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Abstract

Causal effect estimation seeks to determine the impact of an intervention from
observational data. However, the existing causal inference literature primarily
addresses treatment effects on frequently occurring events. But what if we are
interested in estimating the effects of a policy intervention whose benefits, while
potentially important, can only be observed and measured in rare yet impactful
events, such as extreme climate events? The standard causal inference methodology
is not designed for this type of inference since the events of interest may be scarce
in the observed data and some degree of extrapolation is necessary. Extreme Value
Theory (EVT) provides methodologies for analyzing statistical phenomena in such
extreme regimes. We introduce a novel framework for assessing treatment effects
in extreme data to capture the causal effect at the occurrence of rare events of
interest. In particular, we employ the theory of multivariate regular variation to
model extremities. We develop a consistent estimator for extreme treatment effects
and present a rigorous non-asymptotic analysis of its performance. We illustrate
the performance of our estimator using both synthetic and semi-synthetic data.

1 Introduction

We are interested in studying the effect of treatment e.g., different policies and drugs, on rare yet
impactful events such as large wildfires, hurricanes, tsunamis and climate change. These kinds of
events happen at an extremely low frequency, but they can cause considerable damage to properties
and pose serious threats to people’s lives. For instance, we may want to know the effect of more
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infrastructure investment or other kinds of precautionary policies on earthquakes. In many applications
— from financial risk to environmental policy — it isn’t enough to know how a treatment changes the
average outcome; decision-makers care about whether it alters the extreme tail. More formally, we
may want to estimate the effect of treatment D on outcome Y, conditioning on some extreme events.
Estimating this kind of effect can help policymakers evaluate the impact of a policy and choose the
best policy to reduce economic loss and save more lives when disasters happen.

Despite its clear importance, existing methods fall into two largely disconnected strands, each of
which cannot fully address this question. One approach comes from the causal inference literature.
Causal inference provides a comprehensive framework for counterfactual reasoning. Causal effect
estimation is an important problem in this area, which finds wide applications in healthcare, education,
business decision-making, and policy evaluation. Classic causal inference literature mainly focuses
on estimating the average effects among certain groups. Little attention is paid to the causal effect on
rare events. The scarcity of extreme data makes inference more challenging than in classic settings.
As aresult, naively applying classic causal inference estimation methods will produce poor results
with large statistical error. For example, when making policies about earthquakes, we are usually
unable to see a strong signal from historical data, as large earthquakes rarely occur and there are
fewer samples in the dataset.

On the other hand, the Extreme Value Theory (EVT) studies the tail behaviors for statistical distribu-
tions, which provides the ideal tools for analyzing rare events. However, this approach does not take
the data structure into consideration. In particular, it does not accommodate counterfactual treatments
or adjust for covariates, so it cannot tell us what would happen under an intervention.

To bridge these gaps, we combine causal inference theory with EVT to provide a novel framework for
extreme effect measurement. Following researches in EVT Coles et al.| [2001]], we use a multivariate
regularly varying variable U to model extreme events. The rare event can be modeled by the event
{||U]| > t} for large ¢. Our proposed estimand can be viewed as the Average Treatment Effect
(ATE) conditioning on {||U|| > ¢} with rescaling as ¢ increases to infinity. Detailed definition and
explanation can be found in Section 3. Estimation is challenging because the limiting tail distribution
is unknown and must be inferred from finite samples. To improve data efficiency and inference
accuracy, we combine tail observations with moderate-frequency data in an extrapolation scheme,
leveraging EVT insights alongside causal-inference techniques to achieve efficient estimation.

To the best of our knowledge, we are not aware of any work in the literature that considers this
problem. In this paper, we take the first step to measure the treatment effect on extreme events. To be
more specific, our contributions can be summarized as follows.

1. We propose a measure for the treatment effect on rare events named Normalized Extreme
Treatment Effect (NETE), which essentially measures the magnitude of treatment on tailed
events.

2. We develop two consistent estimators for NETE—a doubly robust (DR) estimator and an in-
verse propensity weighting (IPW) estimator—by combining recent advances in multivariate
tail-dependence estimation [Zhang et al.| [2023]] with double machine learning methodology
Chernozhukov et al.|[2018]], and derive finite-sample, non-asymptotic error bounds.

3. Synthetic and semi-synthetic experiments demonstrate a good practical performance of
our proposed estimator as compared to baseline estimators adapted from standard causal
inference literature.

Related Work We briefly review some relevant literature in EVT and causal inference. |Coles
et al.|[2001]] provides a comprehensive introduction to EVT. A large amount of work focuses on the
univariate setting [Davison and Smith| [1990]], |Leadbetter|[[1991]], Pickands III|[[1975]], [Smith| [[1989].
Recently, there have been many recent works on the multivariate generalization of these results
Avella-Medina et al.| [2022],/Zhang et al.|[2023]. Causal effect estimation is a classical problem in
causal inference [Rubin, |1974]. Common estimators include IPW [Rosenbaum and Rubinl [1983]], DR
methods [Bang and Robins, [2005| [Kang and Schafer, 2007, |Chernozhukov et al.|[2016, 2017} 2018]],
Targeted Maximum Likelihood Estimation (TMLE) [van der Laan and Rubin, 2006|]. There have
been some efforts in the literature trying to combine the two research areas. |Gissibl and Kliippelberg
[2018]] considers a special kind of Structural Causal Model (SCM) and shows that the proposed
SCM is a kind of max-linear model. They also analyze the asymptotic distribution of their model.
Chernozhukov and Dul[2006], Zhang| [2018]], Deuber et al.| [2024] consider the task of estimating the



extreme Quantile Treatment Effect (QTE).|Aloui et al.|[2023]], Bodik|[2024] assume the outcome falls
into the domain of attraction and define the extreme treatment effect as the difference between EVI.
Huang et al.|[2024] study the estimation of extreme quantile effect and extreme average treatment
effect in the continuous treatment setting. The other line of work |Gnecco et al.| [2021]], Mhalla et al.
[2020], Bodik et al.|[2023]] uses EVT to help causal discovery. However, we want to point out that the
problems these works consider are quite different from our setting. The most similar setting would be
extreme QTE estimation|Chernozhukov and Du| [2006]], [Zhang| [2018]], [Deuber et al.|[2024], but the
QTE still cannot capture on how the expectation of the outcome changes under intervention. While all
the previous work models extreme events using univariate variables, we model it using multivariate
regularly varying variables. Moreover, our work can also be placed in the broader context in the
literature that studies causal effects of treatment beyond the mean, for example, distributional effect
Abadie| [2002]], |Gautier and Hoderlein|[201 1], Hohberg et al.|[2020], Ratio- and Log-Ratio-Based
Effects|Cole and Hernan| [2002], |VanderWeele| [2013|, CATE |Shalit et al.[[2017]],|Wager and Athey
[2018]],|Abrevaya et al.|[2015].

2 Preliminary

Causal Inference. We use the potential outcome framework |Rubin| [1974] in this paper. Let
W, D,Y be the covariate, binary treatment and outcome, respectively. We denote Y (d) to be
the potential outcome when the treatment is set to be d and assume consistency i.e., Y(D) =Y
throughout the paper. The Average Treatment Effect (ATE) is defined as

ATE =E[Y (1) — Y(0)].

The ATE measures the effect of a treatment on the outcome Y. In the policy-making example, D
is an indicator of whether to use the policy or not. W is a covariate that may influence D, like the
geographic features of a place, which will influence the local government’s decision on policies, and
Y can be the economic loss. The ATE in this case provides information about how much loss can be
saved if a policy is enforced. Under the following exogeneity and overlap assumptions, the ATE can
be identified using the g-formula E[E[Y|W, D = 1] — E[Y|W, D = 0]].

Assumption 2.1 (Exogeneity). The data generation process satisfies (Y'(1),Y(0)) L D | W.

Besides, the following overlap assumption is also often needed for non-asymptotic analysis.

Assumption 2.2 (Overlap). There exists constant ¢, € (0,1/2) such that the propensity score
pw)=PD=1|W =w) € [cp,1 —¢p], Yw € W.

This assumption ensures that there is no extremely high or low propensity, which can make estimators
unstable.

Extreme Value Theory. The study of extremity is mainly concerned with the tail behaviors of
heavy-tailed distributions, which are often modeled by the regularly varying distributions. In this
paper, we modeled extremity by multivariate regularly varying distributions.

Definition 2.3. A random variable U € Ri is called regularly varying with index 8 € (0, co) if for
any norm || - || in R? and positive unit sphere ST = {z € R% : ||z|| = 1}, there exists a probability
measure S(-) on ST and a sequence b,, — oo such that n P((||U]|/b,, U/||U]|) € -) = ¢y -vg x S
for some constant c;; > 0, where - x - is the product measure and v ([r, 00)) = r~# for all r > 0.

The parameter v = 1/ is called the Extreme Value Index (EVI), which characterizes the decay
rate of the tail. Notice that this definition implies that as b,, — oo, the norm of and ||U|| and its
angle U/||U || become asymptotically independent. We will leverage this fact for estimation in later
sections. A typical example of regularly varying distributions is the Pareto distribution.

Definition 2.4. The density of a Pareto (type II) distribution with index 8 € (0,00) is f(z) =
B+ x)~F+D) vz > 0.

Definition [2.3]implies that the rescaled norm of a regularly varying variable is asymptotically a Pareto
distribution.

Notations. In the rest of the paper, we use || - || and || - ||; as a shorthand for ¢;-norm. We use the
asymptotic order notation o(-), O(-) and O(-). We use E[] to represent expectation. For a matrix



A, we denote A. ; to be its i-th column. Unif([a, b]) is the uniform distribution on interval [a, b] and
Ber(p) is the Bernoulli distribution with expectation p. | represents the independence relationship
between two random variables.

3 Treatment Effect on Extreme Events

3.1 Extreme Semi-parametric Inference

While standard causal estimands capture average effects of D on Y, they obscure what happens in
the tails—i.e., when rare, high-impact events occur. To address this, we model rare events with an
explicit extreme factor U. The data we consider is of the form {(X;, D;, Y;, U;)}Y.,, where D, and
Y are as defined in Section 2} W = (X, U) is the covariate, U is the extreme part of the covariate.
We use ||U]|| to model the severity of rare events—large norms indicate more extreme realizations.
For example, in a hurricane-loss application, U might be the vector of maximum wind speed, rainfall,
and storm surge; X the region’s location; D the level of infrastructure investment; and Y the resulting
economic loss.

In what follows, we introduce a novel estimand that quantifies the causal effect of D on Y specifically
in the tail region defined by large |U||. We then establish conditions for its identification under
multivariate regular variation and propose two consistent estimators. We will make the following
i.i.d. assumption.

Assumption 3.1. The random variables {(X;, D;, Y;, U;)} ., are i.i.d.. Furthermore, U is regularly
varying.

We are interested in the effect of treatment on the tail events of U. Similar to ATE, a naive definition
of the extreme treatment effect would be

0" = lim E[Y(1) - Y(0) | |U] > 1] (3.1

which is simply ATE conditioning on large || U||. However, in the case of extreme effects, the outcome
may be unbounded due to the presence of extreme noise. As t increases to infinity, this effect may
increase to infinity, making this quantity meaningless. Considering the climate change example, it
is possible that dramatic climate change will damage or even destroy human societies, causing the
effects of some policies to explode even though the policy can effectively reduce losses and slow down
the process. Fortunately, regularly varying distributions have the nice property that as ¢ increases to
infinity, |U||/¢ | ||U|| > ¢ converges weakly to the Pareto distribution (See Definition [2.3). Inspired
by this property, we can normalize the quantity Y (1) — Y(0) | ||U]| > t by its growth rate. To
characterize the growth of this quantity, we introduce the following polynomial growth assumption.

Assumption 3.2 (Asymptotic Homogeneous Property). We assume that the covariate X is bounded,
ie. | X|| < R.Let f(X,D,U) =E[Y | X, D,U]. There exists a L-Lipschitz continuous function
g(z,d,u) and a function e(t) : Rt — R™ that satisfies lim;_, o, e(t) = 0 and

|W —g(x,d,u)| < e(t), Vo € Bg, u € ST
This assumption characterizes the growth of the outcome with respect to the extreme noise. In many
real-world examples, this assumption is satisfied. For instance, research show that landslide volume
often follows a power-law relationship with rainfall intensity Tuganishuri et al.|[2024]); the economic
loss caused by hurricanes scales polynomially with the maximum wind speed [Zhai and Jiang| [2014].
In these cases, f grows polynomially with respect to |U|| and e(¢) = 0 exactly. We define the
Normalized Extreme Treatment Effect (NETE) as

T oo te

Ul > ], (3.2

where « is a known index in Assumption [3.2]from prior knowledge. Note that the previous definition
(3.1) is a special case of (3.2)) when o = 0. The 1ntu1t10n for the scaling factor ¢“ is that under
Assumption[3.2] E[Y (d)] is of the order O(||UH ) and (3.2) is of the order O(E[(||U||/t)* | |U|| >

#]), which is finite if o < 3. implies that for a large threshold ¢, we have E[Y (1) — Y (0)] ~
t*ONETE Therefore, QNETE measures the influence of treatment on the susceptibility of outcome
with respect to extreme noise U.



We want to remark that NETE naturally sits at the nexus of two well-studied strands of work, tail-
conditional expectations in EVT, and average effects or distributional shifts at extreme quantiles,
e.g., ATE and QTE. NETE can be understood as a causal analogue of EVT quantity E[Z/t | Z > t],
where Z is a regularly varying variable. It generalizes ATE to the setting of extreme events and aligns
with the growth rate given by EVT.

3.2 Extreme Effect Identification and Estimation

The estimand (3.2)) is designed to measure the treatment effect under extreme events, i.e., extremely
large |U]|. In practice, there may only be a small fraction of extreme samples in the dataset,
which creates difficulties for statistical inference. To efficiently estimate the NETE, we leverage the
asymptotic independence property of regularly varying variables (See Definition [2.3)) to derive a
novel identification formula. In particular, we have the following decomposition.

tlig.loE w | HU” >t :tllzgo]E f(leaU)t;f(X707U) | ||UH >t:| (33)
- B [ LD IOOD (W
o o7 t
. [ Ul\®
= tim & [o0x.1.0/101) - o5,0.07101) - (1) o>

34

where we use Assumption [3.2]in the third equality. We can prove that the above quantity equals to
Jim Elg(X, 1,U/|U]) — ¢(X,0,U/[U]) | U] > #] - lim B[/t | U] > t].

The first factor measures the average effect of treatment across different directions, while the second
factor only depends on the norm of the extreme noise, which can be estimated via standard techniques
in extreme value theory. We summarize the identification formula in the following proposition.

Proposition 3.3 (Identification). Suppose that U is multivariate regularly varying and Assumption[2.1}

[2.21 311 3.2] hold, we have
ONETE  tim Blg(X, 1,U/|U]) - g(X,0,U/[UI) | [U] > ] - lim E[U]/e= | [U] > 1

Proposition [3.3] separates the estimation of NETE into two parts, the expectation of the spectral
measure and the index estimation, which facilitates the estimation. While in theory naive identification
(3.3) works as well, we found that in practice (3.3) performs poorly (See Section [] for empirical
experiments). One reason is that without properly scaling, the (3.3) suffers from exploding ||U]|,
causing larger estimation errors.

Inspired by this decomposition, we estimate the two factors separately. To make our framework
more flexible, we allow an approximate scaling exponential &, as input in Algorithm[ll @, can
be obtained from some prior knowledge or via other heuristics. For the first factor, we design two
estimators, the Inverse Propensity Weighting (IPW) and the Doubly Robust (DR) estimators. To
derive the estimators, we first randomly split the data into equal halves and use the first half for
nuisance estimation, i.e., propensity and outcome. Note that the domain of the propensity function is
unbounded due to the presence of U. Generally, it is difficult to estimate such a function given scarce
data in the tail. To bypass this barrier, we make the following independence assumption.

Assumption 3.4. (Independence) The extreme variable U is independent of D, X ,ie., U L X, D.

Under Assumption 3.4} only X affects treatment assignment. We use the first half of data to regress
(X,D,U/||U||) on Y/||U||*" to get (normalized) pseudo-outcome g and regress X on D to get an
estimation of the propensity function p. Then, we use the second half for estimation. The IPW and
DR estimators are defined in (3.5) and (3.6), respectively.

Notice that the second factor is the a-moment of the random variable ||U||/¢ | ||U|| > ¢, which
converges weakly to a Pareto distribution as ¢ increases to infinity. Therefore, this quantity equals to
the & moment of a standard Pareto 1/(1 — ary) and the problem can be reduced to estimating the
EVI of an asymptotic Pareto distribution. Here, we use the adaptive Hill estimator in from



Algorithm 1 Algorithm for NETE Estimation
Require: Dataset D = {(X;, D;,Y;,U;)}™ ,, threshold ¢, exponent estimation &, estimator
1: Randomly split D into two equal parts D; and Dy
2: Using D;, estimate:
a. Propensity function p(x) via regression of D on X and clip the output of p(z) to the
interval [c,1 — ¢].
b. Pseudo-outcome regression g(x, d, s) by regressing Y/||U||*" on (X, D,U/||U|))

3: Define index set Z = {7 : ||U;|| > ¢, (X, D;, Y;,U;) € Do} and set S; = U, /||Us|| fori € T
4: if estimator = IPW then
5:  Compute
A 1—- D
FIPW _ i
n S; ( _ ) (3.5)
Col Z; X)) 1-p(X;)
6: else if estimator = DR then
7: Compute
N D; — B(Xy) _—
DR ? 2 a,
- le]-v Xi7 s e PN PN }/; % "= X’L'vDia % :|
AR = g D0 [0 1. 80300, 84 5 P s (VP =510, D1, 50)
i€
3.6)
8: end if
9: Compute adaptive Hill estimator on {||U;|| : 7 € Z}:
k
- UGl 1
Tn = log n= T (3.7)
k Z HU(kJrl ” s 1 —ann

where ||Uqy|| > -+ > ||Ux+1) || and & is chosen by
SV (8
k= max{k € {lp, - ,n}tandVi € {l,, - ,n}, 7)) —7(k)| < V(Z)\T[()},
i

~

. pestimator __ ~estimator
10: return 67% =Mt * -

Boucheron and Thomas| [2015]], which provides a data-driven method for choosing the threshold.

Putting the two estimations together, we get our estimator of the NETE 9 b= =, + - lin, where the
superscript - can be DR or IPW. We summarize our estimators in Algorlthm 1

Remark 3.5. Assumption [3.4may not always hold in practice. The identification formula (2?) still
holds regardless of Assumption [3.4 When the assumption is violated, the propensity score based
method cannot be applied here. In this case, better estimators may be a simple plug-in estimator or
the DR estimator since they do not require accurate propensity estimation.

Remark 3.6. The identification formula Proposition and our estimation methods can be easily
extended for CATE estimation. We will discuss the extension in the appendix.

3.3 Non-asymptotic Analysis

Up to now, we have worked under very mild regular variation and asymptotic homogeneity conditions,
which suffice to prove the consistency of our two-step estimator in the limit n,f — co. However,
to obtain non—non-asymptotic, finite-sample deviation bounds for both the spectral-measure term
and the tail-index term, we must invoke a more structured tail model. In particular, existing results
such as those in|Zhang et al.|[2023]] rely on the fact that, beyond regular variation, the noise vector
behaves exactly like a (possibly linearly transformed) Pareto distribution. Although this is admittedly
stronger than mere second-order regular variation, it is at present the only framework in which we can
directly apply sharp concentration inequalities and Wasserstein-distance bounds for spectral-measure
estimation. We therefore make the following Pareto-type assumption.

Assumption 3.7. We assume that the distribution of U comes from the following class of models

M = Uzolek,



where M, = {£(X):U = AZ, for A € Aand L(Z) € Mj}. The set of possible distributions for
the components Z is
Z admits a (Lebesgue) density h(z)in Riz
My={ £(z): Mo I len) 20 g v
h(z) o [T (1 4+ 2;) ~BHDif |||y > ¢k

and the set of possible matrices A is

A= {A e R%*% ;| < min||A[; < max |A;]; <wuand JA > a}.
K3 1

Throughout, we assume the constants satisfy m > d > 2,0 <1 <1< u,0<s<1/2,0 >0,
0<¢&<1l,and( > 0.

This assumption states that the extreme variable is a linear transformation of an approximate Pareto
distribution. The parameter s measures how close Z is to a standard multivariate Pareto distribution.
A small s means the distribution is far from Pareto.

With these assumptions, we are ready to state our main theorem, which gives a non-asymptotic rate
to our estimand.

Theorem 3.8. Suppose that Assumption 2.1} 311321 34 3.7 hold, o < 3, where « and 3
are defined in Assumption [3.2)and Assumption [3.7)respectively. Furthermore, for any fixed ¢, with

probability at least 1 — 6,
[p(X) = P(X)| < Rp(n, ), @ — af < Ra(n,d),
EY/UN* [ X, D, /U U > 1] = g(X, D, U/|UI)| < Ry(ns,6),

where n, = ZEZ{ZJ I(||U;]| > t) and R,, Ry, R, are estimation errors that are monotonically

decreasing with respect to sample size. Then, if n > ©(log(1/5)t?), with probability at least
1—4,8 € (0,1/2), we have

ooR — 9NETE‘ < O(/ Rp(n/2.6)Ry(nt=5,8) + 107112 4 log(1/6)n 1/ 2+9)
4 ¢~ indLBY 4 ¢=Bs/(=29) 4 og(t)Ra(n, 0) + e(t)).  (3.8)

and

oy 9NETE] < O(Ry(1n)2,8) + #2012 1 log(1/8)n~ 1/ (2+5)

n,t

4 ¢~ mindLBY =B/ (1=25) | 1og(t)Ry(n, 8) + e(t)). (3.9)

The error bound (3.6) consist of the nuisance error \/R,,(1/2,8) Ry(nt =5, 5), variance t7/2n=1/2,
EVI estimation error log(1/8)n "/ 2+8) a error R, (n, §) and bias terms ¢~ ™n{1.8} 4 4=Bs/(1=25) 1.
e(t). Similar pattern holds for . Given this general result, we choose the threshold ¢ in a data-
driven way to obtain a better rate. The idea is to use the estimated index to balance the bias and
variance terms in (3.8) and (3.9). The following corollary gives the convergence rate in two different
regimes.

Corollary 3.9. Under the assumptions of Theorem [3.8] further suppose that
R,(n,8) = ©(log(1/8)n~2), Ry(n, §) = O(log(1/8)n~1/?), Ry(n, ) = ©(log(1/8)n~°),
for some ¢, > 0, the following conclusions hold.
1. If s € (0,1/(2 4+ max{1, 8})), takes t,, = O(n{1=29)3), with probability at least 1 — 4,
we have
|§Sl§ — HNETE| = O(e(t,) + n *log(1/d) + n~° log(n)log(1/4)).

2. If s € [1/(2 + max{1, 8}),1/2), takes t = ©(n(n/(1+2min{1,3n})) "wyith probability at
least 1 — §, we have

|Z)13§ — ONETE| = O(e(ty,) +n~ Y/ Ermaxd{B1D 169(1/6) + n~C log(n) log(1/4)).



Similar results hold for the IPW estimator. Due to limited space, we leave the result for IPW in
the appendix. Many common machine learning algorithms, e.g., Lasso, logistic regression, neural
networks, can achieve O(nil/ 2) rate in the assumption of Corollary We want to highlight
that if e(¢) decays fast enough and become negligible compared to the other term and we know the
correct scaling exponential ¢, Corollary [3.9|matches the rate of [Zhang et al.l 2023 Theorem 3.1]
without prior knowledge on the index (3 in the Assumption[3.7] Besides, if we have additional prior
knowledge on e(t) and c,, we can adjust the choice of threshold ¢ to achieve a better rate.

Remark 3.10. When the extreme noise is 1-dimensional, the spectral measure is trivially d;;y and
there is no need to estimate the spectral measure. Following a similar argument of Theorem [3.8|and
Corollary we can obtain a convergence rate of O(e(t,,) + log(1/8)n=Y2+8) 4 log(1/5)n=c=).

Remark 3.11. Assumption may seem restricted at first glance. This assumption is used here
because the non-asymptotic result for regularly varying extreme distributions is rare in the literature
and the goal of this paper is not to develop a new estimator for the spectral measure. To the best
of our knowledge, [Zhang et al.|[2023] is the only paper that gives such a result under Assumption
In fact, Assumption can be easily replaced by the following two assumptions in our
proof. (1) The extreme noise U is regularly varying and its norm ||U|| satisfies the von Mises
condition in [Boucheron and Thomas| [2015]]. (2) There exists an upper bound for the bias term
IELFU/NUN) T UL > ) = Timg oo E[F(U/[U]) [ U] > ] < O(t™), for some constant
co > 0 for a fixed Lipschitz function f. We leave this generalization to future work.

4 Experiments

Having established in Section [3] that under our regularity and overlap assumptions the DR- and
IPW-based extreme treatment estimators enjoy a provable non-asymptotic error bound, we next
evaluate their finite-sample behavior and compare with our estimators with naive estimators that does
not consider the regularly varying structure. In what follows, Section [d.T| presents purely synthetic
simulations with known NETE. Section[d.2]then moves to a semi-synthetic setting—using real noise
from wavesurge datasets—to assess practical performance under realistic complexities.

4.1 Synthetic Dataset

The data generation process we use in this subsection is
X ~ Unif([0, 1]%), D ~ Ber(p(X)), where p(z) = 1/(1 4 exp(—2"b)),
Y = |UI*(D +U/|IU|| + ) + [U[[*/2, ¢ ~ Unif(~1,1),

where o > 0 is a constant and b ~ N(0,1), A ~ Unif([1,2]%*9=). We consider two ways of
generating the extreme noise. The first one follows Assumption

Z=(Zy, -, Zy.), Z; ~ Pareto(B), U = AZ, A € R%*d=,

We also consider a Pareto mixture, i.e., U = (Uy,--- ,Uy, ), U; ~ 0.5Pareto(3) + 0.5Pareto(5 + 1).
Note that Assumption is satisfied with e(t) = ¢t~*/2. By Proposition [3.3, we can calculate
the ground-truth effect. The graph below shows the Mean Square Error (MSE) with our estimator
using different sample sizes. We take different values for o, 5 in the experiments. In this case, by
Proposition we know that the ground-truth NETE is 1/(1 — a/3). We use Mean-Square-Error

(MSE), E[(0—6NETE)2], to measure the error. As a baseline, we compare our estimator with naive IPW
and DR estimators. Naive-IPW simply applies the standard IPW estimator to the U; that has norm
larger than a threshold ¢, ignoring any tail-index modeling. Similarly, Naive-DR augments it with the
usual doubly-robust correction term but likewise ignores the Pareto structure. We leave the detailed
math formulation of the baseline estimators to the appendix. The thresholds rule in Corollary [3.9)is
used in the experiments and we use the same threshold selection rules for all estimators. We estimate
the scaling exponential o by doing linear regression log(|Y'|) ~ log(||U||) and use the coefficient
of log(]|U]]) as &,,. We leave the experiment details to the appendix. Fig.[l|and Fig. [2| show the

experiment results. In the following, we use EVT-IPW and EVT-DR to represent @nptw and @,?l;{ in

Algorithm T}

Figure[T]and Fig. 2| show that under different configurations of «, 8, d,,, d., our estimators generally
perform better than the baseline estimators. The reason is that our estimators can make better
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Figure 1: Experiment results of four different configurations when the extreme noise is a linear
transformation of Pareto variables. The configures of upper left, upper right, lower left and lower
right are o, 8, d.,d,, = (1,1.5,50,10), (1, 1.5,30,5), (1,2.5,30,5) and (2, 2.5, 30, 5) respectively.
The results are averages of 50 repeated experiments. We use EVT-IPW and EVT-DR to represent
gﬁnptw and @3? in Algorithm

use of the regularly varying structure. In general, EVT-DR achieves the smallest MSE in most
experiments and is robust under different configurations. Note that the Pareto mixture does not
satisfy Assumption[3.7] Fig.[2]shows that our method still maintain a good performance even if
Assumption [3.7]is violated. We also observe that sometimes the MSE increases with more samples in
Fig.[2] An explanation for this is that violation of Assumption [3.7]causes the threshold selection rule
in Corollary [3.9|not to be applicable and the variance term dominates the error.

4.2 Semi-synthetic Dataset

Now, we use the wavesurge dataset (Coles et al.|[2001]] to create a semi-synthetic dataset for our
experiments. The wavesurge dataset has 2894 data points, which contain wave and surge heights at a
single location off south-west England. Since wave and surge heights are not in the same scale and
may not be positive, we shift the data and normalize each dimension by its 10% quantile. Given the
wavesurget dataset, we generate our semi-synthetic dataset in the following way.

X ~ Unif(0,1), D ~ Ber(p(X)), where p(z) = 1/(1 4 exp(—2z"b)),

Y=(1-X+D)W5* 4+ N(0,1), 4.1
where W and S are the height of the wave and surge, respectively. In this experiment, we evaluate
how well our proposed EVT-based estimators recover the Normalized Extreme Treatment Effect
(NETE) when only limited “short-term” data are available. We split the dataset into a training set
(1,000 observations) and a test set (1,894 observations). First, we estimate the NETE on the training
set using four estimators. Next, we apply the identification formula from Proposition [3.3]together
with (@.I)) to obtain a high-fidelity estimate of the NETE on the test set. Because the test-set estimate
leverages additional data and the correct tail model, we treat it as a surrogate “ground truth” for
comparison. The real-world implications of this experiment is that we can use some short-term data
(the training set) to predict long-term and unobserved behavior (the test set).

Table[T| shows the results we get using different estimators. The results show that our EVT-IPW and
EVT-DR give estimations that are closer to the test-set estimate than the naive estimators. In particular,
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Figure 2: Experiment results of four different configurations when the extreme noise is a Pareto
mixture. The configurations of upper left, upper right, lower left and lower right are «, 5,d,, =
(1,1.5,10),(1,1.5,5),(1,2.5,5) and (2, 2.5, 5) respectively. The results are averages of 50 repeated
experiments.

the naive estimators consistently overshoot the true NETE by an order of magnitude. In addition,
while more extreme tail configurations (e.g. (1, 3)) slightly increase variance, the EVT-based methods
remain stable, with EVT-DR deviating by at most 0.3 from the test-set estimate. These findings
demonstrate that incorporating multivariate extreme value structure via our EVT-IPW and EVT-DR
estimators substantially improves finite-sample estimation of treatment effects on rare, tail events,
compared both to naive methods.

Table 1: Causal Effect Estimates

(a1,a2) EVT-DR EVT-IPW Naive-DR Naive-IPW  Test-set Estimate

2,2) 0.18 0.25 41.93 27.34 0.13
(1,3) 0.43 0.44 17.04 15.68 0.13
(25, 1) 0.13 0.18 31.64 26.06 0.20
(1.5, 1.5) 0.26 0.23 7.91 9.46 0.20

5 Conclusion

In this paper, we tackled the challenge of estimating treatment effects on rare, high-impact events
by combining causal inference with extreme value theory. We introduced a new estimand capturing
how interventions shift the tail average of outcome distributions and derived a simple identification
formula using the spectral-magnitude decomposition of multivariate regular variation. Based on
this, we proposed IPW and DR estimators with non-asymptotic error bounds under Pareto-type
tails. Simulations and real-data experiments confirmed their advantages over naive estimators when
targeting extreme outcomes. This work opens the door to more refined causal analyses in domains
such as disaster risk and finance, where tail behavior matters most. A current limitation is our
heuristic estimation of the tail index «; future work will focus on theoretically grounded estimation
of o and adaptive threshold selection.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation is discussed in the conclusion section in the appendix.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Proofs are given in the appendix.

Guidelines:
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification:

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be provided in the camera-ready version.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experiments can be easily reproduced using a laptop.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is mainly theory work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:
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Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  Proofs

A.1 Identification Formula

In this subsection, we derive the identification formula in Proposition 3.3}

Proof. We first prove (3.4). By Assumption[3.2]

tliglcE w | HU” >t :tli)Igo]E -f(XalaU)t;f(Xvov U) | ||UH > t:|
— lim F _f(Xv]-aU) 7f(X,07U) . (”U|)a | ”UH > t:|
N . T t
: e
= Jim & (90X, 1,0/101) - o.0.0/101) + 260 - (1) o>

We next argue that lim,_, o E[(||U]|/8)* | |U|| > t] = a/(8 — a). We have
E[([Ul/O U]l > &) =1 +/1 PIUN/% =7 U] > ¢)dr

[ PO/t > et o) dr

P(||U]| > t)
=14+ floo aP(||U|| > Tt)ra*1 dr
P(|U|| > t)

Note that |U]| is also regularly varying. By Potter’s theorem [Bingham et al., 1989, Theorem 1.56],
for any € > 0 and sufficiently large ¢, we have

PAUI>rt) o are.
P([U] > 1)
Take € > O such that « — 8 4+ ¢ — 1 < —1, we have for sufficiently large ¢,

oo a—1 oo
fl aP(||U| > rt)r*—tdr < 2/ are =Bl g < oo,
P(U] > 1) 1

Therefore, by the dominance convergence theorem,

E[(IUl/H)% Ul > =1 +/1OO ar™? o=l dr = B/(8 - a),

which implies
Jim e(E(([U]/5)* | U] > 1] =0

and (3:4) holds. We then verify the uniform integrability of function
hU) = Ex[(9(X, 1, U/|U]) — g(X, 0, U/[[UD)UI/1)].
Note that by Assumption[3.2] g is a continuous function on a compact set and thus is bounded by
some constant C' > 0. We have
E[|hO)] | |U]| > t] < 2CE[(|U|l/t)* | |U|| > 1.
We have proven that the Right Hand Side (RHS) converges to a constant as ¢ — oo, which implies

that E[|h(U)| | U] > t] is uniformly bounded. We conclude that ~A(U) is uniformly integrable. By
the uniform-integrability convergence theorem,

Jim B |(o(x.1,0/101) - (x.0.07107) - (1]

) 11015 ) = Eapmeltot,1.6) - o0x, 0,00

=Eoc[(9(X,1,0) — g(X,0,0))|Erc[r?].
where £ is the limiting distribution of (||U||/¢,U/||U||) | ||U]|| > ¢ and we use the asymptotic
O

independent property of regularly varying distributions (Definition[2.3).
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A.2 Non-asymptotic Analysis

To obtain a convergence rate for the estimator ¢,
DR
nn,t‘

Lemma A.1. Under Assumption with probability at least 1 — 4, for sufficiently large n, we

have
R log(2/8 1/(2+8)
<o (222) 7).

we first analyze the rate of the two factors 7,, and

n

where v = 1/ is the EVI of U.

Proof. We adopt the non-asymptotic analysis of the adaptive Hill estimator for EVI in [Boucheron
and Thomas),[2015]). In the paper, the author adopts an adaptive estimator, choosing k to be

(Ve (6
k= max{k € {ln, - ,nyand ¥i € {l,, - ,n}, [F() — (k)| < W\/()}
i
where 7(i) = %23:1 log Hllljl(]_(i)l‘)ln and r,,(9) scales like y/log((2/9) log(n)). First, we verify the
von Mises conditions inBoucheron and Thomas|[2015] under Assumption Let I be the CDF of
|U]|. By Assumption[3.7} we know that

g(z) = ca™ H(l +2) 77 2]l > ¢R(2e) e,

i=1

Note that
_ ,m m 1 5 —a—1
|c—1|:‘g(z) amszl( +Z)1 ggk—s<§
am [ (14 2)

Let Zy, -, Zm ~ act/™(1 + 2)7>1 2 > ¢V/(m@) _ 1 Then, we verify the upper bound for the
von Mises function, i.e., sup,, |1(s)| < O(t”) for some p < 0, where 7 is the von Mises function.
tu't) 1

=T "5
1 1

CwWfU) B "

where f(t) is the density function of > ;" | a;Z;. By [Nguyen| 2014| Theorem 2.1], we have that
when [|U||; > maxi{ai}gk(l—%)/a’

ft)y=Cpt P11+ DA —1/8)t7 +o(t™1)). (A.3)
Then,
Fit)y=1-F(t)=Ct P14+ Dt ' +o(t™1))
and
U(t) = CYPYB(1 4 DCYVPt=1/B 13 4 o(t~1/F)). (A.4)
Plug in and into (A.2)), we get
n(t) = ! L O(t=1/8).

B(1— DC-Y/5t=1/8 - o(tV/B)) B

Therefore, the growth rate of the von Mises function is bounded. By [Boucheron and Thomas} 2015,
with probability at least 1 — J, we have

R 10g(2/5) 1/(2+8)
_ < o\ E)
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Lemma A.2. Undet the assumption of Theorem [3.8] with probability at least 1 — §, we have

ARE — 1l < O Ry(n/2,8) Ry (=P, 8) + #2117 4= min(h8) 4 485/0229) 4 (1) 4 log(t) Ra(n, ).

Proof. Let

t -F |:f(X71’U) _f(X7O7U)
|Tfjan

LU > ¢,
We have the following decomposition
~DR ~DR t t
e — 0l < |y —n0'[+ 10" —nl
The first term comes from the standard statistical error of DR estimator, while the second term is

the bias term caused by the finite threshold. For the first term, by standard DML theory [Foster and
Syrgkanis, [2023]], we have

‘ﬁ']?v? -7'l<0 <\/Rp(n/2a5)Rg(nt,5) + nt_l/2> ,

where n; = Z?z/ ? I(||U;|| > t) is a random variable. By Bernstein’s inequality, with probability at
least 1 — 4,

= nB(|U]| > £)/2 > O (log(1/8) + /B(JUT > 1) log(1/5))

Therefore, with the same probability, when n > O (log(1/6)t?).

1
n = nP(|U] > t) = O(nt™?)

and we have

iy — 'l <O W Ry(n/2,8)Ry(nt=5,0) + t’”%*”) : (A.5)

where we use the monotonicity of R, 1.

For the second term (the bias term),

it =l = [ | PELETORDD oy o] — Blg(x1,0/101) - 06,0,/
< ]E [f RIS o100 - o 0.0/ | 0] > tH

+ [E[g(X, L,U/|U|) — 9(X,0,U/|U|)] — Elg(X, 1,U/[|U]) — g(X,0,U/|U) [ U] > ¢]]
e )
< 2e(t) + |E[g(X, 1L, U/||U]) — 9(X,0,U/|[U|))] — E[g(X, L,U/|U|) — g(X,0,U/[|U) | |U|| > ]|,

o [AXLD SO (1 e o1 >

where we use Assumption [3.2]in the last equality. By the error rate assumption in Theorem 3.8]

’E {f(X, 1,U) — f(X,0,U)
1Ul*

(1 - IUII“—&n)} U > t‘ < CE Hl —_ |U|je-an

Ul > ¢]
= O(log(t) Ry (n, 0)).
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Since g is L-Lipschitz continuous, the second term is upper bounded by Wasserstein distance
Lw, (EE/HU” ,Ly/u)» where ﬁzf/l\UH is the distribution of U/||U|| conditioning on |U|| > ¢ and

Ly vy 18 its limiting distribution as ¢ — oo. Therefore, we have

In" = nl < 2e(t) + LW (LY, juy» Luyjuy) + O(log(t) Ra(n, 6))
< 2e(t) + Ot~ min{bAY 4 4785/(1729) 4 1og(t) Ro(n, 0)), (A.6)

where we use [Zhang et al.,[2023| Proposition 3.1] in the last inequality to upper bound the bias term
Wy (£E/||UH7£U/HUH)' Combing 1} and lb we get

7 — 0l < Oy Ry(n/2,8) R (=P, 8) 4 1920112 1= min 0} =B/ 029 L o(1) 4 log(t) Ra(n. 6)).
O

Lemma A.3. Under the assumption of Theorem 3.8] with probability at least 1 — &, we have
[t =1l < Oy (02, 8) + 1720712 4 g7 mLEY =08/ 0729)) o ().

Proof. Similar to Lemma[A-2] we have the following decomposition.

| ~IPW

My —nl < |y

—n'l+[n" —nl.

Term |n* — 7| can be bounded in the same way as in the proof of Lemma By [Su et al., 2023,
Theorem 1], we have

Y — | < O(Ry(n/2,8) +ny /%) = O(Ry(n/2,6) + t°/2n~ /2 1 log(t) Ra(n, 6)).

The rest of the proof is similar. O
Now we are ready to prove Theorem 3.8

Proof of Theorem[3.8] Note that by the asymptotic independence property of regularly varying
distribution,
O = ONFTE] = i - — -

< |pl - Iﬁq?lf*n\ + [ R i — pl. (A7)

By Lemma and L with high probability, 7,, and |nDR| is bounded. Note that by Lemma

1 1
1_anan 1_047

mnm] ‘oqanaumw) O(log(1/8)n~"/ @) 4 R, (n,5))

Therefore, by Lemma[A.2]and (A7),

‘(’9\5)1; _ 0NETE| < O(\/Rp(n/2,5)Rg(nt_B, 5) + t5/2n—1/2 + log(l/é)n_l/(“ﬁ)
¢~ LAY 4 y=B/(1=29) | log(H) Ry (n, 8) + e(t)).

The bound for 9 W can be proven similarly. O

Corollary A 4 (Convergence rate for IPW). Under the assumptions of Theorem 3.8} further suppose
that

R,(n,8) = O(log(1/8)n=2), Ry(n, §) = O(log(1/8)n~1/2), Ry(n,d) = ©(log(1/8)n~°),
for some c,, > 0, the following conclusions hold.

1. If s € (0,1/(2 + max{1, 3})), takes t,, = O(n{1=2%)7), with probability at least 1 — J,
we have

| alPW

n,t

_ 0NETE| = O(e(tn) + n~°log(1/d) + n~ % log(n) log(1/9)).
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2. If s € [1/(2 + max{1, 8}),1/2), takes t = O(n»/(+2min{17})) "with probability at
least 1 — §, we have
|§IPW — ONETE| = O(e(ty,) +n~ Y/ Hmax{B1N 16g(1/5) + n=c log(n) log(1/4)).

n,t

Proof of Corollary[3.9) By Theorem [3.8]and the error rate assumption in Corollary [3.9] we have

6oR — 9NETE‘ < O(log(1/8)t8/4n=1/2 4 18/2=1/2 4 16g(1/8)n~ 1/ 2+5)
AL BY = Bs/(1729)  Jog (t) log(1/6)n ™ + e(t))
< O(log(1/8)t?/*n=1% £ log(1/8)n =1/ +5)
¢ mindbBY 4 = Bs/(1729) 4 og (1) log(1/8)n ™ + e(t)).
If s € (0,1/(2 + max{1, 3})), we have

028 — OV ETE| < O(log(1/6)t%/2n /2 + log(1/6)n 1/ 2+
+t705/0=29) L log(t) log(1/8)n "% + e(t)).

Takes t,, = O(n1729)7) we get

@%n - HNETE‘ < O(log(1/8)n(t=2)MmB/2=1/2 4 1og(1/5)n =1/ (2+5)
+n 785 L log(t) log(1/8)n=c + e(t,)). (A.8)
By Lemma[A-T] we have

B =1 = [An = 1/8] < Olog(1/8)n =1/ Z+0)).

Therefore, n7»# = 1 + O(n~/(?*A)). Plug this bound into (A.8) and we can get the results.
Similarly, if s € [1/(2 + max{1, 8}),1/2), we have

OOR — NETE] < O(log(1/8)t%/2n~ 12  log(1/8)n =1/ 3+F)
+ ¢80} 4 Jog(t) log(1/6)n "% + e(t)).
Take ¢, = O(¥, /(1 + 2min{1,7,})), we get the results. O

B Experiment

In this section, we introduce some details of our experiments and provide additional experiments
regarding the sensitivity of the algorithm with respect to the scaling parameter c.

B.1 Implementation Details

The two baseline estimators we consider are naive-IPW:

praverew _ 1 v, (D 1-D; )

n,t o il = : — — :
R T p(Xi)  1-p(Xy)

and naive-DR:

aive-DR _ 1 . . D: — (X)) _

Naive—DR i i

n = [9(X0,1,U) = §(X:,0,U5) + = s (Vi = 60X, D, U]

P o 2 SO LU S0 U0 gy (¥ - 9 D )
i>n/2:(|Usl| >t

where n, = Y . 1ny2)+1 L(|Ui]| = t) and p(X) and g(-) are the estimated propensity function and

the outcome function respectively. The nuisance estimation of g is obtained by running a regression

Y ~ (X,D,U). We clip the propensity to [1074,1 — 10~%] to ensure the overlap assumption

(Assumption [2.2)). € ~ Unif([—1, 1]) in the data generation in synthetic experiments. We use sample

splitting in our experiment, using the first half for nuisance estimation. In the experiment, we use

the same threshold ¢ for all estimators, which is given by Corollary 3.9 To choose the threshold, we
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first use the adaptive Hill estimator [Boucheron and Thomas|[2015]] to get an estimation of EVI 7,
and then set the threshold to be ¢ = 0.25n(»/(1+2min{13.3) 45 in Theorem 3.8} The approximate
exponential &, is coefficient of log(||U||) in linear regression log(|Y'|) ~ log(||U]|). For the adaptive
Hill estimator [Boucheron and Thomas|[2013]], we follow authors’ choice for hyperparameters and
choose I, = 30, 7(8) = /loglog(n) and

kmin{ke (s nyand 3i € {In,--- 0}, [5() — 7(k)| > ?(z)r\/g(&} 1

~r 1 UGl
where 3(i) = ; > i, log Ul

We run logistic regression to estimate the propensity function and use random forest to model the
outcome.

For the semi-synthetic experiment, we apply the same hyperparameter as above to estimate NETE.
We shift the data to make it positive and normalize each dimension by its 10 % quantile. The Fig.[3]
shows the rough distribution of the wavesurge data after these transformations.

Scatter plot of U

Surge height

Wave height

Figure 3: The scatter plot of wavesurge data.

We now describe how we calculate test-set estimation in our experiments. By the data generation
process,

W Sz
ONETE — Jim E[————— | ||U]| > {]
t—00 tortaz
W §a2 1
= lim E[———— | ||U t) ————————
ti}go [”U”alJroQ ||| H > ] 1*(0&14’0&2)77

where we use Proposition [3.3]in the second equality. We know the ground-truth o, oo and we
can estimate the EVI «y using the test set. Suppose the estimated EVI is 7, we set the threshold to
tp = 0.25n00/(A+2min{1.7}) and get estimation

INETE __ Wer§e2 1
Ot = En[W LU > tn] - m-

B.2 Additional Experiments

We conduct additional experiments under the same setup as in Section[d] Fig. [ and Fig. [5]show the
comparison of EVI-IPW and EVT-DR with and without ground-truth «. We can see that in most
cases, their performance is similar, indicating that our heuristic method for estimating « is effective.
Indeed, the heuristic approach even gives slightly better MSE.
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MSE of Estimated Effect

Figure 4: Experiment results of four different configurations when the extreme noise is a linear
transformation of Pareto variables. The configures of upper left, upper right, lower left and lower
right are o, 8, d, d,, = (1,1.5,50, 10), (1, 1.5, 30, 5), (1, 2.5,30,5) and (2, 2.5, 30, 5) respectively.
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MSE of Estimated Effect

MSE of Estimated Effect

Figure 5: Experiment results of four different configurations when the extreme noise is a Pareto
mixture. The configures of upper left, upper right, lower left and lower right are «, 5,d.,d, =
(1,1.5,50,10), (1,1.5,30,5),(1,2.5,30,5) and (2, 2.5, 30, 5) respectively. The results are averages
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C Extension: Extreme Normalized Heterogeneous Effect Estimation

Proposition C.1 (Identification). Suppose that U is multivariate regularly varying and Assump-

tion 2.1} 2.2} BT} B2 hold, we have

0°NTE (2) = lim Elg(e, 1,U/|U]) — g, 0.U/[U]) | U] > 1] - lim E[U]|*/e | |U] > 1

Proof. The proof is similar to the proof of Proposition[3.3] By Assumption[3.2]

Y(1)-Y [ 1 —
im B [ YD =YO v o) >t] ) FACR L b UL T >t]
t—00 to t— o0 L to
— lim F f(SU,]-aU)*f(anaU) . ”U” | ”UH >t
t=oo | U] t

= Jim & (oo, 1,U/101) = ot 0,0/101) + 260 - (150} 107y = o]

By the proofofProposition we know lim | [(IUN/O)« | U]l > t] = a/(B — «). Thus,

lim E

t—o0

{m) —Y(0)

| X ==z, ||U] >t] = lim E
te t—o00

(. 0/101) = sl 0.0/1010) - (1) o> ]

Following the same argument, one can prove the RHS is uniformly bounded. By the dominance
convergence theorem,

i 5 [ SO X U > o] = B (0(0:1,6) = 9(0.0.0)1)

t—00 to
- E@Nﬁ[g(xa 17 9) - g(l’, Ov G)HETN[: [ra] .
O
Similar to NETE estimation, we can separate the estimation of CNETE into two parts. The scaling

factor E[||U||*/t~ | ||U]| > ¢] is the same as the factor in (A.7). For the spectral part, one can use
meta learners, e.g, X-learner, S-learner, T-learner, DR-learner, for estimation.
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