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ABSTRACT

Large Language Models (LLMs) with reasoning capabilities have achieved state-
of-the-art performance on a wide range of tasks. Despite its empirical success, the
tasks and model scales at which reasoning becomes effective, as well as its training
and inference costs, remain underexplored. In this work, we rely on a synthetic
data distillation framework to conduct a large-scale supervised study. We com-
pare Instruction Fine-Tuning (IFT) and reasoning models of varying sizes, on a
wide range of math-centric and general-purpose tasks, evaluating both multiple-
choice and open-ended formats. Our analysis reveals that reasoning consistently
improves model performance, often matching or surpassing significantly larger
IFT systems. Notably, while IFT remains Pareto-optimal in training and infer-
ence costs, reasoning models become increasingly valuable as model size scales,
overcoming IFT performance limits on reasoning-intensive and open-ended tasks.

1 INTRODUCTION

Large Language Models (LLMs) that generate
explicit Chains of Thought (CoT) have rapidly
become a defining paradigm. The research com-
munity is releasing increasingly capable rea-
soning models, which consistently outperform
standard Instruction Fine-Tuned (IFT) counter-
parts at test time, especially on math, coding,
and other reasoning-heavy tasks DeepSeek-Al
(2025); |OpenAl| (2024); Mistral-All (2025)).

Despite rapid progress, we still lack clarity on
when explicit reasoning is most beneficial. Both
prior evidence and our findings point to
a highly task-dependent picture: reasoning yields
substantial gains on math and coding benchmarks
where multi-step problem solving is essential
(Zhu et al., [2024)), but provides only limited im-
provements on simpler factual or classification
tasks (Liu et all, 2024). As shows, these
gains concentrate on reasoning-intensive (e.g.,
gsm8k, aime) and open-ended tasks, while ben-
efits on general multiple-choice tasks are much
smaller or inconsistent.
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Figure 1: Task sensitivity to reasoning. Rea-
soning helps most on open-ended and math
tasks; gains are limited or inconsistent on gen-
eral multiple-choice tasks. X-axis: extra-token
factor when switching from IFT to reasoning.
Y-axis: accuracy gain (%).

Meanwhile, the scaling dynamics of reasoning models pose further challenges. Small models often
struggle to absorb the reasoning depth of large teachers unless traces are carefully adapted (L1 et al.).
Conversely, at larger scales, reasoning appears to unlock performance plateaus that IFT models
cannot surpass, as shown by frontier efforts such as OpenAl’s ol reasoning series (OpenAlL [2024)
and open-source counterparts like Qwen (Qwen-Team, |2025) and Mistral’s Magistral line (Mistral-
Al 2025). While these works emphasize headline results, they don’t systematically disentangle
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confounding factors such as model scale or training and inference budget, leaving practitioners with
little concrete guidance.

The goal of this paper is to bridge these gaps by providing a unified, controlled view of reasoning
versus IFT. More broadly, we aim to clarify the design choices shaping reasoning models:

Which tasks consistently benefit from reasoning, how do these gains vary with model scale, and
how are they balanced against training and inference costs relative to standard IFT?

Challenges. Addressing this question is highly challenging, requiring a controlled experimental
setup specifically designed to isolate performance drivers such as data domain, model capacity, and
inference budget.

Our approach. We investigate this matter with a large-scale, fully controlled distillation setup that
holds data and capacity constant while varying the supervision format (IFT vs. reasoning). A single
teacher produces paired answers (IFT and reasoning) to the same promptsﬂ enabling like-for-like
comparisons across model sizes and domains.

Contributions. This paper makes three main contributions:

* A controlled reasoning testbed for disentangling confounders. We present a large-scale dis-
tillation framework that isolates the effect of supervision format (IFT vs. reasoning) across dif-
ferent model sizes and data domains. This design removes major confounders and enables clean
attribution of performance. Using 1.6M IFT-reasoning pairs for training and evaluating over 12
benchmarks (amounting to 70k H100 GPU-hours), we map reasoning’s impact across model
scale, task family (math vs. general), and answer format (multiple-choice vs. open-ended).

* Actionable guidance for practitioners. Reasoning reliably breaks IFT performance plateaus,
often matching models several times larger (§ 3), whereas IFT remains a reliably cost-efficient
path for both training and inference (§4). In a nutshell, reasoning is beneficial when task and
scale justify the extra compute, whereas a larger IFT model is preferable otherwise.

* Open resources. We release all code and paired training datasets (IFT and reasoning outputs
for the same inputs) to enable reproducibility and future controlled studies on reasoning.

2 EXPERIMENTAL SETUP

Frontier research initiatives highlight reasoning models’ performance but often do not disentan-
gle the underlying sources of improvement, due to opaque data mixtures and shifting supervision
schemes. We move the needle by isolating reasoning itself. Using a single teacher that generates
paired IFT and reasoning answers to the same prompts, we assess performance across model scales
and data domains. This controlled setup enables clean attribution of performance to reasoning while
sidestepping the cost of RL pipelines (Mistral-Al, |2025; |Qwen-Team, [2025).

2.1 FORMALIZATION

Preliminaries. We adopt the standard prompt-based generation setting, where a causal language
model fg : O — RI®l maps an input text sequence to unnormalized logit scores for next-token
prediction. Here, @ = {wi,...,w|q)} is the vocabulary and Q* its Kleene closureﬂ We define
the generation mechanism G, ,, such that G, ,(fg) : 9 — Q* represents the recursive generation
process of fp under temperature 7 > 0 and nucleus-sampling parameter p €]0, 1]. For convenience,
we denote this process by gg. Intuitively, given a question x, gg(x) corresponds to the answer
generated by model fy.

"Examples of data formats are provided in|[Appendix D '
20" is the set of all sequences written with elements in 2. Formally, Q* = U, %
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Distillation procedure. We consider a student model fg, : Q* — RI®l and a teacher model
for : Q0 x {0,1} — RI®I Let gp, : * — Q* and gg, : Q* x {0,1} — Q* be the generation
function of the student and teacher models, respectively. The teacher differs from the student in
that it accepts an additional binary input € {0, 1} indicating whether reasoning mode is enabled
(r = 1) or disabled (r = 0). Given a collection of input questions X = {Xi}i\;p we construct
a synthetic dataset D = {(x;, go, (x;,7:))}L,, where r; € {0,1} specifies whether reasoning is
enabled for sample 7. The distilled student model can be written as Tx (fg,, D), where Ty denotes
the causal training procedure that updates student fy. on the teacher-generated dataset D under
hyperparameters H.

2.2  DISTILLATION PROTOCOL

Teacher models (fy,.). For data generation, we employ a state-of-the-art open-weight mixture-of-
experts model, Qwen3-235B-A22B (Qwen-Team, [2025), which includes a configurable flag that
enables or disables reasoning mode.

Student models (fy,). We distill knowledge into five Qwen2.5 base models ranging from 0.5B
to 14B parameters: Qwen—2.5-0.5B, x—1.5B, »—3B, »—7B and »-14B (Yang et al. 2024a;
Qwen-Team, [2024)). These untuned base checkpoints are chosen from a family distinct from the
teachers, reducing pretraining overlap and inductive biases.

Input questions (X). We consider two regimes that reflect common deployment scenarios. (1)
General-purpose training: starting from a base student, we distill general teacher capabilities using
input questions from the 7M_core subset of the Infinity-Instruct dataset (Li et al.,[2025).
These questions cover multiple domains, including general knowledge, commonsense Q&A, coding,
and math, and are denoted by Xgeneral. (2) Math-centric training: starting from either a base or a
general-distribution-trained student, we distill knowledge on a specific domain. We decide to focus
on mathematics, as it is a common reasoning domain. Input questions, X, are drawn from the
Llama—-Nemotron-Post—-Training-Dataset (Bercovich et al.,[2025).

Data generation (D). For each set of input questions X € { Xgeneral; Xman }, W€ generate answers
under both » = 0 (IFT) and r = 1 (reasoning). Formally, D;rpr = {(x,00,(x,0)) | x € X}
and D = {(x,00,(x,1)) | x € X}. For reasoning generations, we sample with temperature
7 = 0.6 and nucleus parameter p = 0.95, while for IFT we use 7 = 0.7 and p = O.SE] In total, to
ensure sufficient convergence during model training, we generate 1.6M answer pairs: 1.3M for the
general-domain setting and 300K for the math-centric scenario.

Training (7). All student models are trained exclusively on synthetic data produced by the
teacher; no reinforcement learning is involved. To control the impact of supervision format, we
vary the fraction of reasoning versus IFT instances. Let X, C X be a subset of prompts such that
|X,| ~ p|X]|, with p € [0, 1] denoting the reasoning ratio. We then construct D%, = {(x,y) |
(x,y) € Dg, x € X,} and D} = {(x,y) | (x,¥) € Drpr, x € X \ X,}, and train on their
union D, = DY .- U D%,. We evaluate p € {0,0.25,0.5,0.75, 1} under two settings: (1) sequential
training (Tseq), where models are first trained on IFT and then reasoning data, and (2) mixed training
(Tmmix), where both are combined from the start. We also study domain-specific adaptation, where
general-domain students are further aligned on math-centric dataE]

2.3  EVALUATION METHODOLOGY

Benchmarks. For comprehensive assessment, we evaluate models on a suite of 12 benchmarks
covering both general-purpose and mathematical reasoning, across Multiple-Choice (MC) and
Open-Ended (OE) formats. For general-purpose MC tasks, we use winogrande (Keisuke et al.,
2020), openbookga (Mihaylov et al., 2018), and mm1u-misc. For general-purpose OE tasks, we
use squad (Rajpurkar et al., [2016), coga (Reddy et al.| [2019), and ifeval (Zhou et al.,[2023).
In the mathematical domain, MC benchmarks include aqua-rat (Ling et al.l|2017), mmlu-math

3Generation parameters were sampled according to the Qwen3-235B-A22B|/model recommendations.
*Training hyperparameters H are further discussed in|Appendix B
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(Hendrycks et al,2021)), and mm1u-pro-math (Wang et al.} 2024), while OE benchmarks include
gsm8k (Cobbe et al,[2021b)), math-500 (Lightman et al.,[2023), and aime (of Problem Solving}
2025). Additional details on task prompting are provided in[Appendix D}

Inference parameters. We apply standard decoding with temperature 7 = 1.0 and nucleus-
sampling parameter p = 1.0. To mitigate the limited instruction-following capability of base student
models, we evaluate them in a three-shot setting, whereas distilled models are evaluated in a zero-
shot setting to directly measure distilled behaviors.

LLM as a judge. To ensure consistent and reliable evaluation across tasks, we use
Llama-3_1-Nemotron-Ultra-253B-v1l (Bercovich et all [2025) as a judge model
letall 2023} |Gu et al, 2024} [Saha et al.,[2025)), with sampling parameters 7 = 0.7 and p = 0.95. Us-
ing a high-capacity judge alleviates the issue of smaller student models producing poorly structured
answers, which can make automatic correctness assessment difficult, by accurately interpreting and
scoring their outputs. Additional details on judge prompting are provided in [Appendix D}

3 MODEL PERFORMANCE ANALYSIS

We analyze how downstream performance shifts under different training design choices. Specif-
ically, we vary the supervision format (IFT vs. reasoning) across different model scales and data
domains (general vs. math). This setup allows us to disentangle the contribution of reasoning traces
from confounding factors, to map where reasoning provides reliable gains, and show how these
dynamics interact with model size and task type.

3.1 MAIN RESULTS

presents overall results on the impact of model scale, training data format, and distribution
on downstream performance in a simple mono-phasic setup, where student models are trained on a
single data distribution using a single data format.
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Figure 2: Downstream performance of mono-phasic models. Results are shown for the teacher
model and base students, as well as for models trained with IFT- and reasoning-style data on both
general and math-centric domains.
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Reasoning data boosts downstream performance in general distribution training, especially as
model scale increases. Student models trained on a general data distribution with reasoning glob-
ally achieve higher accuracies across benchmarks compared to those trained with IFT. Specifically,
on General-OE, Math-OE, and Math-MC tasks, reasoning enables 3B students to match or closely
approach the accuracy of 14B IFT models, demonstrating robust accuracy gains from reasoning. An
exception occurs on General-MC tasks, where reasoning provides less consistent benefits, and IFT
data remains competitive for models under 1.5B parameters, suggesting that smaller models struggle
to exploit reasoning data on less reasoning-intensive tasks.

Math-centric training helps large models on the most reasoning-intensive tasks. Similar to
general-distribution training, the benefits of reasoning on math-centric data increase with model
scale, though they exhibit distinct patterns across task categories. For non-math downstream tasks
(General-MC and General-OE), reasoning data provides an advantage over the IFT format only for
larger models (7B and above for General-MC, 14B for General-OE). In contrast, on mathematical
tasks, the advantage of reasoning data over IFT emerges at lower scales (around 1.5B). Notably,
math-specialized reasoning models achieve comparable performance to general-distribution train-
ing once model size exceeds 3B for math tasks, 7B for General-MC, and 14B for General-OE,
despite using only a quarter of the training samples (300K versus 1.3M). Overall, this suggests that
while larger models gain the most from math reasoning traces, smaller models should continue to
additionally rely on general-distribution training to maximize performance across tasks, even over
domain-specific distributions.

3.2 IMPACT OF MIXING IFT AND REASONING DATA

Motivated by the strong performance of reasoning models, we further investigate their effectiveness
by varying the proportion of reasoning instances in the general training mix. Specifically, we exam-
ine potential synergies between IFT and reasoning under both the sequential and mixed approaches
(Tseq and Trix, respectively; see [§2), and subsequently analyze scaling behaviors in sequential
training relative to the reasoning ratio and model size.
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Figure 3: Comparison of sequential and mixed training scenarios across varying reasoning ratios.
The accuracy gap relative to the IFT baseline (0% ratio) is shown with solid lines, while the average
answer length (in tokens) is reported with dashes. Results are averaged over all student sizes.

Mixed training exhibits moderate IFT-reasoning synergies. We motivate our analysis of mixed
training by the hypothesis that models can acquire reasoning abilities while retaining the conciseness
of IFT-style answers. [Figure 3|confirms that, for math tasks, mixed training with a 25-50% reasoning
ratio significantly outperforms pure IFT while keeping responses concise, indicating some IFT-
reasoning synergy. However, mixed training exhibits pronounced instability, as evidenced by higher
variance in accuracy across reasoning ratios (most notably on General-OE). Additionally, models
tend to transition abruptly into reasoning mode once reasoning instances exceed 50% of the training
mix, suggesting that they adopt reasoning-style outputs whenever the majority of training data is
reasoning-focused. In consequence, we focus on the sequential setting for the remainder of this
study, leaving stabilization of mixed-style training and consistent exploitation of its potential benefits
to future work.
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Figure 4: Impact of the reasoning ratio on downstream performance. Results show the accuracy gap
relative to the IFT baseline (0% reasoning ratio) in the sequential training scenario, where models
are first trained on IFT- and then on reasoning-style data.

Sequentially combining IFT and reasoning yields no accuracy gains. Consistent with prior
work (Mistral-All| 2025)), [Figure 4] shows that “cold-start” training with IFT data (ratios of 25%,
50%, and 75%) does not boost performance. The sole exception is the 0.5B model on General-MC
tasks, where IFT-only achieves the highest accuracy.

Open-ended tasks benefit the most of reasoning. Varying the reasoning ratio reveals two distinct
patterns depending on the downstream task family (Figure 4). For multiple-choice tasks, accuracy
plateaus as the reasoning ratio increases (25% for General-MC and 75% for Math-MC), indicating
limited benefit from further reasoning-based training. In contrast, for open-ended tasks, especially
Math-OE, accuracy continues to rise with higher reasoning ratios across all student sizes, suggesting
headroom for extended reasoning training.

3.3 DOMAIN-SPECIFIC ADAPTATION
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Figure 5: Downstream performance of models trained sequentially on general and math-centric data.
Results show the accuracy gap relative to mono-phasic general-domain IFT models (General-IFT in
[Figure 2). Mono-phasic reasoning models are included as baselines.
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In this subsection, building on established training practices, we study bi-phasic strategies in which
models are further trained on a targeted domain starting from checkpoints pretrained on general-
distribution data (Bolton et al.| 2024; |Alves et al., 2024} |Shao et al., 2024a; | Yang et al., | 2024b).

IFT adaptation of a reasoning model provides no benefit. Applying IFT alignment on a model
that has already performed general-reasoning training results in performance that is at best com-
parable to two-stage IFT, and often worse for smaller models (Figure 5). We observe no positive
interaction between reasoning and subsequent IFT adaptation; in some cases, performance even
declines relative to general-reasoning models, consistent with the findings reported in[§3.2]

Domain-specific alignment yields performance gains at larger model scales. Math-centric
adaptation can yield significant performance gains, but only under specific conditions. Models
with 1.5B parameters and above, particularly when initialized from a general-distribution reasoning
checkpoint fine-tuned on a math-centric distribution, achieve the strongest results on mathemati-
cal tasks. Under the same setup, models beyond 3B parameters not only match the performance
of exclusively math-specialized models but also maintain their non-specific reasoning capabilities,
demonstrating an ideal balance between improved in-domain results and robust general-purpose
abilities. In contrast, models below 1.5B parameters exhibit signs of catastrophic forgetting (Kirk-
patrick et al.,2017)) under the same adaptation regime, with 0.5B student even experiencing a global
drop in performance, indicating insufficient capacity to solve challenging reasoning tasks.

4 ACCURACY-EFFICIENCY TRADE-OFF ANALYSIS

Reasoning outputs are typically longer than IFT responses, making both training and inference more
expensive. In this section, we move beyond raw accuracy to analyze the accuracy—efficiency trade-
off. All results are reported for general-distribution training from base checkpoints.

4.1 TRAINING EFFICIENCY

We first contextualize accuracy relative to training compute (Figure 6). In a sequential distillation
setup, we vary the proportion of reasoning instances to examine the trade-offs between performance

and training cost in FLOPs. Accounting details are provided in
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Figure 6: Accuracy versus training FLOPs for models trained with IFT (0%), reasoning-style data
(100%), and sequential reasoning ratios of 25%, 50%, and 75%. The Pareto frontier (black dashed
lines) highlights efficient configurations, while those that lie in the red-shaded area are suboptimal.

IFT is an efficient training strategy. Across all tasks, IFT models follow the Pareto frontier,
indicating that scaling model size rather than incorporating reasoning-based training is a reliable
approach to achieve performance gains without substantially increasing training costs.

Reasoning models reach training efficiency as scale increases. IFT models exhibit an earlier
performance plateau compared to models trained with reasoning data, suggesting that additional
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gains could be obtained by integrating reasoning into the training mix. In fact, reasoning mod-
els (> 25% reasoning ratio) achieve Pareto optimality at larger scales, with some variation across
downstream tasks (e.g., 0.5B for General-OE and 7B for General-MC).

Intermediate reasoning ratios achieve Pareto-optimal trade-offs. Models trained with a 100%
reasoning ratio never reach the Pareto frontier. While sufficiently large models may benefit from im-
proved performance, this comes at the cost of significantly heavier training. In contrast, intermediate
ratios (25%, 50%, or 75%) consistently lie on the Pareto frontier, offering controlled performance
gains without incurring excessive training cost. This pattern suggests that practitioners should either
scale model size or prefer moderate reasoning ratios to optimize the accuracy-efficiency trade-off.

4.2 INFERENCE EFFICIENCY

In this subsection, we adopt the perspective of a user leveraging the models for generation purposes.
Training is treated as an offline cost, and we evaluate accuracy with respect to inference FLOPs

(Figure 7).
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Figure 7: Accuracy versus inference FLOPs for models trained with IFT (0% reasoning ratio)
and reasoning-style (100% reasoning ratio) data. The purple-dotted and blue-dashed lines indi-
cate the accuracy-FLOPs interpolated curves for IFT and reasoning, respectively (further details in
[Appendix E). The red-shaded region highlights configurations that are Pareto-suboptimal.

IFT is always Pareto-optimal. Consistent with the observations in [§ 4.1} IFT models lie on the
Pareto frontier across tasks, indicating that increasing model size reliably yields Pareto-optimal gains
in inference efficiency.

Reasoning becomes Pareto-optimal at larger scales. Trends in the Pareto plots reveal that all
reasoning models approach the Pareto frontier as model size increases, with patterns varying de-
pending on the task, while IFT models tend to plateau earlier. This trend is particularly notable for
models above 7B, suggesting the benefits of reasoning-based scaling beyond this size. Confirming
this hypothesis would require experiments with models larger than 14B parameters, which we leave
for future work for practical reasons.

Open-ended tasks benefit more from reasoning than multiple-choice. Building on the findings
in[§3.2] which show that open-ended tasks gain the most in accuracy from reasoning, we further
observe that they also incur smaller relative increases in inference cost compared to multiple-choice
tasks. Specifically, switching from IFT to reasoning on open-ended tasks results in an approximate
7x increase in inference cost, whereas for General-MC tasks the increase is around 10-15x (see
further details in [Appendix H [Figure 11)). These results support the idea that certain tasks are
inherently more reasoning-sensitive, as characterized in

Longer generations tend to be incorrect. To gain further insights into inference efficiency, we
analyze evaluation-time reasoning traces and find a strong positive correlation between answer
length and error rate (Figure 8). In|[Appendix H (Figure 9), we test a budgeted decoding abstention
mechanism that halts generation once a fixed token budget is reached. While this policy reduces
inference FLOPs, it substantially decreases accuracy, shifting performance off the Pareto frontier.
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5 RELATED WORK

Instruction tuning and reasoning. Instruction Fine-Tuning (IFT) has been the standard recipe for
aligning LLMs with human instructions (Wei et al.,[2022b; [Ouyang et al.| 2022; [Chung et al.| 2022).
Chain-of-Thought (CoT) extended this paradigm by supervising intermediate reasoning steps, yield-
ing strong gains on arithmetic, symbolic, and commonsense reasoning benchmarks
2019; [Nye et all 2021} [Cobbe et al.| [202Ta; [Wei et al.| 20224} [Kojima et all, [2022). These findings
sparked a new wave of reasoning-centric models from both frontier labs and the open-source com-
munity. However, most reports highlight aggregate improvements without disentangling when and
why reasoning helps, a gap our work addresses.

Reinforcement learning for reasoning. Recent frontier efforts extend beyond supervised traces,
using Reinforcement Learning (RL) to refine reasoning strategies. Methods such as TRPO
2013), PPO (Schulman et al., [2017), and GRPO (Shao et al, 2024b) optimize reason-

ing trajectories with outcome-based rewards, such as correctness of derivations or code executabil-

ity (OpenAl, [2024; DeepSeek-Al, 2025; Mistral-All 2025). While effective, these methods are
compute-heavy and opaque about the precise drivers of performance gains. By contrast, our fully

supervised distillation setup isolates reasoning signals without RL, enabling clearer attribution.

Knowledge distillation. Knowledge Distillation (KD) transfers capabilities from strong teachers
to smaller students (Buciluundefined et al,[2006}; [Hinton et al.,2015b). Beyond representation-based
KD, text-based distillation has become central for reasoning: large teacher models generate either
IFT- or reasoning-style traces that guide student learning (Kim & Rush|[2016;Zhou & Chiam| 2023}
[Hsieh et al} 2023} [He et al.,[2024). This approach reduces the cost of expensive RL while preserving
the performance (DeepSeek-Al, 2025} [Qwen-Team| 2025} Mistral-All 2023). Yet, prior studies
largely focus on showcasing empirical gains rather than dissecting the task- and scale-dependent
trade-offs. Our contribution is to turn this distillation pipeline into a controlled testbed, stripping
away confounders.

6 CONCLUSION

Through a large-scale, distillation-based controlled study, we characterize scenarios when reasoning
yields the greatest benefits, showing how its effectiveness depends on model scale, task type, and
computational cost. While classical IFT models remain a reliably Pareto-optimal baseline, reason-
ing consistently delivers substantial gains on open-ended and reasoning-intensive tasks above the
7B-parameter scale, enabling models to break past the performance plateaus of IFT. These results
suggest that reasoning signals are not just redundant supervision but a complementary resource that
grows in value with scale, pointing toward hybrid approaches that harness reasoning capabilities
alongside IFT’s conciseness.
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ETHICS STATEMENT

Environmental and compute considerations. This work provides an in-depth analysis of scenar-
ios where enabling reasoning capabilities in models is beneficial, as well as where it may not be.
In an era where practitioners often prioritize accuracy above all else, we contextualize performance
relative to both training and inference costs, offering guidance to avoid excessive computational
overhead across different use cases.

Responsible use of LLMs. In preparing this manuscript, we occasionally used suggestions from
LLMs (GPT-5) to guide improvements in clarity, grammar, and overall readability. All scientific
content, including experimental design, codebase, data analysis, results, and interpretations, is inde-
pendently developed by the authors. LLMs are not involved in generating, modifying, or interpreting
any experimental results, nor in producing code or analyses. Their use is strictly limited to selec-
tively refining language to ensure clear and effective communication of our research.

REPRODUCIBILITY STATEMENT

We have taken every effort to ensure the reproducibility of our experiments. All training and evalua-
tion procedures are described in detail, including the base models, datasets, and all relevant training
and generation hyperparameters. To further facilitate replication, we release all project artifacts,
including trained models, data generation scripts, training scripts, and evaluation code.
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A DISCUSSION

Several avenues remain for extending our understanding of the conditions under which reasoning
distillation is most effective. Future work could test the approach beyond math-centric and general-
purpose tasks, for instance on domain-specific reasoning challenges such as code or legal reasoning.
Examining training dynamics such as convergence behavior (Hoffmann et al., 2022} with respect to
dataset size, or assessing larger student models, may help explore potential gains from additional
scaling. Other promising avenues include replicating our controlled setup in other scenarios such
as reinforcement learning (Schulman et al.;, |2017; 2015; |Shao et al.| [2024b), teacher-student logits
distillation (Hinton et al [2015a; Boizard et al., [2024), or exploring alternative techniques beyond
SFT, such as preference-based optimization (Rafailov et al.,[2024; Xu et al.,|2024} |Gisserot-Boukhlef]
et al.,[2024b).

B TRAINING HYPERPARAMETERS

All training runs are performed for a single epoch with a global batch size of 262,144 tokens across
16 H100 GPUs. The learning rate follows a Warmup-Stable-Decay (WSD) schedule (Shen et al.|
2024) (150-step linear warmup, constant plateau, and 300-step linear decay to 10% of the peak
value), using the AdamW_fused optimizer (Loshchilov & Hutter, 2019). Peak learning rates are
selected via grid search over {2x107°, 1x107°,7x107%,5x1075,3x107%,1x1076}. We list in
Table I|the peak learning rates used for student distillation across all models and both data formats
(reasoning and IFT). Notably, reasoning-based distillation generally benefits from slightly higher
learning rates than IFT.

Model Reasoning IFT
Qwen2.5-0.5B 2e-5 le-5
Qwen2.5-1.5B le-5 Te-6
Qwen?2.5-3B Te-6 5e-6
Qwen2.5-7B S5e-6 3e-6
Qwen?2.5-14B 3e-6 le-6

Table 1: Peak learning rates selected for each student model and training data format.

C FLOPs COMPUTATION

In this section, we present the methodology used to compute both training and inference FLOPs,
following the approach proposed by Hoffmann et al.| (2022).

C.1 NOTATIONS

We introduce the following notations for FLOPs computations:

* V : vocabulary size

* dmodel - hidden dimension of the model
* dg : dimension of feed-forward layers
* h : number of attention heads

e N; : number of transformer layers

* [ : sequence length

* [, : prompt length

* Iy : generation length

* N, : number of training samples
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C.2 TRAINING FLOPS

The following formulas compute the FLOPs for model training, assuming a batch size of 1. It is
reasonable to assume that the FLOPs are largely independent of the batch size.

FLOPSforward =21V dmodel + (6 l dr%mdel + 2 l2 dmodel + 3 ZQ h + 2 l2 dmodel + 21 d12110del) ) Nl
embeddings attention

+ 4ldmoder dit N; + 21 dmoget V
—_—— —_———

feed-forward output logits
)]
FLOPSlraining step — 3 - FLOPStorward 2)
Ns
FLOPStraining = Z FLOPStraining step(i) 3)
i=1
C.3 INFERENCE FLOPs
The following formulas compute the FLOPs for model inference. FLOPS;pference and

FLOPS;nference with cache correspond to single-token generation. FLOPS;yference with cache assumes that
past token keys and values are stored in memory and do not need to be recomputed.

FLOPSinterence = 2lp dmodet V. 4 (61p dinoger + 212 dimoser + 3120 + 212 dinoger + 21 dipoger) - Vi

embeddings attention
+ 41y dimoder dit Ni + 2 dinoget V/
—— —

feed-forward output logits

“4)

1:"Lopsinference with cache = 2 dmodel V
N—_——
embedding

+ (6dioger + 2lpdmodel + 3lph + 21 dinodet + 2dimoger) - NI )

attention
+ 4 dmodel dff Nl + 2 dmodel 14
———— ~——

feed-forward logits

l.‘]
FLOPSmulti—token inference — FLOPSinference@p) + Z FLOPSinference with cache(lp + Z) (6)

i=1
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D PROMPTING DETAILS

D.1 DATA GENERATION

D.1.1 INFINITY-INSTRUCT

Question

Answer

Lotto 6/49 is one of three
national lottery games in
Canada. Launched on June
12, 1982, Lotto 6/49 was the
first nationwide Canadian
lottery game to allow players
to choose their own numbers.
Previous national games,
such as the Olympic Lottery,
Loto Canada and Superloto
used pre-printed numbers on
tickets. Lotto 6/49 led to the
gradual phase-out of that type
of lottery game in Canada.
Based on the paragraph
above can we conclude that
Canada’s Lottery 6/49 was
very popular in the 70s?

IFT: No, we cannot conclude that “Canada’s Lottery 6/49 was very
popular in the 70s” based on the paragraph. The text states that Lotto
6/49 was launched on June 12, 1982, which is after the 1970s, so the
statement is incorrect.

Reasoning: <think> Okay, let’s see. The user is asking if we can
conclude that Canada’s Lotto 6/49 was very popular in the 70s based
on the given paragraph. First, I need to check the dates mentioned.

The answer should state that the conclusion is incorrect because the
game started in 1982, which is after the 70s.</think>

No, we cannot conclude that "Canada’s Lottery 6/49 was very popular
in the 70s” based on the paragraph. The text explicitly states that
Lotto 6/49 was launched on June 12, 1982, which is in the early
1980s, not the 1970s. The paragraph also notes that earlier national
lottery games (e.g., Olympic Lottery, Loto Canada, Superloto)
used pre-printed numbers and were phased out after Lotto 6/49’s
introduction. There is no information provided about the popularity of
any lottery games in the 1970s, nor was Lotto 6/49 even in existence
during that decade. The conclusion is therefore unsupported.

I know that the answer to
the question What are isola-
tors found in microwave an-
tennas made of? is in A nec-
essary condition for the afore-
mentioned reciprocity prop-
erty is that the materials in
the antenna and transmission
medium are linear and recip-
rocal. Most materials used
in antennas meet these con-
ditions, but some microwave
antennas use high-tech com-
ponents such as isolators and
circulators, made of nonrecip-
rocal materials such as fer-
rite. These can be used to give
the antenna a different behav-
ior on receiving than it has
on transmitting, which can
be useful in applications like
radar. Can you tell me what it
is?

IFT: The isolators found in microwave antennas are made of nonre-
ciprocal materials such as ferrite.

Reasoning: <think> Okay, let’s see. The user is asking about what
isolators found in microwave antennas are made of. They provided a
passage that should contain the answer. First, I need to read through
the passage carefully. The key part here is where it mentions isolators
and circulators. The sentence says, “made of nonreciprocal materials
such as ferrite.” So the answer should be ferrite. Wait, but let me make
sure. The passage starts by talking about reciprocity in antennas,
but then introduces isolators and circulators as exceptions. It says
these components are made of nonreciprocal materials. The example
given is ferrite. So yes, the answer is definitely ferrite. I should
check if there are any other materials mentioned, but the text only
lists ferrite as an example. The user might be looking for that specific
term. No other materials are named here. So the answer should be
ferrite.</think>

Answer: The isolators found in microwave antennas are made of
ferrite, a nonreciprocal material.

Table 2: Examples of generated data from the Infinity-Instruct dataset, showing pairs of
IFT and reasoning answers for a common query. We report shortened reasoning traces with ... due

to their length.
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D.1.2 LLAMA-NEMOTRON-POST-TRAINING-DATASET

Question

Answer

Solve the following math
problem. Make sure to put the
answer (and only the answer)
inside \boxed{}. Evaluate
the limit

- <n _ 10>3n+1
lim
n—oo \ n+ 1

n—10 _ —
CER (R

1: Simplify the base expression

(34 1) = —33. Now exponentiate: L = e 33. Final Answer:

\boxed{e"{-33}}

Total characters: 1,417

Reasoning: <think> Okay, so I need to evaluate the limit as n — oo

101\ 3n+1 , S .
of (%) s . Hmm, let’s see. I remember that limits involving ex-
pressions raised to variables can sometimes be solved using the expo-

nential function and

Thus: In L & lim,,_ 0 (3n + 1) - (—nl—jl) = 11 - Ty, o 3L =

—11 -3 = —33. Exponentiating both sides: L = e~33. Final Answer:
\boxed{e” {-33}}

Total characters: 11,225

Solve the following math
problem. Make sure to put the
answer (and only the answer)
inside \boxed{}. Find the
number of integer solutions to
the equation xyz = 2003.

IFT: We are asked to find the number of integer solutions to the equa-
tion xyz = 2003. Step 1: Prime Factorization. First, factor 2003:
2003 =17 =117.823 (not divisible by 17).

Try dividing by small primes up to 1/2003 ~ 44.76.
Eventually, we find: \boxed{12}.

Total characters: 2,806

Reasoning: <think> Okay, so I need to find the number of integer
solutions to the equation xyz = 2003. Hmm, let me start by under-
standing what exactly the problem is asking for. We need all ordered
triples of integers (z, y, z) such that when you multiply them together,
you get 2003.

Thus, only the above 12 combinations are valid. Final Answer:
\boxed{12}.

Total characters: 26,747

Table 3: Examples of generated data from the L1ama-Nemotron-Post-Training-Dataset,
showing pairs of IFT and reasoning answers for a common query. We report shortened answers

with ...

and their respective character counts.
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D.2 EVALUATION PROMPTS

Benchmark Instruction

gsm8k Solve the following math problem. Make sure to put the answer (and
only answer) inside \boxed{}.

math_500 Solve the following math problem. Make sure to put the answer (and
only answer) inside \boxed{}.

aime Solve the following math problem. Make sure to put the answer (and
only answer) inside \boxed{}.

mmlu_math Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.

mmlu_pro-math

Solve the following math problem. Make sure to put the answer (and
only answer) inside \boxed{}.

aqua-rat

Solve the following math problem. Make sure to put the answer (and
only answer) inside \boxed{}.

winogrande

Given a sentence with a blank (_) and two possible options, choose the
option that correctly fills the blank so that the sentence makes the most
logical sense. Make sure to put the answer (and only answer) inside
\boxed{}.

openbookga

Select the option that best completes the scenario based on everyday
reasoning about cause and effect. Make sure to put the answer (and only
answer) inside \boxed{}.

squad

Read the passage and answer the question by selecting the text span
from the passage that best answers it. Make sure to put the answer (and
only answer) inside \boxed{}.

mmlu_misc

Answer the following multiple-choice question by selecting the option
that best fits the correct knowledge. Make sure to put the answer (and
only answer) inside \boxed{}.

coga

Read the passage and answer the question by selecting the text span
from the passage that best answers it. Make sure to put the answer (and
only answer) inside \boxed{}.

ifeval

Answer the following instruction.

Table 4: Instruction prompts used for answer generation across evaluation benchmarks.

20




Under review as a conference paper at ICLR 2026

D.3 JUDGING PROMPTS

Benchmark | Instruction

Default You will be given a Question, a User Answer (only its ending is shown due to
length), and a Ground Truth.

Your task is not to answer the question, but to say if the user answer is equivalent
in meaning to the ground truth.

First, extract the final result from both the User Answer and the Ground
Truth Answer, based on the Question.

Then, compare the two final results and determine whether they convey the
same meaning.

If they are equivalent, respond with \boxed{yes}.

If they are not equivalent, or if the User Answer does not contain a valid answer,
respond with \boxed{no}.

Question:
{question}

User Answer:
{answer}

Ground Truth:

{truth}

ifeval You will be given an Instruction and a User Answer (only its ending is shown
due to length).

Your task is not to answer the Instruction, but to determine whether the User
Answer follows all the formal requirements stated in the Instruction.

If the User Answer contains a thinking process, you should ignore it and only
focus on the final answer.

First, identify every explicit requirement in the Instruction (e.g., no com-
mas, maximum word count, required word occurrences, formatting rules).
Then, compare the User Answer against these requirements.

If all requirements are satisfied, respond with \boxed{yes}.

If any requirement is violated, respond with \boxed{no}.

Question:
{question}

User Answer:
{answer}

Table 5: Instruction prompts used for LLM-based answer assessment. Default instructions are ap-
plied across all benchmarks, except for i feval.
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E DETAILS ON PARETO INTERPOLATION

In[§4.2] we show a Pareto plot of accuracy versus inference cost for IFT and reasoning models. To
predict the impact of further model scaling on downstream accuracy, we fit a saturating growth in-
terpolation function to the observed data points (Tan & Le,[2019; [Kaplan et al., 2020). The objective
function is defined as: f(z) = o+ 5(1 — exp(—7z°)), where z denotes the number of FLOPs and
f(z) gives the interpolated accuracy. The parameters are subject to the constraints «, 5 > 0, a +
not exceeding the teacher’s accuracy, v > 0, and 0 < ¢ < 1. Intuitively, f(0) = « corresponds
to the minimum achievable performance on the benchmark (a random model with 0 FLOPs), while
lim, 00 f(x) = a + ( represents the maximum performance. The parameters « and ¢ control the
curvature of the interpolated curve. The function is fitted by minimizing the mean absolute error.

F ADDITIONAL RESULTS
F.1 GENERATION EARLY-STOPPING
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Figure 9: Inference-cost impact of generation early stopping for IFT and reasoning models. Each
model is evaluated at five maximum-length thresholds, corresponding to the Oth, 25th, 50th, 75th,
and 100th answer length percentiles. The Pareto frontier is indicated by black dashed lines.

In[Figure 9] we leverage the observation that incorrect answers are typically longer to design a simple
early-stopping strategy, stopping generation once a specified answer length threshold is reached. For
each model, we evaluate five thresholds corresponding to the Oth, 25th, 50th, 75th, and 100th answer
length percentiles. We find that this straightforward strategy does not shift the Pareto frontier, as the
reduction in inference cost comes at the expense of a notable drop in accuracy. Nevertheless, investi-
gating more advanced approaches, such as calibration-based abstention methods (Gisserot-Boukhlef]|

20244d) or behavior-conditioned inference (Didolkar et al., 2025)), to reduce unnecessary gen-

eration costs represents a promising direction for future research.

F.2 INCREASING MAXIMUM GENERATION LENGTH

100 mmlu-math math-500 aime
= 75
X
>
8 50
E
o
o]
< 25
0 )
0.5 1.5 3 7 14 0.5 1.5 3 7 14 0.5 1.5 3 7 14
Student Size (B) Student Size (B) Student Size (B)

. 16k 32k

Figure 10: Impact of increasing maximum generation length (from 16,384 to 32,768 tokens) on
downstream performance across mmlu-math, math-500, and aime.

Interestingly, shows that certain mathematical tasks benefit from increased generation
length in the reasoning setting. In this experiment, models are allowed to generate up to 32,768
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tokens, compared to the 16,384-token length used during training. This provides insight into why
simple early-stopping strategies may fail, as some tasks require more tokens to produce correct
answers. It also demonstrates that reasoning models can extrapolate well beyond the lengths on
which they are trained, a behavior that could be further explored in future work.

F.3 INFERENCE COST SCALING TRENDS
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Figure 11: Inference FLOPs versus student model size for IFT and reasoning-style training. Points
indicate the average inference FLOPs for each task category, while the curves show the correspond-
ing log-linear scaling trends.

In we fit log-linear curves to inference FLOPs as a function of model size across task
categories, assuming power-law relationships of the form y = axz®. The corresponding scaling
coefficients are reported in each subplot. For General-OE, Math-MC, and Math-OE, the exponents
3 are closely aligned (Bt ~ Brea + 0.10), slightly favoring SBre,. This is consistent with
where reasoning answers shorten slightly faster than IFT answers as model size increases. In
contrast, for General-MC tasks, reasoning models display larger scaling coefficients than IFT mod-
els, indicating that the higher computational cost, combined with only marginal performance gains,
limits the improvement observed on these tasks.

G TASK-LEVEL RESULTS

[Figure 12 [Figure 13| [Figure 14} [Figure 15lFigure 16} [Figure 17|and [Figure 18|present the task-level
versions of the aggregated results shown in|Figure igure 3| [Figure 4] [Figure 3| [Figure 6] [Figure 7|
and respectively.
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Figure 12: Task-level downstream performance of mono-phasic models.
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Figure 14: Task-level impact of the reasoning ratio on downstream performance.
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Figure 15: Task-level downstream performance of math-adapted models.
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Figure 16: Task-level accuracy versus training FLOPs for models trained with IFT (0%), reasoning-

style data (100%), and sequential reasoning ratios of 25%, 50%, and 75%.
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Figure 17: Task-level accuracy versus inference FLOPs for models trained with IFT and reasoning-
style data.

Figure 18: Task-level answer length analysis across student sizes and correctness in reasoning mod-
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