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ABSTRACT

Recent studies have revealed the vulnerability of face recognition models against
physical adversarial patches, which raises security concerns about the deployed
face recognition systems. However, it is still challenging to ensure the repro-
ducibility for most attack algorithms under complex physical conditions, which
leads to the lack of a systematic evaluation of the existing methods. It is there-
fore imperative to develop a framework that can readily and fairly evaluate the
vulnerability of face recognition in the physical world. To this end, we propose to
simulate the complex transformations of faces in the physical world via 3D face
modeling, which serves as a digital counterpart of physical faces. The generic
framework allows us to control different face variations and physical conditions
to conduct reproducible evaluations conveniently. With this digital simulator, we
further propose a Face3DAdv method considering the 3D face transformations and
realistic physical variations. Extensive experiments validate that Face3DAdv can
significantly improve the effectiveness of diverse physically realizable adversarial
patches in both simulated and physical environments, against various white-box
and black-box face recognition models.

1 INTRODUCTION

Face recognition, as a prevailing task in computer vision, has experienced substantial improvements
thanks to the rapid development of deep neural networks (DNNs) (Deng et al., 2019a; Wen et al.,
2016). DNNs facilitate the broad application of face recognition in various safety-critical fields,
including finance/payment, public access, surveillance, etc. However, face recognition models based
on DNNs are vulnerable to adversarial examples (Sharif et al., 2016; Dong et al., 2019; Yang et al.,
2020b; Komkov & Petiushko, 2021; Tong et al., 2021) — maliciously generated inputs to mislead a
target model, which may lead to serious consequences or security problems in real-world applications.

Extensive efforts have been devoted to studying the generation of adversarial examples on face
recognition models, which can be conducive to investigating model robustness (Yang et al., 2020b;
Tong et al., 2021). Some work (Dong et al., 2019; Yang et al., 2021) has proposed to apply minimal
perturbations (measured by the ℓp norm) to face images in the digital world, aiming to evade being
recognized or to impersonate another identity. However, practical face recognition systems usually
process face photos taken in the physical world. Thus, it is of particular importance to explore
physical adversarial attacks to identify the weaknesses of these models before they are deployed. To
this end, some typical approaches generate various adversarial patches (Brown et al., 2017) that are
wearable on faces, including eyeglass (Sharif et al., 2016; 2017), hats (Komkov & Petiushko, 2021),
and stickers (Shen et al., 2021). They can take effect in deceiving the unattended payment system of
vending machines (GeekPwn, 2020) and unlocking a mobile phone or car (Technologies, 2020).

Despite the success, the existing physical attack methods on face recognition still have several
limitations. First, there is no systematic testing protocol for physical attacks. The evaluation is
usually conducted by asking a few volunteers to attach the adversarial patches, followed by testing in
a specific environment (e.g., printer, viewpoints, lighting conditions) (Sharif et al., 2016; Komkov
& Petiushko, 2021; Shen et al., 2021; Zheng et al., 2021; Zolfi et al., 2021a), making it hard to
evaluate and compare the effectiveness of different methods. The inconsistent experimental settings
and potential bias by uncontrolled volunteers also limit the reproducibility of physical adversarial
examples in different conditions. Second, most methods aim to craft adversarial examples robust to
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Figure 1: A controllable and high-fidelity simulator via 3D face modeling for evaluating the performance of
different physical attacks, e.g., GenAP (Xiao et al., 2021) and our Face3DAdv. The simulation framework
provides multiple physically realizable attacks, including Eyeglass (Xiao et al., 2021), Respirator (Tong et al.,
2021), Hat (Komkov & Petiushko, 2021), and Eyeglass frame (Sharif et al., 2016; 2017), which have verified
their practicality in many unattended recognition scenarios. We further demonstrate consistent effectiveness of
our method, against ArcFace (Deng et al., 2019b) over [−15, 15] degrees of the pose of pitch under a certain
degree of yaw. More results regarding effectiveness and practicality are presented in Sec. 5.

varying physical conditions by optimizing over 2D image transformations (Athalye et al., 2018), such
as rotation, translation and additive Gaussian noise, but they fail to consider other physical variations
of 3D faces, such as viewpoint and lighting.

In this paper, we build a novel simulation framework that can reflect the characteristics of physical
faces, enabling us to readily and fairly evaluate different physical attacks on face recognition. The
framework fully leverages recent advances (Deng et al., 2020; Henderson et al., 2020; Shi et al., 2021)
in 3D face modeling, which have demonstrated that they could generate controllable high-fidelity
virtual face images that are even hard to distinguish from real ones. Based on this, the accessible
and general framework has the ability to pair attackers acting in a simulated environment with
counterparts acting in a realistic physical environment (as demonstrated in Sec. 5 experimentally).
Specifically, we first embed a single-view testing face image onto the latent manifold of the pre-
trained 3D generator (Shi et al., 2021) and reconstruct its 3D face information, including texture,
shape, viewpoint, and lighting. Then, we propose a texture-based adversarial attack paradigm to
generate a 3D adversarial face, which can naturally stitch a patch onto the face to make the adversarial
patch more versatile and realistic. Finally, after introducing a differentiable renderer (Ravi et al.,
2020), we can obtain 2D adversarial faces under diverse physical variations. Once informed with
such a simulator (as shown in Fig. 1), future researchers can have priority to conveniently and easily
conduct hundreds of experimenters in a controllable virtual environment for identifying problems and
improving their physical attacks, whereas previous work (Komkov & Petiushko, 2021; Shen et al.,
2021; Zheng et al., 2021) usually chooses no more than 10 volunteers for physical experiments.

Based on this simulation framework, the attacker has the ability to develop more reliable physical
adversarial attacks by controlling the simulated environments, thus enabling the crafted adversarial
patches to be more robust to physical transformations. To demonstrate this, we propose a Face3DAdv
attack method to generate robust adversarial patches by optimizing over diverse physical transfor-
mations in adversarial scenarios based on the simulation framework. Moreover, since the physical
variations are much more abundant in our method, we adopt a more effective strategy to focus on
favorable transformations within a principled optimization framework. As a comparison, the previous
methods (Athalye et al., 2018; Sharif et al., 2016) typically select physical transformations fully at
random to optimize robust perturbations, without considering the different importance of physical
variations. Extensive experiments demonstrate that our Face3DAdv achieves consistent improvements
in both simulated and physical environments. As for imperceptibility, 3D adversarial patches crafted
by Face3DAdv are also more conducive to steadily passing defensive mechanism (commercial Face
Anti-spoofing API) in automatic face recognition systems.

To the best of our knowledge, this is the first attempt that conducts a reproducible physical-world
adversarial attacks on face recognition, especially including 3D face recognition models. Our
contributions can be summarized as: (i) We develop a reproducible simulation framework via 3D face
modeling for readily and fairly evaluating the performance of physical attacks on face recognition,
which can conveniently simulate the complex transformations of faces in the physical world; (ii) We
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propose a 3D-aware attack method — Face3DAdv to generate robust adversarial patches, showing
significant improvements over the previous methods with a particular focus on diverse physical
conditions of 3D transformations, lighting variations, etc.

2 RELATED WORK

Adversarial attacks in the physical world. Recent work has shown that adversarial examples (Good-
fellow et al., 2015; Szegedy et al., 2014) can exist in the physical world (Kurakin et al., 2017;
Athalye et al., 2018), resulting in an emerging threat. In particular, adversarial patches (Brown
et al., 2017) only perturb a small cluster of pixels, and can be applied to real objects in the physical
world (Eykholt et al., 2018; Zhao & Stamm, 2020; Xu et al., 2020; Zolfi et al., 2021b; Yang et al.,
2020a). Adversarial patches on face recognition have also been explored (Sharif et al., 2016; Brown
et al., 2017). By attaching a carefully generated patch to the face, some studies (Pautov et al., 2019;
Komkov & Petiushko, 2021) have shown success of physical attacks against the state-of-the-art face
recognition models. However, these methods did not consider the face variations in the physical
world, thus resulting in performance degeneration in real testing scenarios. Meanwhile, existing
physical attacks commonly use EOT (Athalye et al., 2018) by randomly sampling the transformations
during optimization without considering the different importance for the diverse physical variations.

3D face modeling. As one of the popular 3D face modeling mechanisms, 3D Morphable Model
(3DMM) is commonly adopted to represent faces (Tuan Tran et al., 2017), which are parameterized by
identity, expression, and illumination. Although 3DMM offers control over the semantic parameters,
it suffers from photorealism and models only the essential parts of a portrait image (e.g., hair,
mouth interior, background). More recent work reconstructs plausible 3D face shapes by exploiting
knowledgeable parameter metrics of 3DMM (Tewari et al., 2020; Deng et al., 2020). On the other
hand, some face representation methods leverage 3D position maps (Shi et al., 2021; Henderson
et al., 2020) to represent and output the mesh of the target, and achieve the controllable parametric
nature of existing face models. Therefore, we can construct a flexible environment that simulates
the physical world with the aid of these blossoming techniques on 3D face modeling. The digital
surrogate of a real face provides us a possible solution to conduct reliable and reproducible evaluation
for facilitating physical attacks.

3 ROBUST EVALUATION FOR PHYSICAL ATTACKS

The current physical attacks on face recognition (Sharif et al., 2016; Guo et al., 2021; Komkov &
Petiushko, 2021) are usually evaluated by: 1) printing adversarial patches (e.g., eyeglass frames,
hats, etc); 2) asking a few volunteers to attach them; and 3) testing the attack performance under
a specific environment. However, the evaluation methodology is insufficient due to the lack of a
systematic testing protocol. The experimental settings (including printer, chosen volunteers, and
physical environment) are obviously inconsistent across different research, making it hard to compare
and evaluate the effectiveness of existing methods.

To address this problem, it is imperative to develop a reproducible framework for readily and fairly
evaluating the performance of physical adversarial attacks on face recognition. We advocate using
a simulator rather than performing experiments in the physical world for the following reasons: 1)
completeness: the simulator can provide a complete picture of the effectiveness of different attack
methods given various controllable physical conditions; 2) fair and replicable comparisons: based
on the same simulator, the comparisons between different attacks are fairer, and the evaluation results
are replicable; 3) cheap and easy to support large experiments: conducting experiments on the
simulation framework is much cheaper and easier, which supports larger-scale testing experiments.

As illustrated in Fig. 2, our simulation framework consists of four modules: 3D face modeling,
adversarial generation, rendering, and evaluation. We introduce the details of these four steps in the
following discussion.

3D face modeling. Given a 2D face image x ∈ X , we aim to generate the corresponding realistic
3D face representation that can be easily manipulated, by exploiting 3D parametric fitting in 3D
face modeling. The 3D face is expected to approximate a real face in the physical world. In this
paper, we leverage the state-of-the-art pre-trained 3D generator of G3D (Shi et al., 2021) for 3D
face modeling, which can disentangle the generation process of a 2D generator G2D instantiated by
StyleGAN (Karras et al., 2019) into different 3D modules for a 3D shape representation. Therefore, a
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Figure 2: The overall simulation framework for evaluating and developing physical attacks include four modules
of 3D Modeling, Adversarial Generation, Rendering, and Evaluation. 3D Modeling reconstructs a 3D
face {s, t} that can be manipulated, including a 2D texture face t from the generative model G2D and a shape
representation s from deep networks of shape DS and transformation map DT . Adversarial Generation
adopts a texture-based adversarial method to apply a patch to a certain region to generate an adversarial 3D
face {s∗, t∗}. Rendering adopts a renderer to produce a series of 2D rendered adversarial faces given {s∗, t∗},
different viewpoints and lighting conditions. Evaluation aims to test the performance by feeding the rendered
images into the face recognition model.

3D face representation can be obtained given a style code w, including a 3D shape representation of
s and a 2D texture face of t from G2D.

Given a face recognition model f(x) : X → Rd and a random initialization parameter of w, we
propose to search for the optimal parameter of w for the generator by minimizing the distance
between the original face image and the rendered image of x′ as

min
w

Df (x
′,x) + λ∥x′ − x∥1, (1)

where x′ := R(G3D(w);V0, L0) with R being a differentiable renderer, and V0 and L0 are corre-
sponding parameters of neutralized viewpoint and lighting; and λ is a balancing hyperparameter. We
adopt the ℓ1 norm in the objective since the ℓ2 norm can lead to blurry textures (Huh et al., 2020).
Df computes the distance of the feature representations of f as

Df (x
′,x) = ∥f(x′)− f(x)∥22. (2)

By optimizing the objective function (1), we can obtain the optimal w∗ and get the 3D face as
{s, t} = G3D(w∗).

Adversarial generation. The next step is to apply the adversarial examples to the 3D face model.
The existing attack methods usually adopt texture-based adversarial patches, i.e., for a face image
x, these methods can generate an adversarial face image x∗ by applying a patch to a certain region.
Since they do not modify the face shape, we directly replace the texture t of the original face image x
as t∗ = x∗. Notably, our framework can also perform adversarial attacks on face shapes if necessary
for new attackers.

Rendering 2D images with transformations. Given a 3D adversarial face {s, t∗}, we can adopt a
renderer (Ravi et al., 2020) to produce 2D rendered adversarial faces given different viewpoints and
lighting conditions. Specifically, we choose a set of viewpoints V = {Vi}Nv

i=1 and lighting variations
L = {Lj}Nl

j=1, and then render an adversarial image as

r∗(i,j) = R(s, t∗;Vi, Lj). (3)

We can also apply some 2D image transformations (e.g., rotation, translation, scaling, etc) to r∗(i,j).

Evaluation. The final step is to evaluate the performance of the attack by feeding the rendered
adversarial images into the face recognition model. For different tasks, we can evaluate the attack
performance in different ways.

Discussion on the printer. Previous research (Thys et al., 2019; Xu et al., 2020; Zheng et al., 2021)
has studied the color deviation between the digital image and its printed version by mapping a digital
color spectrum to printed counterpart or adopting non-printability losses. However, we mainly focus
on constructing a simulation framework for evaluating physical adversarial attacks. The previous
approaches are generally compatible with our framework in the physically realizable procedure.

4 FACE3DADV

In this section, we propose a Face3DAdv method to exploit the various physical transformations.
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4.1 PRELIMINARY

Face recognition usually has two sub-tasks: face verification and face identification (Huang et al.,
2007). We mainly consider face verification in this paper, while the proposed approach can be
naturally extended to face identification. In face verification, the feature distance between a pair of
images {xa,xb} ⊂ X is first calculated as Df (x

a,xb). Then the prediction of face verification can
be formulated as

C(xa,xb) = I(Df (x
a,xb) < δ), (4)

where I is the indicator function, and δ is a threshold. When C(xa,xb) = 1, the two images are
recognized as the same identity, otherwise different identities. Note that this definition is consistent
with the commonly used cosine similarity metric, since f outputs a normalized feature.

Given the original face images xa and xb, we aim to generate an adversarial image x∗ by adding
a perturbation to xa to mislead the face recognition model when recognizing x∗ and xb. There
are generally two types of adversarial attacks on face recognition: dodging and impersonation. A
dodging attack aims to make the face recognition model fail to recognize the identity of x∗, i.e., to
make C(x∗,xb) = 0 while C(xa,xb) = 1; an impersonation attack aims to make the face recognition
model recognize x∗ as a specific identity, i.e., to make C(x∗,xb) = 1 while C(xa,xb) = 0.

4.2 3D-AWARE ADVERSARIAL ATTACK

To facilitate the physical realizability of the adversarial examples, we study adversarial patches that
are restricted to a specifically designed region. Although some elaborate adversarial patches (Komkov
& Petiushko, 2021; Xiao et al., 2021) consider 2D image transformations, they do not take into
account other realistic 3D physical transformations, thus leading to inevitable degeneration of their
effectiveness. To make the crafted adversarial patch more versatile and effective in the real world, we
optimize the adversarial patch over both the common 2D transformations and the newly considered
3D transformations. Based on our simulation framework, we can readily optimize the adversarial
patches over 3D transformations. Therefore, the attack objective function of crafting adversarial
examples can be formulated as

min
s∗,t∗

EVi∼V,Lj∼L[Jf (R(s
∗, t∗;Vi, Lj),x

b)], (5)

s.t.(1−M)⊙ R(s∗, t∗;Vi, Lj) = (1−M)⊙ R(sa, ta;Vi, Lj),

where M ∈ {0, 1}n is a binary mask to apply the perturbations to pixels where the value of the mask
is 1, ⊙ is the element-wise multiplication operation, {sa, ta} is the 3D face obtained by optimizing
Eq. (1) given a 2D face image xa and Jf is the attack loss. In this paper, we adopt Jf = −Df for
a dodging attack and Jf = Df for an impersonation attack. Since 2D transformations (Xie et al.,
2019) are generally compatible with the objective (5), we can craft a 3D adversarial face to fool the
face recognition systems for diverse 2D and 3D face transformations.

Mapping shape representation. Note that the optimization problem (5) is constrained, which
must ensure that the shape representation s∗ of the 3D adversarial face is only modified in the
designed region in every optimization step. However, this can give rise to the inconsistency of s∗
in the designed mask region and original face representation sa after a long optimization trajectory,
consequently leading to inevitable performance degradation due to shape disharmony of the whole
3D face. To address this issue, we directly reduce the optimization space of the 3D adversarial face
by replacing s∗ with sa in the optimization. In this way, we can entirely restrict the 3D adversarial
face in a prior fixed shape, and only optimize the texture map t∗.

Given the objective function in Eq. (5), we can iteratively apply the fast gradient method (Kurakin
et al., 2017) with a small step size α to generate adversarial examples. In particular, we optimize the
adversarial texture image t∗ via

t∗k+1 = ΠDt (t∗k − α ·M⊙ sign (gk+1)) , (6)

where gk+1 is the updated gradient at the (k + 1)-th iteration, and ΠDt is the projection function that
projects the adversarial images onto the Dt = {t : ∥M⊙ t−M⊙ ta∥∞ ≤ ϵ}. We call it Face3DAdv
(x). Besides, t∗ can be optimized in the latent space w∗ in G2D by following a state-of-the-art
transferable adversarial method (Xiao et al., 2021) on face recognition, which can be formulated as
t∗ = G2D(w∗). And w∗ can be optimized by adopting a popular optimizer, such as Adam (Kingma
& Ba, 2015), which is called Face3DAdv (w).
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Algorithm 1 Face3DAdv

Require: A pre-trained 3D generative model G3D , a FR model f , a real face image xa, a target face image xb,
2D transformation function T .

Ensure: Adversarial image t∗.
1: for iter in MaxIterations N1 do ▷ Stage I: Obtain a 3D face
2: Initialize latent code w = w0;
3: Obtain J from Eq. (1);
4: w ← w − η∇wJ ;
5: end for
6: Forward pass the optimal w∗ into G3D to the 3D face {sa, ta};
7: Initializing t∗0 = xb; ▷ Stage II: Optimize t∗

8: for k in MaxIterations N2 do
9: t∗k = ta ⊙ (1−M) + t∗k ⊙M;

10: Construct 3D adversarial face {sa, t∗k};
11: Get importance probability P̂i,j from Eq. (7);
12: Draw M rendered images {r∗

k,m}Mm=1 according to P̂ ;
13: Obtain the gradient gk+1 = ∇tJf (

∑
m Tm(r∗

k,m),xb);
14: Update t∗k+1 via Eq. (6);
15: end for

4.3 OPTIMIZATION BY IMPORTANCE SAMPLING

The typical EOT (Athalye et al., 2018) randomly selects transformations to craft adversarial examples
during optimization, without considering the importance among different transformations. As
illustrated in Fig. 1, we show the heatmaps of impersonation attacks under different face variations,
which motivates us to conduct a more effective sampling strategy to learn the more difficult or critical
transformations.

Given an adversarial patch, a larger loss Jf on the condition {Vi, Lj} represents a greater attack dif-
ficulty. Thus, we can utilize Jf as a surrogate for evaluating the usefulness of the condition {Vi, Lj}.
Those transformations with larger losses should be selected more frequent in the optimization phase,
yielding a more effective learning strategy.

To achieve this, we define a flexible importance sampling strategy in every iteration through a
probability distribution P , where Pi,j indicates sampling probability on the condition {Vi, Lj},
which can be represented by a softmax function based on Eq. (5) as

Pi,j =
1

Z
eJf (R(sa,t∗;Vi,Lj),x

b), (7)

where Z =
∑

i,j e
Jf (R(sa,t∗;Vi,Lj),x

b) is the normalization factor. Therefore, if a loss value is larger,
we assign a larger value to Pi,j such that the transformation {Vi, Lj} will be selected with higher
probabilities in the optimization trajectory. In each iteration, we sample the points with a batch
size of k according to P . The detailed optimization procedure of Face3DAdv (x) is summarized in
Algorithm 1, which can be easily extended to Face3DAdv (w) by optimizing the latent code w∗ for
obtaining t∗ in Stage II.

5 EXPERIMENTS

In this section, we first present a simulation-based evaluation framework, and present the experimental
results to demonstrate the effectiveness of our proposed Face3DAdv. Finally, we also validate that
the evaluation results in our simulator can obtain a consistent tendency with ones in the real world.

5.1 EXPERIMENTAL SETTINGS

Testing protocol. To facilitate the fair and convenient evaluation of physical attacks on face recog-
nition, we aim to construct a comprehensive testing protocol. Although previous methods (Zheng
et al., 2021) have considered the significance of evaluating physical variations, e.g., certain poses
and lighting in practical scenarios, it is still difficult to conduct a fair comparison between different
methods due to poor reproducibility. To tackle this problem, we first customize realistic transforma-
tion conditions based on the simulation framework to reduce the potential bias by an uncontrolled
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Table 1: The attack success rates (%) of the different face recognition models against impersonation attacks on
LFW with adversarial glasses. ∗ indicates white-box attacks.

Method Pitch Yaw Lighting Mixture
ArcFace CosFace FaceNet ArcFace CosFace FaceNet ArcFace CosFace FaceNet ArcFace CosFace FaceNet

A
rc

Fa
ce

MIM 75.65∗ 8.97 7.84 89.63∗ 11.10 8.00 94.81∗ 11.33 5.76 48.45∗ 3.05 5.65
EOT 86.58∗ 16.16 17.48 99.63∗ 17.53 16.83 99.29∗ 17.67 12.62 73.73∗ 6.78 12.46

GenAP 86.39∗ 27.87 31.68 99.03∗ 37.80 31.17 99.33∗ 41.10 29.19 68.68∗ 14.89 27.18
Face3DAdv(x) 94.42∗ 17.23 17.65 99.63∗ 21.33 17.03 99.29∗ 22.86 16.81 80.88∗ 7.73 15.14
Face3DAdv(w) 94.39∗ 32.29 31.81 99.90∗ 42.27 32.00 99.95∗ 47.10 31.33 84.08∗ 19.69 31.75

C
os

Fa
ce

MIM 9.61 61.32∗ 13.94 12.60 83.8∗ 13.97 13.48 95.52∗ 11.71 5.24 31.08∗ 11.31
EOT 21.71 75.71∗ 29.45 27.77 97.53∗ 32.40 28.38 96.19∗ 28.19 14.20 59.71∗ 26.84

GenAP 28.74 69.45∗ 36.90 37.67 94.73∗ 36.87 40.38 98.14∗ 34.38 20.95 48.34∗ 32.72
Face3DAdv(x) 23.23 85.16∗ 29.55 28.90 97.83∗ 32.80 30.71 96.90∗ 28.76 15.18 71.03∗ 28.37
Face3DAdv(w) 40.06 87.19∗ 46.65 51.40 98.13∗ 46.20 54.00 98.62∗ 45.52 31.30 72.15∗ 43.03

Fa
ce

N
et

MIM 3.77 7.42 66.81∗ 7.50 10.13 67.50∗ 5.00 10.29 70.52∗ 2.34 2.88 34.80∗

EOT 9.87 17.97 98.10∗ 13.53 20.73 98.87∗ 12.62 22.86 96.14∗ 5.70 8.19 86.73∗

GenAP 22.35 23.29 89.61∗ 29.63 31.67 94.47∗ 26.33 31.90 92.57∗ 14.56 12.77 78.72∗

Face3DAdv(x) 15.13 21.55 98.19∗ 20.27 26.67 98.57∗ 20.62 33.43 98.95∗ 9.56 12.59 95.94∗

Face3DAdv(w) 28.94 33.23 98.10∗ 38.17 44.47 98.70∗ 38.29 46.48 98.29∗ 21.54 20.54 96.45∗
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Right lighting

Yaw left

Right lighting
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Left lighting
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Figure 3: Sample results in simulation framework for physical attacks of Eyeglass and Respirator, which
realizes 3D control of the adversarial examples. Thus, the framework can be used as a surrogate for implementing
physical adversarial attacks due to cheap and easy implementation. More examples are presented in Appendix C.

experimenter. In our framework, we conduct a total of 200 experimenters from LFW (Huang et al.,
2007) and CelebA-HQ (Karras et al., 2017), which are two of the most widely used benchmark
datasets on both low-quality and high-quality face images. For every experimenter, we introduce
controllable variations, including different poses and lightings, for reliable evaluation of adversarial
attacks. As for poses, we choose 3D face variations, i.e., yaw and pitch. These two variations of all
experimental faces are required to have specific movement ranges of the cruciform rail from −15 to
15 angles, respectively. Meanwhile, we also create a series of relighted testing images by creating
a shading map of lighting from left to right. Furthermore, we have linearly combined these thee
conditions to constitute a new type, named mixture. The detailed testing protocol and results of 2D
transformations (Xie et al., 2019; Komkov & Petiushko, 2021) are provided in Appendix A.

Networks. We use three face recognition models with different model architectures and training
objectives for evaluation, i.e., ArcFace (Deng et al., 2019b), CosFace (Wang et al., 2018), and
FaceNet (Schroff et al., 2015). Each model obtained over 99% benign recognition accuracy on LFW
by following its corresponding optimal threshold. If the distance of two images that are fed into the
model exceeds the threshold, we regard them as different identities; otherwise, as the same identities.

Compared methods. We compare with MIM (Dong et al., 2018) that integrates a momentum for
improving the transferability of adversarial examples, EOT (Athalye et al., 2018) that synthesizes
examples over a distribution of transformations, and GenAP (Xiao et al., 2021) that is a state-of-the-
art transferable adversarial method on face recognition based on generative models. We also take
AdvHat (Komkov & Petiushko, 2021) as another baseline by wearing hats, which is also blended
into EOT (Athalye et al., 2018) to boost the black-box transferability.

Attack types. We consider three types of physically realizable attacks in the simulation environment,
i.e., Eyeglass (Xiao et al., 2021), Respirator (Tong et al., 2021; Zhu et al., 2022), and Hat (Komkov &
Petiushko, 2021) in 3D pasting ways. Then, we mainly adopt Eyeglass for evaluating the vulnerability
of face recognition system in the physical world due to its overall excellent black-box performance,
which is also consistently observed in (Xiao et al., 2021). Besides, we further verify the better
practicality of the attack mechanism of 3D Eyeglass than 2D ones w.r.t. imperceptibility in Sec. 5.3.
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Figure 4: Attack success rates (%) of different attacks under various variations, including pitch, yaw, and lighting.
FaceNet is chosen as a white-box model, and test black-box performance by CosFace.

Table 2: Comparison of AdvHat and ours by two
types. CosFace is a white-box model.

Type Testing Method Face variations
Pitch Yaw Lighting Mixture

H
at

ArcFace AdvHat 2.97 4.37 4.43 2.34
Face3DAdv 11.13 11.83 12.24 8.63

CosFace AdvHat 63.13 84.50 89.76 39.44
Face3DAdv 75.29 81.03 88.54 56.45

FaceNet AdvHat 3.35 3.80 4.86 4.60
Face3DAdv 9.45 9.57 9.29 9.89

R
es

pi
ra

to
r ArcFace AdvRespirator 19.97 24.83 26.71 12.71

Face3DAdv 36.26 48.43 49.10 29.02

CosFace AdvRespirator 74.77 94.83 95.67 47.44
Face3DAdv 89.58 96.30 96.29 67.31

FaceNet AdvRespirator 16.45 18.53 18.67 12.47
Face3DAdv 30.65 31.67 32.95 26.52

Figure 5: The attack success rate (%) of two methods
against black-box 3D face recognition model by using the
attack type of Respirator.
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Implementation details. We mainly perform impersonation attacks based on the pairs with different
identities in this paper, considering the more difficult and practical property than dodging attacks.
The hyperparameters and the evaluation results of dodging attacks are presented in Appendix B.

5.2 BENCHMARKING ON SIMULATION FRAMEWORK

In this section, we compare the performance of different physical attacks on face recognition, based
on the proposed simulation framework. Fig. 3 shows examples for a physical attack in the simulation
framework, which effectively achieves 3D control of the adversarial examples.

Effectiveness of the proposed method. To verify the effects of different face variations, we compare
the performance of different methods. Table 1 show the attack success rates (%) of the different face
recognition models on LFW, respectively. We can see that different face variations weaken the attack
performance of the methods in varying degrees, especially for the effect of mixture type. Despite
this, Face3DAdv with two variations leads to higher white-box attack success of face recognition
models. The results also demonstrate that Face3DAdv can achieve more robust and effective testing
performance, benefitting from various physical variations in the optimization phase.

Transferability of the proposed method. We then feed the crafted adversarial images against one
face model into other models for testing the transferablity. The results indicate that Face3DAdv
can obtain better black-box transferability in the simulation framework. Meanwhile, Fig. 4 shows
the detailed performance of the different face variations based on white-box FaceNet. Note that
Face3DAdv (w) performs best where the axis of face conditions belongs to zero, revealing that our
method can consistently enhance the black-box performance even in without variations.

Comparison with AdvHat (Komkov & Petiushko, 2021). We compare the performance of our
method with AdvHat by adopting the attack type of Hat in Table 2. Besides, we introduce its variation
of attack type based on Respirator (Zhu et al., 2022), named as AdvRespirator. We found that the
optimized region of Hat is not very prominent in the whole face region, making it hard to fully utilize
the information of 3D variations in the white-box optimization phase. Nevertheless, our method
consistently obtains better results in terms of effectiveness and transferability in these two types.

8
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Table 3: Ablation study of the importance sampling
strategy. ‘w/o IS’ indicates equally sampling. CosFace
is a white-box model.

Test Pitch Yaw Lighting
w/o IS with IS w/o IS with IS w/o IS with IS

Arc. 39.12 40.06 50.07 51.40 52.62 54.00
Cos. 84.90 87.19 98.37 98.13 98.10 98.62
Fac. 45.16 46.65 46.03 46.20 45.67 45.52

Table 4: The attack success rates (%) of physical experi-
ments with 3D adversarial glasses against CosFace. We
also adopt the popular methods of face anti-spoofing to
test the imperceptibility, including a commercial API.

Method Effectiveness Imperceptibility
Pitch Yaw Lighting DBMnet API

GenAP 42.43 53.50 57.70 90.62 5.11
Face3DAdv 64.62 69.37 72.40 96.77 85.52

Domain Gap

Black-box Model I Black-box Model II

0.421 0.401 0.398

0.416 0.402 0.390

(a) (b)
Figure 6: (a) shows black-box results of physical attacks by wearing the 3D adversarial glasses. Green box refers
to successful attacks, and similarity scores are marked. (b) presents the mean similarity (%) in the simulator and
real world by 10 volunteers. The domain gap derives from printer, uncontrolled bias by volunteers, etc.

Effectiveness on 3D face recognition model. Since the proposed method lies in textured-based
attacks almost without changing the depth map of a face, it should be able to attack 3D face recognition
by leveraging the black-box transferability. To verify this, we introduce typical RGBD-FR (Xiong
et al., 2019) that utilizes depth images to explore the global facial layout. Fig. 5 shows the results
against RGBD-FR based on the attack type of Respirator. Our method by texture-based attacks can
achieve effective attacks against 3D face recognition based on black-box transferability.

Ablation study of the importance sampling strategy. We conduct an ablation study to investigate
the effects of the sampling strategy introduced in Sec. 4.3. Table 3 shows the attack success rates with
and without importance sampling. After introducing this strategy, ours can better exploit profitable
transformations in the optimizing phase, making it more effective during the testing phase.

5.3 EXPERIMENTS IN THE PHYSICAL WORLD

In this section, we invited 10 volunteers to be the attackers, and assigned another random identity
as the victim for this experiment. The main steps were as follows: First, we took one face photo
of a volunteer with a fixed camera under natural light. Then, we used the simulation framework
for adversarial attacks under different variations and get adversarial glasses for each volunteer. The
adversarial glasses were 3D-printed and pasted on real faces. Finally, after wearing glasses, the
volunteers tried to reproduce different poses and lighting via a stabilized environment source. Fig. 6
and Table 4 illustrate the effectiveness of our method under varying face variations over the baseline
in the real world. The main reason is that Face3DAdv benefits from various simulated physical
transformations, and presents the consistent performance in the real world. Besides, the curves also
verify that simulator can obtain a consistent tendency of attacks in the physical world. Furthermore,
3D texture-based attack is also more conducive to passing Face Anti-Spoofing steadily, e.g., popular
DBMnet (Jia et al., 2021) and commercial API, since 3D texture-based attack does not almost change
the depth. We also provide details in Appendix D and video demos in the supplementary material.

6 CONCLUSION

In this paper, we introduce a simulation framework based on 3D face modeling, which can control
different face variations and physical conditions to conduct reproducible evaluations. Based on
this, we also propose Face3DAdv to craft more robust adversarial patches by considering the 3D
face transformations. Extensive experiments verify the consistent improvements over the previous
methods in both simulated and physical environments, against diverse face recognition models.

9
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ETHICS STATEMENT

Face recognition models based on DNNs are vulnerable to adversarial examples, which may lead to
serious security problems in real-world applications. It is very imperative to understand the actual
progress of the field. This paper proposes a novel framework to explore the security vulnerabilities
of face recognition models, which can facilitate to evaluate and develop more robust models. One
current limitation of our method is that the cost of 3D printing for physical attacks is more expensive
than 2D printing.

REPRODUCIBILITY STATEMENT

We provide the code to reproduce our results in the supplementary material.
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A DETAILED TESTING PROTOCOL

In the simulation framework, we choose a total of 200 experimenters from LFW and CelebAHQ,
which are near-front angles. For every experimenter, we introduce a controllable environmental
testing protocol including different poses and lightings as follows.

1) Pitch: based on the proposed simulation framework, we control specific movement ranges
of the cruciform rail from −15 to 15 angles, and evaluate the performance of attack methods
by using the obtained image of every angle. Thus there are a total of 30 images for every
experimenter.

2) Yaw: we similarly control movement ranges of the cruciform rail from −15 to 15 angles,
and evaluate the performance of attack methods for images for every angle. Therefore, there
are a total of 30 images for every experimenter in this type.

3) Lighting: we obtain relighted testing images by creating a shading map of lighting from
−60 to 60 degrees. There are a total of 20 images for every experimenter in this type when
the sampling interval is set to 6.

4) Mixture: We have linearly combined these three conditions to constitute a new type, named
mixture. Specifically, we sample uniformly at intervals of 6 under [−15, 15] degrees of yaw
and pitch, respectively, meanwhile setting three different degrees of lighting as -40, 0 and
40. Thus there are a total of 108 images for every experimenter in this type.

In total, our testing protocol in the simulation framework consists of 200 experimenters and a total of
37,600 testing faces. Therefore, a wide range of different physical types in the evaluation, far ahead
of the previous datasets, makes our testing protocol challenging and realistic for the existing attack
methods.

Evaluation of 2D transformations. We consider three types of 2D physical transformations, which
are rotation, projective transformation and their mixture as follows.

1) Rotation: the angle of the rotation is sampled from N (0, σ1).
2) Projective transformation: it has eight parameters including [a0, a1, a2, b0, b1, b2, c0, c1].

Given a point (x, y), we can calculate the mapping point (x′, y′) = ((a0x + a1y +
a2)/k, (b0x + b1y + b2)/k, ), where k = c0x + c1y + 1. a0 and b0 are sampled from
N (1, σ1), and other parameters are sampled from N (0, σ1).

3) Mixture-2D: We orderly combine these two conditions to constitute a new type, named
Mixture-2D.

In the evaluation of 2D transformation, we set the fixed random seed and sample σ uniformly from
U(0, 0.1). Table 5 shows comparison of EOT and Face3DAdv by 2D variation types. We can see that
the performance of white-box attack between the two methods is close to 100%, indicating that the
methods can resist the effect of 2D variations in certain varying degrees. The main reason is that the
2D variations can be easily integrated into the optimization phase. Meanwhile, Face3DAdv can obtain
better black-box transferability due to the involvement of various 3D physical conditions. Therefore,
3D transformations can be regarded as more difficult and practical than 2D transformations, which
also further encourages us to evaluate the performance of different attack methods in varying 3D
physical transformations.

B MORE EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

Note that MIM and EOT select optimal parameters as report for black-box performance by follow-
ing Xiao et al. (2021). We thus set the number of iterations as N = 400, the learning rate α = 1.5, the
decay factor µ = 1, and the size of perturbation ϵ = 40 for impersonation and ϵ = 255 for dodging
under the ℓ∞ norm bound, which are identical for all the experiments. The sampling number of EOT
is set as M = 10. And GenAP adopts original public hyperparameters. As for Face3DAdv, We set
the number of iterations N1 = 300, N2 = 100, and the learning rate of Adam optimizer η = 0.01.
Besides, we sample 10 transformations from 20 candidates for Ours in every optimization step.
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Table 5: Comparison of EOT and ours by 2D variation types. CosFace is a white-box model.

Testing Method Face variations
Rotation Projection Mixture-2D

ArcFace EOT 16.0 10.0 12.0
Face3DAdv 18.0 12.0 16.0

CosFace EOT 99.0 99.0 99.0
Face3DAdv 98.0 98.0 98.0

FaceNet EOT 13.0 13.0 13.0
Face3DAdv 18.0 18.0 18.0

Table 6: The attack success rates (%) of the different models against impersonation attacks on CelebA-HQ with
adversarial glasses. ∗ indicates white-box attacks.

Method Pitch Yaw Lighting Mixture
ArcFace CosFace FaceNet ArcFace CosFace FaceNet ArcFace CosFace FaceNet ArcFace CosFace FaceNet

A
rc

Fa
ce

MIM 72.71∗ 9.00 11.68 90.63∗ 10.33 11.17 94.57∗ 13.05 9.71 45.58∗ 4.26 8.55
EOT 81.13∗ 12.94 16.81 97.33∗ 16.93 18.23 98.57∗ 16.86 15.38 57.92∗ 5.93 12.98

GenAP 85.90∗ 30.16 39.48 99.10∗ 40.33 40.23 99.10∗ 48.48 36.81 69.05∗ 19.19 35.44
Face3DAdv(x) 92.19∗ 15.32 21.23 98.77∗ 20.47 23.37 99.33∗ 25.86 22.71 79.74∗ 8.76 18.58
Face3DAdv(w) 93.84∗ 34.23 46.35 99.97∗ 47.27 48.70 99.71∗ 53.71 44.19 83.04∗ 24.29 42.15

C
os

Fa
ce

MIM 16.10 54.48∗ 19.90 21.07 77.27∗ 22.83 21.33 89.76∗ 19.86 9.58 25.94∗ 16.63
EOT 19.32 60.06∗ 24.97 24.30 85.23∗ 29.90 26.38 94.81∗ 23.76 11.69 31.81∗ 20.32

GenAP 44.29 68.13∗ 52.03 55.67 95.07∗ 55.30 56.14 98.10∗ 51.57 32.31 48.62∗ 46.12
Face3DAdv(x) 28.97 83.19∗ 36.06 37.50 95.40∗ 39.53 40.57 99.05∗ 36.76 21.75 65.38∗ 32.23
Face3DAdv(w) 49.71 83.68∗ 55.29 59.40 95.43∗ 58.30 60.95 98.86∗ 56.29 39.79 67.31∗ 52.92

Fa
ce

N
et

MIM 8.39 6.16 68.26∗ 9.97 7.70 70.47∗ 10.95 8.71 65.14∗ 5.79 3.26 34.83∗

EOT 10.17 9.77 88.55∗ 13.40 11.97 92.93∗ 15.24 13.38 87.76∗ 7.07 5.14 56.93∗

GenAP 32.23 25.81 94.45∗ 40.77 36.67 99.13∗ 40.05 40.38 94.14∗ 23.33 15.91 82.79∗

Face3DAdv(x) 20.26 18.74 98.74∗ 26.73 23.67 99.87∗ 30.43 31.62 99.67∗ 15.38 11.95 95.86∗

Face3DAdv(w) 42.29 36.61 99.77∗ 54.20 51.57 100.0∗ 52.90 56.76 99.76∗ 32.44 25.63 98.47∗

B.2 TRAINING EFFICIENCY

We set the number of iterations as N and the sampling number of EOT as M in baselines, thus the
adversarial patch is generated by N ∗ M forward and backward propagations. As a comparison,
our method requires sampling M times from ML candidates (ML = 2 ∗M in our setting) at every
iteration, thus needs to perform N ∗ML forward propagations and N ∗M backward propagations.
Overall, we only use acceptable overhead on running complexity in the inference phase, and obtain a
better performance.

B.3 EVALUATION OF DODGING ATTACKS

We perform dodging attacks based on the pairs of images with the same identities on LFW. Table 7
shows the attack success rates (%) of the different face recognition models against dodging attacks
on LFW with adversarial glasses. We can see that the overall success rates of dodging attacks are
very high, which illustrate that impersonation attacks are more difficult than dodging attacks. Despite
this, Face3DAdv with two variations leads to higher white-box and black-box success rates of face
recognition models. Similar to the conclusion in impersonation attacks, the results of dodging attacks
also demonstrate that Face3DAdv can achieve more robust and effective testing performance. The
main reason is that Face3DAdv benefits from various physical variations in the optimization phase.

B.4 MORE EVALUATION OF IMPERSONATION ATTACK

Table 6 show the attack success rates (%) of the different face recognition models on CASIA. The
results also demonstrate that Face3DAdv can achieve more robust and effective testing performance,
benefitting from various physical variations in the optimization phase.

C MORE EXAMPLES

We show the four mentioned types of physically realizable adversarial attacks in this paper in
Fig. 7. In Fig. 8, Fig. 9 and Fig. 10, we show more results of Eyeglass in simulation framework
for physical attack on different datasets, which effectively realize 3D control of the adversarial

14



Under review as a conference paper at ICLR 2023

Table 7: The attack success rates (%) of the different face recognition models against dodging attacks on LFW
with adversarial glasses. ∗ indicates white-box attacks.

Method Pitch Yaw Lighting Mixture
ArcFace CosFace FaceNet ArcFace CosFace FaceNet ArcFace CosFace FaceNet ArcFace CosFace FaceNet

A
rc

Fa
ce

MIM 100.0∗ 65.19 65.19 99.93∗ 60.23 62.17 100.0∗ 69.81 70.81 99.79∗ 85.10 75.32
EOT 100.0∗ 76.32 76.61 100.0∗ 74.40 74.43 100.0∗ 82.57 81.67 99.98∗ 90.10 85.67

GenAP 100.0∗ 95.29 97.45 100.0∗ 96.23 97.73 100.0∗ 97.43 97.81 100.0∗ 98.44 98.38
Face3DAdv(x) 100.0∗ 86.94 87.32 100.0∗ 86.20 85.93 100.0∗ 90.00 87.48 100.0∗ 94.87 91.23
Face3DAdv(w) 100.0∗ 96.52 98.39 100.0∗ 96.33 98.13 100.0∗ 97.69 97.97 100.0∗ 98.91 98.77

C
os

Fa
ce

MIM 45.03 99.77∗ 57.32 27.37 100.0∗ 57.10 39.71 100.0∗ 63.76 68.32 99.31∗ 70.08
EOT 49.39 99.97∗ 61.13 33.20 100.0∗ 60.87 45.81 100.0∗ 64.71 71.78 99.78∗ 73.66

GenAP 86.42 99.94∗ 98.29 81.27 100.0∗ 97.90 85.71 100.0∗ 97.71 93.87 99.99∗ 98.94
Face3DAdv(x) 67.77 100.0∗ 88.81 54.63 100.0∗ 90.53 68.62 100.0∗ 91.29 84.34 100.0∗ 94.23
Face3DAdv(w) 89.32 100.0∗ 98.65 85.80 100.0∗ 98.33 87.76 100.0∗ 98.19 95.42 100.0∗ 98.79

Fa
ce

N
et

MIM 45.84 61.71 98.52∗ 29.07 57.37 97.60∗ 39.38 62.14 99.76∗ 67.92 83.03 97.56∗

EOT 52.00 78.26 100.0∗ 37.07 76.77 100.0∗ 47.10 79.81 100.0∗ 73.36 91.01 100.0∗
GenAP 92.42 96.03 100.0∗ 88.83 98.13 100.0∗ 90.05 98.38 100.0∗ 96.31 98.38 100.0∗

Face3DAdv(x) 66.74 93.84 100.0∗ 52.20 92.80 100.0∗ 67.90 94.10 100.0∗ 82.47 97.06 100.0∗
Face3DAdv(w) 96.06 98.71 100.0∗ 96.23 99.03 100.0∗ 97.10 99.00 100.0∗ 98.17 99.60 100.0∗

Eyeglass Eyeglass Frame RespiratorHat
Figure 7: The used four types of physically realizable adversarial attacks in this paper.

examples, including pitch, yaw, lighting, and mixture. Thus, the framework can be reliably used as a
surrogate for implementing physical adversarial attacks on face recognition due to cheap and easy
implementation.

D PHYSICAL EVALUATIONS

In physical experiments, we mainly present the following steps. First, we took a face photo of a
volunteer with a fixed camera under natural light. Then, we used the simulation framework for
adversarial attacks under different variations and get adversarial glasses for each volunteer. The
adversarial glasses were 3D-printed and pasted on real faces. Finally, after wearing adversarial
glasses, the volunteers tried to reproduce different conditions, including some specific yaw, pitch and
lighting via a stabilized environment source. We craft 3D adversarial eyeglasses against CosFace by
proposed Face3DAdv, and perform attacks against white-box and two unknown black-box models
(commercial face recognition API or other recognition models). We provide the whole video demos
in the supplementary material for evaluation under varying physical conditions, which also show
the output similarity and prediction results of every frame. By wearing 3D adversarial glasses, the
attacker can effectively and steadily impersonate the target identity under different variations against
white-box and black-box models, as predicted by these models.

Face Anti-Spoofing. To demonstrate the effectiveness of Face3DAdv in face anti-spoofing, we
choose a powerful commercial face anti-spoofing API service. The working mechanism and training
data are completely unknown for us. We then feed the crafted adversarial images into the black-box
API for evaluating the effectiveness. We obtain a satisfying performance on passing the face anti-
spoofing API with a success rate of 85.52% under diverse variations, which outperforms 2D methods
by a margin. Since 3D texture-based attack does not almost change the depth map of a face, it is also
more conducive to passing commercial Face Anti-Spoofing API steadily.

The practical usage of Eyeglass. The attack mechanism of Eyeglass can be regarded as a practical
choice due to the following two aspects. 1) Imperceptibility. In a practical FR system, the main
defensive module of detecting the abnormality or perceptibility is a Face Anti-Spoofing API, which
aims to distinguish whether an image belongs to a real face or not. And we demonstrated that the
adversarial 3D Eyeglass can steadily pass a commercial Face Anti-Spoofing API. 2) Black-box
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effectiveness. The overall performance of Eyeglass is best while considering Eyeglass, Respirator
and Hat in the main paper. Although the adversarial patches of Eyeglass Frame are more unsuspicious
than ones of Eyeglass, they also lead to very undesirable black-box attack performance. Furthermore,
the physical experiments of Eyeglass also demonstrated the practicality and effectiveness.

Lighting

Pitch

Yaw

Mixture

Figure 8: Sample results in simulation framework for physical attack on CelebA-HQ, which realizes 3D control
of the adversarial examples, including pitch, yaw, lighting and mixture.
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Figure 9: Sample results in simulation framework for physical attack on LFW, which realizes 3D control of the
adversarial examples, including pitch, yaw, lighting and mixture.
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Figure 10: Sample results in simulation framework for physical attack on LFW, which realizes 3D control of the
adversarial examples, including pitch, yaw, lighting and mixture.
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