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ABSTRACT

Large Language Models (LLMs) with reasoning capabilities have achieved state-
of-the-art performance on a wide range of tasks. Despite its empirical success, the
tasks and model scales at which reasoning becomes effective, as well as its training
and inference costs, remain underexplored. In this work, we rely on a synthetic
data distillation framework to conduct a large-scale supervised study. We com-
pare Instruction Fine-Tuning (IFT) and reasoning models of varying sizes, on a
wide range of math-centric and general-purpose tasks, evaluating both multiple-
choice and open-ended formats. Our analysis reveals that reasoning consistently
improves model performance, often matching or surpassing significantly larger
IFT systems. Notably, while IFT remains Pareto-optimal in training and infer-
ence costs, reasoning models become increasingly valuable as model size scales,
overcoming IFT performance limits on reasoning-intensive and open-ended tasks.

1 INTRODUCTION

General-MC General-OE Math-MC Math-OE

Student Sizes

Figure 1: Task sensitivity to reasoning. Rea-
soning helps most on open-ended and math
tasks; gains are limited or inconsistent on gen-
eral multiple-choice tasks. X-axis: extra-token
factor when switching from IFT to reasoning.
Y-axis: accuracy gain (%).

Large Language Models (LLMs) that generate
explicit Chains of Thought (CoT) have rapidly
become a defining paradigm. The research com-
munity is releasing increasingly capable rea-
soning models, which consistently outperform
standard Instruction Fine-Tuned (IFT) counter-
parts at test time, especially on math, coding,
and other reasoning-heavy tasks DeepSeek-AI
(2025); OpenAI (2024); Mistral-AI (2025).

Despite rapid progress, we still lack clarity on
when explicit reasoning is most beneficial. Both
prior evidence and our findings (Figure 1) point to
a highly task-dependent picture: reasoning yields
substantial gains on math and coding benchmarks
where multi-step problem solving is essential
(Zhu et al., 2024), but provides only limited im-
provements on simpler factual or classification
tasks (Liu et al., 2024). As Figure 1 shows, these
gains concentrate on reasoning-intensive (e.g.,
gsm8k, aime) and open-ended tasks, while ben-
efits on general multiple-choice tasks are much
smaller or inconsistent.

Meanwhile, the scaling dynamics of reasoning models pose further challenges. Small models often
struggle to absorb the reasoning depth of large teachers unless traces are carefully adapted (Li et al.).
Conversely, at larger scales, reasoning appears to unlock performance plateaus that IFT models
cannot surpass, as shown by frontier efforts such as OpenAI’s o1 reasoning series (OpenAI, 2024)
and open-source counterparts like Qwen (Qwen-Team, 2025) and Mistral’s Magistral line (Mistral-
AI, 2025). While these works emphasize headline results, they don’t systematically disentangle
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confounding factors such as model scale or training and inference budget, leaving practitioners with
little concrete guidance.

The goal of this paper is to bridge these gaps by providing a unified, controlled view of reasoning
versus IFT. More broadly, we aim to clarify the design choices shaping reasoning models:

Which tasks consistently benefit from reasoning, how do these gains vary with model scale, and
how are they balanced against training and inference costs relative to standard IFT?

Challenges. Addressing this question is highly challenging, requiring a controlled experimental
setup specifically designed to isolate performance drivers such as data domain, model capacity, and
inference budget.

Our approach. We investigate this matter with a large-scale, fully controlled distillation setup that
holds data and capacity constant while varying the supervision format (IFT vs. reasoning). A single
teacher produces paired answers (IFT and reasoning) to the same prompts,1 enabling like-for-like
comparisons across model sizes and domains.

Contributions. This paper makes three main contributions:

• A controlled reasoning testbed for disentangling confounders. We present a large-scale dis-
tillation framework that isolates the effect of supervision format (IFT vs. reasoning) across dif-
ferent model sizes and data domains. This design removes major confounders and enables clean
attribution of performance. Using 1.6M IFT-reasoning pairs for training and evaluating over 12
benchmarks (amounting to 70k H100 GPU-hours), we map reasoning’s impact across model
scale, task family (math vs. general), and answer format (multiple-choice vs. open-ended).

• Actionable guidance for practitioners. Reasoning reliably breaks IFT performance plateaus,
often matching models several times larger (§ 3), whereas IFT remains a reliably cost-efficient
path for both training and inference (§ 4). In a nutshell, reasoning is beneficial when task and
scale justify the extra compute, whereas a larger IFT model is preferable otherwise.

• Open resources. We release all code and paired training datasets (IFT and reasoning outputs
for the same inputs) to enable reproducibility and future controlled studies on reasoning.

2 EXPERIMENTAL SETUP

Frontier research initiatives highlight reasoning models’ performance but often do not disentan-
gle the underlying sources of improvement, due to opaque data mixtures and shifting supervision
schemes. We move the needle by isolating reasoning itself. Using a single teacher that generates
paired IFT and reasoning answers to the same prompts, we assess performance across model scales
and data domains. This controlled setup enables clean attribution of performance to reasoning while
sidestepping the cost of RL pipelines (Mistral-AI, 2025; Qwen-Team, 2025).

2.1 FORMALIZATION

Preliminaries. We adopt the standard prompt-based generation setting, where a causal language
model fθ : Ω∗ → R|Ω| maps an input text sequence to unnormalized logit scores for next-token
prediction. Here, Ω = {ω1, . . . , ω|Ω|} is the vocabulary and Ω∗ its Kleene closure.2 We define
the generation mechanism Gτ,p such that Gτ,p(fθ) : Ω∗ → Ω∗ represents the recursive generation
process of fθ under temperature τ ≥ 0 and nucleus-sampling parameter p ∈]0, 1]. For convenience,
we denote this process by gθ. Intuitively, given a question x, gθ(x) corresponds to the answer
generated by model fθ.

1Examples of data formats are provided in Appendix D.
2Ω∗ is the set of all sequences written with elements in Ω. Formally, Ω∗ =

⋃∞
i=0 Ω

i.
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Distillation procedure. We consider a student model fθS
: Ω∗ → R|Ω| and a teacher model

fθT
: Ω∗ × {0, 1} → R|Ω|. Let gθS : Ω∗ → Ω∗ and gθT : Ω∗ × {0, 1} → Ω∗ be the generation

function of the student and teacher models, respectively. The teacher differs from the student in
that it accepts an additional binary input r ∈ {0, 1} indicating whether reasoning mode is enabled
(r = 1) or disabled (r = 0). Given a collection of input questions X = {xi}Ni=1, we construct
a synthetic dataset D = {(xi, gθT (xi, ri))}Ni=1, where ri ∈ {0, 1} specifies whether reasoning is
enabled for sample i. The distilled student model can be written as TH(fθS , D), where TH denotes
the causal training procedure that updates student fθS on the teacher-generated dataset D under
hyperparameters H .

2.2 DISTILLATION PROTOCOL

Teacher models (fθT ). For data generation, we employ a state-of-the-art open-weight mixture-of-
experts model, Qwen3-235B-A22B (Qwen-Team, 2025), which includes a configurable flag that
enables or disables reasoning mode.

Student models (fθS ). We distill knowledge into five Qwen2.5 base models ranging from 0.5B
to 14B parameters: Qwen-2.5-0.5B, *-1.5B, *-3B, *-7B and *-14B (Yang et al., 2024a;
Qwen-Team, 2024). These untuned base checkpoints are chosen from a family distinct from the
teachers, reducing pretraining overlap and inductive biases.

Input questions (X). We consider two regimes that reflect common deployment scenarios. (1)
General-purpose training: starting from a base student, we distill general teacher capabilities using
input questions from the 7M core subset of the Infinity-Instruct dataset (Li et al., 2025).
These questions cover multiple domains, including general knowledge, commonsense Q&A, coding,
and math, and are denoted by Xgeneral. (2) Math-centric training: starting from either a base or a
general-distribution-trained student, we distill knowledge on a specific domain. We decide to focus
on mathematics, as it is a common reasoning domain. Input questions, Xmath, are drawn from the
Llama-Nemotron-Post-Training-Dataset (Bercovich et al., 2025).

Data generation (D). For each set of input questions X ∈ {Xgeneral, Xmath}, we generate answers
under both r = 0 (IFT) and r = 1 (reasoning). Formally, DIFT = {(x, gθT (x, 0)) | x ∈ X}
and DR = {(x, gθT (x, 1)) | x ∈ X}. For reasoning generations, we sample with temperature
τ = 0.6 and nucleus parameter p = 0.95, while for IFT we use τ = 0.7 and p = 0.8.3 In total, to
ensure sufficient convergence during model training, we generate 1.6M answer pairs: 1.3M for the
general-domain setting and 300K for the math-centric scenario.

Training (T ). All student models are trained exclusively on synthetic data produced by the
teacher; no reinforcement learning is involved. To control the impact of supervision format, we
vary the fraction of reasoning versus IFT instances. Let Xρ ⊆ X be a subset of prompts such that
|Xρ| ≈ ρ|X|, with ρ ∈ [0, 1] denoting the reasoning ratio. We then construct Dρ

R = {(x,y) |
(x,y) ∈ DR, x ∈ Xρ} and Dρ

IFT = {(x,y) | (x,y) ∈ DIFT , x ∈ X \Xρ}, and train on their
union Dρ = Dρ

IFT ∪Dρ
R. We evaluate ρ ∈ {0, 0.25, 0.5, 0.75, 1} under two settings: (1) sequential

training (Tseq), where models are first trained on IFT and then reasoning data, and (2) mixed training
(Tmix), where both are combined from the start. We also study domain-specific adaptation, where
general-domain students are further aligned on math-centric data.4

2.3 EVALUATION METHODOLOGY

Benchmarks. For comprehensive assessment, we evaluate models on a suite of 12 benchmarks
covering both general-purpose and mathematical reasoning, across Multiple-Choice (MC) and
Open-Ended (OE) formats. For general-purpose MC tasks, we use winogrande (Keisuke et al.,
2020), openbookqa (Mihaylov et al., 2018), and mmlu-misc. For general-purpose OE tasks, we
use squad (Rajpurkar et al., 2016), coqa (Reddy et al., 2019), and ifeval (Zhou et al., 2023).
In the mathematical domain, MC benchmarks include aqua-rat (Ling et al., 2017), mmlu-math

3Generation parameters were sampled according to the Qwen3-235B-A22B model recommendations.
4Training hyperparameters H are further discussed in Appendix B.

3
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(Hendrycks et al., 2021), and mmlu-pro-math (Wang et al., 2024), while OE benchmarks include
gsm8k (Cobbe et al., 2021b), math-500 (Lightman et al., 2023), and aime (of Problem Solving,
2025). Additional details on task prompting are provided in Appendix D.

Inference parameters. We apply standard decoding with temperature τ = 1.0 and nucleus-
sampling parameter p = 1.0. To mitigate the limited instruction-following capability of base student
models, we evaluate them in a three-shot setting, whereas distilled models are evaluated in a zero-
shot setting to directly measure distilled behaviors.

LLM as a judge. To ensure consistent and reliable evaluation across tasks, we use
Llama-3 1-Nemotron-Ultra-253B-v1 (Bercovich et al., 2025) as a judge model (Zheng
et al., 2023; Gu et al., 2024; Saha et al., 2025), with sampling parameters τ = 0.7 and p = 0.95. Us-
ing a high-capacity judge alleviates the issue of smaller student models producing poorly structured
answers, which can make automatic correctness assessment difficult, by accurately interpreting and
scoring their outputs. Additional details on judge prompting are provided in Appendix D.

3 MODEL PERFORMANCE ANALYSIS

We analyze how downstream performance shifts under different training design choices. Specif-
ically, we vary the supervision format (IFT vs. reasoning) across different model scales and data
domains (general vs. math). This setup allows us to disentangle the contribution of reasoning traces
from confounding factors, to map where reasoning provides reliable gains, and show how these
dynamics interact with model size and task type.

3.1 MAIN RESULTS

Figure 2 presents overall results on the impact of model scale, training data format, and distribution
on downstream performance in a simple mono-phasic setup, where student models are trained on a
single data distribution using a single data format.
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Figure 2: Downstream performance of mono-phasic models. Results are shown for the teacher
model and base students, as well as for models trained with IFT- and reasoning-style data on both
general and math-centric domains.
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Reasoning data boosts downstream performance in general distribution training, especially as
model scale increases. Student models trained on a general data distribution with reasoning glob-
ally achieve higher accuracies across benchmarks compared to those trained with IFT. Specifically,
on General-OE, Math-OE, and Math-MC tasks, reasoning enables 3B students to match or closely
approach the accuracy of 14B IFT models, demonstrating robust accuracy gains from reasoning. An
exception occurs on General-MC tasks, where reasoning provides less consistent benefits, and IFT
data remains competitive for models under 1.5B parameters, suggesting that smaller models struggle
to exploit reasoning data on less reasoning-intensive tasks.

Math-centric training helps large models on the most reasoning-intensive tasks. Similar to
general-distribution training, the benefits of reasoning on math-centric data increase with model
scale, though they exhibit distinct patterns across task categories. For non-math downstream tasks
(General-MC and General-OE), reasoning data provides an advantage over the IFT format only for
larger models (7B and above for General-MC, 14B for General-OE). In contrast, on mathematical
tasks, the advantage of reasoning data over IFT emerges at lower scales (around 1.5B). Notably,
math-specialized reasoning models achieve comparable performance to general-distribution train-
ing once model size exceeds 3B for math tasks, 7B for General-MC, and 14B for General-OE,
despite using only a quarter of the training samples (300K versus 1.3M). Overall, this suggests that
while larger models gain the most from math reasoning traces, smaller models should continue to
additionally rely on general-distribution training to maximize performance across tasks, even over
domain-specific distributions.

3.2 IMPACT OF MIXING IFT AND REASONING DATA

Motivated by the strong performance of reasoning models, we further investigate their effectiveness
by varying the proportion of reasoning instances in the general training mix. Specifically, we exam-
ine potential synergies between IFT and reasoning under both the sequential and mixed approaches
(Tseq and Tmix, respectively; see § 2), and subsequently analyze scaling behaviors in sequential
training relative to the reasoning ratio and model size.
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Figure 3: Comparison of sequential and mixed training scenarios across varying reasoning ratios.
The accuracy gap relative to the IFT baseline (0% ratio) is shown with solid lines, while the average
answer length (in tokens) is reported with dashes. Results are averaged over all student sizes.

Mixed training exhibits moderate IFT-reasoning synergies. We motivate our analysis of mixed
training by the hypothesis that models can acquire reasoning abilities while retaining the conciseness
of IFT-style answers. Figure 3 confirms that, for math tasks, mixed training with a 25–50% reasoning
ratio significantly outperforms pure IFT while keeping responses concise, indicating some IFT-
reasoning synergy. However, mixed training exhibits pronounced instability, as evidenced by higher
variance in accuracy across reasoning ratios (most notably on General-OE). Additionally, models
tend to transition abruptly into reasoning mode once reasoning instances exceed 50% of the training
mix, suggesting that they adopt reasoning-style outputs whenever the majority of training data is
reasoning-focused. In consequence, we focus on the sequential setting for the remainder of this
study, leaving stabilization of mixed-style training and consistent exploitation of its potential benefits
to future work.
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Figure 4: Impact of the reasoning ratio on downstream performance. Results show the accuracy gap
relative to the IFT baseline (0% reasoning ratio) in the sequential training scenario, where models
are first trained on IFT- and then on reasoning-style data.

Sequentially combining IFT and reasoning yields no accuracy gains. Consistent with prior
work (Mistral-AI, 2025), Figure 4 shows that “cold-start” training with IFT data (ratios of 25%,
50%, and 75%) does not boost performance. The sole exception is the 0.5B model on General-MC
tasks, where IFT-only achieves the highest accuracy.

Open-ended tasks benefit the most of reasoning. Varying the reasoning ratio reveals two distinct
patterns depending on the downstream task family (Figure 4). For multiple-choice tasks, accuracy
plateaus as the reasoning ratio increases (25% for General-MC and 75% for Math-MC), indicating
limited benefit from further reasoning-based training. In contrast, for open-ended tasks, especially
Math-OE, accuracy continues to rise with higher reasoning ratios across all student sizes, suggesting
headroom for extended reasoning training.

3.3 DOMAIN-SPECIFIC ADAPTATION
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Figure 5: Downstream performance of models trained sequentially on general and math-centric data.
Results show the accuracy gap relative to mono-phasic general-domain IFT models (General-IFT in
Figure 2). Mono-phasic reasoning models are included as baselines.
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In this subsection, building on established training practices, we study bi-phasic strategies in which
models are further trained on a targeted domain starting from checkpoints pretrained on general-
distribution data (Bolton et al., 2024; Alves et al., 2024; Shao et al., 2024a; Yang et al., 2024b).

IFT adaptation of a reasoning model provides no benefit. Applying IFT alignment on a model
that has already performed general-reasoning training results in performance that is at best com-
parable to two-stage IFT, and often worse for smaller models (Figure 5). We observe no positive
interaction between reasoning and subsequent IFT adaptation; in some cases, performance even
declines relative to general-reasoning models, consistent with the findings reported in §3.2.

Domain-specific alignment yields performance gains at larger model scales. Math-centric
adaptation can yield significant performance gains, but only under specific conditions. Models
with 1.5B parameters and above, particularly when initialized from a general-distribution reasoning
checkpoint fine-tuned on a math-centric distribution, achieve the strongest results on mathemati-
cal tasks. Under the same setup, models beyond 3B parameters not only match the performance
of exclusively math-specialized models but also maintain their non-specific reasoning capabilities,
demonstrating an ideal balance between improved in-domain results and robust general-purpose
abilities. In contrast, models below 1.5B parameters exhibit signs of catastrophic forgetting (Kirk-
patrick et al., 2017) under the same adaptation regime, with 0.5B student even experiencing a global
drop in performance, indicating insufficient capacity to solve challenging reasoning tasks.

4 ACCURACY-EFFICIENCY TRADE-OFF ANALYSIS

Reasoning outputs are typically longer than IFT responses, making both training and inference more
expensive. In this section, we move beyond raw accuracy to analyze the accuracy–efficiency trade-
off. All results are reported for general-distribution training from base checkpoints.

4.1 TRAINING EFFICIENCY

We first contextualize accuracy relative to training compute (Figure 6). In a sequential distillation
setup, we vary the proportion of reasoning instances to examine the trade-offs between performance
and training cost in FLOPs. Accounting details are provided in Appendix C.
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Figure 6: Accuracy versus training FLOPs for models trained with IFT (0%), reasoning-style data
(100%), and sequential reasoning ratios of 25%, 50%, and 75%. The Pareto frontier (black dashed
lines) highlights efficient configurations, while those that lie in the red-shaded area are suboptimal.

IFT is an efficient training strategy. Across all tasks, IFT models follow the Pareto frontier,
indicating that scaling model size rather than incorporating reasoning-based training is a reliable
approach to achieve performance gains without substantially increasing training costs.

Reasoning models reach training efficiency as scale increases. IFT models exhibit an earlier
performance plateau compared to models trained with reasoning data, suggesting that additional
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gains could be obtained by integrating reasoning into the training mix. In fact, reasoning mod-
els (≥ 25% reasoning ratio) achieve Pareto optimality at larger scales, with some variation across
downstream tasks (e.g., 0.5B for General-OE and 7B for General-MC).

Intermediate reasoning ratios achieve Pareto-optimal trade-offs. Models trained with a 100%
reasoning ratio never reach the Pareto frontier. While sufficiently large models may benefit from im-
proved performance, this comes at the cost of significantly heavier training. In contrast, intermediate
ratios (25%, 50%, or 75%) consistently lie on the Pareto frontier, offering controlled performance
gains without incurring excessive training cost. This pattern suggests that practitioners should either
scale model size or prefer moderate reasoning ratios to optimize the accuracy-efficiency trade-off.

4.2 INFERENCE EFFICIENCY

In this subsection, we adopt the perspective of a user leveraging the models for generation purposes.
Training is treated as an offline cost, and we evaluate accuracy with respect to inference FLOPs
(Figure 7).
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Figure 7: Accuracy versus inference FLOPs for models trained with IFT (0% reasoning ratio)
and reasoning-style (100% reasoning ratio) data. The purple-dotted and blue-dashed lines indi-
cate the accuracy-FLOPs interpolated curves for IFT and reasoning, respectively (further details in
Appendix E). The red-shaded region highlights configurations that are Pareto-suboptimal.

IFT is always Pareto-optimal. Consistent with the observations in § 4.1, IFT models lie on the
Pareto frontier across tasks, indicating that increasing model size reliably yields Pareto-optimal gains
in inference efficiency.

Reasoning becomes Pareto-optimal at larger scales. Trends in the Pareto plots reveal that all
reasoning models approach the Pareto frontier as model size increases, with patterns varying de-
pending on the task, while IFT models tend to plateau earlier. This trend is particularly notable for
models above 7B, suggesting the benefits of reasoning-based scaling beyond this size. Confirming
this hypothesis would require experiments with models larger than 14B parameters, which we leave
for future work for practical reasons.

Open-ended tasks benefit more from reasoning than multiple-choice. Building on the findings
in § 3.2, which show that open-ended tasks gain the most in accuracy from reasoning, we further
observe that they also incur smaller relative increases in inference cost compared to multiple-choice
tasks. Specifically, switching from IFT to reasoning on open-ended tasks results in an approximate
7× increase in inference cost, whereas for General-MC tasks the increase is around 10–15× (see
further details in Appendix F, Figure 11). These results support the idea that certain tasks are
inherently more reasoning-sensitive, as characterized in Figure 1.

Longer generations tend to be incorrect. To gain further insights into inference efficiency, we
analyze evaluation-time reasoning traces and find a strong positive correlation between answer
length and error rate (Figure 8). In Appendix F (Figure 9), we test a budgeted decoding abstention
mechanism that halts generation once a fixed token budget is reached. While this policy reduces
inference FLOPs, it substantially decreases accuracy, shifting performance off the Pareto frontier.
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Figure 8: Answer length analysis across student sizes and correctness in reasoning models. Vertical
bars indicate average answer lengths for each task category, while the black line shows the corre-
sponding downstream accuracies.

5 RELATED WORK

Instruction tuning and reasoning. Instruction Fine-Tuning (IFT) has been the standard recipe for
aligning LLMs with human instructions (Wei et al., 2022b; Ouyang et al., 2022; Chung et al., 2022).
Chain-of-Thought (CoT) extended this paradigm by supervising intermediate reasoning steps, yield-
ing strong gains on arithmetic, symbolic, and commonsense reasoning benchmarks (Rajani et al.,
2019; Nye et al., 2021; Cobbe et al., 2021a; Wei et al., 2022a; Kojima et al., 2022). These findings
sparked a new wave of reasoning-centric models from both frontier labs and the open-source com-
munity. However, most reports highlight aggregate improvements without disentangling when and
why reasoning helps, a gap our work addresses.

Reinforcement learning for reasoning. Recent frontier efforts extend beyond supervised traces,
using Reinforcement Learning (RL) to refine reasoning strategies. Methods such as TRPO (Schul-
man et al., 2015), PPO (Schulman et al., 2017), and GRPO (Shao et al., 2024b) optimize reason-
ing trajectories with outcome-based rewards, such as correctness of derivations or code executabil-
ity (OpenAI, 2024; DeepSeek-AI, 2025; Mistral-AI, 2025). While effective, these methods are
compute-heavy and opaque about the precise drivers of performance gains. By contrast, our fully
supervised distillation setup isolates reasoning signals without RL, enabling clearer attribution.

Knowledge distillation. Knowledge Distillation (KD) transfers capabilities from strong teachers
to smaller students (Buciluundefined et al., 2006; Hinton et al., 2015b). Beyond representation-based
KD, text-based distillation has become central for reasoning: large teacher models generate either
IFT- or reasoning-style traces that guide student learning (Kim & Rush, 2016; Zhou & Chiam, 2023;
Hsieh et al., 2023; He et al., 2024). This approach reduces the cost of expensive RL while preserving
the performance (DeepSeek-AI, 2025; Qwen-Team, 2025; Mistral-AI, 2025). Yet, prior studies
largely focus on showcasing empirical gains rather than dissecting the task- and scale-dependent
trade-offs. Our contribution is to turn this distillation pipeline into a controlled testbed, stripping
away confounders.

6 CONCLUSION

Through a large-scale, distillation-based controlled study, we characterize scenarios when reasoning
yields the greatest benefits, showing how its effectiveness depends on model scale, task type, and
computational cost. While classical IFT models remain a reliably Pareto-optimal baseline, reason-
ing consistently delivers substantial gains on open-ended and reasoning-intensive tasks above the
7B-parameter scale, enabling models to break past the performance plateaus of IFT. These results
suggest that reasoning signals are not just redundant supervision but a complementary resource that
grows in value with scale, pointing toward hybrid approaches that harness reasoning capabilities
alongside IFT’s conciseness.
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ETHICS STATEMENT

Environmental and compute considerations. This work provides an in-depth analysis of scenar-
ios where enabling reasoning capabilities in models is beneficial, as well as where it may not be.
In an era where practitioners often prioritize accuracy above all else, we contextualize performance
relative to both training and inference costs, offering guidance to avoid excessive computational
overhead across different use cases.

Responsible use of LLMs. In preparing this manuscript, we occasionally used suggestions from
LLMs (GPT-5) to guide improvements in clarity, grammar, and overall readability. All scientific
content, including experimental design, codebase, data analysis, results, and interpretations, is inde-
pendently developed by the authors. LLMs are not involved in generating, modifying, or interpreting
any experimental results, nor in producing code or analyses. Their use is strictly limited to selec-
tively refining language to ensure clear and effective communication of our research.

REPRODUCIBILITY STATEMENT

We have taken every effort to ensure the reproducibility of our experiments. All training and evalua-
tion procedures are described in detail, including the base models, datasets, and all relevant training
and generation hyperparameters. To further facilitate replication, we release all project artifacts,
including trained models, data generation scripts, training scripts, and evaluation code.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES
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and Nuno M Guerreiro. Is preference alignment always the best option to enhance llm-based
translation? an empirical analysis. arXiv preprint arXiv:2409.20059, 2024b.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Nan He, Hanyu Lai, Chenyang Zhao, Zirui Cheng, Junting Pan, Ruoyu Qin, Ruofan Lu, Rui Lu,
Yunchen Zhang, Gangming Zhao, Zhaohui Hou, Zhiyuan Huang, Shaoqing Lu, Ding Liang, and
Mingjie Zhan. Teacherlm: Teaching to fish rather than giving the fish, language modeling like-
wise, 2024. URL https://arxiv.org/abs/2310.19019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in neural networks. arXiv
preprint arXiv:1503.02531, 2015a.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015b.
URL https://arxiv.org/abs/1503.02531.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outper-
forming larger language models with less training data and smaller model sizes, 2023. URL
https://arxiv.org/abs/2305.02301.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An ad-
versarial winograd schema challenge at scale. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Kevin
Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 1317–1327, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1139. URL https://aclanthology.
org/D16-1139/.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2310.19019
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2305.02301
https://aclanthology.org/D16-1139/
https://aclanthology.org/D16-1139/
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Takeshi Kojima et al. Large language models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916, 2022.

Jijie Li, Li Du, Hanyu Zhao, Bo wen Zhang, Liangdong Wang, Boyan Gao, Guang Liu, and Yonghua
Lin. Infinity instruct: Scaling instruction selection and synthesis to enhance language models,
2025. URL https://arxiv.org/abs/2506.11116.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen Lin, Bhaskar Ra-
masubramanian, and Radha Poovendran. Small models struggle to learn from strong reasoners,
2025. URL https://arxiv. org/abs/2502.12143.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. ACL, 2017.

Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths.
Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
makes humans worse. arXiv preprint arXiv:2410.21333, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
https://aclanthology.org/D18-1260/.

Mistral-AI. Magistral, 2025. URL https://arxiv.org/abs/2506.10910.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

Art of Problem Solving. American invitational mathematics examination. AoPS Wiki,
2025. URL https://artofproblemsolving.com/wiki/index.php/American_
Invitational_Mathematics_Examination. Accessed: 2025-09-02.

OpenAI. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Qwen-Team. Qwen2.5: A party of foundation models, September 2024. URL https://
qwenlm.github.io/blog/qwen2.5/.

Qwen-Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning, 2019. URL https://arxiv.org/
abs/1906.02361.

13

https://arxiv.org/abs/2506.11116
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://aclanthology.org/D18-1260/
https://arxiv.org/abs/2506.10910
https://arxiv.org/abs/2112.00114
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2203.02155
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1906.02361
https://arxiv.org/abs/1906.02361


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019. doi:
10.1162/tacl a 00266. URL https://aclanthology.org/Q19-1016.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to
plan & reason for evaluation with thinking-llm-as-a-judge. arXiv preprint arXiv:2501.18099,
2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024b. URL https://arxiv.org/abs/
2402.03300.

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adri-
ana Meza Soria, David D. Cox, and Rameswar Panda. Power scheduler: A batch size and token
number agnostic learning rate scheduler, 2024. URL https://arxiv.org/abs/2408.
13359.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024. URL https://arxiv.org/abs/2406.01574.

Jason Wei et al. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2022a.

Jason Wei et al. Finetuned language models as zero-shot learners. arXiv preprint arXiv:2109.01652,
2022b.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

14

https://aclanthology.org/D16-1264
https://aclanthology.org/Q19-1016
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.13359
https://arxiv.org/abs/2408.13359
https://arxiv.org/abs/2406.01574


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024b. URL https://arxiv.org/abs/2409.12122.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

Tianxun Zhou and Keng-Hwee Chiam. Synthetic data generation method for data-free knowledge
distillation in regression neural networks. Expert Systems with Applications, 227:120327, October
2023. ISSN 0957-4174. doi: 10.1016/j.eswa.2023.120327. URL http://dx.doi.org/10.
1016/j.eswa.2023.120327.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. Distilling mathematical reasoning
capabilities into small language models. Neural Networks, 179:106594, 2024.

15

https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
http://dx.doi.org/10.1016/j.eswa.2023.120327
http://dx.doi.org/10.1016/j.eswa.2023.120327


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DISCUSSION

Several avenues remain for extending our understanding of the conditions under which reasoning
distillation is most effective. Future work could test the approach beyond math-centric and general-
purpose tasks, for instance on domain-specific reasoning challenges such as code or legal reasoning.
Examining training dynamics such as convergence behavior (Hoffmann et al., 2022) with respect to
dataset size, or assessing larger student models, may help explore potential gains from additional
scaling. Other promising avenues include replicating our controlled setup in other scenarios such
as reinforcement learning (Schulman et al., 2017; 2015; Shao et al., 2024b), teacher-student logits
distillation (Hinton et al., 2015a; Boizard et al., 2024), or exploring alternative techniques beyond
SFT, such as preference-based optimization (Rafailov et al., 2024; Xu et al., 2024; Gisserot-Boukhlef
et al., 2024b).

B TRAINING HYPERPARAMETERS

All training runs are performed for a single epoch with a global batch size of 262,144 tokens across
16 H100 GPUs. The learning rate follows a Warmup-Stable-Decay (WSD) schedule (Shen et al.,
2024) (150-step linear warmup, constant plateau, and 300-step linear decay to 10% of the peak
value), using the AdamW fused optimizer (Loshchilov & Hutter, 2019). Peak learning rates are
selected via grid search over {2×10−5, 1×10−5, 7×10−6, 5×10−6, 3×10−6, 1×10−6}. We list in
Table 1 the peak learning rates used for student distillation across all models and both data formats
(reasoning and IFT). Notably, reasoning-based distillation generally benefits from slightly higher
learning rates than IFT.

Model Reasoning IFT

Qwen2.5-0.5B 2e-5 1e-5
Qwen2.5-1.5B 1e-5 7e-6
Qwen2.5-3B 7e-6 5e-6
Qwen2.5-7B 5e-6 3e-6
Qwen2.5-14B 3e-6 1e-6

Table 1: Peak learning rates selected for each student model and training data format.

C FLOPS COMPUTATION

In this section, we present the methodology used to compute both training and inference FLOPs,
following the approach proposed by Hoffmann et al. (2022).

C.1 NOTATIONS

We introduce the following notations for FLOPs computations:

• V : vocabulary size
• dmodel : hidden dimension of the model
• dff : dimension of feed-forward layers
• h : number of attention heads
• Nl : number of transformer layers
• l : sequence length
• lp : prompt length
• lg : generation length
• Ns : number of training samples
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C.2 TRAINING FLOPS

The following formulas compute the FLOPs for model training, assuming a batch size of 1. It is
reasonable to assume that the FLOPs are largely independent of the batch size.

FLOPsforward = 2 l V dmodel︸ ︷︷ ︸
embeddings

+
(
6 l d2model + 2 l2 dmodel + 3 l2 h + 2 l2 dmodel + 2 l d2model

)
·Nl︸ ︷︷ ︸

attention

+ 4 l dmodel dff Nl︸ ︷︷ ︸
feed-forward

+ 2 l dmodel V︸ ︷︷ ︸
output logits

(1)

FLOPstraining step = 3 · FLOPsforward (2)

FLOPstraining =

Ns∑
i=1

FLOPstraining step(i) (3)

C.3 INFERENCE FLOPS

The following formulas compute the FLOPs for model inference. FLOPsinference and
FLOPsinference with cache correspond to single-token generation. FLOPsinference with cache assumes that
past token keys and values are stored in memory and do not need to be recomputed.

FLOPsinference = 2 lp dmodel V︸ ︷︷ ︸
embeddings

+
(
6 lp d

2
model + 2 l2p dmodel + 3 l2p h + 2 l2p dmodel + 2 lp d

2
model

)
·Nl︸ ︷︷ ︸

attention

+ 4 lp dmodel dff Nl︸ ︷︷ ︸
feed-forward

+ 2 dmodel V︸ ︷︷ ︸
output logits

(4)

FLOPsinference with cache = 2 dmodel V︸ ︷︷ ︸
embedding

+
(
6 d2model + 2 lp dmodel + 3 lp h + 2 lp dmodel + 2 d2model

)
·Nl︸ ︷︷ ︸

attention

+ 4 dmodel dff Nl︸ ︷︷ ︸
feed-forward

+ 2 dmodel V︸ ︷︷ ︸
logits

(5)

FLOPsmulti-token inference = FLOPsinference(lp) +

lg∑
i=1

FLOPsinference with cache(lp + i) (6)
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D PROMPTING DETAILS

D.1 DATA GENERATION

D.1.1 INFINITY-INSTRUCT

Question Answer

Lotto 6/49 is one of three
national lottery games in
Canada. Launched on June
12, 1982, Lotto 6/49 was the
first nationwide Canadian
lottery game to allow players
to choose their own numbers.
Previous national games,
such as the Olympic Lottery,
Loto Canada and Superloto
used pre-printed numbers on
tickets. Lotto 6/49 led to the
gradual phase-out of that type
of lottery game in Canada.
Based on the paragraph
above can we conclude that
Canada’s Lottery 6/49 was
very popular in the 70s?

IFT: No, we cannot conclude that ”Canada’s Lottery 6/49 was very
popular in the 70s” based on the paragraph. The text states that Lotto
6/49 was launched on June 12, 1982, which is after the 1970s, so the
statement is incorrect.

Reasoning: <think> Okay, let’s see. The user is asking if we can
conclude that Canada’s Lotto 6/49 was very popular in the 70s based
on the given paragraph. First, I need to check the dates mentioned.

. . .

The answer should state that the conclusion is incorrect because the
game started in 1982, which is after the 70s.</think>
No, we cannot conclude that ”Canada’s Lottery 6/49 was very popular
in the 70s” based on the paragraph. The text explicitly states that
Lotto 6/49 was launched on June 12, 1982, which is in the early
1980s, not the 1970s. The paragraph also notes that earlier national
lottery games (e.g., Olympic Lottery, Loto Canada, Superloto)
used pre-printed numbers and were phased out after Lotto 6/49’s
introduction. There is no information provided about the popularity of
any lottery games in the 1970s, nor was Lotto 6/49 even in existence
during that decade. The conclusion is therefore unsupported.

I know that the answer to
the question What are isola-
tors found in microwave an-
tennas made of? is in A nec-
essary condition for the afore-
mentioned reciprocity prop-
erty is that the materials in
the antenna and transmission
medium are linear and recip-
rocal. Most materials used
in antennas meet these con-
ditions, but some microwave
antennas use high-tech com-
ponents such as isolators and
circulators, made of nonrecip-
rocal materials such as fer-
rite. These can be used to give
the antenna a different behav-
ior on receiving than it has
on transmitting, which can
be useful in applications like
radar. Can you tell me what it
is?

IFT: The isolators found in microwave antennas are made of nonre-
ciprocal materials such as ferrite.

Reasoning: <think> Okay, let’s see. The user is asking about what
isolators found in microwave antennas are made of. They provided a
passage that should contain the answer. First, I need to read through
the passage carefully. The key part here is where it mentions isolators
and circulators. The sentence says, ”made of nonreciprocal materials
such as ferrite.” So the answer should be ferrite. Wait, but let me make
sure. The passage starts by talking about reciprocity in antennas,
but then introduces isolators and circulators as exceptions. It says
these components are made of nonreciprocal materials. The example
given is ferrite. So yes, the answer is definitely ferrite. I should
check if there are any other materials mentioned, but the text only
lists ferrite as an example. The user might be looking for that specific
term. No other materials are named here. So the answer should be
ferrite.</think>
Answer: The isolators found in microwave antennas are made of
ferrite, a nonreciprocal material.

Table 2: Examples of generated data from the Infinity-Instruct dataset, showing pairs of
IFT and reasoning answers for a common query. We report shortened reasoning traces with . . . due
to their length.
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D.1.2 LLAMA-NEMOTRON-POST-TRAINING-DATASET

Question Answer

Solve the following math
problem. Make sure to put the
answer (and only the answer)
inside \boxed{}. Evaluate
the limit

lim
n→∞

(
n− 10

n+ 1

)3n+1

IFT: We are asked to evaluate the limit: limn→∞

(
n−10
n+1

)3n+1

. Step

1: Simplify the base expression n−10
n+1 =

n
(
1− 10

n

)
n
(
1+

1
n

) =
1− 10

n

1+
1
n

.

. . .

(3 + 1
n ) = −33. Now exponentiate: L = e−33. Final Answer:

\boxed{eˆ{-33}}

Total characters: 1,417

Reasoning: <think>Okay, so I need to evaluate the limit as n → ∞
of

(
n−10
n+1

)3n+1
. Hmm, let’s see. I remember that limits involving ex-

pressions raised to variables can sometimes be solved using the expo-
nential function and

. . .

Thus: lnL ≈ limn→∞(3n+ 1) ·
(
− 11

n+1

)
= −11 · limn→∞

3n+1
n+1 =

−11 · 3 = −33. Exponentiating both sides: L = e−33. Final Answer:
\boxed{eˆ{-33}}

Total characters: 11,225

Solve the following math
problem. Make sure to put the
answer (and only the answer)
inside \boxed{}. Find the
number of integer solutions to
the equation xyz = 2003.

IFT: We are asked to find the number of integer solutions to the equa-
tion xyz = 2003. Step 1: Prime Factorization. First, factor 2003:
2003÷ 17 = 117.823 (not divisible by 17).

. . .

Try dividing by small primes up to
√
2003 ≈ 44.76.

Eventually, we find: \boxed{12}.

Total characters: 2,806

Reasoning: <think> Okay, so I need to find the number of integer
solutions to the equation xyz = 2003. Hmm, let me start by under-
standing what exactly the problem is asking for. We need all ordered
triples of integers (x, y, z) such that when you multiply them together,
you get 2003.

. . .

Thus, only the above 12 combinations are valid. Final Answer:
\boxed{12}.

Total characters: 26,747

Table 3: Examples of generated data from the Llama-Nemotron-Post-Training-Dataset,
showing pairs of IFT and reasoning answers for a common query. We report shortened answers
with . . . and their respective character counts.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 EVALUATION PROMPTS

Benchmark Instruction
gsm8k Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.
math 500 Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.
aime Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.
mmlu math Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.
mmlu pro math Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.
aqua rat Solve the following math problem. Make sure to put the answer (and

only answer) inside \boxed{}.
winogrande Given a sentence with a blank ( ) and two possible options, choose the

option that correctly fills the blank so that the sentence makes the most
logical sense. Make sure to put the answer (and only answer) inside
\boxed{}.

openbookqa Select the option that best completes the scenario based on everyday
reasoning about cause and effect. Make sure to put the answer (and only
answer) inside \boxed{}.

squad Read the passage and answer the question by selecting the text span
from the passage that best answers it. Make sure to put the answer (and
only answer) inside \boxed{}.

mmlu misc Answer the following multiple-choice question by selecting the option
that best fits the correct knowledge. Make sure to put the answer (and
only answer) inside \boxed{}.

coqa Read the passage and answer the question by selecting the text span
from the passage that best answers it. Make sure to put the answer (and
only answer) inside \boxed{}.

ifeval Answer the following instruction.

Table 4: Instruction prompts used for answer generation across evaluation benchmarks.
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D.3 JUDGING PROMPTS

Benchmark Instruction
Default You will be given a Question, a User Answer (only its ending is shown due to

length), and a Ground Truth.
Your task is not to answer the question, but to say if the user answer is equivalent
in meaning to the ground truth.

First, extract the final result from both the User Answer and the Ground
Truth Answer, based on the Question.
Then, compare the two final results and determine whether they convey the
same meaning.
If they are equivalent, respond with \boxed{yes}.
If they are not equivalent, or if the User Answer does not contain a valid answer,
respond with \boxed{no}.

Question:
{question}

User Answer:
{answer}

Ground Truth:
{truth}

ifeval You will be given an Instruction and a User Answer (only its ending is shown
due to length).
Your task is not to answer the Instruction, but to determine whether the User
Answer follows all the formal requirements stated in the Instruction.
If the User Answer contains a thinking process, you should ignore it and only
focus on the final answer.

First, identify every explicit requirement in the Instruction (e.g., no com-
mas, maximum word count, required word occurrences, formatting rules).
Then, compare the User Answer against these requirements.
If all requirements are satisfied, respond with \boxed{yes}.
If any requirement is violated, respond with \boxed{no}.

Question:
{question}

User Answer:
{answer}

Table 5: Instruction prompts used for LLM-based answer assessment. Default instructions are ap-
plied across all benchmarks, except for ifeval.
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E DETAILS ON PARETO INTERPOLATION

In §4.2, we show a Pareto plot of accuracy versus inference cost for IFT and reasoning models. To
predict the impact of further model scaling on downstream accuracy, we fit a saturating growth in-
terpolation function to the observed data points (Tan & Le, 2019; Kaplan et al., 2020). The objective
function is defined as: f(x) = α+ β(1− exp(−γxδ)), where x denotes the number of FLOPs and
f(x) gives the interpolated accuracy. The parameters are subject to the constraints α, β > 0, α+ β
not exceeding the teacher’s accuracy, γ > 0, and 0 < δ ≤ 1. Intuitively, f(0) = α corresponds
to the minimum achievable performance on the benchmark (a random model with 0 FLOPs), while
limx→∞ f(x) = α + β represents the maximum performance. The parameters γ and δ control the
curvature of the interpolated curve. The function is fitted by minimizing the mean absolute error.

F ADDITIONAL RESULTS

F.1 GENERATION EARLY-STOPPING
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Figure 9: Inference-cost impact of generation early stopping for IFT and reasoning models. Each
model is evaluated at five maximum-length thresholds, corresponding to the 0th, 25th, 50th, 75th,
and 100th answer length percentiles. The Pareto frontier is indicated by black dashed lines.

In Figure 9, we leverage the observation that incorrect answers are typically longer to design a simple
early-stopping strategy, stopping generation once a specified answer length threshold is reached. For
each model, we evaluate five thresholds corresponding to the 0th, 25th, 50th, 75th, and 100th answer
length percentiles. We find that this straightforward strategy does not shift the Pareto frontier, as the
reduction in inference cost comes at the expense of a notable drop in accuracy. Nevertheless, investi-
gating more advanced approaches, such as calibration-based abstention methods (Gisserot-Boukhlef
et al., 2024a) or behavior-conditioned inference (Didolkar et al., 2025), to reduce unnecessary gen-
eration costs represents a promising direction for future research.

F.2 INCREASING MAXIMUM GENERATION LENGTH
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Figure 10: Impact of increasing maximum generation length (from 16,384 to 32,768 tokens) on
downstream performance across mmlu-math, math-500, and aime.

Interestingly, Figure 10 shows that certain mathematical tasks benefit from increased generation
length in the reasoning setting. In this experiment, models are allowed to generate up to 32,768
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tokens, compared to the 16,384-token length used during training. This provides insight into why
simple early-stopping strategies may fail, as some tasks require more tokens to produce correct
answers. It also demonstrates that reasoning models can extrapolate well beyond the lengths on
which they are trained, a behavior that could be further explored in future work.

F.3 INFERENCE COST SCALING TRENDS

0 20 40 60
Student Size

1012

1013

1014

1015

In
fe

re
nc

e 
FL

OP
s

yRea = 3.42e + 12 × x0.82

yIFT = 2.10e + 11 × x0.58

General-MC

0 20 40 60
Student Size

yRea = 2.77e + 12 × x0.85

yIFT = 4.79e + 11 × x0.94

General-OE

0 20 40 60
Student Size

yRea = 2.29e + 13 × x0.68

yIFT = 2.11e + 12 × x0.71

Math-MC

0 20 40 60
Student Size

yRea = 2.67e + 13 × x0.77

yIFT = 2.89e + 12 × x0.87

Math-OE

IFT Reasoning IFT (Fitted & Extended) Reasoning (Fitted & Extended)

Figure 11: Inference FLOPs versus student model size for IFT and reasoning-style training. Points
indicate the average inference FLOPs for each task category, while the curves show the correspond-
ing log-linear scaling trends.

In Figure 11, we fit log-linear curves to inference FLOPs as a function of model size across task
categories, assuming power-law relationships of the form y = αxβ . The corresponding scaling
coefficients are reported in each subplot. For General-OE, Math-MC, and Math-OE, the exponents
β are closely aligned (βIFT ≈ βRea + 0.10), slightly favoring βRea. This is consistent with Fig-
ure 8, where reasoning answers shorten slightly faster than IFT answers as model size increases. In
contrast, for General-MC tasks, reasoning models display larger scaling coefficients than IFT mod-
els, indicating that the higher computational cost, combined with only marginal performance gains,
limits the improvement observed on these tasks.

G TASK-LEVEL RESULTS

Figure 12, Figure 13, Figure 14, Figure 15,Figure 16, Figure 17 and Figure 18 present the task-level
versions of the aggregated results shown in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7
and Figure 8, respectively.
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Figure 12: Task-level downstream performance of mono-phasic models.
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Figure 13: Task-level comparison of sequential and mixed training scenarios across varying reason-
ing ratios.
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Figure 14: Task-level impact of the reasoning ratio on downstream performance.
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Figure 15: Task-level downstream performance of math-adapted models.
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Figure 16: Task-level accuracy versus training FLOPs for models trained with IFT (0%), reasoning-
style data (100%), and sequential reasoning ratios of 25%, 50%, and 75%.
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Figure 17: Task-level accuracy versus inference FLOPs for models trained with IFT and reasoning-
style data.
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Figure 18: Task-level answer length analysis across student sizes and correctness in reasoning mod-
els.
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