
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PUSHING TOWARD THE SIMPLEX VERTICES: A SIM-
PLE REMEDY FOR CODE COLLAPSE IN SMOOTHED
VECTOR QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vector quantization, which discretizes a continuous vector space into a finite set
of representative vectors (a codebook), has been widely adopted in modern ma-
chine learning. Despite its effectiveness, vector quantization poses a fundamental
challenge: the non-differentiable quantization step blocks gradient backpropaga-
tion. Smoothed vector quantization addresses this issue by relaxing the hard as-
signment of a codebook vector into a weighted combination of codebook entries,
represented as the matrix product of a simplex vector and the codebook. Effective
smoothing requires two properties: (1) smoothed quantizers should remain close
to a onehot vector, ensuring tight approximation, and (2) all codebook entries
should be utilized, preventing code collapse. Existing methods typically address
these desiderata separately. By contrast, the present study introduces a simple
and intuitive regularization that promotes both simultaneously by minimizing the
distance between each simplex vertex and its K-nearest smoothed quantizers. Ex-
periments on representative benchmarks—including discrete image autoencoding
and contrastive speech representation learning—demonstrate that the proposed
method achieves more reliable codebook utilization and improves performance
compared to prior approaches.

1 INTRODUCTION

Vector quantization is a method for discretizing a continuous vector space (Gray, 1984; van den
Oord et al., 2017). It maps each vector in the continuous space to the nearest element of a finite
set of representative vectors (a.k.a. a codebook). The resulting discrete representations are easier
to manipulate and interpret than the original continuous forms, and have proven effective across
diverse applications, including image generation (Esser et al., 2021; Ramesh et al., 2021; Rombach
et al., 2022; Yu et al., 2022b), speech recognition (Baevski et al., 2020a;b), and music generation
(Hadjeres & Crestel, 2020; Dhariwal et al., 2020).

When integrated into deep neural networks, however, vector quantization introduces a fundamen-
tal challenge: quantization is a non-differentiable operation that blocks gradient backpropagation
(van den Oord et al., 2017). Accordingly, some approximation is required to enable learning through
quantization.

One effective workaround is to smooth vector quantization (Jang et al., 2017). The selection of a
codebook vector can be expressed as multiplying the codebook matrix by its corresponding onehot
vector (0, . . . , 1, . . . , 0)T, whose nonzero entry indexes the chosen vector. Smoothed vector quanti-
zation relaxes this onehot vector to lie within the simplex ∆M−1 := {(p1, . . . , pM ) |

∑M
m=1 pm =

1}, where M denotes the number of codebook vectors. Consequently, differentiable mappings (e.g.,
softmax) become available and can be incorporated into neural networks.

To successfully approximate onehot quantizers, smoothed quantizers must be distributed around the
vertices of the simplex (orange “o” in Figure 1A). At the same time, they should not concentrate
around a few vertices, leaving other codebook entries unused (blue “x”). This latter issue—called
code collapse—has been identified as a major challenge in vector quantization (Dieleman et al.,
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Figure 1: (A) Four different distributions on the simplex ∆3−1. For effective smoothed vector quan-
tization, samples should be concentrated near the vertices of the simplex (i.e., onehot-like vectors;
orange), rather than centered (dark gray) or uniformly spread across the simplex (light gray). At
the same time, each vertex must be neighbored by some samples to avoid code collapse (blue).
(B) Maximizing the perplexity of the sample mean (Baevski et al., 2020b) penalizes code collapse
but cannot discriminate among the other three distributions. (C) The proposed K-nearest neighbor
(KNN) distance minimization (K = 8) favors the desired vertex-concentrated distribution while
also preventing code collapse.

2018; Baevski et al., 2020b; Dhariwal et al., 2020; Fifty et al., 2025). A widely adopted workaround
for code collapse (in smoothed quantization) is to introduce an auxiliary learning objective that
maximizes the entropy or perplexity of the mean of the smoothed quantizers (Dieleman et al., 2018;
Baevski et al., 2020b, see §2.3 for the formal definition). However, maximizing the entropy/perplex-
ity of the mean can be achieved by various distributions, not only the desired vertex-neighboring
ones. For example, both uniform and center-concentrated distributions have their mean at the sim-
plex center (Figure 1A), which also maximizes this objective (Figure 1B). Accordingly, an additional
mechanism is needed to tighten the smoothing (e.g., by adjusting the temperature parameter of the
(Gumbel-)softmax; see §2.2).

Beyond this standard approach, however, there exists a simple and unified strategy for simultane-
ously tightening smoothed quantization and maximizing codebook usage: Why don’t we directly en-
courage clustering around all simplex vertices? Specifically, minimizing the distance between each
simplex vertex and its K-nearest neighbors (KNNs) satisfies both desiderata at once (Figure 1C).
The present study investigates this intuitive yet underexplored approach, comparing it against exist-
ing alternatives on representative benchmarks. The results indicate that the proposed method enables
the exhaustive usage of the entire codebook, even when other approaches suffer from code collapse.

The contributions of this work are summarized as follows:

• Neural vector quantization is reformulated as a smoothing problem of onehot vectors. This
simple reformulation has been absent in the literature, which traditionally framed vector
quantization as an extension of variational autoencoding (Kingma & Welling, 2014; Jang
et al., 2017; van den Oord et al., 2017).

• Under this reformulation, an effective regularization loss function is proposed to promote
both tight smoothing and exhaustive code utilization. The method demonstrates robustness
across different learning settings.

The remainder of this paper is organized as follows. §2 reviews related studies on vector quantiza-
tion. §3 introduces the proposed method, which is then evaluated on representative benchmarks in
§4. Finally, §5 discusses the results and the limitations of the proposed method.
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2 RELATED STUDIES

The central challenge of vector quantization lies in its non-differentiability, which disrupts the back-
propagation of gradients in neural networks. To address this, either the gradient computation (back-
ward path) or the quantization itself (forward path) must be approximated.

2.1 APPROXIMATION IN THE BACKWARD PATH (GRADIENT ESTIMATION)

One line of work retains the original non-differentiable quantization in the forward path but replaces
the gradient computation in the backward path. Let z ∈ RD denote a pre-quantized feature vector,
and {q1, . . . ,qM} ⊂ RD the set of quantized vectors. Quantization maps z to its “closest” code-
book entry according under a distance metric D: i.e., z 7→ qι(z) where ι(z) := argminm D(z,qm).

Consequently, the partial derivatives ∂qι(·),i
∂zj

are ill-defined and must be approximated.

A canonical approximation—known as the straight-through estimation (STE)—replaces the ill-
defined Jacobian with the identity matrix (van den Oord et al., 2017):

∂qι(·),i

∂zj
≈

{
1 i = j

0 otherwise
(1)

Algorithmically, the STE is implemented using the detach operation, which excludes its argument
from gradient computation:

STE(qι(z), z) := qι(z) + z− detach(z) (2)

Here, z − detach(z) evaluates to zero, while the gradient with respect to z can still be propagated
through the first term.

More recently, Fifty et al. (2025) proposed an alternative gradient approximation, and demonstrated
its empirical superiority over the STE:

RE(qι(z), z) := detach

(∥qι(z)∥
∥z∥

R

)
z (3)

where R is the rotation matrix aligning z to qι(z),1 and ∥qι(z)∥
∥z∥ rescales the rotated vector to match

the amplitude of qι(z). In this formulation, the Jacobian of the quantization is approximated by the
scaled rotation matrix:

∂qι(·),i

∂zj
≈

∥qι(z)∥
∥z∥

R (4)

2.2 APPROXIMATION IN THE FORWARD PATH (SMOOTHING)

An alternative approach approximates the forward quantization itself. Using the onehot representa-
tion em of the code index m, quantization can be expressed as:

qι(z) = Qeι(z) (5)

where Q := (q1, . . . ,qM ). Smoothed quantization extends the possible range of em to the simplex
∆M−1. As noted in §1, effective learning requires smoothed quantizers p ∈ ∆M−1 to concentrate
near the vertices of the simplex (i.e., p ≈ em for some m).

A widely studied instance of smoothed quantization is Gumbel-softmax sampling (Jang et al.,
2017). Given assignment probabilities πm of z to the m-th code—typically log-proportional to
their dot-product qT

mz—categorical sampling can be implemented using Gumbel samples gm =
− log(− log um) with um ∼ Uniform(0, 1):

ι(z) ∼ Categorical(π1, . . . , πM )

⇔ι(z) = argmax
m

(gm + log πm) (6)

1The rotation matrix is given by R = I − 2r̂r̂T + 2q̂ι(z)ẑ
T, where v̂ := v/∥v∥ is the L2-normalization of

vector v, and r := q̂ι(z) + ẑ.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Replacing argmax above with softmax yields a smoothed quantization:

pm =
exp ((gm + log πm) /τ)∑
m′ exp ((gm′ + log πm′) /τ)

(7)

where lowering the temperature parameter τ produces a tighter approximation of categorical sam-
pling.

The Gumbel-softmax sampling can also be combined with hard quantization using the STE:

STE(eι(z),p) = eι(z) + p− detach(p) (8)

2.3 REGULARIZATION

Beyond approximation strategies, vector quantization also requires auxiliary regularization losses
to ensure effective training. For example, the STE alone does not guarantee alignment between
pre-quantized features and codebook entries. This alignment is instead fostered by the following
regularization loss, Lreg (van den Oord et al., 2017; Fifty et al., 2025):

Ltotal = Lmain + Lreg (9)

Lreg = Lhard := N−1
N∑
i=1

β ∥zi − detach(qι(zi))∥
2

Commitment Loss

+ ∥detach(zi)− qι(zi)∥
2

Codebook Loss

 (10)

where Lmain is the primary task loss (e.g., L2 regression in autoencoding), and β > 0 is a weighting
hyperparameter. As defined in in Equation 10, Lhard consists of two components. The first term
(known as the commitment loss) aligns each pre-quantized feature zi in a batch (i = 1, . . . , N )
with their nearest codebook entry qι(zi). The second term (called the codebook loss) moves each
codebook vector qm toward the centroid of its assigned features whose nearest neighbor is qm (i.e.,
{zi : ι(zi) = m}).

It should be noted, however, that the codebook loss in Equation 10 does not inherently prevent code
collapse. Some codebook vectors may never serve as the nearest neighbor of any pre-quantized fea-
ture and therefore receive no updates

::::::::::::::
(Zhu et al., 2025). Accordingly, previous studies have resorted

to additional workarounds; for example, unused codebook vectors may be reset to the positions of
pre-quantized features Dhariwal et al. (2020).

::::
More

::::::::
recently,

::::::::::::::
Zhu et al. (2025)

::::::::
proposed

::::::
another

::::::
remedy

:::::
called

:::::::
SimVQ,

:::::
which

::::::::::::::
reparameterizes

:::
the

::::::::
codebook

::
Q

::
as

:::
the

:::::::
product

::
of

::
a

::::::::
randomly

:::::
frozen

:::::
matrix

:::::::::::
Q′ ∈ RM×D

::::
and

:
a
::::::::
learnable

::::::
matrix

:::::::::::
W ∈ RD×D

::::
(i.e.,

::::::::::
Q = Q′W ).

:::
In

:::
this

:::::::::::
formulation,

::
all

::::::::
codebook

::::::
vectors

:::::
share

::::::::
learnable

:::::::::
parameters

:::::
with

:::
one

:::::::
another

::::::::::::::::::::::::::::
(qm = q′m,1w1 + · · ·+ q′m,DwD),

::
so

::::::
updates

::
to
::::
one

:::::
vector

:::::::::
propagate

::
to

:::
the

::::::
others.

Similarly, smoothed quantization also requires auxiliary regularization to avoid code collapse. A
widely adopted option is the normalized perplexity of the mean assignment probability (Dieleman
et al., 2018; Baevski et al., 2020b):

Lreg = Lppl :=
exp (−

∑
m π̄m log π̄m)

M
(11)

π̄m := N−1
N∑
i=1

πi,m (12)

As noted in §1, this perplexity-based regularization does not promote the onehotness of πi, failing
to distinguish onehot-like samples from uniform or centered ones (Figure 1B). Onehotness can in-
stead be induced by annealing the temperature parameter of the Gumbel-softmax sampling (τ → 0).
However, manually scheduling this annealing is empirically challenging. The next section there-
fore proposes an alternative regularization loss that automatically encourages onehotness within the
framework of gradient-based learning, while simultaneously preventing code collapse.

3 METHODS

As noted in previous sections, ideal smoothed quantizers p ∈ ∆M−1 are distributed near the vertices
of the simplex (Figure 1A). Moreover, each vertex should have at least some smoothed quantizers in

4
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its neighborhood; otherwise, the quantization suffers from code collapse. A simple way to achieve
these objectives simultaneously is to impose a loss penalizing the deviation of the KNNs from each
vertex (Figure 1C):

Lreg = LKNN := (MK)−1
M∑

m=1

K∑
k=1

D(em,p(m,k)) (13)

where p(m,k) denotes the k-th nearest neighbor of the simplex vertex (onehot vector) em according
to a distance/deviation metric D. Two options for D are considered in this study: the squared L2
distance, ∥em − p(m,k)∥2, and cross-entropy, − log p

(m,k)
m .

At first glance, the proposed regularization may appear similar to the commitment and codebook
losses used in the gradient-estimation approaches (Equation 10), Both involve nearest neighbors,
but the two methods differ in their choice of anchors and neighbors. While commitment and code-
book losses take data points as anchors and identify their nearest codebook entries, the proposed
method uses codebook entries as anchors and treats data as neighbors. Accordingly, the proposed
regularization ensures that every codebook entry receives optimization feedback, whereas commit-
ment/codebook losses may leave some entries untrained if they never become the nearest neighbor
of any data point.

A further advantage of the proposed regularization is that Gumbel-softmax sampling is no longer
required; smoothed quantizers can be obtained directly as p = π = softmax(QTz).2 At the
same time, the proposed regularization is fully compatible with Gumbel-softmax sampling; one can
simply replace p (Gumbel-softmax samples) in Equation 13 with π (assignment probabilities).

During inference, hard quantization is applied by taking argmaxm pm in the onehot representation.
In the following section, both the deterministic and stochastic approaches are evaluated on represen-
tative benchmarks.

4 EXPERIMENTS

The proposed regularization for smoothed vector quantization was benchmarked on two tasks: dis-
crete autoencoding (§4.1) and contrastive learning (§4.2). The Python code used for these experi-
ments is available as supplementary material.

4.1 DISCRETE AUTOENCODING

The first benchmark assessed the proposed regularization in the context of discrete autoencoding on
the ImageNet dataset (Deng et al., 2009). Input images were convolutionally encoded into latent
feature maps, whose pixels were then quantized (Esser et al., 2021; Fifty et al., 2025). The decoder
convolutional network reconstructed the input images from these quantized feature maps, and the
entire model was trained to minimize the L2 reconstruction loss (Lmain in Equation 9). Further
details about the network architecture and training setup are provided in Appendix B.1.

Extending prior work (Esser et al., 2021; Fifty et al., 2025), three different combinations of feature
map and codebook sizes were examined. In addition to the previously used settings of H×W×C =
16× 16× 32 (M = 1024) and 64× 64× 3 (M = 8196), an additional configuration increased the
channel dimensionality of the latter to 32 (H ×W × C = 64× 64× 32,M = 8196).

Each model was trained using four GPUs, and the proposed method computed the K/4-nearest
neighbors of each simplex vertex per GPU (see §5.3 for further discussion). The number of neigh-
bors was set to

:::::::
K/4 = 8

:::
for

:::
the

:::
L2

:::::::
distance

:::
and

::::::::
K/4 = 1

::
for

:::
the

:::::::::::
cross-entropy

:::::::::
otherwise

:::::::
specified.3

:::
The

::::::
weight

::
β
:::

on
:::
the

:::::::::::
commitment

::::
loss

:::::::::
(Equation

:::
10)

:::
in

::::
STE

:::::::::
(including

:::::::
SimVQ)

::::
and

::::::::
rotational

:::::::
gradient

::::::::
estimation

::::
was

:::
set

::
to

:::
1.0,

::::::::
following

::::::::::::::::
Fifty et al. (2025)

::
and

::::::::::::::
Zhu et al. (2025)

:
.
:

::::
Table

::
1 reports the codebook usage and reconstruction quality scores—including root mean squared

error (rMSE), Inception Score (IS; Salimans et al., 2016), and Fréchet Inception Distance (FID;
2The exact implementation of p and π involves normalization and rescaling; see Appendix A.1 for details.
3The value of K was upper-bounded at 8× 4 by available computational resources; With a maximum batch

size of 64, the total number of latent pixels was 64× 64× 64 = 8× 4× 8196, allowing only 8× 4 neighbors
per vertex of ∆8196. This implementation constraint is further discussed in §5.3.
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Table 1: Performance of discrete autoencoding on the ImageNet validation set. Reported metrics
are codebook usage and reconstruction quality scores: root mean squared error (rMSE), Fréchet
Inception Distance (FID), and Inception Score (IS). The proposed method is denoted as “KNN-
L2/CE”.

::::
Best

:::::
scores

::::::
across

::
all

:::::::
methods

:::
are

::::::::::
highlighted

::
in

:::::::
boldface,

:::::
while

:::::::::
underlined

::::::
values

::::::
indicate

::
the

::::::::::::::
best-performing

::::::
number

:::
of

::::::
nearest

::::::::
neighbors

::::::
among

::::::::::::::::
K/4 ∈ {1, 2, 4, 8}.

Feature Map Size; Codebook Size
16×16×32; 1024 64×64×3; 8196 64×64×32; 8196

Method
::
K/4 Code Use (↑) rMSE (↓) FID (↓) IS (↑) Code Use rMSE FID IS Code Use rMSE FID IS

ST
E Euclid

::
— 4.5% 0.404 124.86 36.61 100.0% 0.167 7.25 402.84 1.7% 0.235 22.02 290.24

Cosine
::
— 3.0% 0.381 117.95 41.48 70.9% 0.197 13.97 348.31 2.8% 0.186 12.11 363.86

::::
SimVQ

::
—

::::
100.0%

:::
0.340

:::
87.26

:::
71.33

:::::
100.0%

:::
0.170

:::
7.44

:::
400.41

:::::
100.0%

:::
0.148

:::
3.97

:::
436.29

R
E Euclid

::
— 3.1% 0.460 170.30 19.25 78.85% 0.171 10.21 377.56 0.5% 0.271 40.58 203.52

Cosine
::
— 2.8% 0.423 157.77 24.33 99.5% 0.194 14.67 344.17 4.4% 0.180 10.83 372.89

H
-G

m
b PPL

::
— 100.0% 0.349 100.29 54.04 100.0% 0.189 19.07 321.16 100.0% 0.163 10.33 384.04

KNN-L2 8
::
52.1%

:::
0.344

:::
98.98

:::
59.66 99.9% 0.222 25.00 280.97 23.6% 0.185 10.72 376.35

KNN-CE 1
:::
100.0%

:::
0.368

:::
86.49

:::
68.27

:::
100.0%

:::
0.226

:::
14.27

:::
342.64

:::
100.0%

:::
0.173

:::
3.17

:::
435.04

S-
G

m
b PPL

::
— 55.0% 0.826 173.59 9.61 100.0% 0.183 10.28 377.79 48.4% 0.386 45.61 167.14

KNN-L2 8
::
96.3%

:::
0.358

:::
74.00

:::
85.36 100.0% 0.201 10.17 373.83 100.0% 0.193 5.73 404.18

KNN-CE 1
:::
100.0%

:::
0.569

::::
194.74

:::
16.60

:::
100.0%

:::
0.233

:::
15.41

:::
329.78

:::
100.0%

:::
0.186

:::
3.83

:::
425.33

So
ft

m
ax

PPL
::
— 100.0% 1.112 309.60 4.55 81.6% 0.701 37.99 196.72 99.8% 0.725 83.07 77.98

KNN-L2

1
::::
100.0%

:::
0.358

:::
76.29

:::
81.61

:::::
100.0%

:::
0.224

:::
12.08

:::
354.36

:::::
100.0%

:::
0.387

:::
32.20

:::
210.61

2
::::
100.0%

:::
0.366

:::
81.69

:::
71.75

:::::
100.0%

:::
0.226

:::
12.04

:::
348.48

:::::
100.0%

:::
0.175

:::
3.62

:::
427.42

4 100.0% 0.379 87.05 62.37
:::::
100.0%

:::
0.205

:::
9.01

:::
383.56

:::::
100.0%

:::
0.196

:::
5.64

:::
403.06

8
:::
99.9%

:::
0.343

:::
73.72

:::
88.53 100.0% 0.199 12.64 361.23 100.0% 0.204 7.91 381.65

KNN-CE

1
::::
100.0%

:::
0.366

:::
79.80

:::
74.69

:::::
100.0%

:::
0.225

:::
14.08

:::
345.56

:::::
100.0%

:::
0.175

:::
2.81

:::
437.72

2
::::
100.0%

:::
0.380

::::
106.05

:::
50.75

:::::
100.0%

:::
0.227

:::
14.34

:::
338.37

:::::
100.0%

:::
0.187

:::
4.16

:::
418.57

4 100.0% 0.748 255.59 9.03
:::::
100.0%

:::
0.228

:::
16.73

:::
326.78

:::::
100.0%

:::
0.204

:::
6.98

:::
387.88

8
::::
100.0%

:::
1.240

::::
467.86

:::
3.01 100.0% 0.219 14.24 343.23 100.0% 0.199 5.27 404.10

Table 2:
::::::::
Tightness

::
of

:::::::::::::
softmax-based

:::::::::
smoothing

::::::::
(without

:::::::
Gumbel

::::::::::
sampling),

::::::::
measured

:::
by

:::
the

::::::::
individual

:::::::::
perplexity

::
of

::::::::
individual

::::::::
smoothed

:::::::::
quantizers,

::::::::::::::::::::::
exp(−

∑M
m=1 pm log pm).

::::::::
Reported

:::::
values

::
are

:::
the

:::::
75th,

:::::
90th,

:::
and

::::
99th

::::::::::
percentiles,

::
as

::::
well

::
as
::::

the
:::::::::
maximum,

::::::::
computed

::::::
across

::
all

::::::::::
feature-map

:::::
pixels

::
in

:::
the

::::::::
ImageNet

:::::::::
validation

:::
set.

:::::::::
Feature Map Size;

:::::::::
Codebook Size

:::::::
16×16×32;

::
1024

::::::
64×64×3;

::
8192

:::::::
64×64×32;

:::
8192

::::
Method

::
K/4

::
75%

::
90%

::
99%

::
Max

:::
75%

:::
90%

:::
99%

:::
Max

:::
75%

:::
90%

:::
99%

:::
Max

::
PPL

::
—

:::
910.40

:::
933.12

:::
963.29

:::
995.91

::::
7559.89

::::
7561.99

::::
7563.10

::::
7565.02

::::
7230.60

::::
7267.06

::::
7315.62

::::
7424.16

:::::
KNN-L2

1
::
1.17

::
1.59

::
2.36

::
6.26

::
1.00

::
1.00

::
1.00

::
4.00

::
2.24

:::
40.45

:::
86.53

::::
249.64

2
::
1.00

::
1.08

::
1.86

:::
27.37

::
1.00

::
1.00

::
1.06

::
4.65

::
1.14

::
1.55

::
2.33

::
7.92

4
::
1.00

::
1.06

::
1.86

:::
62.99

::
1.00

::
1.00

::
1.00

::
4.61

::
1.00

::
1.06

::
1.80

:::
20.42

8
::
1.00

::
1.10

::
1.90

:::
120.68

::
3.33

::
3.87

::
5.22

:::
12.03

::
1.00

::
1.05

::
1.79

::::
107.70

:::::
KNN-CE

1
::
1.18

::
1.60

::
2.38

::
6.28

::
3.96

::
4.51

::
5.81

:::
11.96

::
1.09

::
1.45

::
2.17

::
5.94

2
::
1.23

::
1.72

::
2.73

::
8.07

::
4.04

::
4.66

::
6.16

:::
11.77

::
1.06

::
1.38

::
2.08

::
6.15

4
::
1.42

::
1.78

::
2.38

::
5.45

::
4.16

::
4.86

::
6.57

:::
13.04

::
1.08

::
1.44

::
2.16

::
6.58

8
::
2.38

::
2.80

::
3.71

::
7.78

::
4.46

::
5.31

::
7.39

:::
13.81

::
1.29

::
1.75

::
2.65

::
9.26

Heusel et al., 2017)–for the proposed method (“KNN-L2/CE”) and the baselines.
::::::::::::
Reconstruction

through softmax-smoothed quantization (i.e., without Gumbel randomness) deteriorated substan-
tially when combined with the perplexity-based regularization (“PPL”; Equation 11). This degrada-
tion stems from the mismatch between soft quantization during the training and hard quantization
at inference

:
;
:::
the

::::::::
smoothed

:::::::::
quantizers

::::::::
deviated

::::
from

:::
the

:::::::
simplex

:::::::
vertices,

::
as
::::::::

reflected
::
in

::::
their

::::
high

::::::::
individual

:::::::::
perplexity,

:::::::::::::::::::::
exp(−

∑M
m=1 pm log pm)

::::::
(Table

::
2).

::::::
These

::::::::::
observations

:::::::
support the argument

made in the Introduction that perplexity-based regularization alone does not promote tight smooth-
ing.

The perplexity-based regularization was only effective when combined with the Gumbel-softmax
sampling, and onehot quantization in the forward computation by STE was necessary to ensure full
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codebook usage (“Hard-Gumbel”). Otherwise, code collapse was not prevented when the channel
dimensionality was large (

::::::
C = 32; “Soft-Gumbel”).

By contrast, the proposed KNN-based regularization successfully prevented code collapse and
achieved near-complete codebook utilization without resorting to Gumbel-softmax sampling. The
reconstruction quality was also superior or competitive with the Gumbel-softmax + perplexity ap-
proach across all feature map sizes.

The choice of deviation metric (L2 distance vs. cross-entropy, CE) did not result in consistent global
superiority, although noticeable code collapse occurred when KNN-L2 regularization was combined
with hard Gumbel-softmax sampling, which nonetheless had limited effect on the reconstruction
quality.

::
In

:::::
terms

::
of

::::::::::::
computational

:::::::::
efficiency,

::::::::
however,

:::::::::::
cross-entropy

:::::::
proved

::::
more

:::::::::
favorable.

::::::::
Notably,

::
its

::::::::::
performance

::::
was

::::::
highest

:::::
when

:::
the

:::::::
number

::
of

::::::::
neighbors

::::
was

:::::::
minimal

:::::::::
(K/4 = 1)

::::::
across

::
all

::::::
feature

:::
map

:::::
sizes

:::::::::
(indicated

:::
by

:::
the

::::::::::
underlined

::::::
scores

::
in

:::::
Table

:::
1);

::::::::::
increasing

::
K

::::
did

:::
not

:::::
yield

::::::
further

::::::::::::
improvements.

::::::::
Although

::::
most

:::::::::
smoothed

::::::::
quantizers

::::::::
remained

::::::::::::
unregularized

:::::
under

:::
this

:::::::
setting,

:::
they

:::
still

:::::::
achieved

::::
low

::::::::
individual

::::::::::
perplexities

::::
after

:::
the

:::::::
training

:::::
(Table

:::
2),

::::::::
indicating

:
a
::::
tight

::::::::::::
approximation

::
of

:::::::::::
quantization.

:::
By

::::::::
contrast,

::::::::::
minimizing

::::
only

:::
the

:::
L2

:::::::
distance

::::::::
between

:::
the

:::::::
simplex

:::::::
vertices

:::
and

::::
their

:::::
single

::::::
nearest

::::::::
neighbor

:::
per

:::::
GPU

:::
led

::
to

:::::::::::
performance

::::::::::
degradation

:::
for

:::
the

::::::
feature

::::
map

:::
of

:::
size

:::::::::::::
64× 64× 8192.

::::::
Since

:::::::::
requiring

:::::
more

::::::::
neighbors

:::::::::::
necessitates

:
a
::::::

larger
:::::
batch

::::
size

::::
(see

::::
§5.3

:::
for

::::::
details),

::::::::::::
cross-entropy

:::::::
emerges

::
as

:
a
:::::
more

:::::::
scalable

::::::
option.

:

::::::
Finally,

::
both STE and rotational gradient estimation (RE)

:::::::
exhibited

:::::::
severe

:
code collapse

when the channel dimensionality was large (
::::::::
C = 32),

:::::::::
reaffirming

:::::
prior

::::::::
findings

::::
that

:::::::
reducing

::::::
channel

:::::::::::::
dimensionality

:
is
:::::::::
necessary

::
for

:::::
stable

:::::::
training

::::::::::::::::::::::::::::::::::::
(Yu et al., 2022a; 2024; Mentzer et al., 2024)

:
.
:::

By
::::::::

contrast,
:::::::

SimVQ
::::::::::
maintained

:::
full

:::::::::
codebook

:::::
usage

::::::
across

:::
all

:::::::
settings

::::
and

::::::::
achieved

:::::
strong

:::::::::::
reconstruction

:::::::
quality

::::
even

:::
at

::::
high

:::::::::::::
dimensionality.

::::::::::
However,

:::
the

::::
next

:::::::
section

:::::::
presents

::
a
::::

case
::::
study

:::
in

:::::
which

:::
all

::::::::::::::::
gradient-estimation

:::::::::::::::::::
approaches—including

:::::::::::::::::
SimVQ—encounter

:::::
code

:::::::
collapse,

::::::::::
highlighting

:::
the difficulty of achieving robust prevention of code collapse across different settings.

4.2 CONTRASTIVE LEARNING

The second experiment evaluated vector quantization methods within Wav2Vec 2.0 pretraining for
speech feature extraction (Baevski et al., 2020b). Unlike autoencoding, this pretraining integrates
vector quantization directly into the main loss function.

Two codebook configurations were investigated. The first used a single codebook of size 1024. By
contrast, the second followed the original work of Baevski et al. (2020b), combining two smaller
codebooks—each of size 320—to implement rich code diversity efficiently via product quantization
(Jégou et al., 2011, see §5.3 for more information). The dimensionality of the codebook vectors was
set to 256 for the single-codebook configuration and to 128 for the dual-codebook configuration.

:::
The

:::::
weight

::
β
:::
on

::
the

:::::::::::
commitment

::::
loss

:
in
::::
both

::::
STE

:::::::::
(including

:::::::
SimVQ)

::::
and

::::::::
rotational

:::::::
gradient

::::::::
estimation

was set to
:::
1.0

:::::::::::::::::::::::::::::
(Fifty et al., 2025; Zhu et al., 2025).

:

::::::
Models

::::::
were

::::::::
trained

::::
on

:::::
the

::::::::::::
LibriSpeech

::::::::
dataset,

:::::::::::
combining

:::::
all

::::::::
training

::::::
splits

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(train-clean-100 + train-clean-360 + train-other-500; Panayotov et al., 2015).

:::::::::::
Further

:::::::
details

::
on

:::
the

:::::::
network

::::::::::
architecture

:::
and

:::::::
learning

::::::::
objective

:::
are

::::::::
provided

::
in

::::::::
Appendix

::::
B.2.

:

::::
Table

::
3 reports codebook usage. The perplexity-based regularization failed to prevent code collapse

in both single- and dual-codebook settings. Likewise, the STE and rotational gradient estimation
approaches exhibited the same failure.

::::::::::
Remarkably,

::::::::::::::
SimVQ—despite

::::::::
achieving

:::
full

:::::::::
codebook

::::
usage

::
in

::
the

:::::::
discrete

:::::::::::
autoencoding

::::::::::::::::::
experiments—offered

:::
no

:::::::::
observable

::::::
benefit

::
in

:::
this

:::::::
learning

:::::::::
paradigm.

By contrast, the proposed KNN-based regularization ensured
:::::
(near-)complete code utilization in

both conditions when cross-entropy was used as the divergence metric on the simplex.
::
As

::
in
:::

the
::::::
discrete

::::::::::::
autoencoding

::::::::::
experiments,

::
a
:::::
single

::::::::
neighbor

:::
per

:::::
GPU

::::
was

::::::::
sufficient

::
to

:::::
obtain

::::
this

:::::
effect.

The L2 metric, on the other hand, proved insufficient to prevent code collapse, especially when
combined with Gumbel sampling.
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Table 3: Codebook usage in Wav2Vec 2.0 pretraining, evaluated on the LibriSpeech dev-clean split
(similar results were observed for the other dev/test splits). The proposed method is denoted as
“KNN-L2/CE”.

#Codebooks × Codebook Size
1×1024 2×320

::::
Method

:::
K/4 Codebook#1 Codebook#2

ST
E Euclid

:
— 0.8% 0.9% 0.9%

Cosine
:
— 0.2% 0.6% 0.6%

::::
SimVQ

:
—

:::
0.2%

:::
0.6%

:::
0.6%

R
E Euclid

:
— 2.5% 0.6% 0.6%

Cosine
:
— 0.2% 0.6% 0.6%

H
-G

m
b PPL

:
— 0.7% 0.6% 0.6%

KNN-L2
:
2 0.2% 0.6% 0.6%

KNN-CE
:
2 99.7% 100.0% 100.0%

S-
G

m
b PPL

:
— 0.3% 0.6% 0.6%

KNN-L2
:
2 90.1% 0.6% 0.6%

KNN-CE
:
2 100.0% 100.0% 100.0%

So
ft

m
ax

PPL
:
— 0.2% 1.2% 1.2%

KNN-L2 :
1

::::
82.4%

::::
100.0%

::::
100.0%

:
2 60.4% 100.0% 100.0%

KNN-CE :
1

::::
99.5%

::::
100.0%

::::
100.0%

:
2 100.0% 100.0% 100.0%

5 DISCUSSIONS

5.1 SUMMARY OF FINDINGS & CONTRIBUTIONS

This study introduced a simple and unified regularization method that simultaneously tightens
smoothed vector quantization and promote effective code utilization. The proposed method suc-
cessfully prevented code collapse in two representative applications of vector quantization: a mid-
dle layer in discrete autoencoding (§4.1) and target construction in contrastive learning (§4.2). This
robustness is noteworthy, as prior approaches were effective only in specific settings and remained
vulnerable to code collapse in others.

The proposed method is geometrically intuitive and straightforward, yet appears unaddressed in the
existing literature. Research on neural vector quantization has traditionally been rooted in variational
autoencoding (Kingma & Welling, 2014), primarily aiming to extend this stochastic framework to
discrete variables (Jang et al., 2017; van den Oord et al., 2017). The issue of code collapse was rec-
ognized (or documented) later, and workarounds were developed independently of the quantization
methods themselves (Dieleman et al., 2018; Baevski et al., 2020b; Dhariwal et al., 2020).

By contrast, the present work reformulates neural vector quantization as a simple smoothing prob-
lem: onehot vectors are approximated by elements of the simplex. Within this perspective, con-
centrating the approximators near the simplex vertices naturally arises as a desirable property. This
reformulation, together with the proposed regularization strategy, represents a key conceptual con-
tribution of the study.

5.2 ALTERNATIVE IMPLEMENTATIONS OF THE INTENDED REGULARIZATION

Alternative regularization strategies could also achieve the intended distribution of smoothed quan-
tizers (p or π) around the simplex vertices. For example, one could align smoothed quantizers with
a Dirichlet distribution with concentration parameters α1 = · · · = αK < 1.0 (Figure 2). The
probability density of such a distribution is highest at the vertices of the simplex, thus matching the
ideal distribution of smoothed quantizers. A possible formalization of this alignment is based on the
Kullback-Leibler (KL) divergence between the Dirichlet prior (P) and the distribution inferred from

8
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≤1

2

3

4≤Probability Density

α=0.5 1.0 (Uniform) 2.0

Figure 2: Dirichlet distributions on the simplex ∆3−1 with concentration parameters α1 = α2 =
α3 = α, where α ∈ {0.5, 1.0, 2.0}.

smoothed quantizers (Q).

DKL (P | Q) :=

∫
∆M−1

P(p) log
P(p)
Q(p)

dp (14)

However, Equation 14 is difficult to use directly as a regularization loss, due to the complexity of es-
timating Q from sample quantizers, p. Although one could constrain Q as another Dirichlet to make
the KL divergence tractable, maximum likelihood estimation of its parameters requires iterative
algorithms (e.g., the Newton-Raphson method; Ronning, 1989; Sklar, 2014; Wicker et al., 2008),
complicating and slowing gradient-based optimization in deep learning frameworks. Moreover, this
estimation involves digamma and trigamma functions (Sklar, 2014), whose derivatives can explode
when the concentration parameters approach small values—as desired for tight smoothing—during
the course of learning.

A more practical approach is to approximate Equation 14 itself in a tractable manner. For instance,
Perez-Cruz (2008) proposed a KNN-based estimation of the KL divergence that relies solely on
samples from the two distributions, using the k-th nearest neighbor from Q for each sample from
P. The regularization method proposed in this study can thus be interpreted as minimizing this
estimated KL divergence, with the samples from P constrained to onehot vectors.

5.3 LIMITATIONS

A primary limitation of the proposed method is its memory requirement. When training across
multiple GPUs, the KNN-based regularization identifies K nearest smoothed quantizers (p or π) per
simplex vertex on each GPU, rather than finding global neighbors across all GPUs. Consequently,
each GPU must have sufficient VRAM to store at least KM latent pixels/frames, where M denotes
the codebook size. This requirement can become prohibitive when M is large (i.e., for fine-grained
quantization),

::::::::
although

::::::::::
empirically,

:
a
:::::
single

::::::::
neighbor

:::
per

:::::
GPU

::::::::
appeared

::::::::
sufficient

::
to

::::::
prevent

::::
code

:::::::
collapse

::::
when

::::::::::::
cross-entropy

:::
was

:::::
used

::
as

:::
the

:::::::::
divergence

:::::
metric.

One possible workaround is to randomly select a subset of simplex vertices when computing the
regularization loss, rather than using all vertices in a single iteration. In expectation, this achieves
the same effect as the original implementation, although its empirical effectiveness remains to be
assessed in future studies.

Additionally, fine-grained quantization can be achieved more efficiently using smaller G codebooks
in combination (product quantization; Jégou et al., 2011), as explored in the Wav2Vec 2.0 pre-
training (§4.2). This approach represents

∏G
g=1 Mg distinct quantized vectors while requiring only

K
∑G

g=1 Mg smoothed quantizers per GPU. Leveraging these strategies, the proposed method can
overcome its limitation and become applicable to real-world scenarios.
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Gaëtan Hadjeres and Léopold Crestel. Vector quantized contrastive predictive coding for template-
based music generation, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, June 2016. doi: 10.1109/CVPR.2016.90.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011.
doi: 10.1109/TPAMI.2010.57.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. The International Confer-
ence on Learning Representations (ICLR) 2014, 2014.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: VQ-VAE made simple. In Proceedings of the Twelfth International Conference on Learning
Representations (ICLR). OpenReview.net, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
corpus based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5206–5210, South Brisbane, Queensland, Australia,
2015. doi: 10.1109/ICASSP.2015.7178964.

Fernando Perez-Cruz. Kullback-leibler divergence estimation of continuous distributions. In 2008
IEEE International Symposium on Information Theory, pp. 1666–1670, 2008. doi: 10.1109/ISIT.
2008.4595271.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 8821–8831. PMLR, 18–24 Jul 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2022. doi: 10.1109/
CVPR52688.2022.01042.

G. Ronning. Maximum likelihood estimation of dirichlet distributions. Journal of Statistical Com-
putation and Simulation, 32(4):215–221, 1989. doi: 10.1080/00949658908811178.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training GANs. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

Max Sklar. Fast MLE computation for the dirichlet multinomial, 2014.
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A IMPLEMENTATION OF THE QUANTIZATION METHODS

This section provides details on the implementation of the quantization methods.
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Table 4: Hyperparameters for discrete autoencoding.

Feature Map Size 16 × 16 × 32 64 × 64 × 3 64 × 64 × 32
Codebook Size 1024 8196 8196
Latent Channels 128 → 128 → 64 → 64 → 32 → 32 128 → 64 → 32 → 3 128 → 64 → 32 → 32
Height & Width 256 → 128 → 64 → 32 → 16 → 16 256 → 128 → 64 → 64 256 → 128 → 64 → 64

Batch Size 64 64 64
Training Epochs 25 20 20
Warmup Iterations 16,000 16,000 16,000

A.1 SMOOTHED QUANTIZATION

Smoothed quantizers p were computed as
::::::::::::::::::
p = softmax(Q̂Tẑ/t). In other words, the codebook

vectors (q1, . . . ,qM ) = Q and the feature vectors z were first L2-normalized, and their product
(i.e., cosine similarity) was rescaled by a learnable temperature

:
t. This temperature was shared

across the codebook so that all the logits had the same amplitude. Assignment probabilities π
for Gumbel-softmax sampling were computed in the same way,

:::::
while

::::
the

::::::::
additional

::::::::::
temperature

:::::::::::
parameter—τ

::
in

::::::::
Equation

::::::
7—was

:::::
fixed

::
as

:::
1.0.4

A.2 HARD QUANTIZATION

The weight β on the commitment loss in Equation 10 was set to 1.0
::::::::::::::::::::::::::::
(Fifty et al., 2025; Zhu et al., 2025), based on the previous observations that its value does
not significantly affect learning outcomes within the range 0.1–2.0. (van den Oord et al., 2017).

B DETAILS OF THE EXPERIMENTS

B.1 DISCRETE AUTOENCODING

This section provides implementation details for the autoencoding experiment described in §4.1.

The network architecture followed prior work on discrete autoencoding of ImageNet (Esser et al.,
2021; Fifty et al., 2025). Input images were center-cropped to H ×W × C = 256× 256× 3. The
encoder first expanded the channel dimensionality of the input images from 3 to 256 by convolution,
and then progressively downsampled them through a series of strided convolutions (see Table 4 for
the spatial and channel sizes at each layer). Each downsampling layer was followed by a residual
block (He et al., 2016). The decoder reconstructed the input images by upsampling the latent feature
maps with a sequence of interpolations and residual blocks.

To improve memory efficiency—particularly important for the proposed KNN-based
regularization—all but the input and output layers were implemented as depthwise separable
convolutions (Chollet, 2017). All convolutional kernels had size 3× 3.

Training employed the AdamW optimizer with (β1, β2) = (0.9, 0.99) and a weight decay coefficient
of 10−4, except for Euclidean-based STE/rotational hard quantization, where weight decay was set
to zero. The learning rate was linearly warmed up from 0.0 to ρmax, and subsequently annealed to
0.5ρmax by cosine scheduling. The maximum learning rate ρmax was set to 5×10−5 for Euclidean-
based STE/rotational hard quantization, and to 10−4 for all other configurations (Fifty et al., 2025).

Inception Score (IS; Salimans et al., 2016) and Fréchet Inception Distance (FID; Heusel et al., 2017)
were estimated using the ImageNet-pretrained Inception V3 provided in torchvision.

B.2 WAV2VEC 2.0

This section provides details for the Wav2Vec 2.0 pretraining discussed in §4.2.

4Previous studies manually annealed the
::::::::::::
Gumbel-softmax temperature

:::
from

:::::::
τ = 0.5

:
to
::::
2.0,

::::::
scaling it

:
by

:::::::
0.999995

::
at

::::
each

::::::
iteration

:
(Baevski et al., 2020b). This approach was also tested in the experiments here but

did not yield improvements over the
::::
fixed

:
temperature.
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Table 5: Hyperparameters for Wav2Vec 2.0.

Input Frequency 16kHz
Latent Frequency 50Hz
Codebook Dimensionality 256
Codebook Size 1024

CNN
Latent Channels 512
Kernel Sizes 10→3→3→3→3→2→2
Strides 5→2→2→2→2→2→2

Transformer
# Layers 12
Model Dimensionality 768
# Heads 8
Feed-Forward Dimensionality 4096
Dropout Rate 0.1
Layer Drop 0.05

#Codebooks×Codebook Size
1×1024 2×320

Batch Size 128 64
Training Epochs 128 20
Warmup Iterations 32,000 10,000

The model consisted of a convolutional feature encoder followed by a Transformer module (Baevski
et al., 2020b). The convolutional encoder extracted latent feature sequences from input waveforms
(16kHz→50Hz). Then, a subset of these latent vectors was masked and fed into the Transformer,
whose outputs yt were trained to predict the quantized version qt of the masked vectors. The
masking scheme followed Baevski et al. (2020b); random 6.5% of the latent vectors were masked,
together with the following 10 time steps. The learning objective was:

Lmain =− log
exp(ŷtq̂

T
t /T )∑

q̂∼Q exp(ŷtq̂T/T )
(15)

where ·̂ denotes the L2-normalization of vectors (i.e., measuring the cosine similarity), and T := 0.1
is the temperature parameter. For each masked vector, a set of distractors q̃ was sampled from the
other quantized vectors according to a distribution Q.

Both the convolutional encoder and Transformer were implemented using the publicly available code
in torchaudio, and only the quantization module was implemented from scratch. All components are
provided in the supplementary material.

Input waveforms were randomly cropped to the length of 250k samples. Both stages employed
the AdamW optimizer with (β1, β2) = (0.9, 0.99) and zero weight decay. The learning rate was
warmed up from 0.0 to 5.0× 10−4, and then annealed to 5.0× 10−6 by cosine scheduling.

When the single-codebook condition was first examined, training was run for 128 epochs, following
the original schedule (Baevski et al., 2020b). However, since convergence occurred rapidly, the
number of epochs was reduced in the dual-codebook condition to improve time efficiency.
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