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Abstract

Neural models that extend the pretrain-then-001
finetune paradigm continue to achieve new002
state-of-the-art results in dialogue state track-003
ing (DST) benchmarks on joint goal accu-004
racy (JGA). However, motivated by CheckList005
(Ribeiro et al., 2020), we argue for a holistic006
assessment of DST models since JGA is un-007
able to capture robustness to the inevitable test-008
time distribution shifts. To this end, we build009
on recent work on robustness testing in task-010
oriented dialogue and introduce CheckDST,011
an instantiation of CheckList for DST that012
quantifies robustness with test set augmenta-013
tions and new metrics that measure consistency.014
Using CheckDST, we are able to extensively015
compare state-of-the-art DST models, finding016
that, although span-based classification mod-017
els achieve slightly better JGA on the original018
test set than generation models, they are sig-019
nificantly less robust to distribution shift. Sec-020
ondly, we observe that while stopping training021
early, e.g., at the first epoch, hurts JGA, the re-022
sulting models are significantly more robust to023
distribution shift. Lastly, guided by the weak-024
nesses exposed by CheckDST, we explore train-025
ing DST models that simultaneously boost JGA026
and CheckDST metrics and report preliminary027
success with PrefineDST, a simple generation028
model pretrained with non-target datasets to029
internalize reasoning skills relevant to dialogue030
state tracking.031

1 Introduction032

The growing desire and feasibility to interact with033

intelligent systems through conversations, just as034

we do with one another, has driven recent efforts in035

task-oriented dialogue (TOD) models that form the036

backbone of digital assistants such as Siri, Google037

Assistant, and Amazon Alexa. A crucial skill for038

task-oriented dialogue models, known as dialogue039

state tracking (DST), requires understanding the040

users’ intents and extracting important information041

that will be used to populate API queries in order042

Figure 1: A DST model may make inconsistent predic-
tions for valid perturbations, such as paraphrases. Joint
goal accuracy on the original test set does not capture
this lack of robustness. The red box contains a wrong
prediction, which is missing the slot value for hotel type.

to fulfill their goals. So far, state-of-the-art for DST 043

model performance has been determined with joint 044

goal accuracy (JGA) (Dai et al., 2021b; Su et al., 045

2021; Heck et al., 2020), a metric that assigns credit 046

when all slot values are correctly predicted for the 047

given dialogue context. 048

While JGA captures accuracy on a test set that 049

is distributionally similar to the training set, it does 050

not capture how well a model performs on out-of- 051

distribution examples, which are inevitable in real- 052

world deployment. Peng et al. (2021b) introduced 053

a benchmark for robustness for TOD models, with 054

tools for measuring robustness against language 055

variations, speech errors, and unseen entities. Qian 056

et al. (2021) showed that state-of-the art DST mod- 057

els face significant performance drops when test-set 058

named entities are replaced with ones unseen dur- 059

ing training. Liu et al. (2021) developed LAUG, 060

an automatic augmentation tool for TOD datasets 061

and used it to demonstrate lack of robustness to 062

realistic perturbations in DST models. Chen et al. 063

(2021); Dai et al. (2021a) also provided analyses 064

that go beyond comparing JGA. 065

In this paper, we first introduce and motivate 066

CheckDST– a framework for quantifying DST ro- 067

bustness for both full-shot and few-shot settings to 068

facilitate comprehensive assessments and compar- 069

isons of DST performance. It is an instantiation 070

of CheckList for DST, providing a general frame- 071

work for test set augmentation that can incorpo- 072
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Metric Examples Correct DST Predictions

Original I would like to leave from cambridge
PI JGA

Perturbed Please book me one departing from cambridge
train departure cambridge

Original I would like to leave from cambridge
SDI JGA

Perturbed I would like to uh leave from london no i meant cambridge
train departure cambridge

Original I would like to leave from cambridge train departure cambridge
NED JGA,

NoHF Perturbed I would like to leave from mbadgceir train departure mbadgceir

Coref JGA

<user> I need you to book the restaurant for me if that’s okay.
For 2 people at 19:45 on Tuesday...
<user> Actually, I’m also looking for a train. I need to go
to London Kings Cross on the same day as the restaurant booking.

...
restaurant day tuesday
train day tuesday
...

Table 1: An overview of metrics in CheckDST. For cJGA metrics, we are interested in tracking how often both
original and perturbed samples are correctly predicted when either one of them is correct.

rate existing augmentation schemes. We define073

new metrics that measure prediction consistency074

via conditional JGA (Section 2.1) as opposed to075

the commonly used JGA on the original and per-076

turbed test sets. We argue both theoretically and077

empirically that the conditional metrics addition-078

ally quantify the consistency of performance on079

original and perturbed test sets, which is crucial080

for model robustness against statistical variations,081

not captured by previous work. CheckDST also082

separately highlights performance on cases that083

are known to be more challenging, such as those084

that requiring coreference resolution (Han et al.,085

2020). It also tracks the frequency of hallucination,086

a problem occurring frequently in popular genera-087

tion models, such as GPT-2 (Radford et al., 2019)088

and BART (Lewis et al., 2020).089

Our second contribution is that we show, using090

CheckDST, that models with higher JGA on the091

original test set may be significantly less robust. In092

particular, we evaluate two popular classes of state-093

of-the-art models, span-based classification mod-094

els and models based on autoregressive language095

models (henceforth classification models and gen-096

eration models, respectively). Results show that097

while classification models attain modestly higher098

JGA and do not hallucinate, generation models are099

significantly more robust to various perturbations.100

We also find that robustness degrades as training101

progresses by examining each model’s intermedi-102

ate checkpoints and elucidate how the degradation103

is manifested from qualitative analyses. These re-104

sults verify that comparing JGA and using it as a105

stopping criterion during training is a poor prac-106

tice as it misses useful information for quantifying107

real-world performance when a model faces the108

inevitable distribution shift at deployment.109

Finally, similarly to Sanh et al. (2021), we ex- 110

plore multi-task pretraining methods to target main- 111

taining both JGA and robustness. We introduce Pre- 112

fineDST with pretraining tasks targeted at acquir- 113

ing skills that should intuitively boost robustness as 114

quantified by CheckDST. Our results demonstrate 115

preliminary success in transferring such skills from 116

non-target datasets for bridging the gaps in robust- 117

ness as quantified by CheckDST. 118

2 CheckDST 119

CheckDST stands for Checklist for Dialogue State 120

Tracking and is an adaptation of CheckList (Ribeiro 121

et al., 2020). CheckList is a task-agnostic process 122

for testing robustness in natural language process- 123

ing models that provides convenient utilities for 124

bring-your-own perturbation tools and data gener- 125

ation templates to quickly create large number of 126

tests. With CheckDST, we quantify DST robust- 127

ness by leveraging toolkits from Liu et al. (2021) 128

and adapting the CheckList process. 129

CheckDST is motivated by realistic perturba- 130

tions that robust DST models are expected to be re- 131

silient to. In this section, we motivate and formally 132

define the metrics and perturbations that form the 133

basis of CheckDST. An overview of the metrics is 134

shown in Table 1. 135

2.1 Measuring robustness with Conditional 136

JGA (cJGA) 137

With CheckDST, we want to answer the questions: 138

(i) “To what degree is the performance of DST 139

models invariant to or reflective of valid perturba- 140

tions that may be encountered at deployment, such 141

as paraphrases and unseen named entities?” and 142

(ii) “How does their robustness compare to other 143

models?” 144
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To this end, one can capture robustness by com-145

paring JGA to JGA on the perturbed test set (J̃GA),146

but this assumes that the perturbed test set is more147

difficult to the model, and hence the performance148

drop represents a lack of robustness. There may149

be cases where certain perturbed samples are eas-150

ier than the original, leading a model to achieve151

J̃GA similar to JGA, even though it makes lots of152

inconsistent predictions between the original and153

perturbed pairs. Therefore, to capture the consis-154

tency of performance between original and per-155

turbed samples in addition to the performance drop156

due to difficulty of the perturbed test set, we choose157

to make our comparisons using conditional JGA158

(cJGA).159

cJGAmeasures the frequency of the cases where160

the prediction is correct on both the original and161

perturbed samples when either one of them is cor-162

rect. Given a DST model (with parameters θ),163

let function f(z; θ) → {0, 1} indicate whether164

the joint goal is satisfied on sample z = (x, y),165

where x is the dialogue history and y is the refer-166

ence belief state. Further, let z̃ = (x̃, ỹ) denote167

a perturbed sample (e.g., with paraphrased dialog168

history). Then, we define cJGA for a sample set169

N := {1, . . . , n} as:170

cJGA :=
1

|I|
∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1),171

where 1(·) denotes the indicator function and I172

is the index set of all examples in N with at least173

one of f(zi; θ) or f(z̃i; θ) equal to one.174

When labels are preserved, i.e. y and ỹ are identi-175

cal, cJGA is an adaptation of the CheckList invari-176

ance test, and if changes from y to ỹ are mirrored177

in changes from x to x̃, it is an adaptation of the178

Checklist directional test (Ribeiro et al., 2020). We179

also make the mathematical case for the usefulness180

of cJGA by proving that cJGA ≤ 1−|JGA−J̃GA|181

in Lemma 1 (Appendix A), with equality only if the182

model performance is consistent on perturbed sam-183

ples and original ones. This establishes that cJGA184

captures robustness beyond the JGA drop as it ad-185

ditionally captures the consistency of performance186

across the original and perturbed test set.187

We now discuss the types of perturbations that188

we apply to z, their importance for robust DST, and189

how we measure resilience to them with cJGA.190

Paraphrase Invariance cJGA (PI cJGA).191

Users may employ a wide variety of styles and192

nuances to express the same intent. Hence, the193

predictions of a robust DST model should be 194

consistent for utterances that have the same 195

semantics. There is a wide spectrum for what is 196

considered a paraphrase, including single word 197

replacements with a synonym. According to Li 198

et al. (2020), DST models only drop 2% in JGA 199

for these kinds of simple paraphrases that were 200

generated via back-translation. However, when 201

the paraphrases become more complex and share 202

only a few words, as they would be in a real world 203

situation, the models demonstrate significant drops 204

in JGA (Peng et al., 2021b; Liu et al., 2021), 205

indicating that understanding paraphrases is still a 206

challenge. 207

In the context of DST, paraphrasing is defined as 208

any change to the wording of utterances that pre- 209

serves the dialogue acts and dialogue belief states. 210

Thus, PI cJGA measures whether a model can 211

make correct slot predictions consistently for two 212

semantically equivalent utterances. 213

Speech Disfluency Invariance cJGA (SDI 214

cJGA). Many task-oriented dialogue applica- 215

tions are built around voice-based digital assistants. 216

Therefore, a DST model’s resilience to speech arti- 217

facts is a crucial criterion a TOD model’s success. 218

Speech disfluencies are common speech artifacts 219

that include the restart of requests mid-sentence, 220

use of non-lexical vocables or filler words, and 221

stammering and repetition that occur within the 222

flow of otherwise fluent speech (Wang et al., 2020). 223

As with PI cJGA, SDI cJGA measures how of- 224

ten a model maintains a correct predictions even 225

with the presence of speech disfluencies. 226

Named Entity Directional cJGA (NED cJGA). 227

As highlighted by the motivation for DST models 228

that explicitly employ a copy mechanism (Gu et al., 229

2016; Heck et al., 2020; Mehri et al., 2020; Li et al., 230

2020), DST models should not memorize named 231

entities from training data so that their performance 232

is generalizable to unseen entities. 233

However, generation DST models often overfit 234

and incorrectly predict named entity slot values 235

with entities that appear frequently in the training 236

set (Qian et al., 2021). In order to determine the 237

extent of overfitting to named entities seen during 238

training, we replace named entities in the dialogue 239

belief states and conversations with scrambled en- 240

tities. NED cJGA tracks how frequently a model 241

correctly mirrors a change in the conversation to 242

its prediction to obtain the right slot values. 243
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2.2 Coreference JGA (Coref JGA )244

In addition to cJGA metrics, we track performance245

for cases that require coreferences. Long conver-246

sations with coreferences that span multiple turns247

are relatively more difficult, as shown by the per-248

formance improvement when their annotations are249

present (Quan et al., 2019; Han et al., 2020). As a250

proxy for measuring a model’s ability to understand251

longer conversations and resolve coreferences for252

making correct predictions, we simply calculate the253

JGA for samples in the original test set that require254

coreference resolution.255

2.3 No Hallucination Frequency (NoHF)256

Generation models have become popular follow-257

ing recent success with various NLP tasks (Rad-258

ford et al., 2019; Lewis et al., 2020; Sanh et al.,259

2021; Wei et al., 2021; Aghajanyan et al., 2021),260

including task-oriented dialogue (Su et al., 2021;261

Peng et al., 2021a; Hosseini-Asl et al., 2020). How-262

ever, content hallucination, providing irrelevant en-263

tities memorized from training, is a well-known264

issue for generation models (Massarelli et al., 2020;265

Maynez et al., 2020). Despite being a common phe-266

nomenon, it is only indirectly measured by NED267

cJGA, so we measure hallucination frequency as268

well in CheckDST.269

When a model makes a prediction for a named270

entity slot, we verify whether the predicted value271

is contained in the dialogue history, i.e., NoHF is272

equal to 1 if the predicted named entity is in the di-273

alogue history and 0 otherwise. CheckDST reports274

NoHF on both the original test set and one used for275

NED cJGA (NoHF Orig and NoHF Swap).276

2.4 CheckDST is extendable and277

dataset-agnostic278

Just as CheckList allows bring-your-own tools,279

CheckDST is easily extendable since any augmen-280

tation tool can be used to introduce new dimensions281

of robustness and measure it with cJGA as long282

as the belief state labels are aligned with the per-283

turbation. Also, CheckDST is dataset-agnostic as284

long as the same inputs for the augmentation tools285

are available in other task-oriented datasets. In fact,286

CheckDST can be applied to other NLP tasks that287

can benefit from similar perturbations and robust-288

ness quantification through cJGA, e.g., sentiment289

analysis. However, this paper is focused on DST.290

We explain CheckDST’s generalizability further in291

Appendix B.1.292

3 Experiments 293

We now describe the dataset and the competitive 294

models we evaluate with CheckDST to make fine- 295

grained comparisons on their robustness. 296

3.1 Dataset 297

Here, we use MultiWOZ (Budzianowski et al., 298

2018), a corpus with more than 10,000 multi- 299

domain and single-domain task-oriented dialogues, 300

as an example TOD dataset that we apply 301

CheckDST to. We specifically use MultiWOZ 2.3 302

(Han et al., 2020), which includes corrections from 303

MultiWOZ 2.1 (Eric et al., 2020) and coreference 304

annotations, and LAUG (Liu et al., 2021) for aug- 305

menting its test sets. We use MultiWOZ 2.3 in 306

its original train/test/dev splits. LAUG is an open- 307

source augmentation toolkit that can be used for 308

any task-oriented dialogue dataset that has dialogue 309

acts and belief state annotations. 310

Dataset Perturbations. To compute PI cJGA 311

and SDI cJGA, we use the test sets augmented 312

with paraphrases and speech disfluencies using 313

LAUG. The degree of paraphrasing with LAUG 314

is significant, replacing 74% of all words. For SDI 315

cJGA, LAUG inserts speech disfluencies according 316

to their occurrence frequency in the Switchboard 317

corpus (Godfrey et al., 1992). More than 97% of 318

the perturbations were considered appropriate by 319

human evaluators. 320

For NED cJGA, we scramble the character or- 321

der of named entity slots, such as restaurant name, 322

to create unseen entities as done by Huang et al. 323

(2021). Instead, we could have swapped with real 324

entities not seen during training, such as those from 325

Schema Guided Dialogue (SGD) (Rastogi et al., 326

2020; Qian et al., 2021). However, since some base- 327

line models are pretrained with SGD, we choose 328

scrambled entities as the default for a fair compari- 329

son. 330

Since CheckDST can be calculated for each sam- 331

ple and its augmented counterpart, we can use it 332

on any subset of a given dataset. Therefore, we 333

construct the same few-shot setting in Peng et al. 334

(2021a) and use it to compare model robustness in 335

a low-resource single-domain environment. The 336

few-shot dataset contains 50 single-domain conver- 337

sations from each of the attraction, train, 338

taxi, hotel, and restaurant domain for the 339

training set and validation set and 200 for the test 340

set. 341
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3.2 Models342

From those models reported on the MultiWOZ 2.0343

repository and the MultiWOZ 2.3 repository , we344

implement a subset that has replicable code. All345

models are trained for 10 epochs in the full-shot346

setting and 20 epochs in the few-shot setting. We347

provide more training details in Appendix B.2.348

Recent DST models that attain competitive re-349

sults can be largely divided into two groups: span-350

based classification models and generation models.351

Span-based classification models. These mod-352

els predict the starting and ending index of slot353

values that must be extracted from the context or354

choose labels from a predefined ontology for those355

that are not directly in the context. The domains356

and their slot types are fixed, and predictions are357

made for every possible (domain, slot-type)358

pair using a classification layer.359

(i) TripPy (Heck et al., 2020) is a model based360

on BERT (Devlin et al., 2019) that uses a three-361

level copying strategy to predict dialogue belief362

states. For every domain-slot type pair, it363

determines whether slot values can be copied from364

the current utterance, the previous system utterance,365

or the previous turns dialogue belief state.366

(ii) ConvBERT-DG (Mehri et al., 2020) has the367

same architecture as TripPy but it replaces BERT368

with ConvBERT-DG, which itself is a BERT model369

that has been pretrained on more than 70 million370

conversations of open-domain dialogue and then371

finetuned on the DialoGLUE benchmark. Another372

difference with TripPy is that ConvBERT-DG mul-373

titasks with the masked language modeling objec-374

tive before and during the finetuning process.375

Generation models. Generation models for DST376

predict belief states in the same way the underly-377

ing model generates text. It sequentially generates378

the domain, slot-type, and slot-value.379

Belief states are generated usually via greedy380

sampling on P (xt|x1:t−1, C; θ)), where X =381

{x1, x2, ...xt} is the flattened text format of382

the belief state, e.g. domain slot-type383

slot-value, C is the dialogue context, and θ384

is the model parameters. Generation models are385

becoming increasingly popular as they can be ex-386

panded to perform end-to-end task-oriented dia-387

logue by also generating the dialogue policy and388

responses after the belief states.389

(i) SimpleTOD (Hosseini-Asl et al., 2020) is390

a GPT-2 model that is trained to generate the391

dialogue belief states in domain slot-type 392

slot-value format given a conversation. 393

(ii) BART-DST (Lewis et al., 2020; Qian et al., 394

2021) is the same as SimpleTOD except it uses 395

BART instead of GPT-2. 396

(iii) SOLOIST (Peng et al., 2021a) is also sim- 397

ilar to SimpleTOD but it excludes dialogue act 398

prediction during end-to-end training and adds a 399

pretraining step with SGD. 400

(iv) MUPPET is a BART-DST model that is pre- 401

finetuned on more than 50 natural language tasks 402

(Aghajanyan et al., 2021). MUPPET adds auxil- 403

iary layers that take the representation of the final 404

token in BART to perform classification tasks and 405

does standard autoregressive language modeling 406

for generation tasks. MUPPET reports improved 407

performance on downstream tasks and better data 408

efficiency. 409

(v) Lastly, PrefineDST is our contribution, which 410

is based on a multi-tasking prefinetuning step sim- 411

ilar to (Sanh et al., 2021), specifically targeted at 412

acquiring skills that intuitively should improve ro- 413

bustness as quantified by CheckDST. We describe 414

it in more detail later in Section 4.4. 415

4 CheckDST Results 416

4.1 Better JGA ̸= More robustness 417

First, we evaluate classification models and genera- 418

tion models in the full-shot setting to examine their 419

robustness. For all models, we select the model 420

with the best validation set JGA in 10 epochs of 421

training and report the results in Table 2, which 422

demonstrate a dramatic divergence of robustness 423

properties between the classification and genera- 424

tion models. Although the classification models 425

attain slightly higher JGA than the best performing 426

generation model and never hallucinate by design, 427

they are much less robust than generation models 428

against all perturbations. 429

The classification models’ relative lack of robust- 430

ness to replaced named entity slots is somewhat 431

surprising given that identifying spans of text for 432

slot prediction intuitively feels like an easier task 433

than trying to generate the unseen slot values. We 434

will study these in more detail next. 435

4.2 Training less is better for more robustness 436

The divergence in robustness revealed by 437

CheckDST despite close JGA between classifica- 438

tion models and generation models in the full-shot 439

setting led to the question of “how do robustness 440

metrics evolve throughout training?” We answer 441
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JGA Coref JGA PI cJGA SDI cJGA NED cJGA NoHF Orig NoHF Swap

CLS
TripPy (2020) 62.4 ± 0.1 36.8 ± 0.5 55.2 ± 0.4 44.5 ± 0.5 3.3 ± 1.0 100 ± 0 100 ± 0
ConvBERT-DG (2020) 62.0 ± 0.2 36.0 ± 0.6 54.9 ± 0.2 46.9 ± 0.7 2.5 ± 0.5 100 ± 0 100 ± 0

GEN

SimpleTOD (2020) 55.5 ± 0.8 29.4 ± 0.2 84.6 ± 0.8 70.8 ± 0.7 21.6 ± 0.2 93.6 ± 0.2 78.2 ± 1.0
BART-DST (2020) 61.1 ± 0.3 38.1 ± 0.3 79.8 ± 0.6 71.6 ± 1.0 19.8 ± 0.7 95.9 ± 0.1 71.6 ± 0.8
SOLOIST (2021a) 60.7 ± 0.2 35.6 ± 0.3 82.8 ± 0.8 70.1 ± 0.6 15.4 ± 0.7 95.8 ± 0.0 66.2 ± 1.5
MUPPET-DST (2021) 59.4 ± 0.7 31.6 ± 2.3 87.1 ± 0.8 74.1 ± 0.7 7.0 ± 1.2 95.8 ± 0.2 60.6 ± 1.3
PrefineDST (Ours) 61.8 ± 0.4 37.1 ± 1.1 84.5 ± 0.5 75.7 ± 0.6 19.8 ± 0.9 95.7 ± 0.1 73.4 ± 1.0

Table 2: CheckDST results on MultiWOZ 2.3 full-shot training. CLS: Classification, GEN: Generation. All results
are percentages, presented as the median ± standard error over five runs. x marks the best score for the column
while x marks the worst. If there is an overlap between median - standard error and median + standard error with
the best/worst score, the difference is considered statistically insignificant and all overlapping scores are highlighted.

Figure 2: Most of the gains for TripPy and BART-DST
on JGA are reached before the first few epochs and
continues to steadily increase, but CheckDST metrics
continue to deteriorate except for Coref JGA. The
x-axis for BART-DST uses a logarithmic scale to better
visualize the progression in the first epoch.

this question by running CheckDST on all the442

training checkpoints to observe how each model’s443

performance on each metric in CheckDST fares444

across different training checkpoints.445

In Figure 2, we use TripPy and BART-DST as446

representative examples, as trends among the same447

type of models are similar, to compare classifica-448

tion and generation models and plot how scores449

on JGA and CheckDST metrics evolve throughout450

training. Overall, we can see the trends for each451

metric are similar across model types, where PI452

cJGA and SDI cJGA are quite flat while NED453

cJGA continues to deteriorate. The starting points454

of these metrics differ and that the relative strength455

of generation models on these metrics are main-456

tained throughout the full length of training. In par-457

ticular, NoHF Swap rapidly exacerbates as train-458

ing proceeds for generation models.459

We also observe a trade-off between most of460

CheckDST metrics and JGA (except for Coref461

JGAwhich increases proportionately with JGA) for462

all models. This trade-off for extra training is sum-463

marized in Figure 3, where we compare the model’s464

performance at the first and the tenth epochs. The465

full CheckDST results on the first epoch used for466

Figure 3 and the CheckDST trend charts for other467

models can be found in Appendix B.3.468

Figure 3: Relative gains and losses on CheckDST for
TripPy and BART-DST when subtracting scores of the
checkpoint with the best validation JGA (epoch 10)
from those of epoch 1.

To understand how robustness degrades, we also 469

perform a qualitative analysis to identify patterns 470

of failure that become apparent over time. For each 471

model, we inspect 100 examples from each per- 472

turbed test set that were correctly predicted by an 473

earlier checkpoint with the highest cJGA and in- 474

correctly predicted by the final checkpoint selected 475

as the best model. Here we discuss our findings. 476
477

Classification models give up on span prediction 478

with more training. As training progresses, we 479

observe that TripPy and ConvBERT-DG start to 480

produce more none labels for slot values and tend 481

to not make any span predictions (rather than mak- 482

ing incorrect span predictions). For example, the 483

span for a scrambled entity for the restaurant 484

name slot was correctly predicted to retrieve “osdi 485

jkal" in the second epoch, but the final checkpoint 486

decides a span for the slot does not exist and does 487

not produce a span. 488
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Figure 4: The difference on CheckDST between the
median values for classification and generation models
are much less pronounced in the few-shot setting (right).

Generation models have difficulty correctly489

copying out-of-domain slot values Generation490

models also struggle with unseen named enti-491

ties, but their types of failure are more mixed.492

They either (i) fail to copy the slot values cor-493

rectly and produce substrings or (ii) determine that494

the slot value does not exist and generate noth-495

ing. In an earlier epoch, BART-DST correctly496

generates “restaurant name osdi jkal”,497

but later instead produces “restaurant name498

osjkal”. In other cases, the prediction becomes499

empty, similar to the behavior of classification mod-500

els.501

4.3 Few-shot results show a smaller502

divergence of robustness performance.503

The robustness properties of DST models in the504

few-shot setting follow a similar pattern as the full-505

shot setting, albeit with a much smaller divergence506

between span-based classification and generation507

models. As illustrated in Figure 4 which shows the508

median performance of each group of models in509

full-shot and few-shot settings. Overall, we see a510

much smaller difference between the two group of511

models. The full results of the few-shot setting can512

be found in Appendix B.3.513

The number of gradient update steps taken dur-514

ing training in the few-shot setting for 20 epochs is515

equivalent to that of only 0.2 epochs in the full-shot516

setting. Therefore, it seems that larger number of517

updates is more accountable to degrading robust-518

ness and the wider disparity in CheckDST for the519

full-shot setting than how often the same data sam-520

ples are observed during training. These results521

from the few-shot setting also reinforce our finding522

that more training can deteriorate robustness for523

most models.524

4.4 PrefineDST results525

The weaknesses exposed by CheckDST guide us526

towards approaches that can boost robustness wi-527

htout compromising JGA. Motivated by the strong528

Full-shot ↓ Few-shot ↓

TripPy (2020) 11.45 4.38
ConvBERT-DG (2020) 11.44 6.71

SimpleTOD (2020) 7.51 14.11
BART-DST(2020) 6.36 4.13
SOLOIST (2021a) 8.30 0.85

MUPPET-DST (2021) 10.72 6.38
PrefineDST (Ours) 4.97 1.83

Table 3: Average slack of each model from the best per-
forming model on every metric in CheckDST and JGA
based on results in Table 2 and Table 5. Bold indicates
the best performing model and underline denotes the
second best model.

results of massive multi-task learning on many NLP 529

tasks in recent work, such as MUPPET (Agha- 530

janyan et al., 2021), T0 (Sanh et al., 2021) and 531

FLAN (Wei et al., 2021), we explore PrefineDST, 532

short for Prefinetuned DST to train a more robust 533

DST model. PrefineDST is a BART model that is 534

first prefinetuned with the same method as T0 on 535

tasks that require understanding paraphrases, gen- 536

erating exact spans of text from the context, and 537

resolving coreferences, with the expectation that 538

similar skills will be transferred when finetuned on 539

a downstream DST task and eventually be reflected 540

in better scores on CheckDST. Details on the cho- 541

sen tasks and our implementation can be found in 542

Appendix C. 543

PrefineDST is a promising avenue for a robust 544

DST model. Overall, results in Table 2 show 545

that the simple and intuitive approach behind Pre- 546

fineDST is successful in maintaining the robustness 547

advantage that generation models have over classi- 548

fication models and performs on-par or better on 549

all CheckDST metrics among competitive genera- 550

tion model baselines except for on NoHF and NED 551

cJGA, even for which PrefineDST ranks second 552

best. This well-rounded performance is summa- 553

rized in Table 3 and also reflected in the few-shot 554

setting. 555

PrefineDST is most directly comparable to 556

BART-DST and thus it is notable that it achieves 557

a higher JGA in both full-shot and few-shot set- 558

ting while simultaneously achieving comparable 559

or better results in all CheckDST metrics. This 560

is reflective of robustness being enhanced through 561

knowledge transfer from the prefinetuning tasks. 562

In addition, PrefineDST’s superior results to 563

MUPPET-DST, which has been prefinetuned with 564

more than 40 compared to 8 for PrefineDST, show 565
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that choosing NLP tasks that require skill related566

to the downstream task is more useful than having567

more tasks. Also, the results indicate that multitask-568

ing with all tasks as generation tasks is more effec-569

tive than additional auxiliary layers when DST is570

also formulated as a generation task. In fact, MUP-571

PET’s poor performance compared to BART-DST572

on NED cJGA and NoHF Swap shows that pre-573

finetuning can actually be harmful to robustness.574

In conclusion, using a simple and intuitive ap-575

proach, PrefineDST shows that prefinetuning with576

non-target datasets is a promising direction for577

boosting robustness. We leave it to future work to578

leverage CheckDST as a guide to explore more so-579

phisticated prefinetuning strategies and non-target580

tasks to improve on PrefineDST to attain both581

higher JGA and more robustness.582

5 Related Work583

Pretrained language models continue to make im-584

pressive strides on NLP benchmarks, surpassing585

human baseline scores on many of them (Lee et al.,586

2020; Reddy et al., 2019; Rajpurkar et al., 2016;587

Wang et al., 2019, 2018). These results led to ques-588

tions of whether these models were acquiring the589

intelligence required for their performance to be590

robust or instead taking advantage of spurious cor-591

relations (Bender and Koller, 2020; Clark et al.,592

2019). Many work showed that the latter was the593

case and sought adversarial techniques to test these594

models to new limits (Gardner et al., 2021; Wallace595

et al., 2019; Hosseini et al., 2017) and train them to596

be more robust (Oren et al., 2019; Jia et al., 2019;597

Jones et al., 2020).598

Robustness in dialogue models has also been599

similarly questioned. Perturbations to the dia-600

logue history have exposed that dialogue models601

do not effectively use dialogue structure informa-602

tion (Sankar et al., 2019) and commonsense probes603

showed that they struggle with commonsense rea-604

soning(Zhou et al., 2021). Specifically for the di-605

alogue state tracking task, several work reported606

drops in performance for conversations with en-607

tities unseen during training (Qian et al., 2021;608

Huang et al., 2021; Heck et al., 2020) or with adver-609

sarially created dialogue flows (Li et al., 2020). Liu610

et al. (2021) and Peng et al. (2021b) recently initi-611

ated a rigorous study into the robustness of TOD612

models to realistic natural language perturbations.613

They are most related to CheckDST.614

We extend their work to establish a framework615

that further facilitates robustness analysis with ad- 616

ditional metrics that capture coreference resolution 617

performance and frequency of well-known prob- 618

lems to generation models. Moreover, we propose 619

cJGA, a simple yet more rigorous metric that en- 620

ables measuring robustness in DST without making 621

assumptions about the added difficulty of perturba- 622

tions. 623

PrefineDST is motivated by the recent line of 624

work that uses generation models for DST. Sim- 625

pleTOD (Hosseini-Asl et al., 2020) first reported 626

viability of formulating TOD tasks in a completely 627

end-to-end manner with a generation model and 628

SOLOIST (Peng et al., 2021a) added a pretraining 629

step to improve on data efficiency. PrefineDST, 630

inspired by recent work on impressive results from 631

massive multi-tasking prefinetuning (Aghajanyan 632

et al., 2021; Sanh et al., 2021; Wei et al., 2021), ex- 633

tends SimpleTOD and SOLOIST by adding more 634

prefinetuning tasks. 635

6 Conclusion 636

We introduced CheckDST, a framework for quan- 637

tifying DST robustness, and use it to reveal the 638

large gap in robustness between span-based clas- 639

sification models and generation models with sim- 640

ilar JGA, showing that JGA does not capture a 641

model’s robustness to inevitable deployment-time 642

distribution shifts. We also observed a trade-off 643

between JGA and robustness as we see metrics in 644

CheckDST deteriorate as training proceeds while 645

JGA increases calling for more robust finetuning 646

frameworks. Finally, we use the robustness is- 647

sues exposed by CheckDST to guide the devel- 648

opment of PrefineDST, a model with a prefine- 649

tuning step to multi-task on reasoning skills that 650

should intuitively boost robustness as quantified by 651

CheckDST. Our experiments show preliminary suc- 652

cess in boosting both JGA and CheckDST metrics. 653

This both establishes the usefulness of such prefine- 654

tuning schemes for training more robust models as 655

well as it verifies the usefulness of the CheckDST 656

framework. 657

We encourage future work on task-oriented di- 658

alogue datasets and models to adopt CheckDST 659

and incorporate a comprehensive analysis of DST 660

robustness. We believe that the information 661

CheckDST provides will pave clearer paths for fu- 662

ture research on training robust DST models and 663

make task-oriented dialogue models more reliable 664

when deployed to the real world. 665
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Broader Impact666

In this paper, we showed that CheckDST could667

be used to reveal insights about the robustness of668

DST models and we hope that the task-oriented669

dialogue research community would build on and670

improve CheckDST as a means for reliable deploy-671

ment of models in real world. We acknowledge672

that CheckDST cannot capture generalization to673

arbitrary distribution shifts in practice as the per-674

turbations against which we measure robustness675

have to be known ahead of time; and mechanisms676

to simulate such perturbations need to be built and677

incorporated, which can be considered a limitation678

of our work. We also recognize that our analysis679

has been conducted only in English and therefore680

our empirical findings may not necessarily be true681

for DST models built for other languages.682

MultiWOZ (Budzianowski et al., 2018) is an683

open-source dataset released with the Apache 2.0684

license and we use it for research purposes only.685
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Appendix 1009

A Further Justification for cJGA 1010

Lemma 1. Let 1011

JGA :=
1

n

∑
i∈[n]

f(zi; θ), (1) 1012

J̃GA :=
1

n

∑
i∈[n]

f(z̃i; θ), (2) 1013

cJGA :=
1

|I|
∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1), (3) 1014

where 1(·) denotes the indicator function and I is given by 1015

I := {i | max{f(zi; θ), f(z̃i; θ)} = 1} . (4) 1016

Then, 1017

cJGA ≤ 1− |JGA− J̃GA|
max{JGA, J̃GA}

≤ 1− |JGA− J̃GA|. (5) 1018

1019

Proof. First notice that for any i ∈ I, 1020

1(f(zi; θ) = f(z̃i; θ) = 1) = 1− |f(zi; θ)− f(z̃i; θ)|. (6) 1021

Hence, 1022∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1) = |I|−
∑
i∈I

|f(zi; θ)− f(z̃i; θ)| (7) 1023

≤ |I|−

∣∣∣∣∣∑
i∈I

(f(zi; θ)− f(z̃i; θ))

∣∣∣∣∣ (8) 1024

= |I|−

∣∣∣∣∣∣
∑
i∈[n]

(f(zi; θ)− f(z̃i; θ))

∣∣∣∣∣∣ (9) 1025

= |I|−n|JGA− J̃GA|, (10) 1026

where (8) follows from Jensen’s inequality, (9) follows from the fact that f(zi; θ)− f(z̃i; θ) = 0 for i ̸∈ I 1027

and hence we can increase the domain of summation from I to [n], and (10) follows from the definition. 1028

Notice that (10) is achieved with equality if and only if f(zi; θ) = f(z̃i; θ) or f(zi; θ) = 1− f(z̃i; θ), for 1029

all i ∈ I. Hence, 1030

cJGA =
1

|I|
∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1) (11) 1031

≤ 1− n|JGA− J̃GA|
|I|

(12) 1032

≤ 1− |JGA− J̃GA|
max{JGA, J̃GA}

(13) 1033

≤ 1− |JGA− J̃GA|, (14) 1034

where (12) follows from (10) and (13) follows from the fact that |I|≥ n ×max{JGA, J̃GA}, and (14) 1035

follows from the fact that max{JGA, J̃GA} ≤ 1. Notice that (14) is achieved with equality if and only if 1036

max{JGA, J̃GA} = 1. This completes the proof. 1037
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Lemma 1 shows that cJGA not only captures the discrepancy between JGA and J̃GA, but it can actually1038

capture robustness beyond that. As an example, consider a case where JGA = J̃GA = 0.6, hence no1039

drop is observed. In this case if cJGA ≈ 1, it means that the performance is robust but the model is1040

struggling with learning some particular flows. On the other hand, if cJGA is low, e.g., 0.2, it means that1041

the performance is statistically fragile and the JGA is mostly affected by model robustness. This would1042

not have been revealed by solely quantifying the JGA drop. As a second example, consider a case where1043

the JGA = 0.8 whereas c̃JGA = 0.6. It is straightforward to show that cJGA cannot be larger than 0.751044

(see Lemma 1), hence capturing the JGA drop. On the other hand, cJGA may be (much) smaller than 0.751045

if there are further statistical model variations due to lack of robustness (inconsistency of performance1046

across original and perturbed samples), which would not be revealed by the JGA drop.1047

B Further notes on CheckDST1048

B.1 Generalizability of CheckDST1049

For CheckDST to be applied to a TOD dataset, the dataset must have dialogue act and belief state1050

annotations at the minimum. If these annotations are available, we can use the LAUG toolkit to insert1051

speech disfluencies and generate paraphrases with a SC-GPT model (Liu et al., 2021; Peng et al., 2020).1052

To replace named entities, named entity slot types must be pre-defined such that these values can be1053

automatically scrambled or replaced, both in the annotations and dialogue. In the same vein, the named1054

entity slot types are used to determine hallucination frequency by measuring how often their slot values1055

are not values from the given text. Coref JGA is the least portable metric in CheckDST as it requires1056

coreference annotations. However, using simple regular expressions for pronouns and frequently used1057

terms such as “same X as” can discover many coreference cases with high precision. These subsets can1058

then be used for measuring Coref JGA.1059

B.2 Baseline Training Details1060

Most models are trained on MultiWOZ 2.1 (Eric et al., 2020) and therefore we retrain them on Multi-1061

WOZ 2.3 (Han et al., 2020) before assessing them on CheckDST. Unless otherwise specified, we use the1062

set of hyperparameters mentioned by the original work and run five iterations with different seed values1063

for results to have more statistical significance. If not provided, we do a hyperparameter search for the1064

best learning rate and choose the configuration that leads to the best median JGA on the validation set. For1065

each baseline, we train with five different seeds and report the median and standard error of these runs.1066

For finetuning MUPPET (Aghajanyan et al., 2021) with MultiWOZ, we follow the same setup used1067

in the original work for finetuning on downstream tasks. We drop the additional layers and use only the1068

parameters that are part of the original BART architecture to finetune MUPPET on MultiWOZ in the1069

same way as BART-DST.1070

For the few-shot setting, we make some adjustments to the hyperparamters from the full-shot setting to1071

allow for at least 5,000 gradient updates before training ends. Every model is trained for 20 epochs with a1072

batch size of 4 in order to provide each model with the same amount of training. The total GPU hours for1073

baseline models is about 600 hours including all full-shot and few-shot experiments.1074

B.3 CheckDST Result Details1075

CheckDST results for the first epoch and the few-shot setting are shown in Table 4 and Table 5, respectively.1076

Plots for CheckDST over time for classification models are in Figure 6 and for generation models are in1077

Figure 5.1078

C PrefineDST Details1079

C.1 Implementation details1080

Task formulation. We take the same approach as T0 in uniformly formatting all datasets, reusing1081

prompts for tasks that are already used for T0 and designing new ones for those that are not. For each1082

example from a dataset, we randomly sample from a corresponding set of instruction templates and1083

modify each sample according to the chosen template.1084
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Figure 5: CheckDST over different epochs for generation models.

Figure 6: CheckDST over different epochs for classification models. By design, span-based classification models do
not hallucinate, so both NoHF Orig and NHF Swap are always 100%.
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JGA Coref JGA PI cJGA SDI cJGA NED cJGA NoHF Orig NoHF Swap

CLS
TripPy (2020) 55.7 ± 0.4 22.5 ± 0.9 57.8 ± 0.4 46.5 ± 1.3 22.7 ± 4.0 100 ± 0 100 ± 0
ConvBERT-DG 54.8 ± 0.6 20.6 ± 1.8 58.2 ± 0.7 47.9 ± 0.5 5.4 ± 1.8 100 ± 0 100 ± 0

GEN

SimpleTOD (2020) 54.0 ± 0.2 26.5 ± 0.3 86.8 ± 0.3 70.8 ± 0.3 23.4 ± 1.4 95.1 ± 0.2 81.5 ± 1.8
BART-DST (2020) 58.2 ± 1.1 31.6 ± 0.3 84.9 ± 0.5 75.2 ± 1.2 26.3 ± 1.2 95.9 ± 0.2 76.9 ± 2.1
SOLOIST (2021a) 58.3 ± 0.2 31.4 ± 0.2 85.3 ± 0.5 76.0 ± 0.4 25.0 ± 2.3 96.0 ± 0.3 80.5 ± 2.1
MUPPET-DST (2021) 55.8 ± 1.3 27.7 ± 1.3 86.6 ± 0.2 74.1 ± 0.6 9.0 ± 1.0 95.0 ± 5.5 64.3 ± 4.3
PrefineDST (Ours) 58.6 ± 0.3 31.7 ± 1.3 87.4 ± 0.1 75.3 ± 1.3 26.1 ± 1.6 95.7 ± 0.2 78.7 ± 2.2

Table 4: CheckDST results on MultiWOZ 2.3 for epoch 1 in the full-shot training. It follows the same annotations
as Table 2.

JGA Coref JGA PI cJGA SDI cJGA NED cJGA NoHF Orig NoHF Swap

CLS
TripPy (2020) 60.0 ± 0.4 6.9 ± 0.8 75.3 ± 0.5 63.3 ± 1.0 46.6 ± 1.4 100 ± 0 100 ± 0
ConvBERT-DG (2020) 58.6 ± 1.4 8.6 ± 1.3 73.6 ± 0.6 68.3 ± 0.8 26.6 ± 3.3 100 ± 0 100 ± 0

GEN

SimpleTOD (2020) 31.6 ± 0.4 4.3 ± 0.3 79.2 ± 0.9 56.1 ± 0.8 33.5 ± 1.2 92.6 ± 0.4 91.0 ± 1.1
BART-DST (2020) 56.7 ± 1.8 12.9 ± 0.9 84.4 ± 1.2 63.2 ± 1.7 43.5 ± 2.0 97.4 ± 0.5 95.7 ± 0.5
SOLOIST (2021a) 62.2 ± 0.5 12.9 ± 0.2 86.0 ± 0.3 68.2 ± 0.3 50.4 ± 0.5 98.6 ± 0.1 98.5 ± 0.4
MUPPET-DST (2021) 55.5 ± 0.2 11.2 ± 0.6 84.2 ± 0.4 71.2 ± 0.9 34.4 ± 1.2 97.4 ± 0.2 84.2 ± 1.0
PrefineDST (Ours) 60.2 ± 0.2 12.1 ± 0.4 85.2 ± 0.2 67.9 ± 0.5 48.7 ± 0.3 98.0 ± 0.2 97.9 ± 0.4

Table 5: CheckDST results on MultiWOZ 2.3 few-shot training as described in Section 3.1. The few-shot dataset
only contains single-domain conversations and therefore these results are not meant to be directly compared with
results in Table 2. We annotate the table the same way as the full-shot table.

Prompts. For tasks that are not used in T0 such as WikiSQL (Zhong et al., 2017) and SGD (Rastogi1085

et al., 2020), we modify applicable prompts from different tasks to create at least five different prompt1086

templates for each task. One of these templates are randomly chosen for training time and inference time.1087

The random seed is changed during training time but kept the same at test time to ensure replicability.1088

Training details. Following Sanh et al. (2021), we do not adjust the sampling rate based on the sample1089

size of each task that we multitask with during prefinetuning. Since all tasks are formatted as a sequence-1090

to-sequence generation task, we do not need any additional layers as was needed for MUPPET nor form1091

heterogeneous batches that contain samples from multiple tasks. For the prefinetuning step, we do a1092

hyperparameter search with only five different learning rates and keep the batch size at 64 per GPU to find1093

the model with the lowest loss value on the test set. We use 8 A100 GPUs and train for 10 epochs, early1094

stopping on the loss value of the validation set with a patience of 3. This process amounts to a total of1095

approximately 400 GPU hours. We get best results with a learning rate of 1e−5.1096

Then, we finetune the prefinetuned model. We vary both the learning rate and the batch size and train1097

for 10 epochs on a single A100 GPU, running five iterations with different seed values, after which we1098

choose the checkpoint with the best JGA on the validation set. The best performing model uses a batch1099

size of 4 and learning rate of 5e−5 for the full-shot setting and 1e−5 for the few-shot setting. This amounts1100

to about 170 GPU hours in total. We use ParlAI (Miller et al., 2017) for all of our experiments.1101

C.2 Prefinetuning Tasks1102

We choose prefinetuning tasks based on their intuitive potential for improving on qualities measured1103

by CheckDST. They can largely be categorized into copying, paraphrase classification, and coreference1104

resolution tasks.1105

Copying. One of the key skills required for DST that seemed difficult to apply for out-of-domain1106

samples is copying the correct entities mentioned in the conversation to the slot values. This skill is1107

relevant to many other natural language understanding tasks that provide multiple candidates that can1108

be chosen for copying, e.g., question answering and structured text generation such as text-to-SQL. To1109

teach better copying skills, we include SQuAD v2.0 (Rajpurkar et al., 2018), CoQA (Reddy et al., 2019),1110

WikiSQL (Zhong et al., 2017), and Schema Guided Dialogue (SGD) (Rastogi et al., 2020).1111

Paraphrase Classification. To internalize an understanding of semantic similarities such that the1112

downstream model become robust to paraphrases, we leverage two paraphrase classification tasks: The1113
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Figure 7: PrefineDST takes the same approach as T0 (Sanh et al., 2021) for prefinetuning (above dotted line) and
then adds a finetuning step for a downstream task (below dotted line).

Microsoft Research Paraphrase corpus (Dolan and Brockett, 2005) and the Quora Question Pairs corpus 1114

(Chen et al., 2018). 1115

Coreference Resolution. With the expectation that seeing examples that require coreference resolution 1116

from other tasks will also help solve cases that need the same skill in DST, we include coreference 1117

resolution tasks to our prefinetuning step. We use the Winograd Schema Challenge (WSC) dataset 1118

(Levesque et al., 2012) from the SuperGLUE benchmark (Wang et al., 2019) and Winograd NLI (WNLI) 1119

(Wang et al., 2018). /The difference changes the entity that the pronouns in the sentence must resolve to. 1120

C.3 Prefinetuning Task Details 1121

The full list of tasks that we use for the prefinetuning step is summarized in Table 6. 1122

Dataset Type Train / Valid / Test Size Targeted CheckDST metrics

MSR (Dolan and Brockett, 2005) Paraphrase 4,076 / 862 / 863 PI cJGA
QQP (Chen et al., 2018) Paraphrase 305,408 / 38,176 / 38,176 PI cJGA
WSC* (Levesque et al., 2012) Coref 554 / 104 Coref JGA
WNLI* (Wang et al., 2018) Coref 635 / 71 Coref JGA
SQuAD v2* (Rajpurkar et al., 2018) Q&A 130,319 / 11,873 NEI cJGA, NoHF
CoQA* (Reddy et al., 2019) Q&A 108,647 / 7,983 NEI cJGA, NoHF, Coref JGA
WikiSQL (Zhong et al., 2017) Text-SQL 56,355 / 8,421 / 15,878 NEI cJGA, NoHF
SGD (Rastogi et al., 2020) TOD 164,982 / 24,363 / 42,297 NEI cJGA, NoHF, Coref JGA

Table 6: A summary of prefinetuning datasets that we use for PrefineDST. *These datasets do not have a separate
test set. We reuse the validation set for these datasets.
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