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Abstract

We focus on addressing the object counting limitations of vision-language models, with a
particular emphasis on Contrastive Language-Image Pre-training (CLIP) models. Centered
on our hypothesis that counting knowledge can be abstracted into linear vectors within the
text embedding space, we develop a parameter-efficient fine-tuning method and several zero-
shot methods to improve CLIP’s counting accuracy. Through comprehensive experiments,
we demonstrate that our learning-based method not only outperforms full-model fine-tuning
in counting accuracy but also retains the broad capabilities of pre-trained CLIP models. Our
zero-shot text embedding editing techniques are also effective in situations where training
data is scarce, and can be extended to improve Stable Diffusion’s ability to generate images
with precise object counts. We also contribute two specialized datasets to train and evaluate
CLIP’s counting capabilities.

1 Introduction

Recent advancement of deep learning techniques has led to significant progress in vision-language mod-
els (Alayrac et al., 2022; Chen et al., 2023; Radford et al., 2021; Singh et al., 2022; Liu et al., 2023; Li
et al., 2023a). One such breakthrough is the development of Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021), which is trained on a wide range of internet text-image pairs (Schuhmann
et al., 2021). CLIP has demonstrated strong performance across a wide range of zero-shot learning tasks and
has been used as a text-image alignment backbone in various text-to-image generative models, such as Stable
Diffusion (Rombach et al., 2021).

Despite its extensive deployment, CLIP exhibits limitations in certain areas (Radford et al., 2021; Liu et al.,
2021; Thrush et al., 2022; Paiss et al., 2022), such as counting objects in images (Paiss et al., 2023). Counting
is a fundamental skill that requires the integration of visual and linguistic understanding, and it plays a
crucial role in numerous practical applications. Existing works have attempted to address the object counting
limitations with CLIP models or CLIP-based models (Paiss et al., 2023; Jiang et al., 2023a; Mestha et al.,
2024; Binyamin et al., 2024). However, these methods often require extensive training on large datasets.

Our work seeks a deeper understanding of CLIP’s object counting capability and introduces a data-efficient
and compute-efficient approach to enhancing it. We also contribute two new datasets designed specifically for
training and evaluating the counting capabilities of CLIP models.

Our key idea is based on the hypothesis that the essential knowledge for counting can be abstracted and
represented as vectors within the text embedding space, in a format independent from text embeddings of any
non-counting information. Our method seeks to find an object-agnostic counting vector that represents the
concept of a count (e.g., “five”), which is not necessarily the text embedding of the count word. Once such a
vector representation is identified, it is added to the text embedding of the original caption (e.g., “an image
of five dogs”) to reinforce the counting signal. This idea of finding counting-specific vectors also provides a
parameter-efficient and scalable solution that avoids extensive model training, and can be universally applied
in tasks that involve counting any given type of object.

1



Under review as submission to TMLR

In our paper, we develop a learning-based method and several zero-shot methods to obtain the counting
representation. First, we employ a counting-specific contrastive loss (Paiss et al., 2023) to train these
vectors. Our experiments reveal that this counting vector training not only outperforms traditional full-model
fine-tuning methods in terms of counting accuracy but also avoids the issue of the pre-trained CLIP model
losing its broad capabilities when fine-tuning the entire model on new data.

Furthermore, in scenarios where direct training data is scarce, we demonstrate that a counting vector can be
formulated following simple rules or can be extracted from objects that CLIP counts more proficiently. To
demonstrate the benefits of improved counting accuracy of CLIP, we also test the fidelity on text-to-image
models. In particular, we test our zero-shot method on Stable Diffusion models (Rombach et al., 2021) and
provide examples to show that it helps Stable Diffusion models generate images with precise object counts as
specified in the caption.

In sum, our contributions include: (i) we introduce a parameter-efficient training method that significantly
boosts CLIP’s counting accuracy while preserving its other capabilities; (ii) we explore several zero-shot text
embedding editing techniques effective even in the absence of training data; (iii) we introduce two novel
datasets for fine-tuning and evaluating CLIP’s counting ability; (iv) and we test our zero-shot approach on
Stable Diffusion models and demonstrate its potential of guiding text-to-image generation models to create
images with accurate object counts.

2 Related Work

Vision-language models Vision-language models (VLMs) have achieved significant success in multimodal
tasks by training on massive image-text datasets and operating in a zero-shot or fine-tuning manner in
downstream tasks (Alayrac et al., 2022; Chen et al., 2023; Radford et al., 2021; Singh et al., 2022; Liu
et al., 2023; Li et al., 2023a). In this work, we will focus on the Contrastive Language-Image Pre-training
(CLIP) model trained by OpenAI (Radford et al., 2021). CLIP is trained on 400 million image-caption
pairs (Schuhmann et al., 2021), using a contrastive objective where matching text-image pairs should have
a low cosine distance, while mismatched text and images should be far apart. CLIP has demonstrated
notable success across a range of visual tasks due to its zero-shot capabilities. It also underpins text-to-image
alignment in generative models like Stable Diffusion (Rombach et al., 2021).

Limitations of vision-language models on counting While VLMs show impressive proficiency in many
tasks, they have shortcomings in specific tasks (Radford et al., 2021; Liu et al., 2021; Thrush et al., 2022;
Paiss et al., 2022), like counting objects within pictures (Paiss et al., 2023). In fact, the object counting
problem has always been one of the important issues in the visual question answering (VQA) field, and
several studies have attempted to address it (Jiang et al., 2023b; Xu et al., 2023; Zhang et al., 2018; Nguyen
et al., 2021; Acharya et al., 2019).

One of the reasons for CLIP’s limitations in object counting may stem from the nature of CLIP models’
mini-batch contrastive pre-training process. Typically, these models rarely process images of the same object
in varying counts within a single training batch. As a result, CLIP models have minimal exposure to learning
nuanced differences in object counts during pre-training. Full-batch training could provide a solution but is
often too costly and impractical.

One potential solution during pre-training is to strategically select mini-batches under certain conditions,
allowing them to mimic full-batch optimization (Sreenivasan et al., 2023). On the other hand, employing a
counting-specific training set and designing a counting-specific loss can increase exposure and provide better
guidance for models learning to count (Paiss et al., 2023; Mestha et al., 2024). For example, Paiss et al.
(2023) fine-tunes pre-trained CLIP models using a counting-specific loss on a counting-relevant dataset filtered
from the LAION-400M dataset (Schuhmann et al., 2021). It also introduces a new image-text counting
benchmark, CountBench, used to evaluate a model’s understanding of object counting, which we also utilized
in our experiments. A following work (Mestha et al., 2024) makes further improvements by redesigning the
contrastive loss. Another work, CrowdCLIP (Liang et al., 2023), focuses on the crowd counting problem,
fine-tuning CLIP in an unsupervised manner to map crowd patches to count text. Concurrently, some
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research has aimed at enabling VLM-driven image generation models to produce images with the correct
count of items (Paiss et al., 2023; Li et al., 2023b; Kang et al., 2023).

Table 1: The counting evaluation of fine-tuned CLIP-Count on varies across diverse objects.
We use a CLIP-Count model checkpoint after their Visual Prompt Tuning, and evaluate the Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) on our benchmark dataset ObjectCount. Their model
performs poor on such small-count counting tasks.

dogs cats lions chairs goats cows cherries roses boats
MSE 9.87 50.02 16.59 28.59 35.56 34.16 13.01 25.53 56.32
RMSE 10.98 60.02 22.55 54.95 38.17 38.17 19.01 28.93 106.2

Density Estimation Framework vs. Classification-Based Approaches in Object Counting Open-
world counting tasks have primarily been approached using density estimation frameworks, which formulate
counting as a continuous regression problem, such as in CLIP-Count Jiang et al. (2023b). In these methods,
the model’s goal is to predict an estimated density map over an image, and performance is typically evaluated
using mean square error (MSE). This framework is effective for large-scale object counting, especially in
high-density scenarios where the count per image is large and a continuous approximation to the count is
sufficient for many applications. This approach optimally suits high-count datasets, where density maps and
MSE are effective evaluators of performance.

In contrast, classification-based approaches like ours formulate counting as a discrete classification task. Here,
each potential object count is treated as a separate class, allowing the model to explicitly predict specific,
integer-based counts. This task formulation is particularly well-suited for low-count scenarios, where the
focus is on discrete accuracy rather than a smooth approximation. By using a classification framework, we
assess the model’s ability to distinguish exact counts and its interpretive reasoning concerning object type,
which are vital for applications where accuracy in small counts is critical.

While density estimation frameworks are powerful in high-density, large-count settings, they do not effectively
capture the model’s reasoning abilities in low-count scenarios, as shown in Table 1 Classification-based
approaches offer a more nuanced assessment, emphasizing object type recognition and specific count accuracy.
Thus, our work extends prior research by highlighting the distinct advantages of classification frameworks
for low-count precision and reasoning in vision-language models. This shift from density estimation to
classification reflects an emerging need for models to interpret discrete quantities accurately, even under
limited object counts.

Linear word analogies and embedding editing Since word2vec (Mikolov et al., 2013a) was developed,
researchers have found that the differences between word embedding vectors could capture relationships
between words (Mikolov et al., 2013b; Drozd et al., 2016; Ethayarajh et al., 2018; Allen & Hospedales, 2019).
For instance, the vector direction from "queen" to "king" corresponds to a gender shift from female to male.
Building on this foundation, researchers have applied text embedding editing techniques to the field of image
editing. Two works have explored the application of text embedding editing methods to image editing. One
work (Parmar et al., 2023) discovers editing directions in the text embedding space and applies them to
image edits, while leveraging cross-attention guidance to preserve the structure of image content. Another
work (Nguyen et al., 2023) translates example pairs that represent the “before” and “after” images of an edit
back into a text-based editing direction, and then applies it to new images for image editing in a manner
similar to the previous work (Parmar et al., 2023). In comparison, our research offers the following distinct
contributions: (i) We utilize orthogonal projections to filter out extraneous details, thus achieving a more
precise text embedding edit direction; (ii) Instead of concentrating solely on image editing, we focus on
transferring CLIP’s counting ability between different objects to enhance performance in counting-related
image classification, image retrieval, and image generation.
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3 Methods

In this section, we outline our approach to investigating and validating the hypothesis that the knowledge
related to counting in images can be represented in a direction in the text embedding space such that it
is independent of the object’s embedding. Our approach enhances CLIP’s counting abilities through both
learning-based methods leveraging new datasets and zero-shot text embedding editing techniques. We will
introduce how to represent counting concepts as vectors in Section 3.3, our parameter-efficient fine-tuning
method in Section 3.4, and our zero-shot methods in Section 3.5. In Section 3.6, we will introduce how we
collect and apply new counting datasets. Prior to the main method sections, we will first give a brief overview
of CLIP models in Section 3.1 and define the counting problem and how to evaluate CLIP’s counting ability
in the following Section 3.2.

3.1 Overview of CLIP

Contrastive Language-Image Pre-Training (CLIP) (Radford et al., 2021) is a pioneering model developed by
OpenAI that effectively integrates visual and textual data processing. The fundamental concept of CLIP
involves the simultaneous training of two distinct encoders: an image encoder and a text encoder. These
encoders are designed to produce embeddings that are closely aligned for corresponding image-text pairs and
distinct for non-matching pairs.

The primary objective of CLIP is to minimize a contrastive loss that encompasses both image-to-text and
text-to-image directions. Specifically, for a given dataset with N samples, where µi ∈ Rd denotes the
normalized image embedding and υi denotes the normalized text embedding for the ithsample, the CLIP loss
function is defined as:

LCLIP = − 1
2N

N∑
i=1

log
(

exp(µi · υi)∑N
k=1 exp(µk · υi)

)
− 1

2N

N∑
i=1

log
(

exp(µi · υi)∑N
k=1 exp(µi · υk)

)
, (1)

where we use · to denote the dot product between two vectors.

CLIP models are pre-trained on a large-scale dataset with 400 million image-text pairs sourced from the
Internet. This extensive dataset enables CLIP to generalize well across different types of images and text
found in real-world scenarios.

3.2 Evaluation of CLIP’s counting accuracy
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Figure 1: Illustration of formatting image
object counting as a classification task with
CLIP.

We start by defining some necessary notations. Let υobj ∈ Rd

be the CLIP text embedding vector for a caption like “an image
of dogs”, which identifies a specific object without indicating
quantity, where d is the embedding dimension of a CLIP model.
υobj

i ∈ Rd represents the text embedding of a caption that
includes a quantifier, where i is the quantity. For example,
the embedding of the text “an image of three dogs“ could be
represented by υdog

3 .

To assess CLIP’s counting performance, we set up an image
classification task where the goal is to find a correct caption
that describes the object count correctly in a given image, as
illustrated in Figure 1.

We consider counts from two to ten and treat it as a nine-class
classification task, the same as in the CountBench paper (Paiss
et al., 2023). Specifically, given an image with n specific objects
and nine candidate captions (e.g., “an image of i objects” for
i between two and ten), we first encode the image with CLIP’s
image encoder to µobj and each caption with CLIP text encoder
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to υobj
i . The cosine similarity between the µobj and each cap-

tion’s text embedding υobj
i is computed and used to select the

caption yielding the highest similarity score.

3.3 Representation of counting knowledge as vectors
𝜐!
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Figure 2: Represent counting
knowledge as vectors.

We define the representation of counting knowledge for each number as a
vector ∆i ∈ Rd, aligned with the dimensionality of CLIP’s embedding space.
Therefore, for the nine-class classification task that we consider, there is a
set of 9 vectors representing different counts, each being denoted as ∆i ∈ Rd

for i ∈ {2, 3, ..., 10}.

We then process these vectors, obtaining count vectors that are orthogonal to
υobj, to eliminate information associated with object representation yet not

contributing to object count. Accordingly, we introduce ∆̃i to denote the part of ∆i that is orthogonal to
υobj, as demonstrated in the top figure in Figure 2.

Then, we derive a counting-augmented object representation υ̃obj
i from original representation υobj

i and the
orthogonalized counting representation ∆̃i, such that

υ̃obj
i = υobj

i + ∆̃i, (2)

where ∆̃i := ∆i − ∆i·υobj

υobj·υobj υobj.

Note that our method only manipulates CLIP’s text embedding and keeps its image embedding unchanged.
The cosine similarity score between the original image embedding µobj and each manipulated text embedding
υ̃obj

i is calculated to determine the object count in the caption with the highest similarity score.

The choice of forcing ∆i to be orthogonal to υobj instead of to υobj
i is based on empirical results, which will

be elaborated in the ablation study Section 5.2. We hypothesize that υobj
i already contains some level of

counting information. Thus, if we let ∆i to be orthogonal to υobj
i , there might be some loss of counting

information. Similarl, the choice of υobj
i instead of υobj in Equation 2 is also based on empirical studies. We

also hypothesize that the existed counting information in υobj
i will reinforce the counting signal in υ̃obj

i .

3.4 Learning counting knowledge vectors via counting loss

In this section, we introduce a learning-based method, also demonstrated in Figure 3, to obtain counting
representation vectors ∆̃i, by minimizing a counting-specific loss defined in the CountBench paper (Paiss
et al., 2023). Specifically, given a pre-trained CLIP model, we freeze all its pre-trained weights and optimize
only ∆i for i ∈ {2, 3, ..., 10}, which has only 9d parameters.

To prepare for training, for each ground truth image-caption pair within the training dataset, we create eight
counterfactual caption variants by manipulating only the object count in the original caption. For instance, if
the correct caption is “two dogs,” counterfactual variants include “three dogs,” “four dogs,” ..., “ten dogs.”
Our objective is to enhance similarity scores between the text-image pairs with correct counts compared to
the counterfactual pairs, thereby improving counting accuracy. The counting loss Lcount is defined by Paiss
et al. (2023) as follows:

Lcount = − 1
N

N∑
k=1

10∑
j=2,j ̸=t

log
(

exp(µk · υ̃t
k)

exp(µk · υ̃t
k) + exp(µk · υ̃j

k)

)
(3)

where µk is the normalized image embedding of the kth sample in one batch, υ̃t
k is the normalized text

embedding of a caption containing ground truth count t of sample k, and υk
j represents the embeddings for a

counting-specific counterfactual text that contains the wrong count j.

In the original paper (Paiss et al., 2023), where the authors continue training the CLIP model on a large
amount of counting data of 158K images, they also include CLIP’s regular pre-training contrastive loss in
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(a) Our method that fine-tunes only nine counting vectors.
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projection layer.
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Figure 3: This figure illustrates our learning-based approach. As in Figure 3a, we follow Paiss et al. (2023)
to generate counterfactual captions by swapping only the number word in each ground-truth caption, and
fine-tune only nine counting vectors ∆i as defined in Section 3.3 to minimize a counting loss Lcount that
forces image embeddings to be far from counterfactual caption embedding yet close to ground-truth caption
embeddings. We compare our special fine-tuning methods to two other fine-tuning methods shown in Figure 3b
and Figure 3c, which involve training a larger number of model parameters.

the objective function L, such that L = λLcount + LCLIP. This is an explicit design to prevent CLIP from
forgetting its other non-counting related pre-trained knowledge. We will also investigate the necessity of
LCLIP in our setting where only a small amount of training data is available, in terms of its effectiveness in
improving counting accuracy and preserving the CLIP model’s pre-trained knowledge.

Recent work (Mestha et al., 2024) modifies Lcount to be an N-way contrastive loss (Sohn, 2016) and shows
that it improves model performance after training more than using Lcount defined in Equation 3. We will
detail the mathematical formula of the contrastive counting loss in our ablation study Section 5.1, and
compare results after training models with the contrastive counting loss.

3.5 Zero-shot methods to transfer counting knowledge from prior knowledge

Alongside fine-tuning, we explore zero-shot methods to improve the CLIP model with counting capabilities
without direct training on counting tasks. Zero-shot methods are particularly valuable given the scarcity of
specific image-text pairs for counting tasks, which expands the practical applicability of the model in real-
world scenarios where labeled data is limited. We propose several techniques to extract counting knowledge
representation vector υi. These methods can also be used as initialization when training counting vectors,
which can effectively speed up the optimization process discussed in the earlier section.

Use text embedding of number words. We encode each number i in its English word with CLIP text
encoder and denote it as ∆num

i . For example, the text embedding of word “two” is denoted as ∆num
2 . Therefore,

following Equation 2, the counting-augmented object representation is calculated as υ̃obj
i = υobj

i + ∆̃num
i ,

where ∆̃num
i is ∆num

2 that’s orthogonalized w.r.t υobj.
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Figure 4: Extract counting
vector from a reference ob-
ject.

Extract counting knowledge from an easy-to-count object. This ap-
proach is based on the observation that CLIP is more proficient at counting
certain types of objects, such as dogs and cats, as elaborated in Section 4.4.
Our key idea is that if CLIP effectively counts certain object types, it already
possesses some counting knowledge, at least for those objects. When we have
the prior knowledge of which object CLIP can count effectively, we take it as
a counting reference and extract ∆i from this object.

Specifically, as shown in Figure 4, we define the counting representation extracted
from any reference object as ∆ref

i , such that

∆ref
i = (υref

i − υref) − (υref
i − υref) · υref

υref · υref υref. (4)

The intuition behind this definition is that the counting information is encap-
sulated in the direction moving from the non-quantitative representation (υref)
to the quantitative representation (υref

i ). Similarly, we obtain ∆ref
i by making

υref
i − υref orthogonal to υref to eliminate information associated with the non-

quantitative representation. Then, we also process it to be orthogonal to the
non-quantitative representation of a target object before applying it. We denote the counting representation
after two steps of orthogonalization as ∆̃ref

i , such that

∆̃ref
i := ∆ref

i − ∆ref
i · υobj

υobj · υobj υobj. (5)

Therefore, following Equation 2, the counting-augmented object representation is calculated as υ̃obj
i =

υobj
i + ∆̃ref

i .

Extract knowledge from multiple objects. Instead of relying on specific objects known to be easier for
CLIP to count, this method aggregates counting vectors from a diverse set of objects, which aims to create a
robust counting mechanism. We prompt ChatGPT (OpenAI, 2024), specifically gpt-4-turbo-2024-04-09,
to generate a list of 100 common daily objects and animals in their plural form. For each object in the list, we
calculate the counting-specific vector ∆̃ref

i , same as described in the above paragraph. We then average these
vectors across all objects in the list to create a generalized counting vector ∆̃multi

i = 1
100
∑100

j=1 ∆̃refj

i . This
averaged vector ∆̃multi

i , is used as the counting representation to calculate υ̃obj
i = υobj

i + ∆̃multi
i , hypothesizing

that it encapsulates a universal counting pattern applicable across different object types.

3.6 Development of new object counting benchmarks

To rigorously evaluate the counting capabilities of the CLIP model and the effectiveness of our methods,
we have developed two datasets in addition to using existing benchmark CountBench (Paiss et al., 2023).
CountBench is an object counting dataset, collected from the LAION-400M dataset (Schuhmann et al., 2021).
It comprises 540 images in total, with each numerical count represented by 60 respective images of different
types of objects. Each image is accompanied by a caption describing the count of a specific object.

A new diverse-source counting dataset. The first new benchmark DiverseCount consists of images
automatically sourced from multiple sources, including the COCO Dataset (Lin et al., 2014), Conceptual
12M (Changpinyo et al., 2021), YFCC100M (Thomee et al., 2016), and SBU Captions Dataset (Ordonez
et al., 2011). In addition, due to the fact that images with large counts (i.e., nine and ten) are scarce, to
compose 150 images for each count, we also manually collect some images from the Internet. Each text image
pair is manually checked and the captions are revised to get rid of grammar errors and noisy information.
Images are also manually checked to avoid duplication. This process yielded a more comprehensive set of
images with clear, concise captions, containing 1350 images in total.

An object-specific counting dataset. The second new benchmark ObjectCount focuses on
object-specific counting to delve deeper into how object types influence counting performance.
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It includes 360 images in total, with 10 images for each of nine different objects ∈
{“dog”, “cats”, “lion”, “chair”, “goat”, “cow”, “cherry”, “rose”, “boat”}, at each count level from two to five,
all manually collected from the Internet. The counts do not exceed five due to the rarity of images as the
object count increases. This dataset is used to evaluate how counting ability varies across different object
types and to identify objects that are easier to count, which can serve as references in zero-shot methods.

4 Experiments and Results

4.1 Experimental Setup

Models. We evaluate our method on three versions of CLIP models (Radford et al., 2021),
clip-vit-base-patch32, clip-vit-base-patch16, and clip-vit-large-patch14, all sourced from Hug-
gingFace1. These models have progressively smaller patch sizes, implying that each model represents a
given image with increasing resolution. Furthermore, clip-vit-large-patch14 has a larger model size
compared to the first two models. We also test our zero-shot methods on the Stable Diffusion model,
stable-diffusion-v1-4, also sourced from HuggingFace.

Learning-based methods implementation details. We compared our novel approach, which involves
optimizing counting vectors, with two conventional fine-tuning methods: 1) full fine-tuning of the pre-trained
CLIP text encoder and 2) fine-tuning only pre-trained CLIP’s last linear text projection layer, 3) prefix-tuning
with prefix length 5 Li & Liang (2021). Additionally, we test whether including the standard CLIP contrastive
loss (LCLIP) in our training objectives improves performance when training on small-scale datasets. For
training the counting vectors, we set a higher learning rate of 10−3. We use lower learning rates of 10−4 for
fine-tuning the text projection layer and 10−5 for the entire text model, respectively, to minimize overfitting.
We use batch size 128 for all settings.

We divide our new dataset, DiverseCount, into training, validation, and test sets in a 6:2:2 ratio. We conduct
three groups of experiments using three different random seeds and report the average scores on the test set
across the three runs to ensure the robustness of our fine-tuning approach. We track model performance across
epochs by saving checkpoints and selecting the model with the lowest validation loss for final evaluations.
Each model is first evaluated on the test portion of our dataset, DiverseCount, and then on the CountBench
dataset to assess how well it generalizes to different data distributions.

We further assess the fine-tuned models on various non-counting tasks including CIFAR10 (Krizhevsky et al.,
2009), CIFAR100 (Krizhevsky et al., 2009), Caltech101 (Fei-Fei et al., 2004), EuroSAT (Helber et al., 2018;
2019), and Food101 (Bossard et al., 2014) to evaluate whether fine-tuning affected the models’ performance
in areas unrelated to counting. This assessment also helped us understand the role of LCLIP in preserving the
pre-trained capabilities of CLIP.

Zero-shot methods implementation details. For zero-shot methods, we implemented different choices
of counting vectors ∆i introduced in Section 3.5, including: 1) text embedding of number words ∆num

i ; 2)
counting vectors ∆̃multi

i extracted from common objects; and 3) counting vectors ∆̃ref
i extracted from an

easy-to-count object. In the third group of experiments, “cats” and “dogs” are selected as reference objects
for our method, based on their consistently high results in Table 4.

We evaluate our method on our custom dataset ObjectCount, as introduced in Section 3.6, as well as on
the image counting benchmark, CountBench (Paiss et al., 2023). The counting task on ObjectCount is a
four-class task (counting objects from two to five), while on CountBench, it is a nine-class task (counting
objects from two to ten).

4.2 Effectiveness of learned counting knowledge vectors

We assess the effectiveness of our methods in improving CLIP’s counting accuracy using the DiverseCount
test set and CountBench. The results, as shown in Table 2a, indicate that training counting vectors and

1https://huggingface.co/openai

8

https://huggingface.co/openai


Under review as submission to TMLR

Table 2: Accuracy (%) of 9-class classification on DiverseCount test splits and on CountBench,
comparing different fine-tuning methods. All models are trained on DiverseCount training split. We
report the average accuracy from 3 runs with different train/val/test splits. Columns under L = Lcount
refer to learning methods that optimize only the counting loss. Columns under L = Lcount + LCLIP refer to
learning methods that optimize the counting loss and CLIP’s regular contrastive loss. “CntVecs”, “Proj”,
“Text Model”, and “Prefix Tuning” each represent the only trained parameter: “counting vectors”, “CLIP’s
text projection layer”, “CLIP’s text model”, and “prefix embedding vectors” respectively.

We bold the highest score in each row.

(a) Accuracy of 9-class classification on DiverseCount test splits, comparing different fine-tuning methods.

Model Original

Learning-based methods
L = Lcount L = Lcount + LCLIP

CntVecs (ours) Proj Text Model Prefix Tuning CntVecs (ours) Proj Text Model Prefix Tuning
CLIP-base-32 28.17 37.78 38.16 33.92 14.55 38.53 37.66 34.17 15.67
CLIP-base-16 28.66 38.28 38.53 35.41 13.81 38.66 38.03 36.04 17.91
CLIP-large-14 33.62 41.34 39.6 33.49 13.06 40.84 39.35 33.99 17.54

(b) Accuracy of 9-class classification on CountBench, comparing different fine-tuning methods.

Model Original

Learning-based methods
L = Lcount L = Lcount + LCLIP

CntVecs (ours) Proj Text Model Prefix Tuning CntVecs (ours) Proj Text Model Prefix Tunng
CLIP-base-32 30.69 33.12 27.47 32.83 10.21 33.4 27.75 33.62 15.32
CLIP-base-16 28.73 30.66 27.39 28.51 15.32 30.89 27.25 29.47 18.51
CLIP-large-14 31.97 39.2 31.4 32.33 10.45 39.41 31.83 32.47 13.65

fine-tuning the last linear layer are more effective than fine-tuning the entire text model, despite involving
far fewer parameters. This supports our hypothesis that counting knowledge may be encapsulated in a
specific direction applicable across different objects. Notably, training counting vectors, which involves only
9d parameters compared to d2 for the text projection layer, proves more computationally efficient without
sacrificing performance.

When evaluated on CountBench, as shown in Table 2b, all methods demonstrated reduced effectiveness, likely
due to a distribution gap between DiverseCount and CountBench. However, training counting vectors still
improves CLIP’s counting accuracy on CountBench, showcasing better generalization compared to the other
methods.

We also notice that, prefix tuning, a method that fine-tunes similar amount of parameters, doesn’t bring
performance gain but is rather harmful for the counting accuracy.

Moreover, the inclusion of LCLIP in the training objective does not significantly influence the outcomes across
all training setups, as seen in the three rightmost columns in Table 2.

4.3 Impact on CLIP’s Performance in Non-Counting Tasks

Fine-tuning via directly updating CLIP’s pre-trained weight has a significant impact on CLIP’s performance
in non-counting benchmarks, as detailed in Table 3. Both fine-tuning the entire text model and the last linear
layer results in noticeable performance drops across all benchmarks, with fine-tuning the projection layer
having a more pronounced effect.

Moreover, incorporating LCLIP only prevents loss of pre-trained knowledge with marginal effectiveness.
This contrasts with the findings in the CountBench paper, where incorporating LCLIP was beneficial when
fine-tuning CLIP with a large dataset (i.e., 158K images), providing ample sources for the model to learn

9
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Table 3: Performance on common benchmarks. We compare the performance of fine-tuned models
against pre-trained models on common non-counting benchmarks. Fine-tuning either linear layer or the whole
model will lead to siginificant performance drop.

Model Benchmark Original

Learning-based methods
L = Lcount L = Lcount + LCLIP

Proj Text Model Proj Text Model

CLIP-base-32

CIFAR10 88.95 83.43 89.01 82.72 88.95
CIFAR100 48.78 35.68 47.75 37.9 47.62
Caltech101 80.18 71.50 80.33 71.15 80.3
EuroSAT 45.11 36.49 43.78 37.94 44.28
Food101 80.2 78.64 78.61 78.59 78.69

CLIP-base-16

CIFAR10 88.35 79.92 88.31 81.59 88.38
CIFAR100 58.63 51.98 58.95 53.38 59.36
Caltech101 76.78 70.70 75.13 71.18 75.67
EuroSAT 49.83 39.20 46.84 43.77 47.47
Food101 85.57 82.97 85.26 85.69 83.49

CLIP-large-14

CIFAR10 95.01 93.65 94.91 93.71 95.04
CIFAR100 64.66 62.49 64.9 62.47 64.99
Caltech101 81.02 75.50 80.20 75.71 80.56
EuroSAT 55.37 51.59 54.00 51.46 53.9
Food101 89.79 88.46 89.35 88.61 89.43

new things. In our experiments, where only a smaller dataset was available, LCLIP did not demonstrate the
same effectiveness, suggesting that its utility may be limited under conditions of restricted data availability.

However, training new counting vectors does not alter CLIP’s model parameters. Thus, we can apply these
vectors only in tasks specific to counting, while relying solely on the pre-trained CLIP model for all other
non-counting tasks.

4.4 CLIP’s counting ability on different objects

Table 4: The counting accuracy of CLIP varies across diverse objects. Pre-trained CLIP models
counting accuracy varies by object type. Still, all models consistently count dogs and cats more accurate
than other objects.

average dogs cats lions chairs goats cows cherries roses boats
CLIP-base-32 47.93 58.86 66.14 47.73 35.23 42.73 46.36 45.45 32.27 47.27
CLIP-base-16 50.33 74.77 74.77 54.32 47.05 32.73 55.00 35.00 34.09 45.23
CLIP-large-14 60.86 75.23 79.09 65.45 52.95 44.77 65.00 53.86 56.82 54.55

As shown in Table 4, each column displays the accuracy of counting a specific object in dataset ObjectCount,
with the object name used as the column header. The average accuracy across all objects is also displayed
under the “average” column. We observe a positive correlation between model size and average counting
accuracy, with accuracies ranging from 47.93% to 60.86%. However, there is significant variation in the
models’ counting abilities for different object types, suggesting that CLIP’s counting capability is dependent
on the object.

Notably, all models consistently perform best when counting “dogs” and “cats”, while their performance with
other objects lacks consistency. We hypothesize that this might be due to images with certain counts of
“dogs” and “cats” appearing more frequently in the pre-training dataset. In fact, when collecting our dataset

10
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ObjectCount from the Internet, we do observe that images of dogs and cats are more accessible in larger
volumes than images of other objects.

4.5 Effectiveness of our zero-shot method

Table 5: CLIP’s counting accuracy for image classification task on our custom dataset ObjectCount
and CountBench (%), comparing results of zero-shot methods. We bold the higest score in each row.

Model DatasetMethod original υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

CLIP-base-32
ObjectCount (4-class) 47.93 49.65 49.65 51.84 49.8
CountBench (9-class) 30.69 31.91 31.7 28.3 29.36

CLIP-base-16
ObjectCount (4-class) 50.33 53.16 52.55 55.45 54.77
CountBench (9-class) 28.73 27.02 31.06 29.15 28.51

CLIP-large-14
ObjectCount (4-class) 60.86 65.58 64.77 64.12 64.5
CountBench (9-class) 31.97 39.45 36.25 39.23 38.17

We evaluate our zero-shot methods on our custom dataset ObjectCount and CountBench, and report the
results in Table 5. Across all three CLIP models, there are noticeable improvements in counting accuracy
when using zero-shot methods compared to the default (baseline) settings. However, the effectiveness of each
strategy varies by task and model size. For example, most methods are more effective on the CLIP-large-14
model, which has larger model size and higher resolution, with improvement close to or higher than 5%, The
improvement is also more significant on ObjectCount than on CountBench, likely because CountBench has 9
nine classes and becomes more challenging.

4.6 Effectiveness of our method in improving text-to-image models’ counting fidelity

Since our method directly enhances the counting capability of the CLIP model in a zero-shot manner, we
anticipate that using our approach will also aid models that utilize CLIP embeddings for image generation,
such as the Stable Diffusion model (Rombach et al., 2021), in producing images with the correct number
of objects. Therefore, we experiment with applying our method to Stable Diffusion. We select 10 image
descriptions from CountBench (Paiss et al., 2023), as shown in Table 6. Each description features a commonly
counted object and can serve as an appropriate image generation prompt for Stable Diffusion. We modify
the counting number in each description to range from “two” to “ten,” forming 90 prompts in total, each
describing a unique combination of counting number and object. These prompts are provided to the Stable
Diffusion model2, and we generate 20 images for each prompt based on both our method and the original
CLIP model, resulting in a total of 3,600 images. To compare the object counts in images generated by our
method versus the original CLIP model, we employ the YOLOv9 model (Wang & Liao, 2024) for object
detection on each image. This allows us to determine how many instances of the specified object are present,
using the detection results as ground truth.

The experimental results are presented in Figure 5, which displays the counting accuracies of images generated
using the original CLIP model and our method, respectively, in the form of confusion matrices. We aggregate
the image generation results for the ten types of objects. In each confusion matrix, each row represents
the counting number specified in the prompts, and each column represents the counting number detected
in the generated images. The red boxes highlight the cells where the detected number of objects matches
the counting number specified in the prompt, indicating the number of images correctly generated for each
counting number. We observe that when generating prompts with counting numbers from 2 to 5, our method
significantly improves the counting accuracy of Stable Diffusion, meaning that images with the correct number
of objects can be produced with higher probability without additional training. However, for counting
numbers from 6 to 10, the effectiveness of our method diminishes, likely because the CLIP model’s pretrained
dataset lacks text labels corresponding to these higher counting numbers. We also provide some example
images generated by Stable Diffusion in Table 7 and Appendix A. Note that our method can be used in

2https://huggingface.co/CompVis/stable-diffusion-v1-4
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Table 6: List of prompts used for image generation, with the counting numbers and objects
highlighted in blue and red, respectively. For image generation, the counting numbers in each prompt
are replaced with “two” to “ten”.

No. Prompt
1 An old building with ruined walls and four antique pink armchairs
2 Vintage silver plate tablespoons, serving spoon set of two 1847 Rogers Ambassador pattern
3 Forks with vegetables—four forks with different types of...
4 Set of four stemless red wine glasses
5 Row of five British Shorthair cats sitting on a wooden tray, isolated on a white background
6 Eight bottles of aguardiente on a counter
7 Set of four multicolored ‘Penzance’ small bowls
8 Photo of ten giraffe portraits, isolated on a white background
9 Meet the MINI family, five cars in different styles, lined up in a row
10 Photo of seven red plastic apples on a white background

conjunction with existing methods for improving the fidelity of text-to-image models, e.g., reinforcement
learning-based algorithms (Fan et al., 2023; Fan & Lee, 2023; Black et al., 2023).

(a) Stable Diffusion with baseline CLIP (b) Stable Diffusion with our method

Figure 5: Confusion matrices comparing object counting accuracy in images generated by Stable
Diffusion using (a) baseline CLIP and (b) our method. In each matrix, the rows represent the counts
specified in the prompts for image generation, and the columns represent the counts detected in the generated
images using the corresponding prompts. The red boxes highlight the cells where the detected number of
objects matches the count specified in the prompt, indicating the ratio of generated images with correct
counts for each row. We observe that our method is more effective in helping the Stable Diffusion model
generate images with correct counts between 2 and 5, as shown by higher numbers in the red boxes, but less
effective for counts from 6 to 10.
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Table 7: Selected results from Stable Diffusion (Rombach et al., 2021). Images in the “Original”
column are generated based on the input prompt in the same row, using different seeds. Images in the
“Embedding edited” column are generated after applying our zero-shot method (using the same seeds), with
the selection of “dog” as the reference. After applying our method, we observe that Stable Diffusion is more
likely to generate images with the correct number of objects.

Input Prompt Original Embedding edited

“three lions”

“An old building with ruined walls and
four antique pink armchairs”

“vintage silver plate tablespoons,
serving spoon set of two”

“three dolphins jumping out of water”

“A picture of three cherries”

5 Ablation Studies

5.1 Effectiveness of different contrastive loss designs

In our work, we adapt the count loss proposed by Paiss et al. (2023), as shown in Equation 3. We compare
it against a multi-class N-way loss, denoted by L̃count, used in Mestha et al. (2024), which is defined as:

L̃count = − 1
N

N∑
k=1

log
(

exp(µk · υ̃t
k)

exp(µk · υ̃t
k) +

∑10
j=2,j ̸=t exp(µk · υ̃j

k)

)
(6)

As shown in Table 8, when testing on the test split of DiverseCount, fine-tuning with contrastive counting loss
L̃count is slightly worse than with Lcount. However, applying L̃count helps further improving most fine-tuned
models accuracy when evaluating on CountBench dataset, indicating that L̃count might have a more robust
and effective loss design when the models need to generalize to setting with larger distribution shift.

Table 8: Accuracy (%) of 9-class classification on DiverseCount test splits and CountBench of
different fine-tuning methods, with contrastive count loss L̃count. For each fine-tuning method, we
bold scores if its higher when applying contrastive loss L̃count vs. Lcount. We display changes compared to
applying Lcount inside the parenthesizes right after each score.

Model
DiverseCount CountBench

CntVecs (ours) Proj Text Model CntVecs (ours) Proj Text Model
CLIP-base-32 37.28 (-0.50) 37.78 (-0.38) 33.78 (-0.14) 33.55 (+0.43) 28.25 (+0.78) 34.62 (+1.79)
CLIP-base-16 38.03 (-0.25) 38.03 (-0.5) 35.53 (+0.12) 32.66 (+2.00) 28.66 (+1.27) 29.4 (+1.89)
CLIP-large-14 39.48 (-1.86) 39.59 (-0.01) 34.37 (+0.88) 37.91 (-1.29) 32.69 (+1.29) 33.48 (+1.15)
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5.2 Ablation studies of each component in the counting representation

5.2.1 Learning-based settings

We study the effectiveness of different modifications when representing and applying ∆̃i in learning-based
settings. In our main method, ∆̃i := ∆i − ∆i·υobj

υobj·υobj υobj, which involves orthogonalization with respect to
υobj. We study the effect of orthogonalization and name this experiment as NoObjOrth. We also study the
effect of projection direction happening in orthogonalization, by comparing the main results to the design
such that ∆i is forced to be orthogonal to υobj

i instead of υobj. We name this group of experiments, where
∆̃i := ∆i − ∆i·υobj

υobj·υobj , as in ChangeProjDir. In addition, when applying ∆̃i, it is added to υobj
i , as shown in

Equation 2. We study the effect of adding ∆̃i onto υobj such that υ̃obj
i = υobj + ∆̃i, and named this group of

experiments as ChangeAddDir.

Ablation study results on are displayed in Table 9, under columns of each ablation experiment name. We find
that in learning-based settings, there is not significant difference between each modification and the main
approach. This suggest that when applying the same modification during both training and inference, and
orthogonalization and direction of orthogonalization and addition might not be very important factors for
learning counting vectors. However, these factors have much more significant effects in zero-shot settings, as
we will demonstrate in the next section.

Table 9: Accuracy (%) of 9-class classification on DiverseCount test splits and CountBench of
fine-tuning counting vectors, comparing different modifications with our method in the main
paper. For each modification, we bold scores if its higher than score of the main method.

Model
DiverseCount CountBench

Main method NoObjOrth ChangeProjDir ChangeAddDir Main method NoObjOrth ChangeProjDir ChangeAddDir

CLIP-base-32 37.78 37.16 37.66 36.28 33.12 33.62 33.26 32.69
CLIP-base-16 38.28 38.65 38.78 38.03 30.66 31.7 31.48 32.22
CLIP-large-14 41.34 42.59 41.09 41.84 39.2 39.41 39.34 40.27

5.2.2 Zero-shot settings

In addition to ablation study groups introduced in the previous section, including NoObjOrth, ChangeProjDir,
ChangeAddDir, for zero-shot settings, we add another ablation study group named NoRefOrth. This ablation
group studies the effect of orthogonalization w.r.t. reference object’s text embeddings, by excluding projection
on ref as defined in Equation 5, so that the orthogonalization only applies w.r.t. to target object’s text
embeddings υobj and that ∆̃ref

i = ∆ref
i − ∆ref

i ·υobj

υobj·υobj υobj.

As shown in Figure 6 and Table 10, the main method is more effective than other modifications, especially on
the CountBench dataset.

5.3 Application on other models

To evaluate the generalizability of our methods to larger, more recent models, we apply our counting-specific
training techniques to SigLIP modelsZhai et al. (2023) and BLIP Li et al. (2022) models, SigLIP is an
alternative model to CLIP that’s pre-trained with loss function replaced by a simple pairwise sigmoid loss.
This results in better performance in terms of zero-shot classification accuracy on ImageNet. BLIP leverages
bootstrapped self-supervision techniques that iteratively refine its understanding of images and text without
needing extensive labeled data. This approach enables BLIP to excel in scenarios where labeled data may be
sparse or unavailable, making it well-suited for open-world applications and robust zero-shot learning.

We test our zero-shot method on SigLIP and BLIP models. Results in Table 11find that that our zero-shot
approach effectively enhances counting performance in models like SigLIP.
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(a) Ablation studies of zero-shot methods on ObjectCount dataset.
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(b) Ablation studies of zero-shot methods on CountBench dataset.

Figure 6: Ablation studies of zero-shot methods on ObjectCount dataset and CountBench dataset.

5.4 Implications for Broader Applicability

The success of our approach with SigLIP demonstrates that the observed gains are not limited to smaller CLIP
models but can be transferred to larger, state-of-the-art models. This finding indicates that fine-tuning only
the text embedding space to capture numerical representations could be an efficient strategy for enhancing
counting accuracy across a range of vision-language models, regardless of their intrinsic scale or original
pretraining data. Future work could explore this approach in other high-capacity models and evaluate its
effectiveness on broader counting benchmarks to validate its adaptability and robustness.

6 Conclusion and Discussion

6.1 Summary of Contributions

In this study, we explored the counting capabilities of CLIP models and introduced a computationally efficient
method for training counting vectors, along with several zero-shot text embedding editing techniques to
enhance CLIP’s counting accuracy. Our learning-based approach demonstrates that targeted modifications
to text embeddings can significantly improve object counting tasks without the need for extensive model
retraining. This method not only proves to be effective but also preserves the broader capabilities of CLIP,
unlike other methods that might compromise the general performance of CLIP models.
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Table 10: CLIP’s counting accuracy for image classification task on our custom dataset ObjectCount
and CountBench (%), comparing results of zero-shot methods. For each zero-shot method, we bold
scores if its higher with current modification. We display changes against the main method inside the
parenthesizes right after each score.

(a) CLIP’s counting accuracy for image classification task on our custom dataset ObjectCount

Model υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

Change Add Dir

CLIP-base-32 50.81 (+1.16) 44.87 (-4.78) 50.76 (-1.08) 48.79 (-1.01)
CLIP-base-16 55.13 (+1.97) 48.79 (-3.76) 52.75 (-2.7) 51.39 (-3.38)
CLIP-large-14 63.79 (-1.79) 61.94 (-2.83) 63.13 (-0.99) 61.47 (-3.03)

Change Proj Dir

CLIP-base-32 50.18 (+0.53) 43.46 (-6.19) 52.2 (+0.36) 50.08 (+0.28)
CLIP-base-16 53.76 (+0.6) 47.68 (-4.87) 55.25 (-0.2) 55.08 (+0.31)
CLIP-large-14 65.68 (+0.1) 61.39 (-3.38) 65.05 (+0.93) 65.71 (+1.21)

No Ref Orth

CLIP-base-32 49.34 (-0.31) - 51.59 (-0.25) 50.15 (+0.35)
CLIP-base-16 53.81 (+0.65) - 54.29 (-1.16) 53.21 (-1.56)
CLIP-large-14 65.05 (-0.53) - 63.99 (-0.13) 63.13 (-1.37)

No Target Orth

CLIP-base-32 49.72 (+0.07) 49.47 (-0.18) 51.56 (-0.28) 49.93 (+0.13)
CLIP-base-16 53.61 (+0.45) 53.05 (+0.5) 55.25 (-0.2) 54.42 (-0.35)
CLIP-large-14 65.71 (+0.13) 65.56 (+0.79) 64.24 (+0.12) 64.5 (+0.0)

(b) CLIP’s counting accuracy for image classification task on our custom dataset CountBench

Model υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

Change Add Dir

CLIP-base-32 28.76 (-3.15) 23.82 (-7.88) 26.61 (-1.69) 27.04 (-3.32)
CLIP-base-16 28.29 (+1.27) 19.82 (-11.24) 26.73 (-2.42) 25.61 (-2.9)
CLIP-large-14 38.41 (-1.04) 20.6 (-15.65) 34.12 (-5.11) 36.48 (-1.69)

Change Proj Dir

CLIP-base-32 30.04 (-1.87) 22.1 (-9.6) 26.61 (-1.69) 27.47 (-1.89)
CLIP-base-16 26.28 (-0.74) 17.37 (-13.69) 27.84 (-1.31) 28.29 (-0.22)
CLIP-large-14 36.48 (-2.97) 22.96 (-13.29) 36.48 (-2.75) 34.55 (-3.62)

No Ref Orth

CLIP-base-32 30.26 (-1.65) - 27.9 (-0.4) 29.4 (+0.04)
CLIP-base-16 26.5 (-0.52) - 28.73 (-0.42) 27.62 (-0.89)
CLIP-large-14 36.05 (-3.4) - 36.91 (-2.32) 35.62 (-2.55)

No Target Orth

CLIP-base-32 30.69 (-1.22) 28.54 (-3.16) 28.33 (+0.03) 29.18 (-0.18)
CLIP-base-16 26.73 (-0.29) 27.17 (-3.89) 28.95 (-0.2) 28.73 (+0.22)
CLIP-large-14 37.12 (-2.33) 30.69 (-5.56) 36.91 (-2.32) 35.62 (-2.55)

Our zero-shot techniques are particularly valuable in contexts where data is scarce or full model retraining
is impractical due to computational constraints. These methods have also shown promise when applied to
text-to-image models like Stable Diffusion, indicating their potential applicability beyond the initial use case.

6.2 Performance Variation Across Object Categories

Our analysis reveals that CLIP’s counting accuracy varies significantly across different object categories,
with a notable advantage for common objects such as cats and dogs. This outcome can be attributed to the
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Table 11: SigLIP and BLIP models’ counting accuracy for image classification task on our custom
dataset ObjectCount and CountBench (%), comparing results of zero-shot methods. We bold the
highest score in each row.

Model DatasetMethod original υobj
i + ∆̃multi

i υobj
i + υnum

i υobj
i + ∆̃dogs

i υobj
i + ∆̃cats

i

siglip-base-patch16-224
ObjectCount (4-class) 22.12 25.82 26.40 26.84 25.39
CountBench (9-class) 14.08 9.01 9.45 9.01 8.57

siglip-large-patch16-224
ObjectCount (4-class) 23.01 23.12 26.69 21.84 22.73
CountBench (9-class) 12.31 12.53 14.51 12.31 10.33

blip-image-captioning-base
ObjectCount (4-class) 24.32 24.34 27.6 29.55 26.02
CountBench (9-class) 10.94 14.00 12.74 11.82 9.63

blip-image-captioning-large
ObjectCount (4-class) 28.38 23.84 22.22 22.83 25.75
CountBench (9-class) 12.91 17.72 9.41 10.94 11.82

pretraining data distribution of CLIP, where categories that are frequently represented in this dataset benefit
from more comprehensive visual and linguistic representations, enabling more accurate counting results. In
contrast, less common or niche object categories that appear less frequently in the pretraining data exhibit
reduced accuracy in counting tasks due to less robust feature learning.

This performance variability highlights a key challenge in open-world scenarios, where models must generalize
effectively across both familiar and unfamiliar categories. While CLIP’s broad pretraining endows it with
impressive zero-shot learning capabilities, it is inherently limited by the distributional biases present in the
dataset. As a result, when faced with objects outside the well-represented domain of its training corpus,
CLIP may show diminished counting performance. This underscores the need for targeted fine-tuning or
adaptive strategies to bolster the model’s counting capabilities for underrepresented or novel object types,
enhancing its generalization in truly open-world contexts.

6.3 Image Encoder Assumptions and Considerations

In this work, our method exclusively focused on the text encoder while assuming that the image encoder’s
existing capabilities were sufficient for counting. This choice was based on the hypothesis that CLIP’s
limitations in counting may be attributed to the representation of numerical concepts within its text
embedding space. By enhancing this aspect, we demonstrated that counting performance could be improved
without modifying the image encoder.

However, we acknowledge that the image encoder’s limitations may also play a role in cases where counting
performance is suboptimal. Factors such as feature extraction quality, spatial representation, and object
separation within images can impact counting effectiveness. Investigating the image encoder’s capabilities
in relation to counting would be a valuable extension for future work, particularly to understand how joint
adaptations of the image and text encoders might further improve counting tasks.

6.4 Count Range and Generalization Limitations

Our study focused on a count range of 2 to 10, selected due to practical considerations such as dataset
availability and the need for reliable image annotations. While our methods were shown to be effective within
this range, we recognize that they may not generalize seamlessly to higher object counts without further
adaptation. This is a limitation of our current approach, and future research could investigate strategies
for expanding the count range, such as using hierarchical representations or synthetic data augmentation to
improve generalization to larger counts.

6.5 Limitations and Future Work

Despite the promising results, our approach has inherent limitations. One key issue is the lack of a
comprehensive theoretical understanding of why training counting-specific vectors outperforms other methods.
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Further exploration of the underlying mechanisms in CLIP’s counting capabilities could provide new insights
and inspire more robust enhancement strategies for vision-language models.

Additionally, Our method is currently limited to scenarios involving a single counted quantity and does
not support complex visual scenes with multiple object compositions or interactions between object, such
as queries that require counting multiple object types simultaneously, such as “five dogs and three cats.”
Extending our method to handle multi-quantity counting would likely require more complex interactions
within the text embedding space, and more advanced visual reasoning abilities into the model. Techniques
such as compositional embedding strategies or multi-object relational modeling may provide pathways to
expand the applicability of our approach to more complex counting queries.

Future work could focus on integrating spatial and relational reasoning into vision-language models to enhance
their ability to interpret contextual and spatial cues within images, improving both counting accuracy and
general visual comprehension. Extending our approach to other visual tasks, such as object detection and
complex counting scenarios, could broaden its applicability and reveal universal strategies for boosting
performance across various vision-language architectures.
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Appendix

A Effectiveness of our method in improving text-to-image models’ counting fidelity

We provide more examples to show the effectiveness of applying our method to Stable Diffusion (Rombach
et al., 2021) to see if it can improve the counting fidelity of the text-to-image generation model. We show
results from 3 prompts, where for each prompt, 30 images are generated with 30 unique random seeds. To
compare our method with the unmodified Stable Diffusion baseline, images in the same row are generated
using the same random seed. It is worth noting that our method is not always effective. However, it does
increase the likelihood of Stable Diffusion generating images with the correct object count.
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