vectors in Section 3.3, our parameter-efficient fine-tuning
method in Section 3.4, and our zero-shot methods in Section 3.5. In Section 3.6, we will introduce how we
collect and apply new counting datasets. Prior to the main method sections, we will first give a brief overview
of CLIP models in Section 3.1 and define the counting problem and how to evaluate CLIP’s counting ability
in the following Section 3.2.

3.1 Overview of CLIP

Contrastive Language-Image Pre-Training (CLIP) (Radford et al., 2021) is a pioneering model developed by
OpenAI that effectively integrates visual and textual data processing. The fundamental concept of CLIP
involves the simultaneous training of two distinct encoders: an image encoder and a text encoder. These
encoders are designed to produce embeddings that are closely aligned for corresponding image-text pairs and
distinct for non-matching pairs.

The primary objective of CLIP is to minimize a contrastive loss that encompasses both image-to-text and
text-to-image directions. Specifically, for a given dataset with N samples, where µi ∈ Rd denotes the
normalized image embedding and υi denotes the normalized text embedding for the ithsample, the CLIP loss
function is defined as:

LCLIP = − 1
2N

N∑
i=1

log
(

exp(µi · υi)∑N
k=1 exp(µk · υi)

)
− 1

2N

N∑
i=1

log
(

exp(µi · υi)∑N
k=1 exp(µi · υk)

)
, (1)

where we use · to denote the dot product between two vectors.

CLIP models are pre-trained on a large-scale dataset comprising 400 million image-text pairs sourced from
the Internet. This extensive dataset enables CLIP to generalize well across different types of images and text
found in real-world scenarios.

3.2 Evaluation of CLIP’s counting accuracy
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Figure 1: An illustration of object counting
as a classification task with CLIP.

We start by defining the necessary notation. Let υobj ∈ Rd be
the CLIP text embedding vector for a caption like “an image
of dogs”, which identifies a specific object without indicating
quantity, where d is the embedding dimension of a CLIP model.
υobj

i ∈ Rd represents the text embedding of a caption that
includes a quantifier, where i is the quantity. For example,
the embedding of the text “an image of three dogs“ could be
represented by υdog

3 .

To assess CLIP’s counting performance, we set up an image
classification task where the goal is to find a correct caption
that describes the object count correctly in a given image, as
illustrated in Figure 1.

Following (Paiss et al., 2023), we consider counts from two
to ten as a nine-class classification task. Specifically, given an
image with n specific objects and nine candidate captions (e.g.,
“an image of i objects” for i between two and ten), we first
encode the image with CLIP’s image encoder to µobj and each
caption with CLIP text encoder to υobj

i . The cosine similarity
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between the µobj and each caption’s text embedding υobj
i is computed and used to select the caption yielding

the highest similarity score.

3.3 Representation of counting knowledge as vectors

We define the representation of counting knowledge for each number as a vector ∆i ∈ Rd, aligned with the
dimensionality of CLIP’s embedding space. Therefore, for the nine-class classification task that we consider,
there is a set of 9 vectors representing different counts, each being denoted as ∆i ∈ Rd for i ∈ {2, 3, ..., 10}.

We then process these vectors, obtaining count vectors that are orthogonal to υobj, to eliminate information
associated with object representation yet not contributing to object count. Accordingly, we introduce ∆̃i to
denote the part of ∆i that is orthogonal to υobj, as demonstrated in the top figure in Figure 2.
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Figure 2: Representing count-
ing knowledge as vectors.

Then, we derive a counting-augmented object representation υ̃obj
i from original

representation υobj
i and the orthogonalized counting representation ∆̃i, such

that
υ̃obj

i = υobj
i + ∆̃i, (2)

where ∆̃i := ∆i − ∆i·υobj

υobj·υobj υobj.

Note that our method only manipulates CLIP’s text embedding and keeps
its image embedding unchanged. The cosine similarity score between the
original image embedding µobj and each manipulated text embedding υ̃obj

i

is calculated to determine the object count in the caption with the highest
similarity score.

The choice of forcing ∆i to be orthogonal to υobj instead of to υobj
i is based on

empirical results, elaborated in the ablation study Section 5.2. We hypothesize
that υobj

i already contains some level of counting information. Thus, if we let
∆i to be orthogonal to υobj

i , there might be some loss of counting information.
Similarly, the choice of υobj

i instead of υobj in Equation 2 is also based on empirical studies. We also
hypothesize that the existed counting information in υobj

i will reinforce the counting signal in υ̃obj
i .

3.4 Learning counting knowledge vectors via counting loss

In this section, we introduce a learning-based method, also demonstrated in Figure 3, to obtain counting
representation vectors ∆̃i, by minimizing a counting-specific loss defined in the CountBench paper (Paiss
et al., 2023). Specifically, given a pre-trained CLIP model, we freeze all its pre-trained weights and optimize
only ∆i for i ∈ {2, 3, ..., 10}, which has only 9d parameters.

To prepare for training, for each ground truth image-caption pair within the training dataset, we create eight
counterfactual caption variants by manipulating only the object count in the original caption. For instance, if
the correct caption is “two dogs,” counterfactual variants include “three dogs,” “four dogs,” ..., “ten dogs.”
Our objective is to enhance similarity scores between the text-image pairs with correct counts compared to
the counterfactual pairs, thereby improving counting accuracy. The counting loss Lcount is defined by Paiss
et al. (2023) as follows:

Lcount = − 1
N

N∑
k=1

10∑
j=2,j ̸=t

log
(

exp(µk · υ̃t
k)

exp(µk · υ̃t
k) + exp(µk · υ̃j

k)

)
(3)

where µk is the normalized image embedding of the kth sample in one batch, υ̃t
k is the normalized text

embedding of a caption containing ground truth count t of sample k, and υk
j represents the embeddings for a

counting-specific counterfactual text that contains the wrong count j.

In the original paper (Paiss et al., 2023), where the authors continue training the CLIP model on a large
amount of counting data of 158K images, they also include CLIP’s regular pre-training contrastive loss in
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(a) Our method fine-tunes only nine counting vectors.
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Figure 3: Illustration of our learning-based approach. As in Figure 3a, we follow Paiss et al. (2023)
to generate counterfactual captions by swapping only the number word in each ground-truth caption, and
fine-tune only nine counting vectors ∆i as defined in Section 3.3 to minimize a counting loss Lcount that
forces image embeddings to be far from counterfactual caption embedding yet close to ground-truth caption
embeddings. We compare our special fine-tuning methods to two other fine-tuning methods shown in Figure 3b
and Figure 3c, which involve training a larger number of model parameters.

the objective function L, such that L = λLcount + LCLIP. This is an explicit design to prevent CLIP from
forgetting its other non-counting related pre-trained knowledge. We will also investigate the necessity of
LCLIP in our setting where only a small amount of training data is available, in terms of its effectiveness in
improving counting accuracy and preserving the CLIP model’s pre-trained knowledge.

Recent work (Mestha et al., 2024) modifies Lcount to be an N-way contrastive loss (Sohn, 2016) and shows
that it improves model performance after training more than using Lcount defined in Equation 3. We will
detail the mathematical formula of the contrastive counting loss in our ablation study Section 5.1, and
compare results after training models with the contrastive counting loss.

3.5 Zero-shot methods to transfer counting knowledge from prior knowledge

Alongside fine-tuning, we explore zero-shot methods to improve the CLIP model with counting capabilities
without direct training on counting tasks. Zero-shot methods are valuable in addressing the scarcity of labeled
image-text pairs for counting tasks, enhancing the model’s practical applicability in real-world scenarios. We
propose several techniques to extract counting knowledge representation vector υi. These methods can also
be used as initialization when training counting vectors, which can effectively speed up the optimization
process discussed in the earlier section.

Use text embedding of number words. We encode each number i in its English word with CLIP text
encoder and denote it as ∆num

i . For example, the text embedding of word “two” is denoted as ∆num
2 . Therefore,

following Equation 2, the counting-augmented object representation is calculated as υ̃obj
i = υobj

i + ∆̃num
i ,

where ∆̃num
i is ∆num

2 that’s orthogonalized w.r.t υobj.
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Figure 4: Extracting count-
ing vector from a reference
object.

Extract counting knowledge from an easy-to-count object. This ap-
proach is based on the observation that CLIP is more proficient at counting
certain types of objects, such as dogs and cats, as elaborated in Section 4.4.
Our key idea is that if CLIP effectively counts certain object types, it already
possesses some counting knowledge, at least for those objects. When we have
the prior knowledge of which object CLIP can count effectively, we take it as
a counting reference and extract ∆i from this object.

Specifically, as shown in Figure 4, we define the counting representation extracted
from any reference object as ∆ref

i , such that

∆ref
i = (υref

i − υref) − (υref
i − υref) · υref

υref · υref υref. (4)

The intuition behind this definition is that the counting information is encap-
sulated in the direction moving from the non-quantitative representation (υref)
to the quantitative representation (υref

i ). Similarly, we obtain ∆ref
i by making

υref
i − υref orthogonal to υref to eliminate information associated with the non-

quantitative representation. We further orthogonalize it to the non-quantitative
representation of the target object before applying it. We denote the counting

representation after two steps of orthogonalization as ∆̃ref
i , such that

∆̃ref
i := ∆ref

i − ∆ref
i · υobj

υobj · υobj υobj. (5)

Therefore, following Equation 2, the counting-augmented object representation is calculated as υ̃obj
i =

υobj
i + ∆̃ref

i .

Extract knowledge from multiple objects. Instead of relying on specific objects known to be easier for
CLIP to count, this method aggregates counting vectors from a diverse set of objects, which aims to create a
robust counting mechanism. We prompt ChatGPT (OpenAI, 2024), specifically gpt-4-turbo-2024-04-09,
to generate a list of 100 common daily objects and animals in their plural form. For each object in the list, we
calculate the counting-specific vector ∆̃ref

i , same as described in the above paragraph. We then average these
vectors across all objects in the list to create a generalized counting vector ∆̃multi

i = 1
100
∑100

j=1 ∆̃refj

i . This
averaged vector ∆̃multi

i , is used as the counting representation to calculate υ̃obj
i = υobj

i + ∆̃multi
i , hypothesizing

that it encapsulates a universal counting pattern applicable across different object types.

3.6 Development of new object counting benchmarks

To rigorously evaluate the counting capabilities of the CLIP model and the effectiveness of our methods,
we have developed two datasets in addition to using existing benchmark CountBench (Paiss et al., 2023).
CountBench is an object counting dataset, collected from the LAION-400M dataset (Schuhmann et al., 2021).
It comprises 540 images in total, with each numerical count represented by 60 respective images of different
types of objects. Each image is accompanied by a caption describing the count of a specific object.

A new diverse-source counting dataset. The first new benchmark DiverseCount consists of images
automatically sourced from multiple sources, including the COCO Dataset (Lin et al., 2014), Conceptual
12M (Changpinyo et al., 2021), YFCC100M (Thomee et al., 2016), and SBU Captions Dataset (Ordonez
et al., 2011). In addition, due to the fact that images with large counts (i.e., nine and ten) are scarce, to
compose 150 images for each count, we also manually collect some images from the Internet. Each text-image
pair is manually reviewed, and captions are revised to eliminate grammatical errors and irrelevant information.
Images are also manually checked to avoid duplication. This process yielded a more comprehensive set of
images with clear, concise captions, containing 1350 images in total.

An object-specific counting dataset. The second new benchmark ObjectCount focuses on
object-specific counting to delve deeper into how object types influence counting performance.
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It includes 360 images in total, with 10 images for each of nine different objects ∈
{“dog”, “cats”, “lion”, “chair”, “goat”, “cow”, “cherry”, “rose”, “boat”}, at each count level from two to five,
all manually collected from the Internet. Counts are capped at five due to the scarcity of images with higher
object counts. This dataset is used to evaluate how counting ability varies across different object types and
to identify objects that are easier to count, which can serve as references in zero-shot methods.

4 Experiments and Results

4.1 Experimental setup

Models. We evaluate our method on three CLIP variants: clip-vit-base-patch32,
clip-vit-base-patch16, and clip-vit-large-patch14. These models have progressively smaller
patch sizes, allowing each model to capture finer image details. Furthermore, clip-vit-large-patch14 has
a larger model size compared to the first two models. We test our zero-shot methods on the Stable Diffusion
model, stable-diffusion-v1-4, sourced from HuggingFace.

Learning-based methods implementation details. We compared our novel approach, which involves
optimizing counting vectors, with two conventional fine-tuning methods: 1) full fine-tuning of the pre-trained
CLIP text encoder and 2) fine-tuning only pre-trained CLIP’s last linear text projection layer, 3) prefix-tuning
with prefix length 5 (Li & Liang, 2021). Additionally, we test whether including the standard CLIP contrastive
loss (LCLIP) enhances performance on small-scale datasets. For training the counting vectors, we set a higher
learning rate of 10−3. We use lower learning rates of 10−4 for fine-tuning the text projection layer and 10−5

for the entire text model to minimize overfitting.

We divide our new dataset, DiverseCount, into training, validation, and test sets in a 6:2:2 ratio. We run
three experiments with different random seeds and report the average test set scores to ensure robustness.
We track performance across epochs by saving checkpoints and selecting the one with the lowest validation
loss for final evaluations. We first evaluate each model on the DiverseCount test set, followed by CountBench
to measure generalization across data distributions.

To evaluate the impact of fine-tuning on unrelated tasks, we test the models onCIFAR10 (Krizhevsky et al.,
2009), CIFAR100 (Krizhevsky et al., 2009), Caltech101 (Fei-Fei et al., 2004), EuroSAT (Helber et al., 2018;
2019), and Food101 (Bossard et al., 2014). This assessment helps us evaluate the role of LCLIP in preserving
CLIP’s pre-trained capabilities.

Zero-shot methods implementation details. For zero-shot methods, we implemented different choices
of counting vectors ∆i introduced in Section 3.5, including: 1) text embedding of number words ∆num

i ; 2)
counting vectors ∆̃multi

i extracted from common objects; and 3) counting vectors ∆̃ref
i extracted from an

easy-to-count object. In the third set of experiments, we select ’cats’ and ’dogs’ as reference objects based on
their strong performance in Table 4.

We evaluate our method on our custom dataset ObjectCount, as introduced in Section 3.6, as well as on the
image counting benchmark, CountBench (Paiss et al., 2023). The counting task on ObjectCount has four
classes (counts from two to five), while CountBench includes nine classes (counts from two to ten).

4.2 Effectiveness of learned counting knowledge vectors

We assess the effectiveness of our methods in improving CLIP’s counting accuracy using the DiverseCount
test set and CountBench. The results in Table 2a indicate that training counting vectors and fine-tuning the
last linear layer are more effective than fine-tuning the entire text model, even with far fewer parameters.
This supports our hypothesis that counting knowledge may be encapsulated in a specific direction applicable
across different objects. Training counting vectors, involving only 9d parameters, is computationally efficient
and maintains strong performance.

8
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Table 2: Accuracy (%) of 9-class classification on DiverseCount test splits and on CountBench,
comparing different fine-tuning methods. All models are trained on the DiverseCount training split.
We report the average accuracy from three runs with different train/val/test splits. Columns under L = Lcount
represent methods that optimize only the counting loss, while columns under L = Lcount + LCLIP represent
methods that optimize both the counting loss and CLIP’s standard contrastive loss. “CntVecs,” “Proj,”
“Text Model,” and “Prefix Tuning” each indicate which parameter is exclusively trained: “counting vectors,”
“CLIP’s text projection layer,” “CLIP’s text model,” and “prefix embedding vectors,” respectively. We
boldface the highest score in each row.

(a) Accuracy of 9-class classification on DiverseCount test splits, comparing different fine-tuning methods.

Model Original

Learning-based methods
L = Lcount L = Lcount + LCLIP

CntVecs (ours) Proj Text Model Prefix Tuning CntVecs (ours) Proj Text Model Prefix Tuning
CLIP-base-32 28.17 37.78 38.16 33.92 14.55 38.53 37.66 34.17 15.67
CLIP-base-16 28.66 38.28 38.53 35.41 13.81 38.66 38.03 36.04 17.91
CLIP-large-14 33.62 41.34 39.6 33.49 13.06 40.84 39.35 33.99 17.54

(b) Accuracy of 9-class classification on CountBench, comparing different fine-tuning methods.

Model Original

Learning-based methods
L = Lcount L = Lcount + LCLIP

CntVecs (ours) Proj Text Model Prefix Tuning CntVecs (ours) Proj Text Model Prefix Tunng
CLIP-base-32 30.69 33.12 27.47 32.83 10.21 33.4 27.75 33.62 15.32
CLIP-base-16 28.73 30.66 27.39 28.51 15.32 30.89 27.25 29.47 18.51
CLIP-large-14 31.97 39.2 31.4 32.33 10.45 39.41 31.83 32.47 13.65

When evaluated on CountBench (as shown in Table 2b), all methods exhibit reduced effectiveness, likely
due to a distribution gap between DiverseCount and CountBench. Training counting vectors continues to
improve CLIP’s counting accuracy on CountBench, demonstrating better generalization than other methods.

We also observe that prefix tuning, which fine-tunes a similar number of parameters, does not improve
performance and negatively impacts counting accuracy.

Moreover, the inclusion of LCLIP in the training objective does not significantly influence the outcomes across
all training setups, as seen in the three rightmost columns in Table 2.

4.3 Impact on CLIP’s performance in non-counting Tasks

Fine-tuning via directly updating CLIP’s pre-trained weight has a significant impact on CLIP’s performance
in non-counting benchmarks, as detailed in Table 3. Both fine-tuning the entire text model and the last linear
layer results in noticeable performance drops across all benchmarks, with fine-tuning the projection layer
having a more pronounced effect.

Incorporating LCLIP provides only marginal effectiveness in preventing the loss of pre-trained knowledge.
This contrasts with the findings in the CountBench paper, where incorporating LCLIP was beneficial when
fine-tuning CLIP with a large dataset (i.e., 158K images), providing ample sources for the model to learn
new things. In our experiments, where only a smaller dataset was available, LCLIP did not demonstrate the
same effectiveness, suggesting that its utility may be limited under conditions of restricted data availability.

However, training new counting vectors does not alter CLIP’s model parameters. Thus, we can apply these
vectors only in tasks specific to counting, while relying solely on the pre-trained CLIP model for all other
non-counting tasks.
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Table 3: Performance on common benchmarks. We compare the performance of fine-tuned models
against pre-trained models on common non-counting benchmarks. Fine-tuning either linear layer or the whole
model will lead to siginificant performance drop.

Model Benchmark Original

Learning-based methods
L = Lcount L = Lcount + LCLIP

Proj Text Model Proj Text Model

CLIP-base-32

CIFAR10 88.95 83.43 89.01 82.72 88.95
CIFAR100 48.78 35.68 47.75 37.9 47.62
Caltech101 80.18 71.50 80.33 71.15 80.3
EuroSAT 45.11 36.49 43.78 37.94 44.28
Food101 80.2 78.64 78.61 78.59 78.69

CLIP-base-16

CIFAR10 88.35 79.92 88.31 81.59 88.38
CIFAR100 58.63 51.98 58.95 53.38 59.36
Caltech101 76.78 70.70 75.13 71.18 75.67
EuroSAT 49.83 39.20 46.84 43.77 47.47
Food101 85.57 82.97 85.26 85.69 83.49

CLIP-large-14

CIFAR10 95.01 93.65 94.91 93.71 95.04
CIFAR100 64.66 62.49 64.9 62.47 64.99
Caltech101 81.02 75.50 80.20 75.71 80.56
EuroSAT 55.37 51.59 54.00 51.46 53.9
Food101 89.79 88.46 89.35 88.61 89.43

Table 4: The counting accuracy of CLIP varies across diverse objects. Pre-trained CLIP models
counting accuracy varies by object type. Still, all models consistently count dogs and cats more accurate
than other objects.

average dogs cats lions chairs goats cows cherries roses boats
CLIP-base-32 47.93 58.86 66.14 47.73 35.23 42.73 46.36 45.45 32.27 47.27
CLIP-base-16 50.33 74.77 74.77 54.32 47.05 32.73 55.00 35.00 34.09 45.23
CLIP-large-14 60.86 75.23 79.09 65.45 52.95 44.77 65.00 53.86 56.82 54.55

4.4 CLIP’s counting ability on different objects

Each column in Table 4 represents the counting accuracy for a specific object in ObjectCount, with object
names as column headers. The average accuracy across all objects is also displayed under the “average”
column. We observe a positive correlation between model size and average counting accuracy, with accuracies
ranging from 47.93% to 60.86%. However, there is significant variation in the models’ counting abilities for
different object types, suggesting that CLIP’s counting capability is dependent on the object.

Notably, all models consistently perform best when counting “dogs” and “cats”, while their performance
with other objects lacks consistency. We hypothesize that the superior performance on “dogs“ and “cats“
may result from their higher frequency in the pre-training dataset. In fact, when collecting our dataset
ObjectCount from the Internet, we do observe that images of dogs and cats are more accessible in larger
volumes than images of other objects.

4.5 Effectiveness of our zero-shot method

We evaluate our zero-shot methods on our custom dataset ObjectCount and CountBench, and report the
results in Table 5. Across all three CLIP models, there are noticeable improvements in counting accuracy
when using zero-shot methods compared to the default (baseline) settings. However, the effectiveness of each
strategy varies by task and model size. For example, most methods are more effective on the CLIP-large-14
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Table 5: CLIP’s counting accuracy for image classification task on our custom dataset ObjectCount
and CountBench (%), comparing results of zero-shot methods. We bold the higest score in each row.

Model DatasetMethod original υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

CLIP-base-32
ObjectCount (4-class) 47.93 49.65 49.65 51.84 49.8
CountBench (9-class) 30.69 31.91 31.7 28.3 29.36

CLIP-base-16
ObjectCount (4-class) 50.33 53.16 52.55 55.45 54.77
CountBench (9-class) 28.73 27.02 31.06 29.15 28.51

CLIP-large-14
ObjectCount (4-class) 60.86 65.58 64.77 64.12 64.5
CountBench (9-class) 31.97 39.45 36.25 39.23 38.17

model, which has larger model size and higher resolution, with improvement close to or higher than 5%, The
improvement is more significant on ObjectCount than on CountBench, likely because CountBench includes
nine classes, making it more challenging.

4.6 Effectiveness of our method in improving text-to-image models’ counting fidelity

Since our method directly enhances the counting capability of the CLIP model in a zero-shot manner, we
anticipate that using our approach will also aid models that utilize CLIP embeddings for image generation,
such as the Stable Diffusion model (Rombach et al., 2021), in producing images with the correct number
of objects. Therefore, we experiment with applying our method to Stable Diffusion. We select 10 image
descriptions from CountBench (Paiss et al., 2023), as shown in Table 6. Each description features a commonly
counted object and can serve as an appropriate image generation prompt for Stable Diffusion. We modify
the counting number in each description to range from “two” to “ten,” forming 90 prompts in total, each
describing a unique combination of counting number and object. These prompts are provided to the Stable
Diffusion model1, and we generate 20 images for each prompt based on both our method and the original
CLIP model, resulting in a total of 3,600 images. We use the YOLOv9 model (Wang & Liao, 2024) for object
detection to compare the object counts in images generated by our method and the original CLIP model.
This allows us to determine how many instances of the specified object are present, using the detection results
as ground truth.

Table 6: List of prompts used for image generation, with the counting numbers and objects
highlighted in blue and red, respectively. For image generation, the counting numbers in each prompt
are replaced with “two” to “ten”.

No. Prompt
1 An old building with ruined walls and four antique pink armchairs
2 Vintage silver plate tablespoons, serving spoon set of two 1847 Rogers Ambassador pattern
3 Forks with vegetables—four forks with different types of...
4 Set of four stemless red wine glasses
5 Row of five British Shorthair cats sitting on a wooden tray, isolated on a white background
6 Eight bottles of aguardiente on a counter
7 Set of four multicolored ‘Penzance’ small bowls
8 Photo of ten giraffe portraits, isolated on a white background
9 Meet the MINI family, five cars in different styles, lined up in a row
10 Photo of seven red plastic apples on a white background

The experimental results are presented in Figure 5, which displays the counting accuracies of images generated
using the original CLIP model and our method, respectively, in the form of confusion matrices. We aggregate
the image generation results for the ten types of objects. In the matrices, rows represent the specified counts

1https://huggingface.co/CompVis/stable-diffusion-v1-4
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in prompts, and columns represent the detected counts in generated images. The red boxes highlight the cells
where the detected number of objects matches the counting number specified in the prompt, indicating the
number of images correctly generated for each counting number. For prompts with counts from 2 to 5, our
method significantly improves Stable Diffusion’s accuracy in generating images with the correct object counts.
However, for counting numbers from 6 to 10, the effectiveness of our method diminishes, likely because the
CLIP model’s pretrained dataset lacks text labels corresponding to these higher counting numbers. Examples
of images generated by Stable Diffusion are shown in Table 7 and Appendix A. Note that our method
can be used in conjunction with existing methods for improving the fidelity of text-to-image models, e.g.,
reinforcement learning-based algorithms (Fan et al., 2023; Fan & Lee, 2023; Black et al., 2023).

(a) Stable Diffusion with baseline CLIP (b) Stable Diffusion with our method

Figure 5: Confusion matrices comparing object counting accuracy in images generated by Stable
Diffusion using (a) baseline CLIP and (b) our method. In each matrix, the rows represent the counts
specified in the prompts for image generation, and the columns represent the counts detected in the generated
images using the corresponding prompts. The red boxes highlight the cells where the detected number of
objects matches the count specified in the prompt, indicating the ratio of generated images with correct
counts for each row. We observe that our method is more effective in helping the Stable Diffusion model
generate images with correct counts between 2 and 5, as shown by higher numbers in the red boxes, but less
effective for counts from 6 to 10.

5 Ablation Studies

5.1 Effectiveness of different contrastive loss designs

In our work, we adapt the count loss proposed by Paiss et al. (2023), as shown in Equation 3. We compare
it against a multi-class N-way loss, denoted by L̃count, used in Mestha et al. (2024), which is defined as:

L̃count = − 1
N

N∑
k=1

log
(

exp(µk · υ̃t
k)

exp(µk · υ̃t
k) +

∑10
j=2,j ̸=t exp(µk · υ̃j

k)

)
(6)

Table 8 shows that on the DiverseCount test split, fine-tuning with the contrastive counting loss L̃count
performs slightly worse than Lcount.. However, applying L̃count further improves the accuracy of most
fine-tuned models on the CountBench dataset, indicating that L̃count might have a more robust and effective
loss design when the models need to generalize to setting with larger distribution shift.
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Table 7: Selected results from Stable Diffusion (Rombach et al., 2021). Images in the “Original”
column are generated based on the input prompt in the same row, using different seeds. Images in the
“Embedding edited” column are generated after applying our zero-shot method (using the same seeds), with
the selection of “dog” as the reference. After applying our method, we observe that Stable Diffusion is more
likely to generate images with the correct number of objects.

Input Prompt Original Embedding edited

“three lions”

“An old building with ruined walls and
four antique pink armchairs”

“vintage silver plate tablespoons,
serving spoon set of two”

“three dolphins jumping out of water”

“A picture of three cherries”

Table 8: Accuracy (%) of 9-class classification on DiverseCount test splits and CountBench of
different fine-tuning methods, with contrastive count loss L̃count. For each fine-tuning method, we
bold scores if its higher when applying contrastive loss L̃count vs. Lcount. We display changes compared to
applying Lcount inside the parenthesizes right after each score.

Model
DiverseCount CountBench

CntVecs (ours) Proj Text Model CntVecs (ours) Proj Text Model
CLIP-base-32 37.28 (-0.50) 37.78 (-0.38) 33.78 (-0.14) 33.55 (+0.43) 28.25 (+0.78) 34.62 (+1.79)
CLIP-base-16 38.03 (-0.25) 38.03 (-0.5) 35.53 (+0.12) 32.66 (+2.00) 28.66 (+1.27) 29.4 (+1.89)
CLIP-large-14 39.48 (-1.86) 39.59 (-0.01) 34.37 (+0.88) 37.91 (-1.29) 32.69 (+1.29) 33.48 (+1.15)

5.2 Ablation studies of each component in the counting representation

5.2.1 Learning-based settings

To evaluate the impact of different design choices in learning-based settings, we analyze modifications in
representing and applying ∆̃i. In our main method, ∆̃i := ∆i − ∆i·υobj

υobj·υobj υobj, which involves orthogonalization
with respect to υobj. We study the effect of orthogonalization in the NoObjOrth experiment. We also study
the impact of the projection direction used during orthogonalization, by comparing the main results to the
design such that ∆i is forced to be orthogonal to υobj

i instead of υobj. We name this group of experiments,
where ∆̃i := ∆i − ∆i·υobj

υobj·υobj , as in ChangeProjDir. In addition, when applying ∆̃i, it is added to υobj
i , as shown

in Equation 2. We study the effect of adding ∆̃i onto υobj such that υ̃obj
i = υobj + ∆̃i, and named this group

of experiments as ChangeAddDir.

Ablation study results are presented in Table 9, under columns corresponding to each ablation experiment.
We find that in learning-based settings, there is no significant difference between each modification and the
main approach. This suggests that when the same modifications are applied during training and inference,

13



Published in Transactions on Machine Learning Research (01/2025)

the orthogonalization method and direction might not significantly affect the learning of counting vectors.
However, these factors have much more significant effects in zero-shot settings, as we will demonstrate in the
next section.

Table 9: Accuracy (%) of 9-class classification on DiverseCount test splits and CountBench of
fine-tuning counting vectors, comparing different modifications with our method in the main
paper. For each modification, we bold scores if its higher than score of the main method.

Model
DiverseCount CountBench

Main method NoObjOrth ChangeProjDir ChangeAddDir Main method NoObjOrth ChangeProjDir ChangeAddDir

CLIP-base-32 37.78 37.16 37.66 36.28 33.12 33.62 33.26 32.69
CLIP-base-16 38.28 38.65 38.78 38.03 30.66 31.7 31.48 32.22
CLIP-large-14 41.34 42.59 41.09 41.84 39.2 39.41 39.34 40.27

5.2.2 Zero-shot settings

In addition to ablation study groups introduced in the previous section, including NoObjOrth, ChangeProjDir,
ChangeAddDir, for zero-shot settings, we add another ablation study group named NoRefOrth. This ablation
group studies the effect of orthogonalization w.r.t. reference object’s text embeddings, by excluding projection
on ref as defined in Equation 5, so that the orthogonalization only applies w.r.t. to target object’s text
embeddings υobj and that ∆̃ref

i = ∆ref
i − ∆ref

i ·υobj

υobj·υobj υobj.

Figure 6 and Table 10 demonstrate that the main method outperforms alternative modifications, particularly
on the CountBench dataset.

5.3 Applications to other models

To evaluate the generalizability of our methods to larger, more recent models, we apply our counting-specific
training techniques to the SigLIP (Zhai et al., 2023) and BLIP (Li et al., 2022) models. SigLIP is an
alternative to CLIP, pre-trained using a simple pairwise sigmoid loss instead of CLIP’s original loss function.
The pairwise sigmoid loss improves SigLIP’s zero-shot classification accuracy on ImageNet. BLIP, on the
other hand, leverages bootstrapped self-supervision techniques that iteratively refine its understanding of
images and text without extensive labeled data. This approach enables BLIP to excel in scenarios where
labeled data may be sparse or unavailable, making it well-suited for open-world applications and robust
zero-shot learning.

Our zero-shot method is evaluated on both SigLIP and BLIP. As shown in Table 11, our approach effectively
enhances counting performance for these models under certain conditions. However, the improvements are
not uniformly observed across all scenarios, indicating that our method’s benefits may be context-dependent.
Future research should focus on refining and extending our approach to ensure broader applicability across
diverse models and datasets.

5.4 Implications for broader applicability

Although our findings with SigLIP are preliminary, they suggest that the observed gains are not restricted to
smaller CLIP models but may extend to larger, state-of-the-art architectures. Fine-tuning the text embedding
space to incorporate numerical representations may be an efficient strategy for enhancing counting accuracy
across diverse vision–language models. Future work could explore this approach in additional high-capacity
models and evaluate it on more diverse counting benchmarks, providing deeper insights into its adaptability
and robustness.
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(a) Ablation studies of zero-shot methods on ObjectCount dataset.
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(b) Ablation studies of zero-shot methods on CountBench dataset.

Figure 6: Ablation studies of zero-shot methods on ObjectCount dataset and CountBench dataset.

6 Conclusion and Discussion

6.1 Summary of contributions

In this study, we explored the counting capabilities of CLIP models and introduced a computationally efficient
method for training counting vectors, along with several zero-shot text embedding editing techniques to
enhance CLIP’s counting accuracy. Our learning-based approach demonstrates that targeted modifications
to text embeddings can significantly improve object counting tasks without the need for extensive model
retraining. This method not only proves to be effective but also preserves the broader capabilities of CLIP,
unlike other methods that might compromise the general performance of CLIP models.

Our zero-shot techniques are particularly valuable in contexts where data is scarce or full model retraining
is impractical due to computational constraints. These methods have also shown promise when applied to
text-to-image models like Stable Diffusion, indicating their potential applicability beyond the initial use case.

6.2 Performance variation across object categories

Our analysis reveals that CLIP’s counting accuracy varies significantly across different object categories,
with a notable advantage for common objects such as cats and dogs. This outcome can be attributed to the
pretraining data distribution of CLIP, where categories that are frequently represented in this dataset benefit
from more comprehensive visual and linguistic representations, enabling more accurate counting results. In
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Table 10: CLIP’s counting accuracy (%) on our custom ObjectCount and CountBench datasets
for image classification tasks, comparing zero-shot methods. For each zero-shot method, we bold
scores that are higher under the current modification. Changes relative to the main method are shown in
parentheses following each score.

(a) CLIP’s counting accuracy for image classification task on our custom dataset ObjectCount

Model υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

Change Add Dir

CLIP-base-32 50.81 (+1.16) 44.87 (-4.78) 50.76 (-1.08) 48.79 (-1.01)
CLIP-base-16 55.13 (+1.97) 48.79 (-3.76) 52.75 (-2.7) 51.39 (-3.38)
CLIP-large-14 63.79 (-1.79) 61.94 (-2.83) 63.13 (-0.99) 61.47 (-3.03)

Change Proj Dir

CLIP-base-32 50.18 (+0.53) 43.46 (-6.19) 52.2 (+0.36) 50.08 (+0.28)
CLIP-base-16 53.76 (+0.6) 47.68 (-4.87) 55.25 (-0.2) 55.08 (+0.31)
CLIP-large-14 65.68 (+0.1) 61.39 (-3.38) 65.05 (+0.93) 65.71 (+1.21)

No Ref Orth

CLIP-base-32 49.34 (-0.31) - 51.59 (-0.25) 50.15 (+0.35)
CLIP-base-16 53.81 (+0.65) - 54.29 (-1.16) 53.21 (-1.56)
CLIP-large-14 65.05 (-0.53) - 63.99 (-0.13) 63.13 (-1.37)

No Target Orth

CLIP-base-32 49.72 (+0.07) 49.47 (-0.18) 51.56 (-0.28) 49.93 (+0.13)
CLIP-base-16 53.61 (+0.45) 53.05 (+0.5) 55.25 (-0.2) 54.42 (-0.35)
CLIP-large-14 65.71 (+0.13) 65.56 (+0.79) 64.24 (+0.12) 64.5 (+0.0)

(b) CLIP’s counting accuracy for image classification task on our custom dataset CountBench

Model υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

Change Add Dir

CLIP-base-32 28.76 (-3.15) 23.82 (-7.88) 26.61 (-1.69) 27.04 (-3.32)
CLIP-base-16 28.29 (+1.27) 19.82 (-11.24) 26.73 (-2.42) 25.61 (-2.9)
CLIP-large-14 38.41 (-1.04) 20.6 (-15.65) 34.12 (-5.11) 36.48 (-1.69)

Change Proj Dir

CLIP-base-32 30.04 (-1.87) 22.1 (-9.6) 26.61 (-1.69) 27.47 (-1.89)
CLIP-base-16 26.28 (-0.74) 17.37 (-13.69) 27.84 (-1.31) 28.29 (-0.22)
CLIP-large-14 36.48 (-2.97) 22.96 (-13.29) 36.48 (-2.75) 34.55 (-3.62)

No Ref Orth

CLIP-base-32 30.26 (-1.65) - 27.9 (-0.4) 29.4 (+0.04)
CLIP-base-16 26.5 (-0.52) - 28.73 (-0.42) 27.62 (-0.89)
CLIP-large-14 36.05 (-3.4) - 36.91 (-2.32) 35.62 (-2.55)

No Target Orth

CLIP-base-32 30.69 (-1.22) 28.54 (-3.16) 28.33 (+0.03) 29.18 (-0.18)
CLIP-base-16 26.73 (-0.29) 27.17 (-3.89) 28.95 (-0.2) 28.73 (+0.22)
CLIP-large-14 37.12 (-2.33) 30.69 (-5.56) 36.91 (-2.32) 35.62 (-2.55)

contrast, less common or niche object categories that appear less frequently in the pretraining data exhibit
reduced accuracy in counting tasks due to less robust feature learning.

This performance variability highlights a key challenge in open-world scenarios, where models must generalize
effectively across both familiar and unfamiliar categories. While CLIP’s broad pretraining endows it with
impressive zero-shot learning capabilities, it is inherently limited by the distributional biases present in the
dataset. As a result, when faced with objects outside the well-represented domain of its training corpus,
CLIP may show diminished counting performance. This underscores the need for targeted fine-tuning or
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Table 11: Counting accuracy (%) of SigLIP and BLIP models on our custom ObjectCount and
CountBench datasets for image classification tasks, comparing zero-shot methods. The highest
score in each row is shown in bold.

Model DatasetMethod original υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

siglip-base-patch16-224
ObjectCount (4-class) 22.12 25.82 26.40 26.84 25.39
CountBench (9-class) 14.08 9.01 9.45 9.01 8.57

siglip-large-patch16-224
ObjectCount (4-class) 23.01 23.12 26.69 21.84 22.73
CountBench (9-class) 12.31 12.53 14.51 12.31 10.33

blip-image-captioning-base
ObjectCount (4-class) 24.32 24.34 27.6 29.55 26.02
CountBench (9-class) 10.94 14.00 12.74 11.82 9.63

blip-image-captioning-large
ObjectCount (4-class) 28.38 23.84 22.22 22.83 25.75
CountBench (9-class) 12.91 17.72 9.41 10.94 11.82

adaptive strategies to bolster the model’s counting capabilities for underrepresented or novel object types,
enhancing its generalization in truly open-world contexts.

6.3 Image encoder assumptions and considerations

In this work, our method exclusively focused on the text encoder while assuming that the image encoder’s
existing capabilities were sufficient for counting. This choice was based on the hypothesis that CLIP’s
limitations in counting may be attributed to the representation of numerical concepts within its text
embedding space. By enhancing this aspect, we demonstrated that counting performance could be improved
without modifying the image encoder.

However, we acknowledge that the image encoder’s limitations may also play a role in cases where counting
performance is suboptimal. Factors such as feature extraction quality, spatial representation, and object
separation within images can impact counting effectiveness. Investigating the image encoder’s capabilities
in relation to counting would be a valuable extension for future work, particularly to understand how joint
adaptations of the image and text encoders might further improve counting tasks.

6.4 Count range and generalization limitations

Our study focused on a count range of 2 to 10, selected due to practical considerations such as dataset
availability and the need for reliable image annotations. While our methods were shown to be effective within
this range, we recognize that they may not generalize seamlessly to higher object counts without further
adaptation. This is a limitation of our current approach, and future research could investigate strategies
for expanding the count range, such as using hierarchical representations or synthetic data augmentation to
improve generalization to larger counts.

6.5 Limitations and future work

Despite the promising results, our approach has inherent limitations. One key issue is the lack of a
comprehensive theoretical understanding of why training counting-specific vectors outperforms other methods.
Further exploration of the underlying mechanisms in CLIP’s counting capabilities could provide new insights
and inspire more robust enhancement strategies for vision-language models.

Additionally, our method is currently limited to scenarios involving a single counted quantity and does not
support complex visual scenes with multiple object compositions or interactions between objects. For example,
it cannot handle queries that require counting multiple object types simultaneously, such as “five dogs and
three cats.” Extending our method to handle multi-quantity counting would likely require more complex
interactions within the text embedding space, and more advanced visual reasoning abilities into the model.
Techniques such as compositional embedding strategies or multi-object relational modeling may provide
pathways to expand the applicability of our approach to more complex counting queries.
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Future work could focus on integrating spatial and relational reasoning into vision-language models to enhance
their ability to interpret contextual and spatial cues within images, improving both counting accuracy and
general visual comprehension. Extending our approach to other visual tasks, such as object detection and
complex counting scenarios, could broaden its applicability and reveal universal strategies for boosting
performance across various vision-language architectures.

Another limitation of this work is that our study focuses on low-count, object-specific scenarios and evaluates
performance using the custom DiverseCount and ObjectCount datasets. These benchmarks were chosen to
align with our problem formulation, which frames counting as a classification task. However, we recognize the
importance of widely used benchmarks such as ShanghaiTech (Zhang et al., 2016) and UCF-QNRF(Idrees
et al., 2018), which provide comprehensive evaluations of counting methods. Although these data sets are
typically used in density estimation tasks, they can also be adapted for classification-based evaluation by
aggregating object counts in defined regions or across the entire image.

Our current work does not include experiments on these benchmarks, which limits the scope of our evaluation.
Future research should explore the application of our methods to such datasets, enabling a broader under-
standing of their effectiveness across diverse counting paradigms and further validating their generalizability.
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Appendix

A Effectiveness of our method in improving text-to-image models’ counting fidelity

We provide more examples to show the effectiveness of applying our method to Stable Diffusion (Rombach
et al., 2021) to see if it can improve the counting fidelity of the text-to-image generation model. We show
results from 3 prompts, where for each prompt, 30 images are generated with 30 unique random seeds. To
compare our method with the unmodified Stable Diffusion baseline, images in the same row are generated
using the same random seed. It is worth noting that our method is not always effective. However, it does
increase the likelihood of Stable Diffusion generating images with the correct object count.
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