
How Good is my Video LMM? Complex Video
Reasoning and Robustness Evaluation Suite for

Video-LMMs

Muhammad Uzair Khattak1 Muhammad Ferjad Naeem2 Jameel Hassan1

Muzammal Naseer1 Federico Tombari3,4 Fahad Shahbaz Khan1,5 Salman Khan1,6

1Mohamed Bin Zayed University of AI 2ETH Zurich 3Google
4TU Munich 5Linköping University 6Australian National University

Abstract

Recent advancements in Large Language Models (LLMs) have led to the develop-1

ment of Video Large Multi-modal Models (Video-LMMs) that can handle a wide2

range of video understanding tasks. These models have the potential to be deployed3

in real-world applications such as robotics, AI assistants, medical surgery, and4

autonomous vehicles. The widespread adoption of Video-LMMs in our daily lives5

underscores the importance of ensuring and evaluating their robust performance6

in mirroring human-like reasoning and interaction capabilities in complex, real-7

world contexts. However, existing benchmarks for Video-LMMs primarily focus8

on general video comprehension abilities and neglect assessing their reasoning9

capabilities over complex videos in the real-world context, and robustness of these10

models through the lens of user prompts as text queries. In this paper, we present11

the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES), a12

novel benchmark that comprehensively assesses the performance of Video-LMMs13

across 11 diverse real-world video dimensions. We evaluate 11 recent models,14

including both open-source and closed-source variants, and find that most of the15

Video-LMMs, especially open-source ones, struggle with robustness and reasoning16

when dealing with complex videos. Based on our analysis, we develop a training-17

free Dual-Step Contextual Prompting (DSCP) technique to effectively enhance18

the performance of existing Video-LMMs on CVRR-ES benchmark. Our findings19

provide valuable insights for building the next generation of human-centric AI20

systems with advanced robustness and reasoning capabilities. Our dataset and code21

are publicly available at: mbzuai-oryx.github.io/CVRR-Evaluation-Suite/.22

1 Introduction23

Recently, Large Language Models (LLMs) [30, 38, 12] have demonstrated impressive reasoning and24

planning capabilities while simultaneously handling a wide range of NLP tasks [33, 2]. Consequently,25

their integration with the vision modality, specifically for video understanding tasks, has given rise26

to Video Large Multi-modal Models (Video-LMMs) [15]. These models act as visual chatbots that27

accept both text and video as input and handle a diverse set of tasks, including video comprehension28

[21], detailed video understanding [18], and action grounding [37]. As these models directly capture29

video data, they hold substantial potential for deployment in real-world applications such as robotics,30

surveillance, medical surgery, and autonomous vehicles.31

However, as these models assume an expanding role in our everyday lives, assessing their performance32

in comprehending complex videos and demonstrating reliable reasoning and robustness capabilities33

across diverse real-world contexts becomes essential. Video-LMMs with such capabilities will be34
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Table 1: Comparison of CVRR-ES with
existing benchmarks for video question an-
swering. The CVRR-ES benchmark rep-
resents an initial effort to assess Video-
LMMs in the context of their applicability
and suitability in real-world contexts.
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Figure 1: Left: CVRR-ES comprises of 11 diverse complex video evaluation dimensions encompassing
a variety of complex, real-world contexts. Right: Overall performance of Video-LMMs on the CVRR-ES
benchmark. Results for each Video-LMM are averaged across 11 video dimensions.
more effective when integrated into our daily lives for solving perception tasks and will be a promising35

step towards building trustworthy human-centric AI-assistive systems.36

Several attempts in literature have been made to benchmark Video-LMMs. SEED-Bench [14] curated37

a MCQ-based dataset including 3 evaluation dimensions for videos. Similarly, MV-Bench [16]38

constructed the Video-LMM benchmark and assembled 20 video tasks for evaluating the spatial and39

temporal understanding of these models. While these methods aim at benchmarking Video-LMMs,40

they predominantly evaluate video and/or temporal comprehension abilities and overlook the complex41

reasoning aspects of Video-LMMs for real-world context, and their robustness towards user input text42

queries; both of which are crucial to ensure their responsible engagement with humans in various real-43

world situations in the wild. While some studies have explored similar areas such as hallucinations in44

image-based LLMs [19, 24], no such comprehensive study exists for the case of Video-LMMs.45

Motivated by the wide-scale applications of Video-LMMs and the lack of world-centric complex46

video benchmarking efforts, we present a new benchmark, Complex Video Reasoning and Robustness47

Evaluation Suite (CVRR-ES), to comprehensively assess the performance of Video-LMMs. As48

shown in Tab. 1, CVRR-ES evaluates Video-LMMs on key aspects of robustness and reasoning in49

videos, encompassing video domains that more accurately test models in real-world scenarios such as50

videos having contextual dependency and in-the-wild aspects. CVRR-ES is an open-ended video QA51

benchmark comprising 11 real-world video category dimensions (Fig. 1, left) that encompass diverse52

evaluation aspects. These dimensions span from context-dependent (e.g., social, emotional, etc.)53

categories to ones that often take place in the wild such as videos containing physically anomalous54

activities. We comprehensively evaluate a representative set of 11 recent Video-LMMs (Fig. 1,55

right) including both open-source and closed-source models on the CVRR-ES benchmark using a56

LLM-assisted automatic evaluation framework [21, 4].57

The performance of Video-LMMs on the CVRR-ES benchmark reveals that these models struggle to58

correctly comprehend complex videos indicating their weak reasoning and lack of robustness to the59

textual user queries (Fig. 2). For instance, state-of-the-art Video-LLaVA [18] achieves only 15.92%60

performance averaged across 11 video dimensions of CVRR-ES. In contrast, closed-source models61

including GPT4V(vision) [23] and Gemini-Vision-Pro [9] exhibit relatively stronger performance but62

still lag behind the performance of humans. Using CVRR-ES benchmark, we extensively perform63

quantitative and qualitative analysis and formulate important insights about these Video-LMMs based64

on their failure cases and individual performances across the diverse video dimensions.65

Based on our analysis, we note that standard prompting struggles in steering Video-LMMs’ focus for66

complex video understanding. Additionally, their limitations in reasoning and robust video understand-67

ing of real-world scenarios are dominantly driven by the quality of textual inputs (i.e., user questions).68

Based on these insights, we develop a training-free Dual-Step Contextual Prompting (DSCP) tech-69

nique, which effectively steers the model’s behavior during inference to elicit video-specific reasoning70

and improved robustness within Video-LMMs. With DSCP, Video-LMMs substantially improve on71

our benchmark, suggesting the potential of prompting methods for Video-LMMs.72
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Based on the visual cues provided in the 
sequence of images, it appears that four 
individuals exit the vehicle. 

Correct Response: Three people exit the 
car to retrieve black bags from the trunk. 

2.
Two individuals exit the 
vehicle to retrieve items 
from the trunk.

Two individuals exit the 
vehicle to retrieve items 
from the trunk.

Two individuals exit the vehicle to retrieve items from the trunk.

In the video, we can see a 
young man and woman 
exiting the car …

 

How many individuals exit the vehicle to 
retrieve items from the trunk? 

 
   

Based on  …, one person is performing a prank 
on another individual. The prank seems to 
involve pouring a yellow liquid from a bowl, 
which is sneakily positioned behind the 
unsuspecting person's back at waist level.

Correct Response: one man uses his back 
muscles to crack eggs placed by another 
man into a bowl behind him. The process 
is amusing and ends with a celebratory 
turn by the man holding the eggs.

… Another man is holding a bowl of food 
behind the first man … the second man 
appears to be pouring the contents of the 
bowl down the first man's shorts.

A man is seen standing in a 
kitchen with his hands on his 
hips. Another man is standing 
behind him and pouring 
something into a bowl.

a guy is standing with his 
back facing someone else. 
The person standing behind 
him pours water on his 
back, causing him to shiver.

In the video, a man is seen 
standing in a kitchen and 
washing dishes. He then 
puts on a white robe and 
continues washing dishes.

In the video, we see a 
young man pouring 
water from a bucket to a 
plastic bowl.

What is happening in the video?

Why is the golfer 
celebrating in the 
video?

Based on … the golfer is celebrating because they 
successfully hit the golf ball from a sand bunker 
onto the green and possibly close to the hole…

Correct Response: The golfer is not celebrating and 
instead he is expressing his anger and frustration by 
hitting the golf stick into the ground.

The golfer is celebrating 
because he made a hole-in-one. 
A hole-in-one is …

The golfer is celebrating 
because he hit the ball into 
hole on his first attempt.

The golfer is celebrating because 
he has just hit the ball into the 
hole.

The golfer is celebrating because 
he has just made a hole in one, …

The golfer is celebrating in the 
video because he is 
successfully teeing off and …

 
   

Before the mug was moved, a tennis ball 
became visible underneath it.

Correct Response: No other object 
was visible before the mug was 
moved in the video. 

A yellow tennis ball was visible in 
the scene before the mug was 
moved.

A tennis 
ball.

Before the mug was moved, a tennis 
ball was visible in the scene.

In the beginning of the video, the person was 
holding a mug with a tennis ball on a table. 
Before the mug was moved, a white vase was 
visible in the scene.

Before the mug was moved, what other object 
was visible in the scene?

A tennis ball was visible in 
the scene before the mug 
was moved.

GPT4(Vision) Gemini-Pro-V Video-LLaVA LLaMA-VID MovieChat TimeChat

Figure 2: We observe that most Video-LMMs struggle to reason over complex videos (rows 1-3) and exhibit
weak robustness and rectification abilities when answering user questions that can sometimes be confusing (row
4). The QA pairs in Comprehensive Video Reasoning and Robustness Evaluation Suite (CVRR-ES) benchmark
assess the performance of Video-LMMs beyond general video comprehension. (best viewed zoomed in)

Our main contributions are as follows: (1) We present Complex Video Robustness and Reason-73

ing Evaluation suite (CVRR-ES), a Video Question Answering benchmark designed to assess the74

reasoning and robustness capabilities of Video-LMMs on 11 diverse world-centric complex video75

dimensions (§3). (2) We extensively evaluate both open-source and closed-source Video-LMMs on76

the CVRR-ES benchmark and find that most models exhibit weak performance, highlighting their77

limited reasoning in complex videos and lack of robustness towards user text queries (§5.1). (3) We78

conduct comprehensive analysis and formulate important conclusions about Video-LMMs based on79

their failure cases and performance on the CVRR-ES benchmark. Our findings provide key insights80

for building the next generation of human-centric AI systems with improved robustness and reasoning81

capabilities (§5.4). (4) To improve Video-LMMs’ reasoning and robustness abilities, we design a82

model-agnostic and training-free prompting method that effectively enhances their performance (§4).83

2 Related Works84

Video Large Multi-modal models (Video-LMMs). Video-LMMs [18, 17, 37] are visual chatbots85

capable of performing a wide range of video tasks, including video comprehension and captioning,86

video question-answering, and action grounding. These models accept both video and textual inputs87

and generate textual responses. From an architectural perspective, Video-LMMs combine pre-trained88

vision backbones [25, 6, 32] with large language models [30, 38] using connector modules such89

as MLP adapters, Q-former [5], and gated attention [1]. VideoChat [15] and VideoChat-GPT [17]90

presented initial open-source efforts in this direction and were trained with two stages of alignment91

and video-instruction following objectives. Recently, more advanced Video-LMMs have emerged in92

the field, with some models focusing on improving model architectures [17], expanding to new tasks93
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[22], and enabling support for long videos [28, 26]. In this work, we aim to develop a comprehensive94

benchmarking framework to assess the reasoning and robustness capabilities of these Video-LMMs95

and develop a training-free prompting technique to improve their performance on these fronts.96

Benchmarking Video-LMMs. With the growing number of Video-LMMs emerging in the research97

community, several works have presented evaluation frameworks to assess and quantify these models98

for benchmarking and analysis purposes. SEED-Bench [14] evaluates the visual capabilities in99

both image and Video-LMMs across 12 unique dimensions. MV-Bench [16] curates 20 video100

tasks to evaluate the spatial and temporal understanding of Video-LMMs. Video-ChatGPT [21]101

develops a quantitative evaluation framework to assess model understanding on five aspects of general102

video comprehension, such as the correctness and consistency of model captions. While these103

evaluation frameworks provide effective insights, their assessments do not extend beyond general104

video-comprehension metrics to more advanced aspects of reasoning and robustness, particularly for105

real-world context cases. In contrast, our work focuses on providing a complex video reasoning and106

robustness benchmark and offers a thorough assessment of Video-LMMs in practical applications.107

Training-free Prompting Techniques. Steering model behavior at inference time using prompting108

has become a common paradigm in the NLP domain. Prompting [34, 31] refers to the set of109

instructions given as a prefix to the language model to better align model responses with human intent110

without the need for task-specific fine-tuning. Prompting techniques can be as simple as a single111

sentence (e.g., "Let’s think step by step") such as zero-shot chain of thought [34] prompting, to more112

detailed techniques such as combining chain-of-thought prompting with few-shot learning [2] and113

self-consistency chain of thought prompting [31]. Surprisingly, training-free prompting techniques114

for Video Large Multi-modal Models (Video-LMMs) have been minimally explored. In this work,115

we develop a dual-step prompting technique based on principled prompt instructions specifically116

designed to steer the model’s behavior for improved reasoning and robustness over complex videos.117

3 Complex Video Reasoning and Robustness Evaluation Suite118

As Video-LMMs are touching new real-world applications, it is essential to ensure that they robustly119

handle the user inputs, comprehend the visual world, and exhibit human-like reasoning capabilities.120

In this work, our goal is to establish a comprehensive benchmark, Complex Video Reasoning and121

Robustness Evaluation Suite (CVRR-ES) to assess the robustness and reasoning capabilities of122

Video-LMMs over complex and contextual videos. We first provide an overview of CVRR-ES and123

then detail the video evaluation dimensions in Sec. 3.1. Subsequently, we discuss benchmark creation124

process in Sec. 3.2. We provide details on the human performance on CVRR-ES in Appendix C.125

Overview. CVRR-ES encompasses evaluation dimensions that cover diverse video categories related126

to real-world scenarios, ranging from context-dependent (e.g., social, emotional) categories to video127

types that often take place in the wild (e.g., anomalous activities). Specifically, we have compiled 11128

video evaluation dimensions and curated 2,400 high-quality open-ended question-answer (QA) pairs,129

spanning 214 high-quality videos. The average video duration is 22.3 seconds, with maximum and130

minimum durations of 183 and 2 seconds, respectively. Fig. 2 shows some qualitative examples of131

collected videos for the CVRR-ES benchmark. Refer to Appendix C for additional statistical details.132

3.1 CVRR-ES Video Category definitions.133

For curating the CVRR-ES benchmark, we carefully select 11 diverse benchmark evaluation cate-134

gories. As shown in Fig. 1 (left), these categories encompass a wide range of real-world complex and135

contextual video types. Below, we define each video evaluation dimension in detail.136

1) Multiple actions in a single video. This category involves videos with 2-4 different human137

activities. We curate questions in this category to assess the model’s ability to understand and reason138

about multiple actions and their interrelations in a single video.139

2) Fine-grained action understanding. We collect videos that encompass fine-grained activities140

performed by humans, such as pushing, opening, closing, spreading, sitting, etc. This category tests141

the model’s ability to interpret subtle and fine-grained actions through carefully crafted questions.142

3) Partial actions. We observe that Video-LMMs produce content that is relevant to a video’s context143

and likely to occur next. We collect videos with actions likely to be followed by other actions but not144

shown in the video e.g., cracking an egg in a kitchen suggests the next action of cooking the egg.145

4) Time order understanding. Accurately recognizing the temporal sequence of activities in videos146
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is crucial for distinguishing between atomic actions, such as pushing and pulling. We collect videos147

of fine-grained actions occurring in a particular temporal direction and curate challenging questions.148

5) Non-existent actions with existent scene depictions. This category examines the model’s robust-149

ness and reasoning behavior in scenarios where we introduce non-existent activities into the video150

without altering the physical and spatial scenes or environmental details in it.151

6) Non-existent actions with non-existent scene depictions. In this category, we increase the152

difficulty of the QA task by including questions containing both non-existent activities and scenes.153

We alter the details of objects, attributes, and background for non-existent scene comprehension. This154

tests the model’s ability to correct misleading questions and avoid generating imaginary content.155

7) Continuity and object instance count. This category contains videos (real-world and simulations)156

designed to test the models’ ability to accurately recognize the number of instances of objects, people,157

etc., and distinguish between existing objects and new ones introduced later in the same video scene.158

8) Unusual and physically anomalous activities. We collect videos depicting unusual actions that159

seemingly defy the laws of physics, such as a person floating in the air or driving a motorbike on160

a running river. Assessing Video-LMMs in such scenarios is crucial, as it allows us to determine161

whether they can generalize to understand actions in out-of-distribution videos in practical situations.162

9) Interpretation of social context. We test Video-LMMs’ ability to understand actions influenced163

by social contexts, such as helping an elderly person cross the road. Video-LMMs are assessed to164

determine their ability to accurately infer the rationale behind actions using the social context.165

10) Understanding of emotional context. Similar to social context, humans can accurately under-166

stand and interpret each other’s actions by considering the emotional context. We test Video-LMMs’167

ability to understand actions based on emotional context, e.g., a person crying due to joy.168

11) Interpretation of visual context. This category tests the model’s ability to understand actions by169

leveraging the overall visual contextual cues in the video. For example, to identify the number of170

people present based on the presence of shadows, one must utilize the visual context of shadows.171

3.2 Building CVRR-ES Benchmark172

Stage 1: Data collection and Annotation. We first collect high-quality videos and annotate each173

video via human assistance. To ensure that each evaluation dimension captures relevant attributes174

and information, we meticulously select videos that are representative of specific characteristics175

associated with that dimension. Overall, 214 unique videos are selected covering 11 dimensions176

with around 20 videos per evaluation dimension. Around 60% of these videos are collected from177

public academic datasets. To introduce diversity in the benchmark distribution, we select videos from178

multiple datasets including Something-Something-v2 [10], CATER [8], Charades [27], ActivityNet179

[3], HMDB51 [13], YFCC100M [29]. The remaining 40% of videos are collected from the internet.180

Following the video collection process, two experienced human annotators are assigned to generate181

captions for each video. For videos where initial captions or metadata are available from academic182

datasets, the captions are generated by the annotators based on them. For videos collected from the183

internet, captions are entirely generated by human annotators. To ensure consistency and high quality,184

we provide annotation instructions to annotators, who generate captions accordingly. Personalized185

annotation guidelines are used for each video category. Refer to additional details in Appendix C.186

Stage 2: Question-Answer Generation. The first challenge is to select an evaluation setting to assess187

Video-LMMs. Humans typically engage in free-form conversation to interact with each other in188

day-to-day life. Inspired by this, we aim to simulate a similar style of interaction with Video-LMMs189

by curating open-ended QA pairs to evaluate these models for robustness and reasoning. We feed190

detailed ground-truth video captions to GPT-3.5 LLM, which is utilized to generate open-ended191

questions. The QA pairs covers both the reasoning and robustness aspects as detailed below.192

Reasoning QA pairs: With Video-LMMs beginning to interact more directly with humans in our193

lives, it’s crucial to validate the reasoning abilities of Video-LMMs for more reliable Human-AI194

interaction. When evaluating the reasoning capabilities of Video-LMMs, we aim to determine whether195

these models can understand the input video not only by analyzing spatial content but also by grasping196

the underlying rationale behind the occurring activities and their relationships with the surrounding197

context. This involves creating questions that go beyond simple video comprehension and scene198

description and require the model to engage in complex logical inference, contextual understanding,199

and reasoning about counterfactual and hypothetical scenarios.200
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Robustness QA pairs: In addition to evaluating the reasoning capabilities of LLMs, it is important201

to assess Video-LMMs to ensure their robust and responsible performance in real-world scenarios.202

In the context of Video-LMMs, robustness can be evaluated from both visual (video input) and203

textual interfaces. Our focus in this work lies on textual interface robustness by particularly testing204

the model’s comprehension abilities when posed with misleading or confusing questions. This205

scenario mirrors realistic situations where users, based on their expertise levels, may pose irrelevant,206

misleading, or confusing questions. It is crucial for models to demonstrate reliability and robustness207

in handling such queries and avoid generating unreal or hallucinated content for input videos.208

We curate specific prompts for each evaluation dimension to instruct LLM in generating QA pairs.209

Example prompts used as an instruction to LLMs for curating QA pairs for robustness and reasoning210

aspects are provided in Fig. 14 in the Appendix E.211

Stage 3: QA Pairs Filtration. After generating the QA pairs, we employ a manual filtration step,212

with human assistance to verify each generated QA pair. Approximately 30% of the QA pairs213

generated by GPT-3.5 are found to be noisy, containing questions that are unrelated to the video214

evaluation dimensions or unanswerable based on the provided ground-truth captions. Additionally,215

many questions contain answers within the question itself. Therefore, an exhaustive filtering process216

is conducted which involves QA rectification and removing those samples which are not relevant to217

the video or evaluation type. This process results in a final set of 2400 high-quality QA pairs for the218

CVRR-ES benchmark. Examples of the final QA pairs are shown in Tab. 4 in the Appendix.219

Stage 4: Evaluation Procedure. Previous methods in the literature [21, 4, 19, 24] have explored220

using LLM models as judges for quantifying results in open-ended QA benchmarks. We adopt a221

similar approach and instruct LLMs to act as teachers to assess the correctness of predicted responses222

from Video-LMMs compared to ground-truths. We generate open-ended predictions from Video-223

LMMs by providing video-question pairs as inputs and then present the model predictions and their224

ground-truth responses to the LLM Judge using the evaluation prompt. The Judge determines whether225

the prediction is correct or incorrect with a binary judgment, assigns a score from 1 to 5 representing226

the quality of the prediction, and provides a reasoning to explain its decision. Our ablative analysis in227

the Appendix. E demonstrates that reasoning-constrained LLM-based evaluation aligns the most with228

human-based judgment. Our evaluation prompt for LLM Judge is shown in Fig. 13 in Appendix E.229

Quality of QA pairs. We show examples of QA pairs from CVRR-ES benchmark in Table 4 in230

Appendix C. Our QA pairs are of high quality and aim to test the understanding of Video-LMMs231

against reasoning and robustness criteria on multiple evaluation dimensions. To quantitatively assess232

the quality of the benchmark, we establish a quality assessment procedure [7]. We randomly sample233

1120 QA pairs, which encompass all videos of the CVRR-ES benchmark, and request human experts234

to evaluate the quality of each QA pair by answering the following questions: (1) "Does the QA pair235

correctly represent the evaluation dimension category under which it falls?" (possible answers: "Yes",236

"No") (2) Can the question be correctly answered given only the video content? (possible answers:237

"Agree", "Disagree") and (3) Is the corresponding paired ground-truth answer correct? (which will238

be used during evaluation as ground truth) (possible answers: "Yes", "No"). On average, the answer239

of experts for the first question was "Yes" for 98.84% of the times. For the second and third questions,240

the averaged answer was "Agree" and "Yes" for 100% and 99.91% of the times, respectively.241

4 Dual-Step Contextual Prompting for Video-LMMs.242

Given their wide-scale potential in practical applications, new Video-LMMs are frequently introduced243

by the research community. Despite the availability of numerous Video-LMMs, the majority of them244

are trained using only positive examples and video-conversational templates that are primarily limited245

to tasks such as video-captioning and video question answering [15, 21, 26, 28]. This leads to highly246

over-affirmative behavior and a lack of self-rectification abilities in these models (Sec. 5.4).247

Additionally, the templates have minimal focus on enhancing reasoning and robustness capabilities248

through reasoning instruction-tuning pairs, resulting in their weak performance against robustness249

and reasoning based evaluations in CVRR-ES. Consequently, enabling direct interaction of Video-250

LMMs with users in real-world scenarios can result in undesired responses when the user question is251

confusing and deceiving. Moreover, curating reasoning-based instruction fine-tuning datasets requires252

meticulous data curation steps, and retraining these models are computationally expensive [17, 26].253
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Alternatively, training-free prompting techniques in NLP literature have shown effectiveness in254

eliciting reasoning abilities in LLMs such as chain of thought and self-consistency prompting [34, 31].255

Inspired by these, we present a Dual Step Contextual Prompting (DSCP) technique, which steers256

Video-LMM focus for enhanced reasoning while simultaneously encouraging the models to provide257

robust and grounded answers. DSCP is a two-step prompting method that 1) ensures that the model258

comprehends the video while reasoning over crucial aspects of complex video understanding such as259

contextual information and decoding the complex relationships between objects and motions, etc., and260

2) encourages robustness by generating the response against the question while conditioning both on261

video and the unbiased context retrieved in the first step. Below we discuss each step of DSCP in detail.262

Dual Step Contextual Prompting for Video-LMMs

Retrieving Contextual reasoning information (Step 1)

As an intelligent video comprehension model, focus on these guidelines:
1. Differentiate recurring objects, count accurately, and identify 
movements and poses. 
2. Understand directional movements and temporal order. 
3. Pay attention to fine-grained actions with precision. 
4. Assess incomplete actions without assuming completion. 
5. Detect emotional, social, and visual cues. 
6. Capture and analyze all relevant actions. 
7. Identify unusual actions accurately. 
8. Disagree with incorrect information given in question. 
9. If you do not find the evidence in the frames, you can give a definite 
    answer by assuming that the asked action/attribute is not present. 
10. Provide to the point and concise response. 
Now, proceed with answering the following question faithfully while 
keeping above guidelines in mind: 
Question: What is happening in the video?

Context conditioned question-answering (Step 2)

Context for the given video is: {step 1 response}. Now answer a 
question truthfully based on the video and the provided context. 
Question: {User question}

Figure 3: Principled prompt instructions in
DSCP for Video-LMMs.

Step 1: Video reasoning. We prompt Video-LMMs to263

interpret video from a reasoning perspective using ten264

principled instructions (Fig. 3, in blue) to direct the mod-265

els to understand general video content, reason over the266

rationale behind actions and their relationships with the267

context, and consider factors like contextual priors, the268

temporal order of actions, instance count, and attributes.269

The prompting technique also includes instructions to270

ensure conciseness and factuality to mitigate hallucina-271

tions. Given a Video-LMM F and input video V , we272

retrieve contextual reasoning information Icontext by pro-273

viding principled reasoning prompt Preason along with274

the video to the LMM, Icontext = F(Preason|V). This275

contextual information is then used in the second step of276

DSCP to generate a grounded response to user question.277

Step 2: Context conditioned question answering. To address the challenges of over-affirmative278

behavior and hallucinations in Video-LMMs when prompted with confusing or misleading questions,279

we propose an additional inference step. We note that Video-LMMs often possess factual knowledge280

about the video content but become distracted and hallucinate when prompted with confusing or281

misleading questions (Appendix D). Our DSCP technique conditions the model to first comprehend282

the video without attending to the user question and, therefore eliminates its influence. This complex283

video comprehension information, Icontext (formulated in step 1) is then used to condition the model284

on both the video and Icontext. Finally, we pose the user question using prompt Puser which combines285

the user question and the contextual reasoning information (Fig. 3, in green). The final response is286

F(Puser|V), where Puser = [question; Icontext]. Here [ ; ] denotes the text prompt concatenation.287

The factual content generated in step 1 guides the model towards a robust response in step 2, pro-288

ducing factual and correct responses even with noisy or misleading user questions. We show the289

qualitative results of DSCP technique in Fig. 11 in Appendix D. This approach leads to responses290

that are better grounded in the actual video content and are robust against lower-quality user queries.291

The DSCP technique effectively enhances the performance of Video-LMMs on CVRR-ES (Sec. 5.2).292

5 Evaluation Experiments on CVRR-ES.293

Video-LMMs. Among the open-source models, we evaluate 7 recent Video-LMMs, including294

Video-LLaVA [18], TimeChat [26], MovieChat [28], LLaMA-ViD [17], VideoChat [15] Video-295

ChatGPT [21], and Video-LLaMA-2 [37]. For evaluating closed-source models, we use Gemini-Pro,296

Gemini-Flash, [9], GPT-4V and recent GPT-4o [23]. Refer to Appendix B for additional details.297

5.1 Main Experiments on CVRR-ES.298

Tab. 2 shows the evaluation results of Video-LMMs on CVRR-ES. Below, we discuss main results.299

Open Source Video-LMMs struggles on CVRR-ES benchmark. All open-source LMMs show in-300

ferior performance across the different evaluation dimensions of CVRR-ES. Interestingly, some of the301

earlier developed open-source Video-LMMs, like Video-LLaMA, VideoChat, and Video-ChatGPT,302

exhibit higher performance compared to more recent models such as Video-LLaVA, MovieChat, and303

LLaMA-VID. Overall, TimeChat achieves the highest performance of 32.89% averaged across the 11304

evaluation dimensions among open-source LMMs, followed by VideoChat with a score of 25.78%.305

Humans rank highest in CVRR-ES benchmark. Human evaluation achieves the highest perfor-306
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Table 2: Evaluation results of Video LLMs across various video-evaluation categories on the CVRR-ES
benchmark. We present results for both open-source and closed-source models and human evaluation.

Benchmark Category Vide
o-L

LaM
A-2

Vide
oC

ha
t

Vide
o-C

ha
tG

PT

Vide
o-L

LaV
A

M
ov

ieC
ha

t

LLaM
A-V

ID

Tim
eC

ha
t

Gem
ini

-V
Pro

Gem
ini

-V
Flas

h

GPT4V

GPT4o

Hum
an

Multiple Actions in 16.98 23.90 27.67 15.72 12.58 17.92 28.30 43.08 44.65 57.55 62.89 93.40single video.

Fine-grained action 29.57 33.48 26.96 25.22 23.48 26.09 39.13 51.61 64.78 77.39 80.43 95.65understanding.

Partial 24.76 33.01 22.82 13.59 21.36 14.56 49.51 67.48 62.14 73.79 77.67 98.54actions.

Time order 16.45 31.58 27.63 21.05 16.45 19.74 34.21 45.39 55.26 57.89 71.05 97.37understanding.

Non-existent actions with 10.14 15.22 23.19 5.07 5.07 2.90 23.19 57.25 60.14 71.01 83.33 97.10existent scene.

Non-existent actions with 13.19 14.58 17.36 3.47 11.81 6.94 13.89 49.64 56.30 75.00 70.14 100.00non-existent scene.

Continuity and Object 28.25 24.29 28.41 21.47 19.77 24.86 34.46 36.16 43.50 62.71 62.71 96.49instance Count.

Unusual and Physically 18.95 18.42 18.95 15.79 17.89 16.32 27.37 60.00 60.53 74.74 78.42 96.84Anomalous activities.

Interpretation of 25.00 31.07 32.50 18.93 17.14 13.93 39.29 64.29 69.64 79.64 83.57 97.51social context.

Understanding of 21.92 23.63 21.23 15.07 13.70 14.73 27.40 47.26 52.74 66.44 70.89 95.55emotional context.

Interpretation of 32.60 34.43 27.84 19.78 21.25 23.08 45.05 63.00 57.51 82.42 84.25 94.87visual context.

Average 21.62 25.78 24.96 15.92 16.41 16.46 32.89 53.20 57.02 70.78 75.03 96.67

Prompting Method VideoChat Video-LLaVA MovieChat LLaMA-VID TimeChat

Standard prompting 25.78 15.92 16.41 16.46 32.89
Chain of Thought (CoT) prompting 22.44 25.87 15.89 29.68 39.57

DSCP (Stage 1) 38.07 32.12 28.05 25.13 33.04
DSCP (Both stages) 47.92 37.93 35.87 46.85 39.45

Table 3: Prompting methods.
DSCP stage 1 uses only princi-
pled instructions of step 1 and
DSCP (Both stages) uses com-
plete dual-step technique.

mance on the CVRR-ES benchmark, with over 95% accuracy across all evaluation dimensions. These307

results suggest that the CVRR-ES QA pairs are reasonable and suitable for benchmarking.308

Closed source models perform competitively on CVRR-ES. As shown in Tab. 2, both Gemini and309

GPT variants improve over open-source models and achieve high gains across all evaluation dimen-310

sions. The competitive results of GPT4o and Gemini-Flash on complex video evaluation dimensions311

such as partial actions, non-existent action/scene depiction, and context-dependent categories show312

that these models have a more sophisticated understanding of the complex visual contents of videos313

and have strong capabilities to rectify misleading and confusing user questions. Overall, GPT4o314

improves over Gemini-Flash by 18.01% and provides the highest average accuracy of 75.03%.315

5.2 Effectiveness of DSCP method for improving Video-LMMs performance316

0 10 20 30 40 50 60
Accuracy % (averaged over 11 video dimensions)

Video LLaVa

MovieChat

LLaMA-VID

Video-LLaMA-2

Video-ChatGPT

VideoChat

TimeChat

Gemini-Pro

Vi
de

o 
LM

M
s 

w
it

h 
D

SC
P

+22.01

+19.46

+30.39

+16.15

+8.93

+22.14

+6.56

+5.02

Figure 4: Video-LMMs with DSCP technique
effectively improves their performance (gains
are shown in green) on CVRR-ES benchmark.

We next integrate DSCP technique with Video-317

LMMs and present results for CVRR-ES in Fig.318

4. DSCP improves the model’s performance com-319

pared with models that use standard prompting (i.e.,320

using only the question itself). These results also321

suggest that prompting techniques in Video-LMMs322

can better guide models for improved reasoning and323

robustness. With DSCP, initially low-performing324

Video-LMMs like Video-LLaVa, MovieChat, and325

LLaMA-Vid show much better relative gains and326

become competitive with other models. The highest327

relative gain of 184% is achieved by LLaMA-ViD,328

which moves from 7th place in the leaderboard to329

2nd among the open-source models after using the DSCP technique. We observe similar overall330

positive trends of using DSCP with closed-source model Gemini, which improves on the benchmark331

by an absolute overall gain of 5.02%. We provide more detailed results comparisons in Appendix D.332

5.3 Different prompting techniques.333

We now study the contribution of each step of DSCP and compare it with chain-of-thought (CoT)334

prompting [34]. Results for the top 5 performing open Video-LMMs are shown in Tab. 3. CoT335

prompting improves over standard prompting in 3 out of 5 Video-LMMs, suggesting that prompting336
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techniques from NLP literature can also guide multi-modal Video-LMMs to enhance reasoning and337

robustness. Next, we ablate on the first step of DSCP prompting, which uses principled instructions338

of DSCP step 1 as a prefix alongside the actual user question. DSCP step 1 notably improves model339

performance on all Video-LMMs, suggesting the effectiveness of the principled prompt instructions340

designed specifically for Video models. DSCP with both steps, which additionally uses the initial341

context in the second step, shows additional gains and achieves highest results on 4 out of 5 models.342

5.4 Main findings and Qualitative Results343

We now present key insights that can guide the development of the next generation of robust and344

reliable Video-LMMs. We show qualitative results and additional analysis in the Appendix A.345

Models excelling at standard VQA benchmarks struggle on CVRR-ES. Our analysis in Sec.346

5.1 reveals that the latest open-source Video-LMMs, like Video-LLaVA, MovieChat, and LLaMA-347

VID, perform less effectively on CVRR-ES compared to Video-LMMs that were introduced earlier348

in the community, such as VideoChat and Video-ChatGPT. Interestingly, the same recent models349

demonstrate superior performance on general video comprehension benchmarks. This suggests350

that current VQA benchmarks, like ActivityNet-QA [36] and MSRVTT [35], do not adequately351

correlate with the complex video reasoning and robustness scenarios highlighted in our benchmark.352

Consequently, this also indicates that most newer Video-LMMs are heavily trained to excel on the353

general video benchmarks while reducing their generalizability, reasoning, and robustness capabilities.354

Over-affirmative behavior of open-source Video-LMMs. We observe that open-source models355

exhibit positive and over-affirmative responses. Open-source Video-LMMs consistently respond with356

"Yes" even when faced with confusing questions that describe non-existent actions and objects (Fig.357

5 in Appendix. A). This highlights the vulnerability of these models when interacting with users in358

real-world scenarios. In our CVRR-ES benchmark, open-source models are notably vulnerable to359

evaluation dimensions of "Non-existent actions with the existent scene" and "Non-existent actions with360

the non-existent scene" compared to closed models. These models lack negation and self-rectification361

capabilities, especially when users provide misleading or confusing questions. We conjecture that362

such behavior arises due to the absence of negative instruction tuning pairs during training.363

Tendency towards activity completion. Most open-source Video-LMMs have shown lower results364

on the evaluation dimension of partial actions, which focuses on incomplete or atomic actions. We365

note that most open-source models tend to complete actions, even when only part of the action is366

provided in the video (Fig. 6 in Appendix A). Upon examining the fine-tuning strategies [21, 20], we367

find that almost all models are trained on end-to-end actions-based instruction-tuning data, causing368

them to generate complete action descriptions at inference. This tendency highlights the vulnerability369

of Video-LMMs after deployment, as real-world scenarios often involve atomic, sub-atomic, and370

general actions alike. To improve the performance of Video-LMMs, it is crucial to incorporate diverse371

action types during the training phase, including partial and incomplete actions.372

Video-LMMs struggles in understanding the emotional and social context. For more reliable373

interaction with humans in practical scenarios, Video-LMMs models should comprehend the video374

scenes with social and contextual reasoning capabilities similar to humans. The lower performance of375

Video-LMMs on social and emotional contextual dimensions in CVRR-ES highlights their limitations376

and lack of understanding of scenes based on contextual cues (Fig. 9 in Appendix A).377

378 6 Conclusion379

Given the expanding role of Video-LMMs in practical world-centric applications, it is crucial to ensure380

that these models perform robustly and exhibit human-like reasoning and interaction capabilities381

across various complex and real-world contexts. In this work, we present the CVRR-ES benchmark for382

Video-LMMs, aiming to evaluate Video-LMMs on these very fronts. Through extensive evaluations,383

we find that Video-LMMs, especially open-source ones, exhibit limited robustness and reasoning384

capabilities over complex videos involving real-world contexts. Based on our analysis, we formulate385

a training-free prompting technique that effectively improves the performance of Video-LMMs across386

various evaluation dimensions of the CVRR-ES benchmark. Furthermore, we analyze and investigate387

the failure cases of Video-LMMs on the CVRR-ES benchmark and deduce several important findings.388

We hope that the CVRR-ES benchmark, accompanied by our extensive analysis, will contribute389

towards building the next generation of advanced world-centric video understanding models.390
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