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Abstract

Distributional semantics is often proposed as001
the linguistic theory underpinning many of002
the most efficient current NLP systems. In003
the present paper, we question the linguistic004
well-foundedness of these models, addressing005
it from the perspective of distributional substi-006
tution. To that end, we provide a dataset of007
human judgments on the distributional hypoth-008
esis, and highlight how humans cannot system-009
atically distinguish pairs of words solely from010
contextual information. We stress that earlier011
static embedding architectures are competitive012
with more modern contextual embeddings on013
the distributional substitution task, and that nei-014
ther serve as good models of human linguistic015
behavior.016

1 Introduction017

One would not argue that the manner by which a018

pocket calculator estimates the value of 156 837×019

86 942 correctly depicts the mental processes of a020

human tasked with the same problem. Curiously021

enough, the same isn’t held for language tools.022

Recent NLP neural networks boast impressive023

feats on a wide variety of benchmarks. Crucially,024

the crux of NLP research has focused on efficiency:025

how to produce the highest score on some well de-026

lineated task. Little interest has been directed to027

assessing the linguistic value of these models: of-028

tentimes, authors only hearken back to early works029

in distributional semantics, such as Harris (1954).030

There is however some criticism directed towards031

this framework: works such as Searle (1980), Har-032

nad (1990) or Bender and Koller (2020) argue that033

text alone cannot suffice to derive meaning.034

Given these known flaws, it is worth asking what035

value our recent large pretrained models have to036

the linguist. Here, we set out to see what quan-037

titative arguments can be made in this debate: to038

what degree is the distributional hypothesis of Har-039

ris (1954) invalid? To what degree does it fit the040

behavior of models such as BERT (Devlin et al., 041

2019) or word2vec (Mikolov et al., 2013a)? 042

The approach we take here consists in testing 043

models of distributional semantics on the distribu- 044

tional substitution task, which we frame in a man- 045

ner reminiscent of the Cloze Task (Taylor, 1953). 046

Given a target word, a distractor and a set of con- 047

texts containing the target but not the distractor, we 048

replace target words with blank tokens and investi- 049

gate whether models distinguish the target from the 050

distractor. This task has a number of merits. It al- 051

lows us to test many distributional models through 052

their objective function, rather than rely on external 053

parameters as with probing methodologies. It is 054

also fairly intuitive to explain to annotators; and 055

we therefore can compare networks to humans. 056

Our findings highlight a number of counter- 057

intuitive facts: recent contextualized embeddings 058

are comparable to earlier static embeddings, and 059

noticeably under-perform human annotators. More 060

intriguing is the fact that embeddings do not ap- 061

pear to match human behavior more closely than 062

n-gram baselines, casting doubt on their validity as 063

models of human linguistic behavior. 064

The rest of this article will be structured as fol- 065

lows. We sketch a description of the theoretical 066

framework of our analyses in Section 2, and de- 067

tail the empirical data we base our experiments on 068

in Section 3. Sections 4, 5 and 6 describe the ex- 069

periments we conduct. Lastly, we provide a brief 070

review of existing related works in Section 7 and 071

some perspectives for future work in Section 8. 072

2 Distributional substitution 073

In his seminal paper on distributional semantics, 074

Harris (1954) proposed the distributional hypoth- 075

esis: word meaning should correlate with word 076

distribution. We refer the reader to reviews such as 077

Lenci (2018) or Boleda (2020) for a more thorough 078

introduction. Here, we adopt the following view on 079

distributional semantics: a distributional semantics 080
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model (or ‘DSM’) must be able to express which of081

two words is more appropriate in a given linguistic082

context. More formally, we expect of a DSM that083

it provides an estimate for:084

p(w1|c) > p(w2|c) (1)085

This equation can be seen as implementing the086

distributional principle of substitutability, which087

was already sketched out in Harris (1954). In088

essence, we expect that these models are able to089

characterize the effect of substituting one word090

(w2) for another one (w1) within a given linguistic091

context (c). This principle of substitution has been092

used in other studies (Ferret, 2021, e.g.).093

This view is also grounded in the fact that many094

word embedding and distributional models are able095

to yield an expression such as the one above. If096

we adopt the “count” vs. “predict” dichotomy of097

Baroni et al. (2014), which categorizes DSMs ac-098

cording to whether they are derived by tabulation099

(“count”) or inference (“predict”), we can see that100

both “count” and “predict” models are based on101

estimates of the conditional probability of words102

given their linguistic contexts. The main difference103

lies in that “count” models derive this estimate104

from descriptive statistics, whereas “predict” mod-105

els learn it using inferential models such as neural106

networks.107

Another argument, first expressed by Sahlgren108

(2008) and discussed by Gastaldi (2021), stresses109

the theoretical connection between this conditional110

probability p(w|c) and the paradigmatic axis in111

the structuralist framework of linguistics (Saussure,112

1916). Both are referring to the ability to model113

which linguistic expressions fit in a given context.114

3 Dataset115

To study how models perform on the distributional116

substitution task, we begin by collecting human117

judgments, using a crowd-sourced gamified ap-118

proach in compliance with GDPR laws. All source119

corpora are made available under CC-BY-SA li-120

censes; we will release our collected data under the121

same license upon acceptance. A companion paper122

describes the data collection procedure in depth.123

3.1 Dataset construction124

We collect data in 5 languages: English, Spanish,125

French, Italian and Russian. Analyses presented126

here are derived from a set of 14493 annotations.127

en es fr it ru

k = 1 329 110 540 161 113
k = 3 58 90 136 73 90
k = 5 2223 2044 3719 816 3991
Total 2610 2244 4395 1050 4194

Table 1: Number of items collected

Annotation items are based on k contexts (with 128

k ∈ {1, 3, 5})1 and two words: a target wt and a 129

distractor wd. All k sentences contain the target wt, 130

but not the distractor wd. Sentences are presented at 131

once, with the target wt replaced by a blank token. 132

Annotators are then asked which of the two words 133

wt or wd they believe was originally present in the 134

k sentences. This task corresponds to a variation 135

on the Cloze test (Taylor, 1953) where annotators 136

see more than one context. An overview of the data 137

volume collected thus far is given in Table 1. 138

The contexts presented to annotators were pre- 139

selected from four genres: Wikipedia dumps, 140

books corpora (Gutenberg Project, WikiSource, 141

LiberLiber.it), parliamentary debates (EuroParl, 142

Koehn, 2005; UN Corpus, Ziemski et al., 2016) 143

and subtitles (OpenSubtitles, Lison and Tiedemann, 144

2016), for a total of 4M sentences. 145

We consider three strategies to construct word 146

pairs.2 First, we select items which we expect to 147

be difficult a priori : ordinal and cardinal numbers, 148

months, days of the week and colors. Second, we 149

select items that maximize distributional similarity, 150

using word2vec models. Lastly, annotators also 151

had the possibility to suggest pairs of words that 152

they expect to be difficult to distinguish. 153

To construct our dataset, we collect: the tar- 154

get wt, the distractor wd, the k context sentences, 155

whether the annotator correctly selected the target 156

wt, the time taken to provide an answer, and identi- 157

fiers for the annotator and the creator of the word 158

pair. Table 2 provides an example item. 159

3.2 Dataset contents 160

Fig. 1 displays the overall success rate of annota- 161

tors; i.e., the percentage of annotations where they 162

were able to select the target word over the distrac- 163

tor. Each subfigure presents a different condition: 164

Subfigure 1a shows results over the full dataset, 165

1Annotators can freely set k, by default, k = 5.
2Throughout the paper, “word pair” refers to order-

insensitive word pairs.
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Target: pleura Distractor: diaphragm
Correct: No Time: 35.84 s

Contexts:

best way to dissect the aortic
.

the and pericardium have
both been recorded as points of
outlet.

if the be implicated,
greater expansion of the upper
and outside portion of the
left side of the chest in
inspiration takes place.

Annotator ID: dYaGLiFsJz8
Creator ID: N/A (distributional)

Table 2: Example annotation item.

whereas Subfigures 1b and 1c display results ac-166

cording to the number of contexts shown to the167

annotators. We do not include results for k = 3, as168

most groups contained less than 100 items.169

If we look at the overall tally (Subfigure 1a), and170

average across all five languages of our study, we171

get a success rate of 82%. For all languages, at least172

13% of the items considered here have received an173

incorrect response from human annotators. The174

overall difficulty can jump to more than 26% if175

we consider the most challenging setups, where176

annotators only have access to k = 1 sentences177

(Subfigure 1b). Even in the most informed setup178

with k = 5 (Subfigure 1c), we find that the best179

language remains below 90% accuracy overall. It180

is also instructive to compare the strategies used to181

define word pairs: those suggested by annotators182

tend to be the easiest of all; whereas a priori word183

pairs tend to be harder than the average case. Lastly,184

the surprising difficulty for Spanish distributional185

word pairs comes from the fact that our original186

Wikipedia sample contain a number of extremely187

similar sentences all focusing on botany.188

Even in the best of cases, annotators select the189

distractor almost one out of every ten items. This190

difficulty could be due in part to our methodology:191

we preprocess the sentences we present to anno-192

tators automatically and rely on crowd-sourcing193

to retrieve human judgments on the distributional194

substitution task. Nonetheless, it suggests that195

meaning cannot be entirely retrieved from distri-196

bution alone: extralinguistic context is necessary197

(Searle, 1980; Harnad, 1990; Bender and Koller,198

2020). Adding strength to this analysis, we can ten-199

3Groups with fewer than 100 items not included.
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Figure 1: Success rates (in %).3

tatively identify word pairs that are not reliably dis- 200

tinguished by human annotators. For all languages, 201

roughly 5% of word pairs seen by 5 or more an- 202

notators have average success rates at or below 203

chance level. Such pairs are often co-hyponyms: 204

aquarelle ‘watercolor’ & gouache ‘gouache’, 205

frambuesa ‘raspberry’ & fresa ‘strawberry’, 206

berkut ‘golden eagle’ & kreqet ‘gyrfalcon’, or 207

baseball & basketball. 208

4 Success rates 209

To assess how well DSMs model Eq. (1), we can 210

look at how often they correctly retrieve the target. 211

4.1 Methodology 212

We start by considering a 1-gram baseline and a 213

2-gram baseline. Both are tabulated from corpora 214

comparable to the ones used as basis for our dataset, 215
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using the same number of sentences from the same216

four genres in the same proportions. We further217

ensure that there is no overlap between the corpora218

we use to compute our n-gram baselines and those219

used to construct our dataset.220

We also include pretrained models based on the221

BERT architecture of Devlin et al. (2019) or vari-222

ants thereof. We use BERT (base, uncased) for223

English, BETO (Cañete et al., 2020) for Spanish,224

CamemBERT (Martin et al., 2020, base) for French,225

UmBERTo4 for Italian and RuRoberta (large)5226

for Russian. We also include word2vec models227

(Mikolov et al., 2013a) trained on up to 500M sen-228

tences from the Oscar dataset (Ortiz Suárez et al.,229

2019), using gensim (Řehůřek and Sojka, 2010)230

with default hyper-parameters.231

As all our models are able to assess the prob-232

ability of a word in a given context p(w|c), we233

can extract a prediction by considering whether the234

probability associated to the target word p(wt|c) is235

greater than the probability associated to the dis-236

tractor in the same context p(wd|c). In practice, we237

found it more effective to consider the sum of log238

probabilities across all contexts c1, . . . , ck:239 ∑
k

log p(wt|ck)−
∑
k

log p(wd|ck) > 0 (2)240

Whenever Eq. (2) holds true, the associated241

model correctly assigns a higher probability to the242

target wt than to the distractor wd. It should be243

noted that Eq. (1) and (2) are not strictly equiv-244

alent. However, using log-probabilities matches245

more closely the training objectives of the models246

we consider: both the MLM objective of BERT-like247

models and the objective function of word2vec248

models are implemented as cross-entropy mini-249

mization objectives.250

BERT models rely on masking word pieces,251

hence we derive scores in Eq. (2) by masking all the252

word pieces of the target or distractor, and sum the253

associated log-probabilities. For word2vec mod-254

els, we use the explicit probability distribution as255

derived during training.256

4.2 Results257

We can now compare the success rate of models258

to that of humans. To tabulate these scores, we259

dropped annotations that took too long or too short:260

4https://github.com/
musixmatchresearch/umberto

5https://huggingface.co/sberbank-ai/
ruRoberta-large

en es fr it ru

Size 2051 1686 3443 749 3926
Reduct. (%) 78.6 75.1 78.3 71.1 95.0

Table 3: Effects of filtering on dataset size

we dropped any annotations where the logarithm 261

of the time taken by the annotator was more than 262

one standard deviation apart from the mean, to 263

ensure that we remove the least trustworthy anno- 264

tations. To avoid likely train/test overlaps, we also 265

remove any sentence originating from Wikipedia. 266

The quantitative impact of this preprocessing is 267

displayed in Table 3. 268

en es fr it ru

human 83.1 86.9 83.8 89.1 87.8
1-gram 51.9 56.2 53.4 50.8 57.2
2-gram 60.4 71.2 66.0 70.7 60.1
BERTs 75.8 71.6 74.1 76.1 74.4
W2Vs 75.5 77.1 75.5 74.8 72.5

Table 4: Success rates (in %)

Results are described in Table 4. We include 269

the success rates of human annotators on the items 270

we retain for comparison. All models considered 271

yield results above chance level (50%). The var- 272

ious BERT models attain a success rate between 273

71.6% and 76.1%; the macro-average across all 274

languages reaches 74.4%. This is still below what 275

we see for humans (83.1% to 89.1%, averaging to 276

86.1%), but systematically above n-gram baselines: 277

the 1-gram average across languages is at 53.9%, 278

the 2-gram average is at 65.7%. The real surprise 279

here is the performance of the word2vec models: 280

despite being designed as purely static embeddings, 281

they achieve a 75.1% average success rate on this 282

contextual task, slightly above what we observe for 283

the BERT models. 284

4.3 Discussion 285

This overview of models’ success rates highlights 286

that word2vec models can obtain performances 287

comparable to what we observe for BERT-like mod- 288

els. This may be due in part to the size of our train- 289

ing corpora, ranging from 60G (EN) to 90G (RU) 290

of data: this is often (but not always) above what 291

some of the BERT models were trained with. 292

It is surprising to see that these static embed- 293
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dings can rival contextual embeddings on a con-294

textual task. This lends depth to previous studies295

which have found static embeddings to be compara-296

ble to contextual embeddings on word-type bench-297

marks (Vulić et al., 2020; Lenci et al., 2021, a.o.).298

Nonetheless we still observe a gap between these299

models and human performance in our dataset.300

5 Comparing human and model301

behaviors302

Section 4 has given us a quantitative estimate of303

the performance of our DSMs. We now turn to304

assessing whether they can be construed as models305

of the linguistic behavior of our annotators.306

5.1 Binary classification approach307

The first approach we consider is to reframe this308

question as a binary classification problem. Let us309

assume our models are perfect linguistic models of310

human capabilities: if so, we would expect them to311

match human failure with failure. In other words,312

any incorrect annotation item should correspond to313

a negative score, as assessed by Eq. (2).314

Hence we could consider human behavior as the315

“gold standard” that a model of human linguistic316

capabilities would try to match. By assessing how317

our models perform on this binary classification318

task, we are able to surmise whether their behav-319

ior matches that of human—are they puzzled by320

sentences humans got wrong? Are they confident321

with sentences humans got right? To answer this322

question, we can use standard binary classification323

tools. More specifically, we turn to Matthews’ cor-324

relation coefficient (MCC) to see whether model325

predictions match with human behavior.326

en es fr it ru

1-gram 0.157 0.158 0.158 0.119 0.177
2-gram 0.156 0.211 0.200 0.193 0.143
BERTs 0.208 0.178 0.150 0.077 0.230
W2Vs 0.135 0.185 0.170 0.122 0.199

Table 5: Matthews’ correlation coefficient

Results are shown in Table 5. The difference be-327

tween n-gram baselines and distributional seman-328

tics models that clearly emerged from Table 4 is no329

longer present. In our three Romance languages,330

the 2-gram baseline yields a higher correlation co-331

efficient than both word2vec and BERT. In English,332

the word2vec model is found to yield the lowest333

MCC; in French and Italian, the CamemBERT and 334

UmBERTo models yield the lowest MCC. 335

It is hard to argue that the distributional mod- 336

els correlate more with human behavior than the 337

n-gram baselines. We can stress that all the mod- 338

els we tested yielded a positive correlation, which 339

suggests that the behavior of our DSMs is not unre- 340

lated to humans. Yet the mistakes and successes of 341

our DSM models overall do not necessarily align 342

with that of human annotators, as expressed in our 343

dataset. 344

5.2 Ranking approach 345

There are two obvious caveats that one can think of 346

in the methodology we adopted in Subsection 5.1. 347

First, it pits model efficiency against linguistic va- 348

lidity: a model cannot be both always correct and 349

match human failures with failures of its own. It 350

also relies entirely on treating human annotations 351

as a gold standard—even when annotators have 352

selected the wrong answer. 353

The simplest way to address both of these con- 354

cerns is to depart from the binary approach, and 355

see instead whether human uncertainty is matched 356

with lower scores from the models. In principle, a 357

model could always choose the right answer, but 358

lower its score for difficult items—i.e., those anno- 359

tators struggle with. Considering the uncertainty 360

of our annotators also entails that we factor in how 361

confident they are in their judgments. 362

This approach requires some sort of measure- 363

ment of annotator uncertainty, beyond the binary 364

annotations we have exploited thus far. To that end, 365

we focus on the time it takes an annotator to answer 366

a question. We can expect that an annotation item 367

that is easy to judge should take less time than an 368

item requiring careful consideration. Furthermore, 369

as annotators should have no difficulty to correctly 370

guess easier items, we expect that the time taken to 371

answer correctly should be less than the time taken 372

to answer incorrectly. We also consider normaliz- 373

ing the time taken by the number of sentences (i.e., 374

k), the number of words across all sentences, or 375

the number of characters across all sentences. Our 376

reasoning is that the time taken by an annotator 377

also depends on how much text they have to read. 378

In Table 6, we consider various time indicators: 379

either the raw log seconds taken,6 or variants nor- 380

malized by some measure of the length of the an- 381

6The logarithmic transformation shifts data distribution
from a power law to an almost normal distribution.
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Norm. en es fr it ru

none – – – 0.417 0.390
sents. – 0.458 0.449 0.373 0.376
words 0.447 0.385 0.454 0.421 0.452
chars. 0.462 0.395 0.455 0.417 0.459

Table 6: Effect size from Mann-Whitney U-tests for log
time taken when answering correctly vs. incorrectly

notation item. Measurements are done using a382

Mann-Whitney U-test, to see whether the distribu-383

tions of time indicators differ between correctly384

annotated items and incorrectly annotated items:385

we then compute the common-language effect size,386

i.e., the U-statistic divided by the maximum value387

it could assume. Here, a lesser value of ρ entails a388

greater certainty that the incorrect annotations take389

longer than the correct annotations. Statistically390

insignificant effect sizes are not reported.391

Table 6 shows that raw time measurement is not392

always significant, but when factoring in the length393

of an annotation item we detect that annotators take394

longer when they answer incorrectly than correctly.395

This is consistent with time being an indicator of396

uncertainty. We note that the best length normal-397

ization differs across languages; explaining what398

factors drive this difference is beyond our scope.399

Having found a way to quantify uncertainty, we400

can now include it in our original annotations. We401

reweight human annotations to factor in time, such402

that highly confident correct answers lie at one403

end of the spectrum, and highly confident wrong404

answers lie at the other end of the spectrum. This405

also ensures that we match as closely as possible406

how we derive scores from our models. Technically,407

we reweight human judgments as follows:408

(max s∗ − s)×

{
+1 if correct
−1 otherwise

(3)409

where s is the length-normalized time indicator410

log t/N , with N either the number of sentences411

(for FR, IT, RU) or words (for EN and ES), and412

max s∗ is the maximum value observed for s across413

all annotations for that language.414

As we have two related series of continuous mea-415

surements, we can apply a simple correlation met-416

ric, such as Spearman’s ρ, between time-weighted417

annotator responses and model scores. This is418

shown in Table 7. In English, French and Italian,419

either or both DSMs yield a lower correlation than420

en es fr it ru

1-gram 0.149 0.115 0.132 0.163 0.147
2-gram 0.119 0.150 0.228 0.267 0.146
BERTs 0.225 0.152 0.204 0.218 0.258
W2Vs 0.145 0.196 0.244 0.165 0.248

Table 7: Spearman correlations of model scores and
time-weighted human judgments

what we observe for n-grams, while in Spanish the 421

margin between BETO model and the 2-gram base- 422

line is less than 0.002. Only in Russian do we find 423

a sharp distinction between DSMs and n-grams. 424

Overall, allthough correlation scores are always 425

positive, they remain fairly low (ρ < 0.27). 426

5.3 Discussion 427

In all, while the models do display some degree 428

of performance (as shown in Section 4), neither 429

the sort of mistakes they do (Subsection 5.1) nor 430

the confidence in their answer (Subsection 5.2) 431

matches human behavior closely. In many cases, 432

distinguishing DSMs from n-gram baselines can 433

prove very arduous. In other words, this experiment 434

suggests that efficient models do not necessarily 435

reflect human linguistic behavior. 436

6 Manipulating the distributional 437

hypothesis 438

We have focused thus far on whether DSMs model 439

human behavior. We could instead reverse the 440

setup: does a low score from a DSM entail a greater 441

hesitation from the human annotators? 442

6.1 Methodology 443

This time, we select sentences that either maximize 444

or minimize Eq. (2), and see how human annotators 445

fare on these contexts and how confident they are 446

in their answers. We start by selecting the most ex- 447

treme word pairs in terms of average success rate. 448

For each word pair, we select a random sample 449

of up to 10 000 sentences from the original sen- 450

tence corpora detailed in Section 3, and rank them 451

according to the score a BERT-like model would 452

give them following Eq. (2). We then restrict our 453

random sample to the five sentences with the low- 454

est scores and the five sentences with the highest 455

scores. We ensure that sentences are uniquely asso- 456

ciated to word pairs: if some sentence cp is among 457

the ten items chosen for a pair ⟨wn
t , w

n
d ⟩, then it 458

will not be chosen for any other pair ⟨wm
t , wm

d ⟩. 459
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We then hire native speakers to annotate this data.460

Unlike the main dataset, we present one context at461

a time, since we are interested in the ability of a462

DSM to rank specific contexts. We also ask annota-463

tors to express themselves using a five-point Likert464

scale, ranging from high confidence in the target465

to high confidence in the distractor. All items are466

doubly annotated. In total, we gathered 500 items467

for English, 432 in Spanish and 500 in French.468

6.2 Results469

Fig. 2 pits the scores derived from BERT on the y-470

axis against the corresponding Likert scale annota-471

tions, for each language; the heatmap in the middle472

of each picture displays how the two distributions473

coincide. These illustrations clearly show that both474

annotators and the BERT models behave differently475

across languages. However there are similarities:476

in all three languages, annotators match high BERT477

scores with a strong preference for the target. In478

French (Subfigure 2c), annotators and BERT seem479

to closely match in their behavior: a neutral re-480

sponse is elicited when the score is low, whereas a481

confident preference for the target corresponds to a482

high score. In the other two languages, low scores483

are spread out across the scale. In Spanish (Subfig-484

ure 2b), scores around zero elicit a neutral response,485

but scores below zero do not seem associated to a486

specific response. In English (Subfigure 2a), we487

see a linear trend: the very lowest BERT scores488

tend to elicit a strong preference for the distractor.489

To provide a more quantitative outlook, we turn490

to a dominance analysis (Budescu, 1993) to deter-491

mine the factor most closely related to annotators’492

behavior. Dominance analysis consists in learn-493

ing a simple linear regression, computing the as-494

sociated r2 to measure its fitness, and deriving the495

proportion of this r2 that can be imparted on each496

predictor. Here, we predict the average Likert score497

from the original average success rate for the word498

pair and the BERT score for the context. This al-499

lows us to compare these two metrics as competing500

explanations for the collected Likert annotations.501

We also include other likely predictors: the original502

source of the sentence shown to the Likert anno-503

tators, the time taken for the word pair and the504

frequency of target and distractor.505

Results are presented in Table 8. The r2 of506

each linear regression is given in the last column;507

columns 1 through 5 detail the proportion of this r2508

imparted on each predictor (in %). The fitness of509

BERT succ. time freq. src. r2

en 76.86 8.97 9.01 3.80 1.36 0.28
es 59.18 4.22 4.20 21.24 11.16 0.21
fr 81.38 7.15 7.30 1.94 2.23 0.44

Table 8: Prop. of r2 explained by type of predictor

the regression, as measured by r2 scores, suggests 510

that more than half of the variance in annotations is 511

not explained by a simple linear relation between 512

predictors. This is especially striking in Spanish, 513

where the r2 score is at 0.21. Yet all models consis- 514

tently rank the BERT score as the most important 515

predictor. The French and English both impart 516

more than 75% of the explained variance on BERT 517

scores and 15% to 20% to average success rates 518

and time taken on the previous dataset. The Span- 519

ish model emphasizes more the frequency of the 520

target and distractor (21.24%) and the corpora from 521

which the presented context originate (11.16%). 522

6.3 Discussion 523

In short, this last experiment stresses that in spe- 524

cific conditions BERT models can prove to be use- 525

ful tools to manipulate the distributional hypothe- 526

sis. This is especially visible on the case of the 527

French data, which yields the most obvious bi- 528

modal distribution (Subfigure 2c), the highest r2, 529

and the largest proportion of variance explained by 530

the BERT model scores. These elements suggest 531

that the CamemBERT model was able to select 532

sentences that strongly cued the target. 533

On the other hand, we are not able to reliably find 534

French contexts that elicit a strong preference for 535

the distractor. This is something we only tentatively 536

observe for English, where paradoxically the domi- 537

nance analysis suggests that our current predictors 538

are less well-suited to explain the phenomena we 539

recorded (r2 = 0.28). This is in line with previ- 540

ous experiments: while high BERT scores translate 541

into a confident preference for the target, much 542

remains to be done in order to accurately depict 543

the full breadth of human behaviors, ranging from 544

strong preferences in the distractor and accurately 545

depicting less confident human judgments. 546

Opposite to this is Spanish: the lowest scores 547

from BETO do not bias the annotators towards neu- 548

tral or negative responses. The main reason of this 549

difference is unclear: the quality of the sentences 550

presented to annotators might play a role, but so 551

7



(a) en (b) es (c) fr

Figure 2: Word pair difficulty compared to BERT scores

might the quality of BETO. We also find a much552

lower inter-annotator agreement for this language:553

the Pearson r correlation coefficient for our two554

Spanish annotators is of only 0.11, compared to the555

0.59 we observe for English or the 0.74 for French.556

Improvements could be made on our analyses:557

one could use as predictors the average success rate558

and the average time taken restricted to items with559

k = 1 contexts, as these would be more represen-560

tative. We leave this to future investigations, as561

we haven’t collected enough data to establish such562

baselines (cf. Table 1). Another point we leave563

for future study is the number of datapoints in our564

original datasets: some predictors are derived from565

them (average time and success rate) and it is un-566

clear how size discrepancy impacts them.567

7 Related Works568

Distributional semantics was first suggested by Har-569

ris (1954). A wealth of work has focused on char-570

acterizing it (Sahlgren, 2008; Lenci, 2018; Boleda,571

2020; Emerson, 2020; Rogers et al., 2020). as well572

as its limitations (Miller, 1967; Westera and Boleda,573

2019); related works point out the hardships of se-574

mantically grounding distributional representations575

(Searle, 1980; Jackson, 1982; Harnad, 1990; Ben-576

der and Koller, 2020). Other researchers concern577

themselves with the empirical foundations of the578

distributional hypothesis, often from the point of579

view of psycholinguistics (Rubenstein and Goode-580

nough, 1965; Mandera et al., 2017).581

Also relevant to our work are studies that attempt582

to evaluate the performance or quality of distribu-583

tional models of semantics. These can generally be584

grouped in two categories: works introducing eval-585

uation procedures or benchmarks (Mikolov et al.,586

2013b; Wang et al., 2018; Ferret, 2021) and works 587

proposing large surveys across multiple models 588

(Vulić et al., 2020; Lenci et al., 2021). 589

8 Conclusions 590

We broached the question of how to quantify our 591

expectations with respect to distributional seman- 592

tics and DSMs, using the distributional substitution 593

task. In short, distributional information would 594

allow humans to retrieve about 82% of pairwise 595

meaning distinctions. In contrast, embedding mod- 596

els like BERT and word2vec would only reach 597

75% accuracy (Section 4), and how they achieve 598

these performances begs the question of whether 599

we should consider them as models of distribu- 600

tional semantics, seeing that they do not seem to 601

match human annotators’ judgments (Section 5). 602

In specific circumstances BERT-like models can 603

however be used as tools to manipulate the distri- 604

butional hypothesis (Section 6). More research is 605

needed before any firm conclusion can be reached, 606

given the limits of the dataset we currently have 607

(Section 3: 5 languages, about 15 000 items). 608

Taking a more linguistic-oriented point of view, 609

our experiments suggest that much remains to be 610

done before we can confidently say that modern 611

NLP models can be construed as linguistically valu- 612

able models of distributional semantics. This opens 613

a number of perspectives for future research: how 614

would this translate to other languages, especially 615

non-European ones? What is required of DSMs 616

for them to accurately describe human behavior? 617

Which factors are necessary to model human be- 618

havior on the distributional substitution task? 619
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Ethical impact620

We propose a dataset derived from human judg-621

ments. The data collection process has been ap-622

proved by the relevant instances within the research623

structures of the authors. As such, a number of con-624

siderations apply.625

The authors of this work are based in an area626

where GDPR laws apply.7 The data was therefore627

collected in a manner that guarantees the anonymity628

of the annotators; in particular, all identifiers asso-629

ciated to annotators in the dataset correspond to630

randomly generated strings. Time of annotation631

creation, geographic location of annotators, contact632

information of annotators are not provided in the633

released dataset.634

The data was collected through a gamified online635

platform. As such, annotators of the base dataset636

described in Section 3 were not financially com-637

pensated for their work; and the whole collection638

project was constructed to ensure this voluntary639

work is conducted in as ethical a manner as possi-640

ble. In particular:641

• Participation to the annotation platform re-642

quires informed consent of how their in-game643

behavior will be used. As such, the gamified644

platform was systematically advertised as a645

research project.646

• Annotators are free to opt out of the task at647

any moment. Annotators retain the right to648

have all records of their activity automatically649

destroyed at any time.650

• Annotators are provided with the means to651

convey feedback.652

The contexts presented to annotators were au-653

tomatically collected from large corpora. Hence,654

they may contain unwanted biases discriminating655

against a specific race, sex, gender, ethnicity, age,656

religion or any other social criterion. Such con-657

texts have not been removed: (a) the dataset was658

constructed with the intent of collecting human659

judgments on the sort of data presented to distribu-660

tional model, including socially biased data; (b) a661

manual evaluation of a sample of 100 contexts did662

not reveal any downright problematic sentences,663

although we found one sentence expressing bias664

against the handicapped, and three sentences dis-665

playing female characters in stereotypically gen-666

dered situations. Also note that contexts were667
7https://gdpr.eu/what-is-gdpr/

drawn from sources such as Europarl, which con- 668

tains a majority of male speakers, or Wikipedia, 669

which is known for its high proportion of white, 670

male, college-educated writers. 671

Word pairs are constructed through multiple 672

strategies, which include automatic means and 673

crowd-sourced propositions. It is therefore pos- 674

sible that these contain unwanted associations that 675

could reflect systemic biases. Although we have 676

not identified any such item in our analyses , a more 677

in-depth study is required. 678

The dataset proposed in this paper is highly Eu- 679

rocentric. All the languages we propose corre- 680

spond to European countries. This choice stems 681

from practical considerations—namely due to the 682

availability of experts and data for these lan- 683

guages. We nonetheless ensured that the gami- 684

fied platform itself would be easily transposable to 685

other languages, by including website translation 686

mechanisms and externalizing language processing 687

pipelines. 688

Lastly, the authors stress that they make no claim 689

with respect to measuring social impact through 690

their proposed dataset. It is important to acknowl- 691

edge that models that yield interesting results and 692

high performances on the present dataset may very 693

well display unwanted biases. The present dataset 694

is not constructed to assess such aspects of an NLP 695

system. 696

References 697

Marco Baroni, Georgiana Dinu, and Germán 698
Kruszewski. 2014. Don’t count, predict! a 699
systematic comparison of context-counting vs. 700
context-predicting semantic vectors. In Proceedings 701
of the 52nd Annual Meeting of the Association for 702
Computational Linguistics (Volume 1: Long Papers), 703
pages 238–247, Baltimore, Maryland. Association 704
for Computational Linguistics. 705

Emily M. Bender and Alexander Koller. 2020. Climbing 706
towards NLU: On meaning, form, and understanding 707
in the age of data. In Proceedings of the 58th Annual 708
Meeting of the Association for Computational Lin- 709
guistics, pages 5185–5198, Online. Association for 710
Computational Linguistics. 711

Gemma Boleda. 2020. Distributional semantics and 712
linguistic theory. Annual Review of Linguistics, 713
6(1):213–234. 714

David V. Budescu. 1993. Dominance analysis: A new 715
approach to the problem of relative importance of 716
predictors in multiple regression. Psychological Bul- 717
letin, 114(3):542–551. 718

9

https://gdpr.eu/what-is-gdpr/
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1037/0033-2909.114.3.542


José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-719
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-720
ish pre-trained bert model and evaluation data. In721
PML4DC at ICLR 2020.722

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and723
Kristina Toutanova. 2019. BERT: Pre-training of724
deep bidirectional transformers for language under-725
standing. In Proceedings of the 2019 Conference of726
the North American Chapter of the Association for727
Computational Linguistics: Human Language Tech-728
nologies, Volume 1 (Long and Short Papers), pages729
4171–4186, Minneapolis, Minnesota. Association for730
Computational Linguistics.731

Guy Emerson. 2020. What are the goals of distribu-732
tional semantics? In Proceedings of the 58th Annual733
Meeting of the Association for Computational Lin-734
guistics, pages 7436–7453, Online. Association for735
Computational Linguistics.736

Olivier Ferret. 2021. Using distributional principles for737
the semantic study of contextual language models.738

Juan Luis Gastaldi. 2021. Why can computers under-739
stand natural language? Philosophy & Technology,740
34(1):149–214.741

Stevan Harnad. 1990. The symbol grounding problem.742
Physica D: Nonlinear Phenomena, 42(1):335 – 346.743

Zellig Harris. 1954. Distributional structure. Word,744
10(23):146–162.745

Frank Jackson. 1982. Epiphenomenal qualia. Philo-746
sophical Quarterly, 32(April):127–136.747

Philipp Koehn. 2005. Europarl: A parallel corpus for748
statistical machine translation. In Proceedings of749
Machine Translation Summit X: Papers, pages 79–86,750
Phuket, Thailand.751

Alessandro Lenci. 2018. Distributional models of word752
meaning. Annual review of Linguistics, 4:151–171.753

Alessandro Lenci, Magnus Sahlgren, Patrick Jeuniaux,754
Amaru Cuba Gyllensten, and Martina Miliani. 2021.755
A comprehensive comparative evaluation and analy-756
sis of distributional semantic models.757

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-758
titles2016: Extracting large parallel corpora from759
movie and TV subtitles. In Proceedings of the Tenth760
International Conference on Language Resources761
and Evaluation (LREC’16), pages 923–929, Portorož,762
Slovenia. European Language Resources Association763
(ELRA).764

Paweł Mandera, Emmanuel Keuleers, and Marc Brys-765
baert. 2017. Explaining human performance in psy-766
cholinguistic tasks with models of semantic similarity767
based on prediction and counting: A review and em-768
pirical validation. Journal of Memory and Language,769
92:57–78.770

Louis Martin, Benjamin Muller, Pedro Javier Or- 771
tiz Suárez, Yoann Dupont, Laurent Romary, Éric 772
de la Clergerie, Djamé Seddah, and Benoît Sagot. 773
2020. CamemBERT: a tasty French language model. 774
In Proceedings of the 58th Annual Meeting of the As- 775
sociation for Computational Linguistics, pages 7203– 776
7219, Online. Association for Computational Lin- 777
guistics. 778

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey 779
Dean. 2013a. Efficient estimation of word representa- 780
tions in vector space. In 1st International Conference 781
on Learning Representations, ICLR 2013, Scottsdale, 782
Arizona, USA, May 2-4, 2013, Workshop Track Pro- 783
ceedings. 784

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 785
2013b. Linguistic regularities in continuous space 786
word representations. In Proceedings of the 2013 787
Conference of the North American Chapter of the 788
Association for Computational Linguistics: Human 789
Language Technologies, pages 746–751, Atlanta, 790
Georgia. Association for Computational Linguistics. 791

George Miller. 1967. Empirical methods in the study of 792
semantics. Journeys in Science: Small Steps – Great 793
Strides, pages 51–73. 794

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent 795
Romary. 2019. Asynchronous pipelines for process- 796
ing huge corpora on medium to low resource infras- 797
tructures. Proceedings of the Workshop on Chal- 798
lenges in the Management of Large Corpora (CMLC- 799
7) 2019. Cardiff, 22nd July 2019, pages 9 – 16, 800
Mannheim. Leibniz-Institut für Deutsche Sprache. 801
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