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Abstract

Distributional semantics is often proposed as
the linguistic theory underpinning many of
the most efficient current NLP systems. In
the present paper, we question the linguistic
well-foundedness of these models, addressing
it from the perspective of distributional substi-
tution. To that end, we provide a dataset of
human judgments on the distributional hypoth-
esis, and highlight how humans cannot system-
atically distinguish pairs of words solely from
contextual information. We stress that earlier
static embedding architectures are competitive
with more modern contextual embeddings on
the distributional substitution task, and that nei-
ther serve as good models of human linguistic
behavior.

1 Introduction

One would not argue that the manner by which a
pocket calculator estimates the value of 156 837 x
86 942 correctly depicts the mental processes of a
human tasked with the same problem. Curiously
enough, the same isn’t held for language tools.

Recent NLP neural networks boast impressive
feats on a wide variety of benchmarks. Crucially,
the crux of NLP research has focused on efficiency:
how to produce the highest score on some well de-
lineated task. Little interest has been directed to
assessing the linguistic value of these models: of-
tentimes, authors only hearken back to early works
in distributional semantics, such as Harris (1954).
There is however some criticism directed towards
this framework: works such as Searle (1980), Har-
nad (1990) or Bender and Koller (2020) argue that
text alone cannot suffice to derive meaning.

Given these known flaws, it is worth asking what
value our recent large pretrained models have to
the linguist. Here, we set out to see what quan-
titative arguments can be made in this debate: to
what degree is the distributional hypothesis of Har-
ris (1954) invalid? To what degree does it fit the

behavior of models such as BERT (Devlin et al.,
2019) or word2vec (Mikolov et al., 2013a)?

The approach we take here consists in testing
models of distributional semantics on the distribu-
tional substitution task, which we frame in a man-
ner reminiscent of the Cloze Task (Taylor, 1953).
Given a target word, a distractor and a set of con-
texts containing the target but not the distractor, we
replace target words with blank tokens and investi-
gate whether models distinguish the target from the
distractor. This task has a number of merits. It al-
lows us to test many distributional models through
their objective function, rather than rely on external
parameters as with probing methodologies. It is
also fairly intuitive to explain to annotators; and
we therefore can compare networks to humans.

Our findings highlight a number of counter-
intuitive facts: recent contextualized embeddings
are comparable to earlier static embeddings, and
noticeably under-perform human annotators. More
intriguing is the fact that embeddings do not ap-
pear to match human behavior more closely than
n-gram baselines, casting doubt on their validity as
models of human linguistic behavior.

The rest of this article will be structured as fol-
lows. We sketch a description of the theoretical
framework of our analyses in Section 2, and de-
tail the empirical data we base our experiments on
in Section 3. Sections 4, 5 and 6 describe the ex-
periments we conduct. Lastly, we provide a brief
review of existing related works in Section 7 and
some perspectives for future work in Section 8.

2 Distributional substitution

In his seminal paper on distributional semantics,
Harris (1954) proposed the distributional hypoth-
esis: word meaning should correlate with word
distribution. We refer the reader to reviews such as
Lenci (2018) or Boleda (2020) for a more thorough
introduction. Here, we adopt the following view on
distributional semantics: a distributional semantics



model (or ‘DSM’) must be able to express which of
two words is more appropriate in a given linguistic
context. More formally, we expect of a DSM that
it provides an estimate for:

p(wile) > p(walc) (D

This equation can be seen as implementing the
distributional principle of substitutability, which
was already sketched out in Harris (1954). In
essence, we expect that these models are able to
characterize the effect of substituting one word
(w2) for another one (w1) within a given linguistic
context (c). This principle of substitution has been
used in other studies (Ferret, 2021, e.g.).

This view is also grounded in the fact that many
word embedding and distributional models are able
to yield an expression such as the one above. If
we adopt the “count” vs. “predict” dichotomy of
Baroni et al. (2014), which categorizes DSMs ac-
cording to whether they are derived by tabulation
(“count”) or inference (“predict”), we can see that
both “count” and “predict” models are based on
estimates of the conditional probability of words
given their linguistic contexts. The main difference
lies in that “count” models derive this estimate
from descriptive statistics, whereas “predict” mod-
els learn it using inferential models such as neural
networks.

Another argument, first expressed by Sahlgren
(2008) and discussed by Gastaldi (2021), stresses
the theoretical connection between this conditional
probability p(w|c) and the paradigmatic axis in
the structuralist framework of linguistics (Saussure,
1916). Both are referring to the ability to model
which linguistic expressions fit in a given context.

3 Dataset

To study how models perform on the distributional
substitution task, we begin by collecting human
judgments, using a crowd-sourced gamified ap-
proach in compliance with GDPR laws. All source
corpora are made available under CC-BY-SA li-
censes; we will release our collected data under the
same license upon acceptance. A companion paper
describes the data collection procedure in depth.

3.1 Dataset construction

We collect data in 5 languages: English, Spanish,
French, Italian and Russian. Analyses presented
here are derived from a set of 14493 annotations.

en es fr it ru
k=1 329 110 540 161 113
k=3 58 90 136 73 90
k=5 2223 2044 3719 816 3991
Total 2610 2244 4395 1050 4194

Table 1: Number of items collected

Annotation items are based on k contexts (with
k € {1,3,5})! and two words: a target w; and a
distractor wy. All k sentences contain the target wy,
but not the distractor wy. Sentences are presented at
once, with the target w, replaced by a blank token.
Annotators are then asked which of the two words
w; or wy they believe was originally present in the
k sentences. This task corresponds to a variation
on the Cloze test (Taylor, 1953) where annotators
see more than one context. An overview of the data
volume collected thus far is given in Table 1.

The contexts presented to annotators were pre-
selected from four genres: Wikipedia dumps,
books corpora (Gutenberg Project, WikiSource,
LiberLiber.it), parliamentary debates (EuroParl,
Koehn, 2005; UN Corpus, Ziemski et al., 2016)
and subtitles (OpenSubtitles, Lison and Tiedemann,
2016), for a total of 4M sentences.

We consider three strategies to construct word
pairs.? First, we select items which we expect to
be difficult a priori: ordinal and cardinal numbers,
months, days of the week and colors. Second, we
select items that maximize distributional similarity,
using word2vec models. Lastly, annotators also
had the possibility to suggest pairs of words that
they expect to be difficult to distinguish.

To construct our dataset, we collect: the tar-
get wy, the distractor wy, the k context sentences,
whether the annotator correctly selected the target
wy, the time taken to provide an answer, and identi-
fiers for the annotator and the creator of the word
pair. Table 2 provides an example item.

3.2 Dataset contents

Fig. 1 displays the overall success rate of annota-
tors; i.e., the percentage of annotations where they
were able to select the target word over the distrac-
tor. Each subfigure presents a different condition:
Subfigure 1a shows results over the full dataset,

! Annotators can freely set k, by default, k = 5.
>Throughout the paper, “word pair” refers to order-
insensitive word pairs.


https://www.liberliber.it/online/

pleura Distractor: diaphragm
Time: 35.84s

best way to dissect the aortic

Target:
Correct: No

the and pericardium have
both been recorded as points of
outlet.

Contexts: if the be implicated,
greater expansion of the upper
and outside portion of the
left side of the chest in
inspiration takes place.

Annotator ID: dYaGLiFsJz8
Creator ID: N/A (distributional)

Table 2: Example annotation item.

whereas Subfigures 1b and 1c display results ac-
cording to the number of contexts shown to the
annotators. We do not include results for & = 3, as
most groups contained less than 100 items.

If we look at the overall tally (Subfigure 1a), and
average across all five languages of our study, we
get a success rate of 82%. For all languages, at least
13% of the items considered here have received an
incorrect response from human annotators. The
overall difficulty can jump to more than 26% if
we consider the most challenging setups, where
annotators only have access to k& = 1 sentences
(Subfigure 1b). Even in the most informed setup
with £ = 5 (Subfigure 1c), we find that the best
language remains below 90% accuracy overall. It
is also instructive to compare the strategies used to
define word pairs: those suggested by annotators
tend to be the easiest of all; whereas a priori word
pairs tend to be harder than the average case. Lastly,
the surprising difficulty for Spanish distributional
word pairs comes from the fact that our original
Wikipedia sample contain a number of extremely
similar sentences all focusing on botany.

Even in the best of cases, annotators select the
distractor almost one out of every ten items. This
difficulty could be due in part to our methodology:
we preprocess the sentences we present to anno-
tators automatically and rely on crowd-sourcing
to retrieve human judgments on the distributional
substitution task. Nonetheless, it suggests that
meaning cannot be entirely retrieved from distri-
bution alone: extralinguistic context is necessary
(Searle, 1980; Harnad, 1990; Bender and Koller,
2020). Adding strength to this analysis, we can ten-

3Groups with fewer than 100 items not included.
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Figure 1: Success rates (in %).3

tatively identify word pairs that are not reliably dis-
tinguished by human annotators. For all languages,
roughly 5% of word pairs seen by 5 or more an-
notators have average success rates at or below
chance level. Such pairs are often co-hyponyms:
aquarelle ‘watercolor’ & gouache ‘gouache’,
frambuesa ‘raspberry’ & fresa ‘strawberry’,
GepkyT ‘golden eagle’ & kpeuetr ‘gyrfalcon’, or
baseball & basketball.

4 Success rates

To assess how well DSMs model Eq. (1), we can
look at how often they correctly retrieve the target.

4.1 Methodology

We start by considering a 1-gram baseline and a
2-gram baseline. Both are tabulated from corpora
comparable to the ones used as basis for our dataset,



using the same number of sentences from the same
four genres in the same proportions. We further
ensure that there is no overlap between the corpora
we use to compute our n-gram baselines and those
used to construct our dataset.

We also include pretrained models based on the
BERT architecture of Devlin et al. (2019) or vari-
ants thereof. We use BERT (base, uncased) for
English, BETO (Cafiete et al., 2020) for Spanish,
CamemBERT (Martin et al., 2020, base) for French,
UmBERTo* for Italian and RuRoberta (large)’
for Russian. We also include word2vec models
(Mikolov et al., 2013a) trained on up to 500M sen-
tences from the Oscar dataset (Ortiz Sudrez et al.,
2019), using gensim (Rehiifek and Sojka, 2010)
with default hyper-parameters.

As all our models are able to assess the prob-
ability of a word in a given context p(w|c), we
can extract a prediction by considering whether the
probability associated to the target word p(w¢|c) is
greater than the probability associated to the dis-
tractor in the same context p(wy|c). In practice, we
found it more effective to consider the sum of log

probabilities across all contexts ci, ..., cg:
> logp(wiley) = D logp(walex) >0 (2)
k k

Whenever Eq. (2) holds true, the associated
model correctly assigns a higher probability to the
target w; than to the distractor wy. It should be
noted that Eq. (1) and (2) are not strictly equiv-
alent. However, using log-probabilities matches
more closely the training objectives of the models
we consider: both the MLM objective of BERT-like
models and the objective function of word2vec
models are implemented as cross-entropy mini-
mization objectives.

BERT models rely on masking word pieces,
hence we derive scores in Eq. (2) by masking all the
word pieces of the target or distractor, and sum the
associated log-probabilities. For word2vec mod-
els, we use the explicit probability distribution as
derived during training.

4.2 Results

We can now compare the success rate of models
to that of humans. To tabulate these scores, we
dropped annotations that took too long or too short:
*https://github.com/
musixmatchresearch/umberto

Shttps://huggingface.co/sberbank-ai/
ruRoberta-large

en es fr it ru
Size 2051 1686 3443 749 3926
Reduct. (%) 78.6 75.1 783 71.1 95.0

Table 3: Effects of filtering on dataset size

we dropped any annotations where the logarithm
of the time taken by the annotator was more than
one standard deviation apart from the mean, to
ensure that we remove the least trustworthy anno-
tations. To avoid likely train/test overlaps, we also
remove any sentence originating from Wikipedia.
The quantitative impact of this preprocessing is
displayed in Table 3.

en es fr it ru
human 83.1 86.9 &83.8 89.1 &7.8
l-gram  51.9 56.2 53.4 50.8 57.2
2-gram 60.4 71.2 66.0 70.7 60.1
BERTs 75.8 71.6 74.1 76.1 744
W2vs 755 T7.1 T75.5 T4.8 T2.5

Table 4: Success rates (in %)

Results are described in Table 4. We include
the success rates of human annotators on the items
we retain for comparison. All models considered
yield results above chance level (50%). The var-
ious BERT models attain a success rate between
71.6% and 76.1%; the macro-average across all
languages reaches 74.4%. This is still below what
we see for humans (83.1% to 89.1%, averaging to
86.1%), but systematically above n-gram baselines:
the 1-gram average across languages is at 53.9%,
the 2-gram average is at 65.7%. The real surprise
here is the performance of the word2vec models:
despite being designed as purely static embeddings,
they achieve a 75.1% average success rate on this
contextual task, slightly above what we observe for
the BERT models.

4.3 Discussion

This overview of models’ success rates highlights
that word2vec models can obtain performances
comparable to what we observe for BERT-like mod-
els. This may be due in part to the size of our train-
ing corpora, ranging from 60G (EN) to 90G (RU)
of data: this is often (but not always) above what
some of the BERT models were trained with.

It is surprising to see that these static embed-


https://github.com/musixmatchresearch/umberto
https://github.com/musixmatchresearch/umberto
https://huggingface.co/sberbank-ai/ruRoberta-large
https://huggingface.co/sberbank-ai/ruRoberta-large

dings can rival contextual embeddings on a con-
textual task. This lends depth to previous studies
which have found static embeddings to be compara-
ble to contextual embeddings on word-type bench-
marks (Vuli¢ et al., 2020; Lenci et al., 2021, a.o.).
Nonetheless we still observe a gap between these
models and human performance in our dataset.

5 Comparing human and model
behaviors

Section 4 has given us a quantitative estimate of
the performance of our DSMs. We now turn to
assessing whether they can be construed as models
of the linguistic behavior of our annotators.

5.1 Binary classification approach

The first approach we consider is to reframe this
question as a binary classification problem. Let us
assume our models are perfect linguistic models of
human capabilities: if so, we would expect them to
match human failure with failure. In other words,
any incorrect annotation item should correspond to
a negative score, as assessed by Eq. (2).

Hence we could consider human behavior as the
“gold standard” that a model of human linguistic
capabilities would try to match. By assessing how
our models perform on this binary classification
task, we are able to surmise whether their behav-
ior matches that of human—are they puzzled by
sentences humans got wrong? Are they confident
with sentences humans got right? To answer this
question, we can use standard binary classification
tools. More specifically, we turn to Matthews’ cor-
relation coefficient (MCC) to see whether model
predictions match with human behavior.

en es fr it ru
l-gram 0.157 0.158 0.158 0.119 0.177
2-gram 0.156 0.211 0.200 0.193 0.143
BERTs 0.208 0.178 0.150 0.077 0.230
w2vs  0.135 0.185 0.170 0.122 0.199

Table 5: Matthews’ correlation coefficient

Results are shown in Table 5. The difference be-
tween n-gram baselines and distributional seman-
tics models that clearly emerged from Table 4 is no
longer present. In our three Romance languages,
the 2-gram baseline yields a higher correlation co-
efficient than both word2vec and BERT. In English,
the word2vec model is found to yield the lowest

MCC; in French and Italian, the CamemBERT and
UmBERTo models yield the lowest MCC.

It is hard to argue that the distributional mod-
els correlate more with human behavior than the
n-gram baselines. We can stress that all the mod-
els we tested yielded a positive correlation, which
suggests that the behavior of our DSMs is not unre-
lated to humans. Yet the mistakes and successes of
our DSM models overall do not necessarily align
with that of human annotators, as expressed in our
dataset.

5.2 Ranking approach

There are two obvious caveats that one can think of
in the methodology we adopted in Subsection 5.1.
First, it pits model efficiency against linguistic va-
lidity: a model cannot be both always correct and
match human failures with failures of its own. It
also relies entirely on treating human annotations
as a gold standard—even when annotators have
selected the wrong answer.

The simplest way to address both of these con-
cerns is to depart from the binary approach, and
see instead whether human uncertainty is matched
with lower scores from the models. In principle, a
model could always choose the right answer, but
lower its score for difficult items—i.e., those anno-
tators struggle with. Considering the uncertainty
of our annotators also entails that we factor in how
confident they are in their judgments.

This approach requires some sort of measure-
ment of annotator uncertainty, beyond the binary
annotations we have exploited thus far. To that end,
we focus on the time it takes an annotator to answer
a question. We can expect that an annotation item
that is easy to judge should take less time than an
item requiring careful consideration. Furthermore,
as annotators should have no difficulty to correctly
guess easier items, we expect that the time taken to
answer correctly should be less than the time taken
to answer incorrectly. We also consider normaliz-
ing the time taken by the number of sentences (i.e.,
k), the number of words across all sentences, or
the number of characters across all sentences. Our
reasoning is that the time taken by an annotator
also depends on how much text they have to read.

In Table 6, we consider various time indicators:
either the raw log seconds taken,® or variants nor-
malized by some measure of the length of the an-

The logarithmic transformation shifts data distribution
from a power law to an almost normal distribution.



Norm. en es fr it ru en es fr it ru

none - — — 0.417 0.390 l-gram 0.149 0.115 0.132 0.163 0.147
sents.  — 0.458 0.449 0.373 0.376 2-gram  0.119 0.150 0.228 0.267 0.146
words 0.447 0.385 0.454 0.421 0.452 BERTs 0.225 0.152 0.204 0.218 0.258
chars. 0.462 0.395 0.455 0.417 0.459 w2vs  0.145 0.196 0.244 0.165 0.248

Table 6: Effect size from Mann-Whitney U-tests for log
time taken when answering correctly vs. incorrectly

notation item. Measurements are done using a
Mann-Whitney U-test, to see whether the distribu-
tions of time indicators differ between correctly
annotated items and incorrectly annotated items:
we then compute the common-language effect size,
i.e., the U-statistic divided by the maximum value
it could assume. Here, a lesser value of p entails a
greater certainty that the incorrect annotations take
longer than the correct annotations. Statistically
insignificant effect sizes are not reported.

Table 6 shows that raw time measurement is not
always significant, but when factoring in the length
of an annotation item we detect that annotators take
longer when they answer incorrectly than correctly.
This is consistent with time being an indicator of
uncertainty. We note that the best length normal-
ization differs across languages; explaining what
factors drive this difference is beyond our scope.

Having found a way to quantify uncertainty, we
can now include it in our original annotations. We
reweight human annotations to factor in time, such
that highly confident correct answers lie at one
end of the spectrum, and highly confident wrong
answers lie at the other end of the spectrum. This
also ensures that we match as closely as possible
how we derive scores from our models. Technically,
we reweight human judgments as follows:

1 i t
(max s* — 5) x {—i— if correc 3)

—1 otherwise

where s is the length-normalized time indicator
logt/N, with N either the number of sentences
(for FR, IT, RU) or words (for EN and ES), and
max s* is the maximum value observed for s across
all annotations for that language.

As we have two related series of continuous mea-
surements, we can apply a simple correlation met-
ric, such as Spearman’s p, between time-weighted
annotator responses and model scores. This is
shown in Table 7. In English, French and Italian,
either or both DSMs yield a lower correlation than

Table 7: Spearman correlations of model scores and
time-weighted human judgments

what we observe for n-grams, while in Spanish the
margin between BETO model and the 2-gram base-
line is less than 0.002. Only in Russian do we find
a sharp distinction between DSMs and n-grams.
Overall, allthough correlation scores are always
positive, they remain fairly low (p < 0.27).

5.3 Discussion

In all, while the models do display some degree
of performance (as shown in Section 4), neither
the sort of mistakes they do (Subsection 5.1) nor
the confidence in their answer (Subsection 5.2)
matches human behavior closely. In many cases,
distinguishing DSMs from n-gram baselines can
prove very arduous. In other words, this experiment
suggests that efficient models do not necessarily
reflect human linguistic behavior.

6 Manipulating the distributional
hypothesis

We have focused thus far on whether DSMs model
human behavior. We could instead reverse the
setup: does a low score from a DSM entail a greater
hesitation from the human annotators?

6.1 Methodology

This time, we select sentences that either maximize
or minimize Eq. (2), and see how human annotators
fare on these contexts and how confident they are
in their answers. We start by selecting the most ex-
treme word pairs in terms of average success rate.
For each word pair, we select a random sample
of up to 10 000 sentences from the original sen-
tence corpora detailed in Section 3, and rank them
according to the score a BERT-like model would
give them following Eq. (2). We then restrict our
random sample to the five sentences with the low-
est scores and the five sentences with the highest
scores. We ensure that sentences are uniquely asso-
ciated to word pairs: if some sentence ¢, is among
the ten items chosen for a pair (wj’, w), then it
will not be chosen for any other pair (w;", w}").



We then hire native speakers to annotate this data.
Unlike the main dataset, we present one context at
a time, since we are interested in the ability of a
DSM to rank specific contexts. We also ask annota-
tors to express themselves using a five-point Likert
scale, ranging from high confidence in the target
to high confidence in the distractor. All items are
doubly annotated. In total, we gathered 500 items
for English, 432 in Spanish and 500 in French.

6.2 Results

Fig. 2 pits the scores derived from BERT on the y-
axis against the corresponding Likert scale annota-
tions, for each language; the heatmap in the middle
of each picture displays how the two distributions
coincide. These illustrations clearly show that both
annotators and the BERT models behave differently
across languages. However there are similarities:
in all three languages, annotators match high BERT
scores with a strong preference for the target. In
French (Subfigure 2¢), annotators and BERT seem
to closely match in their behavior: a neutral re-
sponse is elicited when the score is low, whereas a
confident preference for the target corresponds to a
high score. In the other two languages, low scores
are spread out across the scale. In Spanish (Subfig-
ure 2b), scores around zero elicit a neutral response,
but scores below zero do not seem associated to a
specific response. In English (Subfigure 2a), we
see a linear trend: the very lowest BERT scores
tend to elicit a strong preference for the distractor.

To provide a more quantitative outlook, we turn
to a dominance analysis (Budescu, 1993) to deter-
mine the factor most closely related to annotators’
behavior. Dominance analysis consists in learn-
ing a simple linear regression, computing the as-
sociated r? to measure its fitness, and deriving the
proportion of this 2 that can be imparted on each
predictor. Here, we predict the average Likert score
from the original average success rate for the word
pair and the BERT score for the context. This al-
lows us to compare these two metrics as competing
explanations for the collected Likert annotations.
We also include other likely predictors: the original
source of the sentence shown to the Likert anno-
tators, the time taken for the word pair and the
frequency of target and distractor.

Results are presented in Table 8. The 72 of
each linear regression is given in the last column;
columns 1 through 5 detail the proportion of this 2
imparted on each predictor (in %). The fitness of

2

BERT succ. time freq. src. r
en 76.86 897 9.01 380 1.36 | 0.28
es 0918 4.22 4.20 21.24 11.16 | 0.21
fr 81.38 7.15 7.30 194 223 ]| 0.44

Table 8: Prop. of 72 explained by type of predictor

the regression, as measured by 2 scores, suggests
that more than half of the variance in annotations is
not explained by a simple linear relation between
predictors. This is especially striking in Spanish,
where the 72 score is at 0.21. Yet all models consis-
tently rank the BERT score as the most important
predictor. The French and English both impart
more than 75% of the explained variance on BERT
scores and 15% to 20% to average success rates
and time taken on the previous dataset. The Span-
ish model emphasizes more the frequency of the
target and distractor (21.24%) and the corpora from
which the presented context originate (11.16%).

6.3 Discussion

In short, this last experiment stresses that in spe-
cific conditions BERT models can prove to be use-
ful tools to manipulate the distributional hypothe-
sis. This is especially visible on the case of the
French data, which yields the most obvious bi-
modal distribution (Subfigure 2c), the highest -2,
and the largest proportion of variance explained by
the BERT model scores. These elements suggest
that the CamemBERT model was able to select
sentences that strongly cued the target.

On the other hand, we are not able to reliably find
French contexts that elicit a strong preference for
the distractor. This is something we only tentatively
observe for English, where paradoxically the domi-
nance analysis suggests that our current predictors
are less well-suited to explain the phenomena we
recorded (r? = 0.28). This is in line with previ-
ous experiments: while high BERT scores translate
into a confident preference for the target, much
remains to be done in order to accurately depict
the full breadth of human behaviors, ranging from
strong preferences in the distractor and accurately
depicting less confident human judgments.

Opposite to this is Spanish: the lowest scores
from BETO do not bias the annotators towards neu-
tral or negative responses. The main reason of this
difference is unclear: the quality of the sentences
presented to annotators might play a role, but so
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Figure 2: Word pair difficulty compared to BERT scores

might the quality of BETO. We also find a much
lower inter-annotator agreement for this language:
the Pearson r correlation coefficient for our two
Spanish annotators is of only 0.11, compared to the
0.59 we observe for English or the 0.74 for French.

Improvements could be made on our analyses:
one could use as predictors the average success rate
and the average time taken restricted to items with
k = 1 contexts, as these would be more represen-
tative. We leave this to future investigations, as
we haven’t collected enough data to establish such
baselines (cf. Table 1). Another point we leave
for future study is the number of datapoints in our
original datasets: some predictors are derived from
them (average time and success rate) and it is un-
clear how size discrepancy impacts them.

7 Related Works

Distributional semantics was first suggested by Har-
ris (1954). A wealth of work has focused on char-
acterizing it (Sahlgren, 2008; Lenci, 2018; Boleda,
2020; Emerson, 2020; Rogers et al., 2020). as well
as its limitations (Miller, 1967; Westera and Boleda,
2019); related works point out the hardships of se-
mantically grounding distributional representations
(Searle, 1980; Jackson, 1982; Harnad, 1990; Ben-
der and Koller, 2020). Other researchers concern
themselves with the empirical foundations of the
distributional hypothesis, often from the point of
view of psycholinguistics (Rubenstein and Goode-
nough, 1965; Mandera et al., 2017).

Also relevant to our work are studies that attempt
to evaluate the performance or quality of distribu-
tional models of semantics. These can generally be
grouped in two categories: works introducing eval-
uation procedures or benchmarks (Mikolov et al.,

2013b; Wang et al., 2018; Ferret, 2021) and works
proposing large surveys across multiple models
(Vuli€ et al., 2020; Lenci et al., 2021).

8 Conclusions

We broached the question of how to quantify our
expectations with respect to distributional seman-
tics and DSMs, using the distributional substitution
task. In short, distributional information would
allow humans to retrieve about 82% of pairwise
meaning distinctions. In contrast, embedding mod-
els like BERT and word2vec would only reach
75% accuracy (Section 4), and how they achieve
these performances begs the question of whether
we should consider them as models of distribu-
tional semantics, seeing that they do not seem to
match human annotators’ judgments (Section 5).
In specific circumstances BERT-like models can
however be used as tools to manipulate the distri-
butional hypothesis (Section 6). More research is
needed before any firm conclusion can be reached,
given the limits of the dataset we currently have
(Section 3: 5 languages, about 15 000 items).

Taking a more linguistic-oriented point of view,
our experiments suggest that much remains to be
done before we can confidently say that modern
NLP models can be construed as linguistically valu-
able models of distributional semantics. This opens
a number of perspectives for future research: how
would this translate to other languages, especially
non-European ones? What is required of DSMs
for them to accurately describe human behavior?
Which factors are necessary to model human be-
havior on the distributional substitution task?



Ethical impact

We propose a dataset derived from human judg-
ments. The data collection process has been ap-
proved by the relevant instances within the research
structures of the authors. As such, a number of con-
siderations apply.

The authors of this work are based in an area
where GDPR laws apply.” The data was therefore
collected in a manner that guarantees the anonymity
of the annotators; in particular, all identifiers asso-
ciated to annotators in the dataset correspond to
randomly generated strings. Time of annotation
creation, geographic location of annotators, contact
information of annotators are not provided in the
released dataset.

The data was collected through a gamified online
platform. As such, annotators of the base dataset
described in Section 3 were not financially com-
pensated for their work; and the whole collection
project was constructed to ensure this voluntary
work is conducted in as ethical a manner as possi-
ble. In particular:

* Participation to the annotation platform re-
quires informed consent of how their in-game
behavior will be used. As such, the gamified
platform was systematically advertised as a
research project.

* Annotators are free to opt out of the task at
any moment. Annotators retain the right to
have all records of their activity automatically
destroyed at any time.

* Annotators are provided with the means to
convey feedback.

The contexts presented to annotators were au-
tomatically collected from large corpora. Hence,
they may contain unwanted biases discriminating
against a specific race, sex, gender, ethnicity, age,
religion or any other social criterion. Such con-
texts have not been removed: (a) the dataset was
constructed with the intent of collecting human
judgments on the sort of data presented to distribu-
tional model, including socially biased data; (b) a
manual evaluation of a sample of 100 contexts did
not reveal any downright problematic sentences,
although we found one sentence expressing bias
against the handicapped, and three sentences dis-
playing female characters in stereotypically gen-
dered situations. Also note that contexts were

"https://gdpr.eu/what-is-gdpr/

drawn from sources such as Europarl, which con-
tains a majority of male speakers, or Wikipedia,
which is known for its high proportion of white,
male, college-educated writers.

Word pairs are constructed through multiple
strategies, which include automatic means and
crowd-sourced propositions. It is therefore pos-
sible that these contain unwanted associations that
could reflect systemic biases. Although we have
not identified any such item in our analyses , a more
in-depth study is required.

The dataset proposed in this paper is highly Eu-
rocentric. All the languages we propose corre-
spond to European countries. This choice stems
from practical considerations—namely due to the
availability of experts and data for these lan-
guages. We nonetheless ensured that the gami-
fied platform itself would be easily transposable to
other languages, by including website translation
mechanisms and externalizing language processing
pipelines.

Lastly, the authors stress that they make no claim
with respect to measuring social impact through
their proposed dataset. It is important to acknowl-
edge that models that yield interesting results and
high performances on the present dataset may very
well display unwanted biases. The present dataset
is not constructed to assess such aspects of an NLP
system.
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