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ABSTRACT

Explainable recommender systems have attracted much interest in recent years
as they can explain their recommendation decisions, enhancing user trust in the
systems. Most explainable recommender systems rely on human-generated ratio-
nales or annotated aspect features from user reviews to train models for rational
generation or extraction. The rationales produced are often confined to a single
review. To avoid the expensive human annotation process and to generate ex-
planations beyond individual reviews, we propose an explainable recommender
system trained on reviews by developing a transferable Geometric InformAtioN
boTtleneck (GIANT), which leverages the prior knowledge acquired through clus-
tering on a user-item graph built on user-item rating interactions, since graph
nodes in the same cluster tend to share common characteristics or preferences.
We then feed user reviews and item reviews into a variational network to learn
latent topic distributions which are regularised by the distributions of user/item
estimated based on their distances to various cluster centroids of the user-item
graph. By iteratively refining the instance-level review latent topics with GIANT,
our method learns a robust latent space from text for rating prediction and explana-
tion generation. Experimental results on three e-commerce datasets show that our
model significantly improves the interpretability of a variational recommender us-
ing the Wasserstein distance while achieving performance comparable to existing
content-based recommender systems in terms of rating prediction accuracy.

1 INTRODUCTION

Typically, a recommender system compares users’ preferences with item characteristics (e.g., item
descriptions or item-associated reviews) or studies user-item historical interactions (e.g., ratings,
purchases or clicking behaviours) in order to identify items that are likely of interest to users. In
addition to predictive performance, interpretable recommenders aim to give rationale behind the
rating given by a user on an item (Ghazimatin et al., 2020; Zhang et al., 2020). Most existing
interpretable recommenders can either generate rationale or extract text spans from a given user-
item review as explanations of model decisions. Both rationale generation and extraction require
annotated data for training, e.g., short comments provided by users explaining their behaviours of
interacting with items, or annotated sentiment-bearings aspect spans in reviews (Zhang et al., 2014;
Ni et al., 2019; Chen et al., 2019; Li et al., 2020; Tan et al., 2021a).

We argue that generating explanations based on a specific user-item review document suffers from
the following limitations. First, some reviews may be too general to explain the rating, rendering
them useless for explanation generation. For example, the review ‘I really like the smartphone,
will recommend it to my friends’ does not provide any clue why the user likes the smartphone.
Second, features directly extracted from a review document may fail to reflect some global properties
which can only be identified from implicit user-item interactions. For example, meaningful insights
could still be derived from reviews towards items that are not directly purchased/rated by a user but
preferred by other like-minded users. Finally, explanation generation model from user/item reviews
are often supervised by human-annotated rationales, which are labour-intensive to obtain in practice.

To address the aforementioned limitations, we propose an AutoEncoder (AE) framework with vari-
ational Geometric InformAtioN boTtleneck (GIANT) to incorporate the prior from user-item inter-
action graph to refine the induced latent factors of user and item, and generate explanations in an
unsupervised manner. For a user-item pair, all reviews written by the user and reviews posted on the
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Figure 1: An encoder-decoder structure with a geometric information bottleneck regularisation,
which is derived from the U-I interaction graph and used as a prior imposed on Z. The latent
variable z thus can capture the geometric affiliations in graph and be the soft cluster assignment
distributions. It enables the use of like-minded users u3 and similar items i2 and for generating
explanations beyond the input user-item pair (i1, u2). Existing rationale extraction methods can
only extract indicative words (shown in red) from the given review pair. Our method can generate
rationale from reviews written by other like-minded users or on similar items, which are assigned
into the same latent dimension/cluster.

item are fed into two separate encoders to infer latent factors, and predict rating based on the match
of their latent factors. The latent variables are supposed to capture the key semantic information
to recover the original review text written by the user on the item. Different reviews are assigned
to different latent dimensions according to posterior distributions and we extract the representative
words in each dimension to summarize the cluster topic. The explanations are thus from the reviews
related to the topic of the assigned cluster (See in §6.3).

Our proposed framework is illustrated in Figure 1. The geometric regularisation refers to the cluster-
based distance with Gaussian variance, which is derived by firstly clustering the users/items in the
user-item interaction graph, and then calculating the distribution of a user/item as its distance to each
cluster centroid by a Gaussian kernel (§ 4.1). To impose the regularisation on the latent variables
of the AE framework taking the set of user reviews and item reviews as input, we apply the KL
divergence to minimize the discrepancy between the induced posterior distribution of users z(u),
and items z(i), and the geometric regularisation as the prior (§4.2), after linking the cluster to the
review text encoder via prior-centralisation (§4.2).

Experimental results on the three commonly used benchmarking datasets show that the proposed
method achieves performance comparable with several strong baselines in recommendation. More-
over, the quantity and the quality analysis in interpretability show that our method can generate
coherent, diverse and faithful explanations.

2 RELATED WORK

We review recommender systems, with particular attention to those built on Variational Autoencoder
(VAE) (Kingma & Welling, 2014) or offering explanations of recommendation decisions.

Recommender with variational autoencoder Text data such as user reviews, item or brand de-
scriptions could be important for developing a high-quality recommender system as they can be
exploited to address the sparsity issue in user-item interactions. HFT (McAuley & Leskovec, 2013)
and CTR (Wang & Blei, 2011) adopted Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to
extract latent topics from review text. VAE can also be used for text modeling due to its ability in
extracting latent and interpretable features (Fei et al., 2021; Truong et al., 2021; Wang et al., 2020).
Truong et al. (2021) argued that the commonly used isotropic Gaussian in VAE is over-simplified
and proposed BiVAE by introducing constrained adaptive prior (CAP) for learning user- and item-
dependent prior distributions. More recently, review information is used to disentangle the latent
user intents at the finer granularity, for example, DisenGCN (Ma et al., 2019a) and DisenHan (Wang
et al., 2020) used the graph attention mechanism to differentiate multiple relations and features.

Explainable Recommender System One popular interpretable method is to train a language gen-
eration model with the ground-truth explanations supplied, which can be the first sentence of a given
review or human-annotated text spans in the review text (Li et al., 2017; Chen et al., 2019; Ni et al.,
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2019; Li et al., 2022). Feature-level explanations aim to provide the important item features the
users care about when making decisions (Zhang & Chen, 2020). Explicit Factor Model adopted
Matrix Factorization (MF) to predict review ratings and aligned each dimension of latent factors of
the MF results with some item features, thus explaining the recommendation decision by the corre-
sponding features (Zhang et al., 2014). Other approaches firstly processed the review text to extract
user-aspect-opinion and item-aspect-opinion tuples. They then modeled the interactions between
the two tuples to derive the rating and the indicative features (Chen et al., 2016; Wang et al., 2018;
Tan et al., 2021b; Chen et al., 2020). However, the aforementioned approaches suffer from two ma-
jor issues. Some approaches require aspects to be extracted first in order to provide aspect-related
predictive features as interpretations, thus heavily dependent on the quality of the aspect extractors
employed; while others rely on human-annotated rationales to train supervised language generators
for explanation generation. Our proposed approach can instead generate explanations with the only
supervision signals coming from review ratings.

3 GEOMETRIC INFORMATION BOTTLENECK

To consider implicit user-item interactions for developing an interpretable recommender system,
we propose to incorporate the geometric regularisation derived from user-item interaction graphs to
learn the latent factors of users and items from review text in a variational network. Although various
work has been proposed to adopt richer priors to infer a more complex and realistic posterior in
standard VAEs (Tomczak & Welling, 2017; Zhao et al., 2017), our solution is different from existing
approaches as we need to impose the prior knowledge learned from the graph modality to constrain
the learning of latent variables in the text modality. In what follows, we show how this can be done
under the theory of information bottleneck.

Based on the Information Bottleneck (IB ) theory (Tishby & Zaslavsky, 2015), we can train an
encoder-decoder architecture x

encode−−−−→ z
decode−−−−→ x̄, where x ∈ X , z ∈ Z, x̄ ∈ X̄ are the input,

the hidden, and the reconstructed representations, respectively, in order to preserve the meaningful
information about X̄ in Z while maximally compress the information of X . We achieve it by
maximising the following equation:

OIB = I(X̄;Z)− β · I(X;Z), (1)

where I(·) denotes the mutual information, β is a Lagrange multiplier. The second term in Eq. (1)
is to maximally compress X , equivalent to minimize the mutual information between X and Z,
denoted as I(X;Z) ≤ Ic, Ic is the upper bound.

In this paper, the goal is to build a mechanism which is able to compress the information across
different modalities, i.e., the text and graph, while keep the mutual information between the input X
and compressed representation Z bounded by an upper bound as well.

Intuitively, we assume the n-th input xn has representations xt
n ∈ Xt and xg

n ∈ Xg under different
modalities1 satisfying the constraint, I(Xt;Xg) ≥ Ix, since Xt and Xg are derived from the same
input, they should be relevant. Then, two independent well-trained encoder-decoder architectures in
the two modalities optimised by Eq. (1) are constrained by I(Xt;Zt) ≤ Ic and I(Xg;Zg) ≤ Ic,
respectively. We derive a new upper bound for the multi-modality IB as follows:2

I(Xt;Zg) ≤ H(Xt)−H(Xg) +H(Xg|Xt) + Ic (2)

where H(·) and H(·|·) are entropy and conditional entropy, respectively. Therefore, we can max-
imise the objective function using the input from the text modality, with a regularisation from another
modality such as a user-item interaction graph, but still maintain a new upper bound. 3

Ot
IB = I(X̄t;Zt)− β · I(Xt;Zg). (3)

According to (Alemi et al., 2017), the above lower bound can be approximated by applying the
reparameterisation trick (Kingma & Welling, 2013) with a random Gaussian noise ϵ:

Ot
IB = ΣN

n=1Eϵ∼p(ϵ)[− logq(x̄t
n|f(xt

n, ϵ)]︸ ︷︷ ︸
Recons. term: Q(xt

n)

/N + β ·KL(p(Zt|xt
n, ϵ)|r(Zg))︸ ︷︷ ︸

KL−div. term: KL(Zt|Zg)

, (4)

1In the rest of paper, we use t for text and g for graph.
2The proof is shown in the Appendix B.
3The proof is shown in the Appendix B.
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where xt
n is the training sample from one modality Xt (e.g., text), x̄t

n is the VAE-based recon-
struction output, q(·) and p(·) are the posterior probabilities estimated by decoder and the encoder,
respectively, r(Zg) is the estimated distribution from another modality (e.g., user-item interaction
graph). Here, Eq. (4) has a similar form as β-VAE which contains a reconstruction term Q(xt

n)
defined by the posterior probability and a KL-divergence term KL(Zt|Zg) regularised by the prior
from another modality Zg . By this equation, we are able to guarantee that the information bottleneck
between two modalities are:

• Transferable − According to Eq. (2), the information bottleneck between modalities is
still constrained by the global information bottleneck, i.e., we can take the bound from one
modality to guide the training on the other.

• Practicable − One challenge in the training of variational models is the choice of the prior
distribution. By Eq. (2), we do not have to utilise a pre-defined prior but instead use the
posterior constraints from other modalities, which are more flexible and efficient.

• Interpretable − The alignment between representations from different modalities and their
corresponding probabilities defined in the geometric space makes it possible to use modal-
ities offering better interpretability, such as review text, to explain the black-box features
from other modalities.

4 GIANT FRAMEWORK

We propose a novel explainable recommender built on VAE with the geometric information bottle-
neck. For a given (user, item) pair, the input to our recommender is a set of reviews written by
the user and a set of reviews on the item. As each user or item is associated with multiple reviews,
and some reviews might be very long, the Convolutional Neural Network (CNN) is used to encode
reviews due to its efficiency in encoding long sequences, as have been previously studied in Chen
et al. (2018); Zheng et al. (2017). We then generate the user or item representation by aggregating
their associated multiple reviews by the attention mechanism. The final contextual vector for user u
and item i is denoted as x(u) and x(i), respectively.

Given the contextual vectors, we employ two geometric regularised variational networks to infer
their latent factors, in order to better capture their latent semantic topics. According to Eq. (2),
we use graph-based Zg as the transferable information bottleneck to regularise the optimisation of
the text-based Zt. To ensure feasibility and robustness, we propose an initialisation trick called
prior-centralisation which uses the Gaussian kernel based geometric estimation to regularise the
initialisation and optimisation of the encoders based on the transferable information bottleneck. In
the experiments section, we verify the interpretability of our proposed method by the alignment
between the two latent feature spaces from graph and text modalities.

4.1 DERIVING PRIORS FROM USER/ITEM CLUSTERS IN INTERACTION GRAPH

In the user-item bipartite graph G, a node can be either a user or an item. For each user-item pair,
an edge is created if the user has previously rated on the item and the rating score is higher than the
average rating score calculated across all user-item ratings.4 We use the LightGCN (He et al., 2020)
to encode our interaction graph and obtain the user and item embeddings.

Once user/item embeddings are learnt, we apply K-means on the learned node embeddings to derive
the cluster centroid vectors, denoted as C(u)

k for users and C
(i)
k for items, k ∈ {1, 2, · · · ,K}. We

use the Radial Basis Function (RBF) kernel to compute the distance between a user or item with the
cluster k as the probability of assigning the user or item j to the k-th cluster, ρjk:

ρgjk =
exp

(
−
∥∥∥egj −Ck

∥∥∥2 /2α2
)

∑K
k′=1 exp

(
−
∥∥∥egj −Ck′

∥∥∥2 /2α2
) , (5)

where egj is graph node embedding for user or item j, Cg
k is k-th cluster centroid vector for user

embeddings or item embeddings, α is a hyper-parameter adjusted according to the data density.
4We have also experimented with the creation of edges for each observed user-item pair, but observed worse

performance.
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The cluster-based distribution ρg = {ρgjk} is then used to regularise the latent factors for users and

items, as will be shown in § 4.2. Moreover, we have Σkρ
g
jk = 1, that is, the distribution of {

√
ρgjk}

resides in a hyper spherical cap area on an uniform K-ball, weakly approximating to a Gaussian
distribution when K is large (Diaconis & Freedman, 1987). We therefore obtain a latent vector Zg

and a corresponding geometric space where the difference on each basis follows a Gaussian prior.

4.2 A POSTERIOR OVER CONTROLLABLE DISTRIBUTIONS FROM TEXT

In section 4.1, we estimate the distribution of Zg from a user-item bipartite graph. The next step
is to optimise the objective of Eq. 4 to infer the latent factors of users and items, z(u) and z(i) in
text modality. In this section, we perform the following two steps:(1) minimising the lower bound
of Ot

IB by a RBF-kernel estimated posterior probability; and (2) a prior-centralisation term which
encourages the encoder weight matrix in the variational network to be closer to the cluster centroid
representations learned in the interaction graph, so that the learnt latent variables naturally capture
the cluster-based distances.

Optimising Conditional Probability by Kernel Density For the Q(xt
n) in Eq. (4) which is de-

fined as the conditional probability of logq(x̄t
n|f(xt

n, ϵ)), we use the Nadaraya-Watson estimator
(Hall et al., 1999):

Q(xt
n) = log

p̂(x̄t
n,ϵ, x

t
n)

p̂(xt
n)

= log
1
N

∑N
j=1 κ(

xt
n−xt

j

h ) · κ( x̄
t
n,ϵ−xt

j

h )

1
N

∑N
j=1 κ(

xt
n−xt

j

h )
, (6)

where κ(·) is a kernel function for density estimation, x̄t
n,ϵ is the reconstructed xt

n with random
noise ϵ. In practice, we choose the RBF kernel κ = exp(−||x− x′||2)) and ignore the denominator
since the goal is to optimise the decoding of x̄t

n, then we are able to obtain the following bound
by the triangle inequality in the learned metric space as Q(xt

n) ∝ log(exp(−||x̄t
n,ϵ − xt

n||2)). To
simplify the computation, we choose natural logarithm function in optimisation and obtain a mean
squared error based objective function Ot

IB
5:

Ot
IB =

1

N
ΣN

n=1Eϵ∼p(ϵ)[||x̄t
n,ϵ − xt

n||2] + β ·KL(p(Zt|xt
n, ϵ)|r(Zg)), (7)

where xt
n ∈ {x(u)}

⋃
{x(i)} denote the input user and item representations, and x̄t

n,ϵ denote the
reconstruction. By minimising the loss, we can preserve the key local similarity of nearby represen-
tations while ensuring different representations from different feature characteristics (Czolbe et al.,
2020; Wang et al., 2004). Note that we stop the gradient back-propagation of the input xt

n and
optimise the encoder-decoder parameters only, because the updating of input representations might
reduce the relevance between modalities, break the assumption of I(Xt, Xg) ≥ Ix, and lead to two
independent VAEs as a degeneracy of transferable information bottleneck given by Eq. 2.

Minimising Distribution Discrepancy To minimise the second term of KL-divergence in Ot
IB ,

we need to project Zg and Zt to a metric space with the same size. Inspired by (Van der Maaten &
Hinton, 2008), a Student t-distribution is used to mitigate the crowding problem. Here, we use the
softmax activation with temperature τ to adjust the distribution tail and map its values to the range
of [0, 1]. The k-th dimension of a latent variable ztnk

6 denotes the probability of the corresponding
user or item being assigned to the k-th cluster:

ηtnk =
1 + eφ(zt

nk)/τ∑K
k′=1 e

φ(zt
nk′ )/τ

, KL(p(Zt|xt
n, ϵ)|r(Zg)) =

∑
n

K∑
k=1

ηtnklog
ηtnk
ρgnk

, (8)

where φ(ztn) is a linear transformation of ztn.Here we minimise the KL-divergence between ρgjk (in
the user-item interaction graph space) and ηtjk. Therefore, we rewrite the Ot

IB as:

Ot
IB =

1

N
ΣN

n=1Eϵ∼p(ϵ)[||x̄t
n,ϵ − xt

n||2] + β ·
∑
n

K∑
k=1

ηtnklog
ηtnk
ρgnk

, (9)

5The detailed discussion can be found in Appendix C.
6Here, n can either be a user index u or or an item index i.
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Prior-centralisation: Linking Clusters with Encoder Weights In the encoding progress, we ob-
tain the latent variable ztn = f(xt

n, ϵ) by applying the reparameterisation trick (Kingma & Welling,
2013). However, due to the randomness in initialisation, the learned distribution of ztn might be
chaotic. Therefore, in our one-layer MLP based encoder, we propose a prior-centralisation trick
which builds the connection between the pre-trained clusters and the encoder by making the en-
coder weights close to the cluster centroids Cg ∈ Rd obtained from the graph:

Rcentroid =

K∑
k=1

∥∥∥W k
en −Cg

k

∥∥∥2 (10)

where W k
en denotes the k-th column of the encoder weight matrix Wen

7 and Cg
k denotes the rep-

resentation of the k-th cluster centroid vector. Note that the Rcentroid will force the distribution of
ztn approximate to the prior and ignore the input. Therefore, in practice, this regularisation is only
deployed in the initial training epochs.

Rating Prediction and Final Objective Function After obtaining the regularised latent contex-
tual representations z(u) and z(i), we add their corresponding ID features to obtain the final user
and item embeddings ζu and ζi for rating prediction, ζu = Wuz

(u) + ϵu, ζi = Wiz
(u) + ϵi, where

the ID features ϵu and ϵi are generated by feeding the user ID and item ID to an embedding layer.
Inspired by the latent factor model in recommendation systems, we introduce the global biases for
users and items in the final prediction layer as r̂ui = fcls(ζu, ζi) + bu + bi, where fcls combines the
user and item features into a scalar, bu and bi are bias derived from ϵu and ϵi. The regression loss
Lr of the predicted rating is calculated as the MSE on the given user-item pair. Combining all the
components above, we derive the training objective as follows:

L = Lr +Ot
IB +Rcentroid (11)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Metrics The evaluation datasets include BeerAdvocate (McAuley et al., 2012) and
two amazon review datasets, Digital Music and Office Products (He & McAuley, 2016) 8. We use
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) to evaluate the rating prediction
accuracy. 9

Baselines We compare with several open-source recommenders, including HFT (McAuley &
Leskovec, 2013), DeepCoNN (Zheng et al., 2017), NARRE (Chen et al., 2018). HFT combines
reviews with ratings and uses an exponential transformation function to link review text and the
ratings. DeepCoNN uses a shared layer for interaction modeling the users and items, which is on
top of the two encoders for the users and items, respectively. NARRE introduces review-level atten-
tions to select important reviews and incorporates the user and item IDs as discriminative features in
rating prediction. Besides, we apply an encoder-decoder AutoEncoder on top of NARRE to learn
the latent variable as a baseline to highlight the difference in our proposed regularisation.

Training Procedure We train the model parameters by minimising the objective function defined
in Eq. (11). The β for the KL divergence term is set to be 0.01 and we introduce the L2 regularisation
for all the model parameters and the weight is 0.001. 10. We only train the prior-centralisation term
for 0.5 proportion to approximate the cluster centroids for the later training. The KL term in OIB

should be introduced later until the encoder centroid is well trained. To do so, we follow a similar
cyclical schedule (Fu et al., 2019) to gradually adjust the anneal factor λ in each epoch. Specifically,
we first train the model without the KL term for 0.5 proportion, then anneal it from 0.5 to 1 for 0.25
proportion, and finally fix λ = 1.

7We also experiment with minimising the distance between decoder weight and the cluster centroid, as the
encoder and decoder are asymmetrical.

8The dataset statistics and pre-processing details can be found in Appendix A.1.
9The ranking-based evaluation results, i.e., the overlapping between the recommended items and the target

items are shown in Appendix D.1.
10The hyper-parameter settings are described in Appendix A.2.
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Models BeerAdvocate Digital Music Office Products
RMSE(↓) MAE(↓) RMSE(↓) MAE(↓) RMSE(↓) MAE(↓)

HFT 79.81 62.42 96.42 74.76 89.46 68.57
DeepCoNN 77.28 59.45 94.69 71.03 85.14 64.82
NARRE 76.80 58.94 93.69 69.30 84.40 63.40
AutoEncoder 75.94 58.93 93.97 69.13 85.03 64.32

GIANT 75.36∗ 57.87∗ 92.87∗ 68.68∗ 84.32 62.05∗

Table 1:Performance com-
parison in RMSE (%) and
NAE (%) for all meth-
ods. * denotes the statis-
tical significance for p <
0.01, compared to the
best CNN-encoder based
baseline.

5.2 RATING PREDICTION RESULTS

5.2.1 MAIN RESULTS BY COMPARING TO BASELINES.

The rating prediction results of our model in comparison with baselines on all datasets are given in
Table 1. We have the following observations. (1) DeepCoNN built on the stack of non-linear neural
networks for review semantic modeling outperforms HFT which leverages an exponential transfor-
mation function to link topic distributions in review text and latent factors derived from ratings. This
shows the superiority of deep learning for feature extraction. (2) AutoEncoder gives slightly better
performance than NARRE in BeerAdvocate, which shows its effectiveness of extracting key contex-
tual information for rating prediction. (3) Our method consistently outperforms all the baselines and
the improvement is more predominant on the BeerAdvocate, which has the smallest sparsity. The
results demonstrate the effectiveness of our proposed information bottleneck regularisation applied
on the latent semantic space. By doing this, the users and items can be grouped into different clusters
according to the interaction data, which is not the case in other textual CNN-based recommenders.

5.2.2 PERFORMANCE CONTRIBUTIONS FROM VARIOUS MODULES.

a) Effects of different loss terms We study the effects of the three loss terms in rating prediction
accuracy and Diversity of the latent variables. As variational networks could easily collapse into an
unconditional generative model, i.e., in the extreme case, all the input will be mapped into the same
latent code (Ma et al., 2019b). We use the dimension index whose corresponding latent value is the
maximum as the cluster assignment ID. We then derive the cluster assignment results A ∈ RN×K ,
where N is the number of test samples, K is the cluster number. The diversity is calculated based
on entropy H(X) = −

∑
k∈K p(k) log(p(k))), where p(k) is the fraction of the number of samples

falling into the k-th cluster among all the samples. A larger value means a better diversity. We
record the largest diversity between user and item latent variables. The results are shown in Table 2.

Variants BeerAdvocate Digital Music Office Products
RMSE(↓) Div(↑) RMSE(↓) Div(↑) RMSE(↓) Div(↑)

Full Model 75.36 1.89 92.87 3.46 84.32 1.58
-w/o Rcentroid 75.96 0.04 92.62 0.07 84.58 0.02
-w/o KL term 75.64 1.43 93.83 2.86 84.23 1.21
-w/o Q(xn) 76.02 1.04 93.95 3.10 84.94 0.93

Q(xn) with Cosine 75.35 0.11 92.85 1.76 84.97 0.07

Table 2: RMSE(%) and Diversity among model variants.

We observe that the re-
moval of Q(xt

n) leads to the
largest performance degra-
dation. After removing
Rcentroid, the latent variable
diversity shrinks to near zero,
indicating nearly all the la-
tent variables fall into the
same cluster. This high-
lights the capability of our
prior-centralisation term in

enabling the latent variables ztn effectively reflect the soft cluster assignments. We also found that
replacing the MSE in Q(xt

n) with the cosine similarity (1 − cosine) reduces the latent variable di-
versity significantly. This can be partly explained by the fact that the cosine similarity focuses on
measuring the angle between the input xt

n and the reconstructed output x̄t
n, ignoring the magnitude

of the vectors which is however important in our case.

b). Effect of our proposed information bottleneck regularisation We compare our approach
with StandPrior, WassersteinVAE and IndivPrior: StandPrior (aka. StandVAE ) uses two VAEs
for users and items respectively, each with the standard Gaussian distribution N (0, 1) as the prior.
WassersteinVAE differs from the StandPrior in using the Wasserstein metric (Tolstikhin et al., 2017)
to calculate the distribution discrepancy between posterior η and prior ρ. IndivPrior assigns a sepa-
rate Gaussian prior to each user or item with its mean value calculated from the user’s or item’s corre-
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sponding representation derived from the user-item interaction graph, i.e., p(z(u)) = N (Wuξu, I),
p(z(i)) = N (Wiξi, I), where ξu ∈ Rd, ξi ∈ Rd denote the user and item node representations in
GCN learning, Wu and Wi are learnable parameters in a linear layer of size (d × d), and d is the
dimension of graph node features.

Figure 2: RMSE(%) with different
information bottleneck regularisa-
tion. Our method achieves the best,
followed by StandPrior and Wasser-
steinVAE. IndivPrior is the worst,
even worse than AutoEncoder.

The rating prediction results are shown in Figure 2. WassersteinVAE and StandPrior demonstrate
overall better results than IndivPrior and all the baselines in Table 1. The improvement can be
explained by the nature of VAE, which is particularly beneficial when dealing with sparse data where
few observations are available. However, IndivPrior, which imposes a separate Gaussian prior on
individual user/item, shows worse performance compared to the other three variational frameworks,
and is even worse than AutoEncoder. Our model benefits from a rich prior separated from different
user/item clusters, while avoiding using a global normal prior (StandPrior and WassersteinVAE ) or
a separate instance-level prior for each user/item (IndivPrior).

6 LATENT VARIABLE INTERPRETABILITY EVALUATION

6.1 CLUSTER SEPARABILITY AND COHERENCE

As each dimension of the latent variables ztn corresponds to a cluster, for the k-th dimension, we can
search for its relevant reviews which have the highest value in ztnk and list the most frequent words in
the review set as the representative topic words 11. Representative words in randomly selected three
clusters on BeerAdvocate Dataset are shown in Table 3. For our model, the most prominent words
are different across different clusters (thus being colored), i.e., ‘brown roasted’, ‘pine, caramel’ and
‘good flavour’. We find it hard to see clear topic separations from the WassersteinVAE results.
For example, Cluster 2 and 3 share the same 3 words, ‘sweet’, ‘light’ and ‘malt’ out of their top 4
words. In addition, ‘carbonation’ in Cluster 2 and ‘whitehead’ in Cluster 3 are both relating to beer
foam. The results show that with the incorporation of the priors derived from user/item clusters, our
proposed approach is able to learn latent variables in the review semantic space which can produce
better separable topic clusters.

GIANT WasserteinVAE
pour, color, brown, feel, roasted,
malts, almost, moderate, coffee, dark

light, color, malt, glass, poured,
drink, sour, pour, mouthfeel, alcohol

pine, caramel, lacing, citrus, mouth-
feel, hint, ipa, note, body, strong

sweet, coffee, light, malt, aroma, car-
bonation, pour, mouthfeel, hint, color

good, flavour, dark, better, brew,
style, bad, Canadian, nose, drinking

aroma, light, sweet, malt, white head,
mouthfeel, nose, hint, brew, note

Table 3: The most prominent words
(sorted by occurrence frequency)
in three randomly selected clusters
from GIANT and WasserteinVAE .
We highlight the top 3 words that are
not found in the other two clusters.

6.2 COMPREHENSIVENESS EVALUATION BY PERTURBING ON LATENT VARIABLES

To explore the importance of our identified clusters, i.e., the latent dimension with larger value,
we calculate the performance change before and after removing the specific dimension and define

Comprehensiveness as:
∑N

i

(
r(zt

i )−r(zt
i/z

t[k]
i )

)2

N , Where r(·) is the predicted rating, zti is the latent
variable for i-th evaluated user-item pair, zt[k]i is the identified top k latent dimensions. To remove
the effects from these dimensions, we replace the values in the top k dimensions with the average
value of the latent variables according to Fong & Vedaldi (2017). In the Figure 3 line chart, our
model demonstrates a larger performance change as more important dimensions are removed and

11We exclude the stopwords and most frequent words appeared in all clusters, such as ‘beer’ which occurs
in every cluster in the BeerAdvocate dataset. The results on the other two datasets, as well as comparison with
StandPrior are shown in Appendix D.3.The semantically coherence within a cluster are in Appendix D.4.
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its changes are more obvious than the two baselines. We further randomly delete k latent dimen-
sions and calculate the relative performance change by subtracting the changes caused by random
removal (Table below Figure 3). The relative changes in our model are most predominant, followed
by WassersteinVAE , while relative changes of StandPrior are negative, showing that the random
removal of latent dimensions can bring even larger changes to the predominant ones.
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Our
Model 2.34 5.92 18.51 6.69 2.11 0.04

Stand
VAE -0.95 -0.03 0.05 -0.87 0.12 -0.59 

Wasst
VAE 0.12 1.26 1.68 1.24 1.45 0.57 

#Removed	Latent	Dimensions
Our

Model 3.72 2.02 16.19 8.81 3.94 1.21

Stand
VAE 0.49 -0.12 0.21 0.37 0.23 -0.35 

Wasst
VAE 0.51 1.63 2.04 1.87 1.08 0.67 

Our
Model 3.18 4.48 21.05 5.90 1.97 0.24

Stand
VAE -0.71 0.31 0.54 -0.98 -0.25 -0.23 

Wasst
VAE 0.62 0.71 0.83 1.22 0.94 0.83 

#Removed	Latent	Dimensions #Removed	Latent	Dimensions

Ours Baselines Ours Baselines Ours Baselines

Figure 3: Top: The Comprehensiveness values by removing the top k most important latent di-
mensions identified, k ∈ {3, 5, 10, 15, 20, 30}. Bottom Table: Relative performance changes after
subtracting the changes caused by randomly removing k latent dimensions.

6.3 CASE STUDY OF GENERATED INTERPRETATIONS

Interpretations for an example user-item pair in Office Products are generated by extracting sen-
tences most relevant to user/item latent topics from reviews of like-minded users and past reviews
about the item.12 While existing explainable recommenders are unable to extract information be-
yond the current user-item review, GIANT can extract sentences from reviews of like-minded users
to explain the current user-item interaction based on the user/item clustering results. Our human
evaluation results presented in Table A7 further show that explanations generated by GIANT are
better than those from WassersteinVAE in terms of relevance, faithfulness and informativeness.

Based on the reviews from like-mined users:
(a) great plastic cover and thick cardboard back with quality paper but the best part is 
the double side loose paper holder, it makes things so much easier for you.
(b) if you want something for more permanent writing, a more expensive journal book 
would be a better choice.

Based on the reviews from I:
(a). i took my favorite writing instruments and they all wrote nicely, without bleeding.
(b). i can write smoothly on it with my gel pen.

Will recommend this item

The interpretations between 46 U-I pair

The interpretations between 46 U-I pair
Based on the reviews from like-mined users:
(a). Cheaper binders often have inadequate loops or just a bend that doesn’t hold.
(b). I would prefer the pocket were in the back so it didn’t have to be move each time.

Based on the reviews from I:
(a) I don’t like that because i can t doodle or write on it.
(b) 5 college ruled 6 paper isn’t cheap and translucent, so the writing on the other side
doesn’t show through.

Will recommend this item

Figure 4: Extracted interpreta-
tions from GIANT (top) and
WassersteinVAE (bottom). We
first select reviews which are
relevant to the user/item as-
signed cluster, and then ex-
tract the most relevant sen-
tences based on their Euclidean
distances from the cluster topic
representations. Interpretations
extracted by GIANT appear
to be more faithful with the
recommender’s decision, while
those extracted by Wasserstein-
VAE do not support the recom-
mendation decision.

7 CONCLUSION

In this paper, we leverage the user/item clusters sharing common interests/characteristics obtained
from the user-item interaction graph to refine the review text latent factors via our proposed ge-
ometric information bottleneck (GIANT). We empirically show that GIANT is better in learning a
semantically coherent and interpretable latent space and the generated explanations are more faithful
to the model decisions, while achieving comparable rating prediction accuracy on three commonly
used datasets.

12Details of explanation generation can be found in Appendix E.
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A EXPERIMENT SETUP

A.1 DATASET DETAILS AND DATA PROCESSING

We choose three commonly used e-commerce datasets which not only contain the interaction inter-
actions between user and item but also the review texts. Amazon review data 13 is one of the popular
dataset collection, consisting of 24 kinds of products. As our method derive the user/item mainly
based on their reviews, we use the dense subset, 5-core, of the amazon review dataset that extract
the user-item pairs, such that each of the remaining users and items have at least 5 reviews each.
Considering the training efficiency and topics should be familiar to general readers, we select the
two datasets with around 50k reviews, Digital Music and Office Products. Besides, we use a sparser
dataset BeerAdvocate dataset, i.e., the lower rating of observed ratings between total interactions.
Table A1 summarizes the statistics of the three datasets. We further filter out users or items with
more than 100 reviews/interactions and truncate the reviews to length of [200,400,300] for the three
datasets, respectively. We randomly select 80%, 10%, 10% as the train/validation/test sets.

Datasets # Interactions # Users # Items # Reviews Per User # Reviews Per Item AvgRating Sparsity

BeerAdvocate 35450 6939 13122 56 31 3.74 0.00044

Digital Music 51768 5541 3568 20 40 4.22 0.00294

Office Products 35999 4902 2364 86 99 4.33 0.00349

Table A1: Datasets statistics. All the datasets have ratings in the range of 1-5. The BeerAdvocate
dataset has the smallest sparsity.

A.2 HYPER-PARAMETER SETTINGS

We use Adam for optimization with the initial learning rate set to 0.001. The batch size is set to
32, 64, and 32, and training epochs are 10, 10, and 15 for the three datasets, respectively. The adja-
cency matrix in graph is binary: user-item entries with the interacted ratings higher than the average
corpus-wide rating is set to 1, and 0 otherwise. We stop training GCN when it reaches the best recall
value in the validation set. The cluster centroid vectors are derived by K-means. The graph node
feature dimension d is 64, and the number of clusters K are searched in [16, 32, 64, 128, 256, 512].
In CNN review encoding, the word embedding and ID embedding are both initialized by the uni-
form distribution (−0.1, 0.1), their dimensions are set to 300 and 64, respectively. We use two
CNN kernels with size 2 and 3, and the dimension of 32 to encode the reviews. As such, the CNN-
encoder outputs the review representations with dimension of 64 (i.e., 32×2). To combine multiple
reviews for each user or item, we use the attention mechanism where the attention weights are de-
rived through two consecutive linear transformation layers of 64 → 32 → 1. In GIANT, the latent
variable dimension is set to the same as the number of clusters K. The softmax temperature τ is
searched in [1, 2, 4, 6, 8]. The non-linear activation function in both encoder and decoder is ReLU.
We use a linear layer with [K, 64] weights to map the the latent variable ztn to the same space of
the ID features. For fcls used in rating prediction, we first apply the ReLU function on the result
of element-wise multiplication of the user and the item features, then apply a linear layer with the
shape of [64, 1] to transform the ReLU output to a rating scalar.

B TRANSFERABLE INFORMATION BOTTLENECK

Theorem Suppose we use independent well-trained encoder-decoder based architectures to model
the features for different modalities (e.g., graph and text), then a given input xn has representations
xt
n ∈ Xt and xg

n ∈ Xg under different modalities with the constraint I(Xt;Xg) ≥ Ix since Xt

and Xg which are from the same input, should be relevant. Also, assuming I(Zt;Xt) ≤ Ic and
I(Zg;Xg) ≤ Ic, then the following property holds:

I(Xt;Zg) ≤ H(Xt)−H(Xg) +H(Xg|Xt) + Ic

Proof: We first apply the chain rule twice in different orders for three sources Xt, Xg and Zg below:
13https://jmcauley.ucsd.edu/data/amazon/
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H(Xt, Xg, Zg) = H(Xg|Xt, Zg) +H(Xt|Zg) +H(Zg),

H(Xt, Xg, Zg) = H(Xt|Xg, Zg) +H(Xg|Zg) +H(Zg).

Since the right parts of the above two equations are the same, we have:

H(Xg|Xt, Zg) +H(Xt|Zg) +H(Zg) = H(Xt|Xg, Zg) +H(Xg|Zg) +H(Zg),

which can be simplified as:

H(Xt|Zg) = H(Xg|Zg) +H(Xt|Xg, Zg)−H(Xg|Xt, Zg).

Since Zg , Xt and Xg are derived from the same set of samples but under different modalities or
representations, they are obviously not independent. Hence, we have H(Xg|Xt, Zg) ≤ H(Xg|Xt)
(as Xg and Zg are dependent) and H(Xt|Xg, Zg) ≥ 0 (as Xt and Xg are dependent). Thus,
we can replace H(Xg|Xt, Zg) with H(Xg|Xt), and replace H(Xt|Xg, Zg) with 0, to derive the
following inequality:

H(Xt|Zg) ≥ H(Xg|Zg)−H(Xg|Xt)

By applying the properties of conditional differential entropy, which yields H(Xg|Zg) = H(Xg)−
I(Xg, Zg), the above formula can be simplified as:

H(Xt|Zg) ≥ H(Xg)− I(Xg;Zg)−H(Xg|Xt)

Accordingly, we have:

I(Xt;Zg)= H(Xt)−H(Xt|Zg)

≤ H(Xt)−H(Xg) + I(Xg;Zg) +H(Xg|Xt)

≤ H(Xt)−H(Xg) +H(Xg|Xt) + Ic (12)

□

Equation 12 shows that the lowest upper bound of the transferable information bottleneck is
I(Xt;Zg) ≤ Ic when the distribution of two modalities are the same, Xt = Xg , and the conditional
entropy of H(Xg|Xt) is 0. Let’s take H = H(Xg)−H(Xt) +H(Xt|Xg), then the Equation 12
can be simplified as I(Xg;Zt) ≤ H+ Ic, where Ic is the upper boundary of information bottleneck
for both modalities.

Recall the Lagrange multiplier based objective function defined in Eq. 1,

OIB = I(X̄;Z)− β · I(X;Z),

which aims to optimise:

max
θ

I(X̄;Z) s.t. I(X;Z)) ≤ Ic.

Now, let us focus on the optimisation on the encoder-decoder framework in text by denoting the
variables with the t superscript. If we use the latent distribution learned from the graph modality,
Zg , to impose constraints on Zt, the objective can be rewritten as:

max
θ

I(X̄t;Zt) s.t. I(Xt;Zg) ≤ H + Ic.

Since H = H(Xg) −H(Xt) +H(Xt|Xg) is irrelevant with our optimisation, the Lagrange mul-
tiplier based objective function can be the rewritten in the form of Eq. 3:

Ot
IB = I(X̄t;Zt)− β · I(Xt;Zg),

That is, there is no need to define the prior for the text modality. Instead, we can use the posterior
distribution of the latent variable from the graph modality as the regularisation to guide the training
on the text data.
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C OPTIMISING OBJECTIVE OF TRANSFERABLE INFORMATION BOTTLENECK

Information Bottleneck: Recall that the IB objective in this work has the form I(Zt; X̄t) − β ·
I(Xt;Zg), where

I(Zt; X̄t) =

∫
p(x̄t, zt) · logp(x̄

t|zt)
p(x̄t)

dx̄tdzt,

where p(·) is the true distribution which is not observed. According to the proof given by (Alemi
et al., 2017), we consider the posterior estimation q(x̄t|zt) in the decoder. According to Gibbs’
inequality, we have:

I(Zt; X̄t) ≥
∫

p(x̄t, zt) · logp(x̄
t|zt)

q(x̄t)
dx̄tdzt

=

∫
p(x̄t, zt) · logp(x̄t|zt)dx̄tdzt −H(X̄t).

Since the entropy of the decoding results H(X̄t) is independent of model optimisation, we only
need to consider the posterior estimation based lower bound. According to(Alemi et al., 2017), we
have the following empirical approximation by reparameterisation trick:

1

N
ΣN

n=1Eϵ∼p(ϵ)[logq(x̄
t
n|f(xt

n, ϵ)]

For the Lagrange multiplied term I(Xt, Zg) which is different from the standard information
bottleneck based β-VAE, we do consider the information bottleneck of I(Xt, Zt) first, because
I(Xt, Zg) ≤ H+ I(Xt, Zt) according to the proof given in section B. Here, we have the following
bound by applying Gibbs’ inequality:

I(Xt;Zt) =

∫
p(xt, zt)logp(zt|xt)dxtdzt −

∫
p(zt)logp(zt)dzt.

Since estimating the prior distribution of Zt might be difficult, based on the definition of transferable
information bottleneck, we apply the Gibbs’ inequality and have:

I(Xt;Zg) ≤
∫

p(zt|xt)p(xt)log
p(zt|xt)

r(zg)
dxtdzt +H,

where r(zg) is the posterior distribution from the graph-based latent representation, and H is decided
by the prior of two modalities which is independent of model optimisation. By combining the two
results, the above bound can be approximated by the reparameterisation trick (Kingma & Welling,
2013) with a Gaussian random variable ϵ:

OIB = ΣN
n=1Eϵ∼p(ϵ)[− logq(x̄t

n|f(xt
n, ϵ)]︸ ︷︷ ︸

Recons. term: Q(xt
n)

/N + β ·KL(p(Zt|xt
n, ϵ)|r(Zg))︸ ︷︷ ︸

KL−div. term: KL(Zt|Zg)

,

Further discussion about the reconstruction term Q(xt
n)

In section 4.2, we propose to use the Nadaraya-Watson estimator(Hall et al., 1999) to approximate
the conditional probability q(x̄t

n|f(xt
n, ϵ)]. The idea is to insert the decoding result x̄t

n to the space
of training samples {xt

n}, and take the kernel density estimation method to approximate Q(xt
n) by

Bayesian rule:

Q(xt
n) = log

p̂(x̄t
n,ϵ, x

t
n)

p̂(xt
n)

= log
1
N

∑N
j=1 κ(

xt
n−xt

j

h ) · κ( x̄
t
n,ϵ−xt

j

h )

1
N

∑N
j=1 κ(

xt
n−xt

j

h )
,

Since the input feature for xt
n is fixed, we only care about the updating of reconstruction through

encoder-decoder architecture. Thus we have:
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Q(xt
n) ∝

1

N

N∑
j=1

κ(
xt
n − xt

j

h
) · κ(

x̄t
n,ϵ − xt

j

h
)

To simplify the above estimation, we apply the RBF-kernel and triangle inequality in estimation and
have:

Q(xt
n) ∝ log

1

N

N∑
j=1

κ(
xt
n − xt

j

h
) · κ(

x̄t
n,ϵ − xt

j

h
)

= log
1

N

N∑
j=1

exp(−||xt
n − xt

j ||2) · exp(−||x̄t
n,ϵ − xt

j ||2)

= log
1

N

N∑
j=1

exp(−||xt
n − xt

j ||2 − ||x̄t
n,ϵ − xt

j ||2)

≤ log
1

N

N∑
j=1

exp(−||x̄t
n,ϵ − xt

n||2)

= log[exp(−||x̄t
n,ϵ − xt

n||2)]

Thus, we are able to optimise the Q(xt
n) by mean square error if we choose the natural logarithm

function:

−Q(xt
n) ≥ −ln(exp(−||x̄t

n,ϵ − xt
n||2)) = ||x̄t

n,ϵ − xt
n||2

Therefore, we can rewrite the lower boundary as well as the learning objective OIB by:

OIB =
1

N
ΣN

n=1Eϵ∼p(ϵ)[||x̄t
n,ϵ − xt

n||2] + β ·KL(p(Zt|xt
n, ϵ)|r(Zg)),

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EVALUATION RESULTS ON RANKING-BASED METRICS

In addition to the accuracy-based metrics, i.e., MSE and MAE, we also evaluate models using the
ranking-based metrics, i.e., Precision and Recall (See Table A2). We observe that GIANT achieves
the best precision results in general across all the datasets, with a more prominent improvement
compared to baselines on Office Products. In terms of recall, GIANT outperforms the others on
Digital Music and Office Products, but it is inferior on BeerAdvocate. WasersteinVAE appears to
be the second-best model. The results show that GIANT is more effective on datasets covering
products with distinct features, but its advantage over the baselines is less obvious on datasets with
similar feature descriptions, such as BeerAdvocate.

Precision =
#of recommended items @k that are relevant

#recommended items

Recall =
#of recommended items @k that are relevant

#relevant items

D.2 THE IMPACT OF CLUSTER NUMBER

We show the the impact of different number of clusters K, i.e., the dimensionality of latent variable
zn, on review rating prediction results in Table A3. The best rating prediction results are obtained for
Digital Music and Office Products when the number of clusters is set to 128. But on BeerAdvocate,
the optimal cluster number is 256.
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Models NARRE AutoEncoder WassasteinVAE StandPrior GIANT

BeerAdvocate
Precision@1 0.24 0.16 0.20 0.20 0.24

Recall@1 0.20 0.15 0.17 0.16 0.15

Digital Music
Precision@1 0.20 0.16 0.22 0.23 0.23

Recall@1 0.21 0.17 0.24 0.23 0.23

Office Products
Precision@1 0.24 0.20 0.29 0.28 0.31

Recall@1 0.22 0.18 0.23 0.19 0.23

Table A2: The rank-based evaluation results, i.e., Precision and Recall for all the baseline and our
proposed GIANT.

Dataset 16 32 64 128 256 512

BeerAdvocate 75.65 75.56 75.53 75.46 75.36 75.74

Digital Music 93.51 93.24 92.93 92.87 93.33 93.10

Office Products 84.78 84.53 84.42 84.32 84.35 84.48

Table A3: GINAT rating prediction performance in Mean Square Error (MSE %) with different
number of clusters.

D.3 CLUSTER SEPARABILITY

As each dimension of the latent variables zn corresponds to a cluster, for the k-th dimension, we can
search for its relevant reviews which have the highest value in zk and list the most frequent words
in the review set as the representative topic words. We identify ‘ABBA’ and their popular songs,
computer peripherals such as ‘network cable’ and ‘router’ in Digital Music and Office Products
datasets, respectively.

GIANT WassersteinVAE

D
ig

ita
lM

us
ic

dr dre, prince, used known, west coast, mirrors, love, hate,
westside story, jadekiss, always

quot, album, Ask Rufus, song, funk, voice, music, band,
soul, love

bangles, vicki, vocal, place, live, hero, takes, fall, liverpool,
beatles

song, everglow, album, band, beautiful, track, lyrics, sus-
pension, record, Christian,

dancing queen, take chance, mamma mia, abba, greatest
hit, money money, gimme gimme, super trouper, knowing
knowing, gold

record, album, song, band, track, time, sound, head heart,
folk, live, love

O
ffi

ce
Pr

od
uc

ts

set , computer, wireless, network, cable, router, edit, pencil,
ink

scan, software, pencil, Mac OS, work, printer, small,
printed, color, file

photo, desk, laser, scanner, work, scan, epson, scaning,
enough, easy

easy use, dry erase, folder, mouse pad, office, ink car-
tridge, works, used, post note

pencil, tape, ink, pen, anyway, pen, rubber, clip, pretty,
eraser

recommend, printer, folder, paper, easy use, boxes, feature,
stapler, pencil, canon, color

Table A4: The most prominent words (sorted by occurrence frequency) in three randomly selected
clusters from GIANT and WassersteinVAE on Digital Music and Office Products datasets. For each
dataset, we highlight the top 3 words that are not found in the other two clusters. GIANT generates
better separable topics while WassersteinVAE fail to generate clear topic pattern.

We also compare with the generated clusters using StandPrior. The results are shown in Table A5.
It is difficult to see a clear topic pattern in StandPrior as the top words largely overlap in different
clusters. The first several words are all ‘hop’, ‘malt’ and ‘good’. The results are even worse than
WassersteinVAE, which can at least generate diverse clusters, reflected in the distinguished words
in each clusters.
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BeerAdvocate
hop, good, malt, aroma, hint, pour, great, well, mouthfeel, much
hop, aroma, good, sweet, light, malt, finish, brew, poured, glass
hop, malt, light, sweet, much, carbonation, good, well, mouthfeel, pour

Digital Music
great, best, band, love, hit, well, first, make, lyric, come
love, great, best, band, sound, well, first, even, make, lyric
great, love, best, well, band, lyric, make, fan, first

Office Products
use, work, well, binder, great, will, easy, nice, label, ink
label, easy, tape, color, great, using, work, make, well, really
use, label, product, tape, color, binder, quality, really, scanner, great

Table A5: The most prominent words (sorted by occurrence frequency) in three randomly selected
clusters from StandPrior on BeerAdvocte, Digital Music and Office Products datasets. For each
dataset, we highlight the top 3 words that are not found in the other two clusters. StandPrior produces
topics which contain largely overlapped words.

Models BeerAdvocate Digital Music Office Products

User Item User Item User Item
Graph 0.092 0.085 0.155 0.214 0.245 0.200
GIANT 0.490 0.481 0.457 0.471 0.492 0.407

Table A6: Average cosine similarity of review
pairs within each cluster as the coherence mea-
sure. A larger similarity value means a bet-
ter coherence. GIANT generates significantly
more coherent clusters than graph clusters.

D.4 CLUSTER COHERENCE

We explore the difference between our generated clusters znk and the clusters derived in the graph.
To verify the capability of creating semantically coherent clusters, we propose to measure the cluster
coherence as the average cosine similarity between every review document pair within a cluster. We
first obtain the document-level review representations by feeding the reviews from the test set to our
pre-trained CNN encoder. We then calculate the average cosine similarity between the representa-
tions of each review pair in a cluster, and are further averaged across all clusters (in Table A6).

E HUMAN EVALUATION FOR INTERPRETABLITY

We conduct human evaluation to validate the interpretablity of our proposed method. To make it
easier for humans to understand the rationales behind model decisions, we extract the most relevant
sentences from user/item reviews as interpretation for a specific user-item pair (user u and item i).
Example generated interpretations are illustrated in Figure 1 and Figure 4.

In particular, our GIANT model infers the latent topic for user u and item i, respectively. Such a
topic essentially indicates which cluster user u or item i belongs to. We can then identify the user
candidate reviews as the past reviews on item i written by the users (including u) in the same cluster
as u. Similarly, we identify item candidate reviews from the past reviews on the item i which have
their most prominent topic the same as the item latent topic.

Afterwards, we represent each topic by its top-associated 5 words and derive the topic representation
by the aggregated word-level GloVe word embeddings. 14 These words are selected based on the
TFIDF scores of all words of reviews in the same topic cluster, with stop words filtered. The review
sentence representations are also derived based on the aggregated constituent word GloVe embed-
dings. The most relevant sentences from user candidate reviews can then be extracted as a summary
of the user u’s preferences based on their cosine similarity with the user latent topic representation.
Similarly, the most relevant sentences from item candidate reviews are extracted as a summary of
item i’s characteristics based on their cosine similarity with the item latent topic representation.
Apart from the user u’s preferences and item i’s characteristics, we also present to human evaluators
the model’s recommendation suggestion as will recommend, if the model’s predicted rating score is
above the average predicted rating; or won’t recommend, otherwise.

14We also experimented with more representative words, but observed less discriminated topic clusters.
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We propose three evaluation metrics, relevance, faithfulness and informativeness and ask three
English-proficient human evaluators to give 1-5 score to the generated interpretations from Wasser-
steinVAE and GIANT on 120 randomly selected user-item pairs from the Office Products 15.

• Relevance. If the extracted sentences from user reviews and item reviews are about the
relevant topic/aspect/subject? A higher score should be given to the interpretation with
more overlapping aspects.

• Faithfulness. Do the extracted sentences from user reviews and item reviews lead to the
model’s recommendation suggestions?

• Informativeness. Do the given interpretations capture the user preferences and item char-
acteristics well?

Metric Relevance Faithfulness Informativeness
WassersteinVAE 3.54 2.84 3.84

GIANT 3.77 3.27 4.17

Table A7: Human evaluation results on relevance, faithfulness and informativeness for the generated
interpretations of randomly selected 120 user-item pairs from the Office Products dataset.

From the results shown in Table A7, we can observe that interpretations generated by our model are
better compared to WassersteinVAE across all three aspects.

15Evaluation on the Beer and Music products appears to be more difficult as it requires prior knowledge on
the specific products. We will leave it to future work.

20


	Introduction
	Related Work
	Geometric Information Bottleneck
	GIANT Framework
	Deriving Priors from User/Item Clusters in Interaction Graph
	A Posterior over Controllable Distributions from Text

	Experiments
	Experimental Setup
	Rating Prediction Results
	Main Results by Comparing to Baselines.
	Performance contributions from various modules.


	Latent Variable Interpretability Evaluation
	Cluster Separability and Coherence
	Comprehensiveness Evaluation by perturbing on latent variables
	Case study of Generated Interpretations

	Conclusion
	Experiment SetUp
	Dataset Details and Data Processing
	Hyper-Parameter Settings

	Transferable Information Bottleneck
	Optimising Objective of Transferable Information Bottleneck
	Additional Experimental Results
	Evaluation results on ranking-based metrics
	The impact of cluster number
	Cluster Separability
	Cluster Coherence

	Human Evaluation for Interpretablity

