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ABSTRACT

The Schrödinger Bridge provides a principled framework for modeling stochastic
processes between distributions; however, existing methods are limited by
energy-conservation assumptions, which constrains the bridge’s shape preventing
it from model varying-energy phenomena. To overcome this, we introduce the
non-conservative generalized Schrödinger bridge (NCGSB), a novel, energy-
varying reformulation based on contact Hamiltonian mechanics. By allowing
energy to change over time, the NCGSB provides a broader class of real-world
stochastic processes, capturing richer and more faithful intermediate dynamics.
By parameterizing the Wasserstein manifold, we lift the bridge problem to a
tractable geodesic computation in a finite-dimensional space. Unlike computa-
tionally expensive iterative solutions, our contact Wasserstein geodesic (CWG)
is naturally implemented via a ResNet architecture and relies on a non-iterative
solver with near-linear complexity. Furthermore, CWG supports guided genera-
tion by modulating a task-specific distance metric. We validate our framework on
tasks including manifold navigation, molecular dynamics predictions, and image
generation, demonstrating its practical benefits and versatility.

1 INTRODUCTION

Figure 1: Probability paths obtained un-
der energy-conserving constraints ( ) and
without such constraints ( , correspond-
ing to energy-decreasing paths). This relax-
ation increases modeling flexibility in appli-
cations where distributions at intermediate
time steps are of interest.

Inferring the stochastic process that most likely generates
a set of sparse observations is a fundamental challenge,
e.g., in cellular dynamics (Yeo et al., 2021; Zhang et al.,
2024; Moon et al., 2019), meteorology (Franzke et al.,
2015), and economics (Kazakevičius et al., 2021; Huang
et al., 2024). Here, the target is not merely the distribu-
tions of observed data, but rather the underlying dynamics
of cell populations, weather patterns, or economic phe-
nomena, enabling reconstruction of missing intermediate
states and predicting the systems’ future evolution.

The Schrödinger Bridge (SB, Schrödinger (1931)) is a
powerful mathematical framework to address this. SB
seeks the most likely stochastic path between marginals
(i.e., observations), while being close to a reference pro-
cess, typically Brownian motion. This offers a general
stochastic optimal control perspective that encompasses
both Optimal Transport (OT, Vargas et al. (2021)) and generative approaches such as diffusion mod-
els (Ho et al., 2020; Chen et al., 2024), which can be interpreted as optimal bridges with a Gaussian
initial marginal (Bortoli et al., 2021). Unfortunately, current SB solvers operate on an infinite proba-
bility space and rely on iterative forward–backward stochastic simulations or progressive refinement
of the reference dynamics. This leads to complex and costly optimizations, limiting adoption.

Solutions provided by the SB preserve the distribution’s energy throughout the full stochastic path.
Here, energy is understood as a combination of kinetic energy, which reflects how fast samples move
across the probability manifold, and potential energy from the underlying landscape. This energy
preservation constrains the shape of the bridge and excludes stochastic paths with varying energy
profiles, such as dissipative behaviors commonly encountered in real-world physical systems, e.g.,
storms gradually losing intensity in weather forecasting.
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This paper provides a novel mathematical generalization of the SB to model non-conservative
systems and develops near-linear time algorithms to realize the framework. We build on the
geometric perspective of the SB, which casts it as a flow governed by Hamiltonian dynamics
on the Wasserstein probability space (Sec. 3). Extending the Hamiltonian system to a contact
Hamiltonian (Zadra, 2023), we propose a more general energy-varying formulation of the SB
problem: The Non-Conservative Generalized SB (NCGSB, Sec. 4). To make computations
tractable, we introduce the Contact Wasserstein Geodesic (CWG), which solves the NCGSB
problem by casting it as a geodesic computation, reshaping its cost functional into a Riemannian
metric whose induced distance is minimized. Discretizing the geodesic leads to geodesic segments
that match standard residual blocks. We show how this leads to an efficient solver that avoids
outer iteration loops and achieves near-linear complexity in both dimensionality and batch size.
Additionally, our approach allows for metric modulation, enabling guided generation tailored to
the task’s specifications (Sec. 5). We demonstrate our approach on benchmarks and tasks such as
LiDAR manifold navigation, molecular dynamics predictions, and image-based reconstruction of
systems such as sea-surface temperature and robotic pick-and-place (Sec. 6).

In summary, we contribute: (1) a novel non-conservative formulation of the Schrödinger
Bridge problem that models a wider range of real-world physical stochastic processes; (2) the
introduction of the Contact Wasserstein Geodesic (CWG) framework, a general geometric solver
compatible with all Schrödinger Bridge variants, enabling efficient and scalable computation; (3)
a guided generation methodology based on the modulation of the metric associated with CWG.

2 RELATED WORK

Schrödinger bridges. The SB problem imposes no constraints on the probabilistic path be-
yond matching the endpoint marginals, limiting its applicability when intermediate observations
exist. It also does not permit including known physical laws governing the system’s dynamics.
The multi-marginal Schrödinger Bridge (mmSB) treats intermediate observations (Theodoropoulos
et al., 2025) as constraints, which enables reconstruction of continuous dynamics without piecewise
approximations. In contrast, the Generalized Schrödinger Bridge (GSB) adds a state cost, allowing
potential energy functionals to be minimized along the probability path. This let us to model mean-
field interactions (Gaitonde et al., 2021; Ruthotto et al., 2020), conservative forces (Philippidis et al.,
1979; Noé et al., 2020), or geometric priors (Chen & Lipman, 2024; Liu et al., 2018).

Non-conservative Schrödinger bridge formulations. The SB problem assumes constant en-
ergy, preventing it from modeling non-conservative systems. The momentum SB augments the state
space with velocity (Theodoropoulos et al., 2025; Chen et al., 2023), allowing damping to be in-
corporated (Blessing et al., 2025; Sterling et al., 2025). This, however, doubles the state space
and increases computational cost. Other extensions replace the Brownian reference process with
the Ornstein–Uhlenbeck (OU) process (Orland, 2025; Zhang & Stumpf, 2025), introducing a non-
conservative prior for the target dynamics. The OU process defines a mean distribution with a
curl-free component that drives convergence and a divergence-free component that induces rotation.
Yet, this formulation lacks a mechanism for energy dissipation in the rotational dynamics. We in-
troduce a more general energy-varying framework in which dissipation naturally emerges across all
components of the dynamics, while only requiring a scalar augmentation of the state space.

Schrödinger bridge solvers. Matching-based iterative approaches (Shi et al., 2023; Gushchin
et al., 2024; Peluchetti, 2023) have gained popularity by improving the scalability and robustness of
traditional Iterative Proportional Fitting (IPF) algorithms (Kullback, 1968; Léonard, 2013) through
Markovian projections, thereby avoiding the need for full trajectory storage. However, for GSB, re-
strictive assumptions like Gaussian probability paths limit expressivity (Liu et al., 2024; Tang et al.,
2025), while for mmSB, global trajectory consistency is compromised due to the piecewise nature
of the approach and its sensitivity to the initial choice of the reference process (Shen et al., 2025). To
overcome these limitations, the stochastic dynamics can be learned indirectly by leveraging the ana-
lytical optimality conditions of the SB problem (Vargas et al., 2021; Chen et al., 2022). This has been
shown to scale more effectively to both the GSB (Liu et al., 2022; Buzun et al., 2025) and the mmSB
problem (Theodoropoulos et al., 2025; Hong et al., 2025; Chen et al., 2023), due to the symmetries
inherent in these optimality conditions (App. A). However, these methods are limited by a classical
SB solver bottleneck: the computational overhead of their iterative nature, which alternates between
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forward–backward passes or repeated dynamics integration and reference updates. We propose a
cheaper non-iterative solver that scales nearly linearly with both dimensionality and sample size.

Schrödinger bridge guided generation. The SB framework naturally extends to conditional
generation, where the marginals and the transition path depend on additional parameters or
objectives (Shi et al., 2022). Model guidance techniques (Song et al., 2023; Guo et al., 2024)
introduce a guidance term into the stochastic process, typically derived from the gradient of a
loss function. This approach steers the flow locally and resembles a gradient-based form of
optimal control. Alternatively, Raja et al. (2025) employs a global optimal control perspective.
Their approach generates full trajectories and chooses the one minimizing a task-specific action
functional. However, their method is deterministic and yields a single optimal path rather than a
posterior distribution over paths. Unlike previous guidance methods, we propose a hybrid approach
to guided generation within the NCGSB framework. By embedding a task-specific loss into the
potential, we reshape the Riemannian metric so that the resulting geodesic reflects the guidance
objective, allowing the learned dynamics to align with the desired outcome.

3 PRELIMINARIES

The Wasserstein manifold. Before formally introducing the SB problem, we define its domain.
Let P+(M) denote the space of smooth, positive density functions supported on a manifold M.
Each element ρ ∈ P+(M) is a function ρ(x) : M → R+ satisfying

∫
M ρ(x) dx = 1. The

density dynamics is represented by a time-dependent family {ρt}t∈R+ ⊂ P+(M). The infinitesimal
variation of the density at time t is the time derivative ∂tρt(x), which lies in the tangent space
TρtP+(M). The collection of all such tangent spaces forms the tangent bundle T P+(M). When
equipped with the Wasserstein metric, P+(M) becomes a Riemannian manifold (Ambrosio et al.,
2005). The corresponding metric tensor is defined as,

gW2(∂tρ
t, ∂tρ

t) =

∫
M
∂tρ

t(x)(−∆ρt)
†∂tρ

t(x) ρt(x) dx, (1)

where (−∆ρt)
† is the inverse of the weighted Laplacian operator ∆ρt = −∇x ·(ρt∇x) (Chow et al.,

2020), inducing an inner product on T P+(M) and a distance dW2(ρa, ρb) for ρa, ρb ∈ P+(M).
The minimum-length curve ρt connecting the two distributions ρa, ρb is called a geodesic.

Multi-marginal generalized Schrödinger bridge (mmGSB). Given two endpoint densities
ρa, ρb ∈ P+(M), the SB problem (Schrödinger, 1931; Schrödinger, 1932) seeks the most probable
interpolating density path ρt. This minimizes the Kullback–Leibler divergence w.r.t. a reference pro-
cess ρtref, typically Brownian motion. The SB problem is equivalent to a stochastic optimal control
setting (Dai Pra, 1991), which minimizes the cost required to transport a set of diffusing particles
from an initial distribution ρa to a target distribution ρb. This dynamic reformulation of the OT
problem (Benamou & Brenier, 2000; Chen et al., 2014) has solutions corresponding to geodesics on
the Wasserstein manifold P+(M). These trajectories are straight, since the classical SB problem
assumes that particles dynamics are unaffected by external potential functions U . This assumption,
however, limits our ability to model complex real-world physical systems.

Intermediate observations represented by marginal distributions {ρm}Mm=1 at specific time steps
{tm}Mm=1, can also be incorporated as additional constraints (Chen et al., 2023; Tang et al., 2025).
This leads to the mmGSB problem,

min
vt

J(vt, ρt) =

∫ 1

0

∫
M

(
1

2
∥vt(x)∥2 + U(x)

)
ρt(x) dx dt; (2a)

s.t. ∂tρt(x) +∇x ·
(
ρt(x) vt(x)

)
= ε∆xρ

t(x); (2b)

ρ0 = ρa, ρ
1 = ρb, ρ

tm = ρm, ∀m ∈ 1, . . . ,M. (2c)

Here, the density evolution ρt is governed by the Fokker–Planck equation (2b), which generalizes
Brownian motion by incorporating a deterministic drift term vt alongside a stochastic diffusion
term scaled by ε, to satisfy the boundary conditions in equation (2c). This drift vt acts as the control
variable and ensures that the probability path interpolates between the given boundary marginals.
The objective functional represents the kinetic energy associated with the drift and quantifies the
deviation from the (uncontrolled) reference stochastic process.
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Wasserstein Hamiltonian flows and geodesics. A convenient solution to the mmGSB problem (2)
is to specify analytical optimality conditions (Sec. 2). These take the form of a Wasserstein Hamil-
tonian Flow (Chow et al., 2020), which describes a probability distribution evolving according to
Hamiltonian dynamics. This evolution lies on planes tangent to P+(M), specifically on the cotan-
gent bundle T ∗P+(M), the dual of T P+(M), and it is governed by the derivatives of a scalar
Hamiltonian function H . However, their integration remains computationally expensive (Buzun
et al., 2025; Wu et al., 2025), so we propose a geometric reformulation that results in a significant
simplification. To this end, we introduce Proposition 1, a standard result from differential geometry
(App. B.2), which is instrumental in lifting these equations to geodesics on P+(M).

Proposition 1. Let the optimality conditions of the mmGSB problem (2) be expressed in Hamilto-
nian form, yielding the optimal bridge ρt(x). Then, ρt(x) can be viewed as a geodesic connecting
the marginals in equation 2c w.r.t. the modified Riemannian metric gJ , known as the Jacobi met-
ric (Abraham & Marsden, 2008).

To access the Jacobi metric and determine the corresponding geodesic, we first derive the Hamilto-
nian optimality conditions of the mmGSB problem (2) using Lagrange multipliers (Cui et al., 2024).
This introduces a potential function St(x), whose gradient defines the drift via vt(x) = ∇xSt(x).
The potential enforces the dynamic constraint (2b) within the cost functional (2a), whose first vari-
ation yields the Hamiltonian optimality conditions,

∂tρ
t(x) = ∂SH(·) = −∇x ·

(
ρt(x)∇xSt(x)

)
; (3a)

∂tS
t(x) = −∂ρH(·) = − 1

2∥∇xS
t(x)∥2 + 1

2ε
2∂ρI(ρ

t(x)) + U(x), (3b)

with the corresponding Hamiltonian, H(ρt, St) = K(ρt, St) + F(ρt), defined as the sum of a
kinetic energy K and a potential energy F = −U − I , dependent on the potential function U and
the Fisher information I . A detailed derivation of these dynamics and the full Hamiltonian function
is in App. C.1. To handle boundary conditions (2c), the Hamiltonian dynamics (3) are typically
integrated backward in time, where the solution at each intermediate point (ρtm , Stm) serves as the
initial condition for the next segment (Theodoropoulos et al., 2025). The potential function St(x)
in equation 3a is linked to the infinitesimal density variation ∂tρt ∈ T P+(M) via the weighted
Laplacian operator ∆ρt , introduced through the Wasserstein metric (1). This connection establishes
a correspondence between the tangent bundle T P+(M) and the cotangent bundle T ∗P+(M),
where St(x) naturally resides, and where the Hamiltonian dynamics of (ρt, St) unfold.

By Proposition 1, the Hamiltonian dynamics (3) corresponds to a geodesic flow on the underlying
Wasserstein manifold P+(M), which minimizes the Jacobi metric gJ = (H −F) gW2 . The
original metric gW2 (1) accounts only for the kinetic energy of the transport map K by measuring
distances between distributions. In contrast, the Jacobi metric gJ also includes the potential energy
F , which is maximized to attain values F ≈ H . Consequently, computing the geodesic between
marginals under this metric is equivalent to solving the mmGSB problem (2).

4 THE NON-CONSERVATIVE GENERALIZED SCHRÖDINGER BRIDGE

Non-conservative formulation. The solution to the GSB problem (2) assumes a constant energy
function H , and restricts the drift vt to depend solely on the potential energy F . This limits the
model’s flexibility in representing dynamics that cannot be described by a conservative potential,
which reduces its ability to capture real-world processes involving energy dissipation and external
interactions. To overcome this, we introduce the non-conservative generalized Schrödinger bridge
(NCGSB), which allows for time-varying energy systems. To do so, we reformulate the cost func-
tional J as the time integral of a new scalar state zt, representing the Lagrangian action, whose
evolution depends recursively on itself. The NCGSB problem is formulated as follows,

min
vt

J(vt, ρt) =

∫ 1

0

∂tz
t dt; (4a)

s.t. ∂tzt =
∫
M

(
1

2
∥vt(x)∥2 + U(x)

)
ρt(x) dx− zt; (4b)

∂tρ
t(x) +∇x ·

(
ρt(x) vt(x)

)
= ε∆xρ

t(x); (4c)

ρ0 = ρa, ρ
1 = ρb, ρ

tm = ρm, ∀m ∈ 1, . . . ,M. (4d)
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The objective in equation 4a is no longer to minimize a static quantity, but rather a time-varying
state zt. Its dynamics (4b) depend explicitly on its current value. This recursive structure endows
the system with a form of memory, as its evolution is influenced by the entire trajectory, implicitly
encoded in zt. Because non-conservative forces are path-dependent, augmenting the system’s state
space with the scalar zt allows their effects to be modeled, enabling the system’s energy to vary over
time. By relaxing the implicit energy-conservation constraint of the GSB problem, our approach
enhances the model’s flexibility and improves the quality of the resulting optimal solution.

Guided NCGSB. NCGSB (4) can be extended to the guided generation setting by introducing
a guiding function f , which steers the generative process toward desired conditions at any cho-
sen time (Song et al., 2023; Guo et al., 2024). For a given time ts, the guidance is expressed
as y = f(xts), with xts ∼ ρts . To enforce this form, the bridge ρt is steered according to
ρt(x|y) = 1

Z ρ
t(x) e−∥y−f(x̄ts )∥2

, where Z is a normalization constant and x̄ts denotes a sam-
ple from the predicted guided distribution ρ̄ts conditioned on the current distribution ρt. By Bayes’
rule, the dynamics of the guided bridge ρt(x|y) acquire an additional guidance term via the drift
vt, determined by ∥y − f(x̄ts)∥2. To perform a guided generation that enforces the constraint
y = f(xts) while preserving the underlying data manifold, we incorporate y into the Lagrangian
action constraint (4b) as (see App. C.3 for details),

∂tz
t =

∫
M

(
1

2
∥vt(x)∥2 + U(x) + ∥y − f(x̄ts)∥2

)
ρt(x) dx − zt. (5)

Wasserstein contact Hamiltonian flows and geodesics. Analogously to mmGSB (2), understand-
ing the dynamics of the optimality conditions in NCGSB (4) is essential for reformulating it as a
geodesic computation. As detailed in App. C.2, we propose to leverage the contact Hamiltonian for-
malism (Kholodenko, 2013), an extension of classical Hamiltonian mechanics to non-conservative
systems (App. B.1), to model the dynamics of the NCGSB optimality conditions as Wasserstein con-
tact Hamiltonian flows. This generalizes Prop. 1, since the contact Hamiltonian dynamics defines
a geodesic but on the extended space P+(M) × R (Udrişte, 2000; Testa et al., 2025). The contact
Hamiltonian optimality conditions are,

∂tρ
t(x) = ∂SH(·) = −2∇x ·

(
ρt(x)∇xSt(x)

)
, (6a)

∂tS
t(x) = ∂ρH(·)− St(x)∂zH(·) = − 1

2∥∇xS
t(x)∥2 + 1

2ε
2∂ρI

(
ρt(x)

)
+ U(x)

+ zt + 2ε log 2ρt, (6b)

∂tz
t = St(x)∂SH(·)−H(·) =

∫
M

(
1

2
∥∇xSt(x)∥2 + U(x)

)
ρt(x) dx+

1

2
ε2I(ρt)

− 2

∫
M
ε
(
log 2ρt(x)− 1

)
ρt(x) dx− zt. (6c)

The corresponding contact Hamiltonian function is defined as,H(ρt, St, zt) = K(ρt, St)+F(ρt)+
B(ρt)+zt. This differs from its conservative counterpart in two ways. First, its explicit dependence
on zt allows the total energy to vary over time. Second, the potential energy is augmented by an
entropy term, B(ρt) = 2

∫
M ε(log 2ρt(x) − 1)ρt(x) dx, producing an additional diffusion in the

dynamics. As previously mentioned, for guided generation, an additional potential energy term
∥y − f(x̄ts)∥2 can here be introduced to steer the flow. Geometrically, the dynamics of (ρt, St, zt)
can be interpreted as a flow on the cotangent bundle of the Wasserstein manifold, augmented by the
scalar state zt. That is, the dynamics unfold on the space T ∗P+(M)× R.

The contact Hamiltonian flow evolving on the extended phase space T ∗P+(M) × R, and interpo-
lating between the marginal densities, induces a geodesic on the augmented manifold P+(M)×R.
This geodesic minimizes a Jacobi metric g̃J = (H −F − B) gW2 , which generalizes the classical
Wasserstein metric by incorporating the potential energy of the contact Hamiltonian function. Com-
puting the geodesic under the Jacobi metric g̃J corresponds to NCGSB (4). Unlike the conservative
case, the contact Hamiltonian H is no longer constant along the flow, allowing the total energy to
vary over time. This introduces an additional degree of freedom that can be leveraged to shape the
system’s energy along the path over P+(M). This is the reason that the geodesic (ρt, Ht) is defined
on the extended space P+(M)× R.

5
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Figure 2: Visualization of the ResNet trans-
formation. Two successive pushforwards
ρ
tk−1

θ → ρ
tk
θ → ρ

tk+1

θ on P+(M) are shown as
local updates ∂tρ

tk
θ , ∂tρ

tk+1

θ on tangent spaces.
Each update is parameterized by θk, θk+1 ∈ Θ,
defining local coordinates on T P+(M). This
coordinate system is not unique.

5 CONTACT WASSERSTEIN GEODESICS (CWG)

ResNet resembles a discrete geodesic. Our objective is to compute a geodesic ρt on P+(M),
induced by the contact Hamiltonian dynamics, that is constrained to pass through a set of observed
marginals {ρa, ρm, ρb} (i.e., discretized distributions along the probability path). These constraints
naturally lead to a discretized parameterization of ρt, where the overall density transformation is
modeled as a composition of maps, each connecting a pair of consecutive observations. A ResNet
is ideally suited for this problem, as its sequential block structure directly mirrors this piecewise,
compositional nature of the approximated geodesic. Let λ be a fixed reference measure on P+(M)
(e.g., a standard Gaussian or uniform distribution). We define a (K + 1)-block ResNet as follows,

T{θk}K
k=0

= TθK ◦ · · · ◦ Tθ1 ◦ Tθ0 , (7)

with parameters {θk}Kk=0 ∈ Θ. The process begins by sampling an initial batch of points
xs ∼ λ, that is pushed forward through the first block to obtain xt0 = Tθ0(x

s). Then, the
parameters θ0 are optimized such that the resulting pushforward reference measure approximates
the initial marginal ρt0θ ≈ ρa. Thereafter, each subsequent block k pushes forward the sample via
xtk+1 = Tθk+1(xtk), xtk ∼ ρtkθ . The full pushforward map induces,

ρ
tk+1

θ = (Tθk+1)#ρ
tk
θ = ρtkθ

(
T−1
θk+1(x

k+1)
)
det

[
∇xT−1

θk+1(x
k+1)

]
. (8)

Starting from the reference measure λ, the ResNet parameters {θk}Kk=0 define a sequence of
discrete probability transitions {∂tρtkθ }Kk=0, which in turn specify the discrete family of densities
{ρtkθ }Kk=0. Geometrically, the discretizations {∂tρtkθ , ρ

tk
θ }Kk=0, provided by the ResNet, approximate

(ρt, ∂tρ
t) ∈ T P+(M), which can be seen as inducing a mapping from T P+(M) onto the

parameter space Θ (Fig. 5). As stated in Proposition 2, the existence of such a map endows
the finite-dimensional space Σ, where the parameterized densities ρtkθ reside, with the geometric
properties of P+(M). This lifting enables faster and tractable computations for SB problems.

Proposition 2. Approximate the evolution of the density ρt ∈ P+(M) by a series of K smooth
parametrized pushforwards Tθk , with θk belonging to a finite-dimensional space Θ. If each push-
forward Tθk is an immersion Tθk : Θ→ T P+(M), then the parameter space Θ can be endowed
with a Riemannian structure via the pullback of the Wasserstein metric gW2 . Consequently, the
contact Hamiltonian dynamics on T ∗P+(M)×R can be represented in the reduced phase space
Θ∗ × R, with the associated geodesic on P+(M)× R projected onto Σ× R (see App. D.1).

Proposition 2 allows us to transform the geodesic computation from the infinite-dimensional
P+(M) to a geodesic on a finite-dimensional parameterized space Σ , such that the resulting
geodesic flow on Σ × R evolves under the pullback of the Jacobi metric T ∗

θ g̃J = Φtk T ∗
θ g

W2 ,
where the scalar factor Φtk = H(ρtk , Stk , ztk) − F(ρtk) − B(ρtk), encodes the potential energy.
Specifying the time evolution of Htk determines a unique parameterized bridge on Σ. This
formulation enables a tractable computation of geodesic flows to solve the NCGSB problem.
Although different parameterizations {θk}Kk=0 may define distinct coordinate systems on Σ, the
geodesics solutions remain equivalent and share the same length (Syrota et al., 2025).

Geodesic computation. The contact Wasserstein geodesic (CWG) corresponds to the discrete
path {ρtkθ }Kk=0, that approximates the NCGSB solution. This is trained to reconstruct the avail-
able marginals while minimizing the geodesic energy under the pullback Jacobi metric T ∗

θ g̃J =
Φtk T ∗

θ g
W2 . The initial and final marginals, ρa and ρb, are enforced at the path endpoints, corre-

sponding to the ResNet outputs at times t0 and tK . All available intermediate marginals ρm must
appear at time points matching the ResNet discretization for the condition to be enforced.
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CWG training happens in two stages (Alg. 1 in App. D.2): (1) we optimize the first ResNet block to
match the initial marginal ρa, and (2) we find the optimal path by minimizing the loss,

ℓ = d2W2
(ρtKθ , ρb)︸ ︷︷ ︸

Terminal marginal

+

M∑
m=1

d2W2
(ρ
tkm

θ , ρm)︸ ︷︷ ︸
Intermediate marginals

+

K∑
k=1

Φtk d2W2
(ρtkθ , ρ

tk−1

θ )︸ ︷︷ ︸
Energy minimization

. (9)

Here dW2
denotes the Wasserstein-2 distance between probability distributions. In practice, this

distance is approximated using empirical estimators based on samples drawn from the distributions.
The complexity of this method is O

(
NK(Tsh + d(LW + logN))

)
, scaling linearly in dimension

d and nearly linearly in batch size N (see App. D.3), rather than exponentially and quadratically
(Hong et al., 2025). Unlike Chen et al. (2023); Shen et al. (2025), our CWG avoids costly iteration
loops and is only weakly affected by the number of marginals.

Guided contact Wasserstein geodesics. In the conditional setting, the Lagrangian action dy-
namics (4b) in NCGSB (4) is augmented as in equation 5. Here, the scaling factor Φtk =
H(ρtk , Stk , ztk) − F(ρtk) − B(ρtk) of the pullback Jacobi metric is augmented with the guid-
ance term ∥y − f(x̄ts)∥2, to enforce the constraint y = f(x̄ts) at time ts of the generative process.
Under the ResNet parameterization, the desired distribution is approximated by xtks ≈ x̄ts at time
step tks , and the Jacobi metric is modified as g̃′J =

(
Φtk + f(xtks )

)
gW2 , with xtks ∼ ρ

tks

θ . This
penalizes geodesics crossing undesired regions at tks . The loss for the guided optimization is

ℓ=d2W2
(ρtKθ , ρb)+

M∑
m=1

d2W2
(ρ
tkm

θ , ρm)+

K∑
k=1

(
Φtk+f(xtks )

)
d2W2

(ρtkθ , ρ
tk−1

θ )+d
′2
W2

(ρ
tts
θ , ρs) (10)

where the modified distance d
′2
W2

measures deviations between the generated distribution ρttsθ and
the intermediate marginal ρs at ts, while incorporating the penalty for samples xs that violate the
guidance constraint y = f(xs), c.f. App. E.1. In practice, this loss is optimized through a fine-tuning
procedure applied to a model initially trained without any guidance.

Proof of concept. We demonstrate our framework on a 2D distribution-matching task and guided
generation setting using the Two-Moons and Checkerboard benchmarks (Holderrieth & Erives,
2025). These lack intermediate marginals {ρm}Mm=1, and the initial distribution ρa coincides with
the reference distribution λ. Hence, only the second step of Alg. 1 is needed. Figure 3 shows that our
method successfully generates the target distributions, and steers the generation to samples confined
to a subset of the target space (here, the upper half). This guided behavior is achieved via the term
∥y−f(x̄ts)∥2, with ts=1, f measuring 2D sample positions, and y defining the admissible region.

6 RESULTS

We benchmark our approach against four established baselines summarized in Table 1. Further
details of the experimental setups are provided in App. F.1.

LiDAR manifold navigation. First, we tackle a standard GSB task: computing a bridge evolving
on a geometric manifold. We use the LiDAR scan of Mount Rainier (OpenTopography, 2025)
as the reference surface, and we aim to connect two marginals while remaining on the manifold
and favoring low-altitude regions. These conditions are encoded into the potential function U (see
App. F.2). In this experiment, we do not model a physical system but instead compute an optimal

Method GSB mmSB Energy variation Image Gen. Guided Gen.
DSBM (Shi et al., 2023) ✗ ✗ ✗ ✓ ✗
GSBM (Liu et al., 2024) ✓ ✗ ✗ ✓ ✗
SBIRR (Shen et al., 2025) ✗ ✓ ✗ ✗ ✗
DM-SB (Chen et al., 2023) ✗ ✓ ✗ ✗ ✗
CWG (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of our CWG with baselines designed to address various SB variants and types of problems.
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Figure 3: Two-Moons (top) and Checkerboard (bot-
tom) benchmarks with guided variants (right).

Figure 4: LiDAR Manifold Navigation: CWG before
and after guidance (top), CWG vs GSBM (bottom).

transport map between the marginals under a conservative setting. Unlike our approach, DSBM
and GSBM iteratively fit a deterministic path between the marginals, falling short on representing a
posterior distribution. As a result, there is no guarantee that a Gaussian path remains on the manifold
(Fig. 4). This leads to substantially higher-energy paths (Table 2), while our approach finds lower-
energy solutions and converges significantly faster. Furthermore, our method uniquely supports
guided generation, illustrated here by steering the probabilistic path to the right side of the mount
(Fig. 4; see App. F.2 for quantitative results).

Table 2: Bridge energy J (↓) and training time
(tt) (↓) in LiDAR Manifold Navigation.

Metric CWG (ours) GSBM DSBM
J 1.95±0.07 4.74±0.10 17.29±0.14

tt (s) 280±20 1570±50 1340±50

Table 3: Wasserstein error at validation (↓) and
training time (tt) (↓) in Single Cell Sequencing.

Metric CWG (ours) DM-SB SBIRR
dW2

(xt1) 1.11±0.06 2.25±0.01 1.92±0.02

dW2
(xt3) 0.33±0.02 1.64±0.03 1.86±0.02

tt (s) 710±30 38120±1100 1740±40

Table 4: FID scores at validation steps (↓) and
training time (tt) (↓) in Sea Prediction (2020-2024).

Metric CWG (ours) DM-SB SBIRR
FID(xt1) 121.5±5.6 160.7±4.5 242.3±9.9

FID(xt3) 159.5±7.4 185.5±7.1 235.8±10.4

tt (s) 1030±50 73600±3200 19100±900

Table 5: FID score (↓) and training time (tt) (↓) in
Robotic Task Reconstruction.
Metric CWG (ours) GSBM DSBM

FID 18.83±0.66 40.23±1.95 149.78±0.81

tt (s) 1090±40 91100±8000 27400±2500

Single cell sequencing. Next, we reconstruct stem cell differentiation dynamics from a series of
isolated cellular snapshots. We use the Embryoid Body (EB) dataset from Moon et al. (2019), which
tracks cell state progression across five developmental stages [t0, t1, t2, t3, t4]. Cell differentiation is
fundamentally a non-conservative biological process (Zeevaert et al., 2020; Kinney et al., 2014) and
the ability to model energy-varying bridges is essential. To evaluate generalization in regions with
no available data, we split the dataset into a training set [t0, t2, t4] and a validation set [t1, t3]. Ac-
cordingly, the former contains the distributions {ρa, ρm2 , ρb}, while the latter contains {ρm1 , ρm3}.
The geometry of the training distributions is encoded in the potential function U , which penalizes
paths that stray from the observed data manifold. Minimizing U ensures the learned bridge remains
close to the data manifold, enabling effective generalization. The combination of the data manifold
guidance and an energy-varying bridge allows our approach to outperform other mmSB baselines in
both reconstruction accuracy and computation time. Quantitative results are reported in Table 3, with
additional details and an ablation study on the importance of energy variation provided in App. F.3.

Image generation. We also demonstrate our framework’s applicability to image generation tasks.
Given a sequence of images capturing the time evolution of physical phenomena, the model’s ob-
jective is to predict realistic intermediate frames at unobserved time steps. To ensure the generated
frames remain faithful to the underlying data distribution, we introduce a potential function U , that
penalizes deviations from the learned data manifold. Specifically, for samples xt ∼ ρt, U(xt) is
defined as the reconstruction error, obtained via a VAE (Song & Itti, 2025). Details on the energy
behavior and extended results are provided in App. F.4 and App. F.5.
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Figure 5: Predictions from CWG (ours, top),
GSBM (middle), and DSBM (bottom). The
red row shows marginal samples.

Figure 6: FID scores at the validation time steps for
three methods, evaluated over 9 tests from 1981–2024.
Our CWG is significantly lower than the baselines.

Specifically, we use the NOAA OISST v2 High Resolution Dataset (Huang et al., 2021), which
provides daily sea surface temperature averages over multiple years, and the BridgeData V2 (Walke
et al., 2023) dataset, for robotic manipulation tasks. For sea temperature prediction, we group data
from 1981–2024 into five-year intervals. Using heatmaps from January, May, and September (i.e.,
[t0, t2, t4]), our method predicts the temperature profiles of March and July (i.e., [t1, t3]). Our CWG
produces cleaner, more accurate predictions than the baselines (Fig. 5). Since our framework oper-
ates efficiently in probability space and is not constrained by energy conservation, it achieves these
results with an order of magnitude less computation (Table 4 for 2020-2024; Fig. 6 for all years).

In the robotic task reconstruction, our model generates realistic intermediate frames connecting the
initial and final states of a robot’s reaching motion (Fig. 7), and demonstrates consistently robust
performance, outperforming baselines in image quality (Table 5). Moreover, Fig. 8 showcases
guided generation, where our model successfully steers the placing motion task toward a target
location on the left side of the table. This is achieved with only a minimal drop in image quality,
maintaining a clear advantage over competing methods (Table 6).

Figure 7: Reconstructions from CWG (top), GSBM (mid-
dle), and DSBM (bottom). Red row shows the reference.

Figure 8: CWG outputs before (top) vs. after
guidance (place the item left).

Metric Standard Guidance
Centroid 35.8±11.1 22.3±2.9

FID 19.52±0.78 23.77±1.94

Table 6: Item centroid position (px) and FID
before vs. after guidance.

7 CONCLUSION

Our work is motivated by the need to model intermediate time steps of Schrödinger bridges (SBs),
arising from the underlying dynamics of the observed physical system. As standard SBs conserve
energy across time, they cannot meaningfully encode such dynamics. To counter this, we introduced
the non-conservative generalized Schrödinger bridge (NCGSB), which extends the usual Hamilto-
nian to its non-conservative counterpart, the contact Hamiltonian, allowing energy to vary. We
show that NCGSB is equivalent to geodesics on contact Wasserstein manifolds. This link leads to a
non-iterative and near-linear time algorithm for computing the non-conservative bridge, which can
practically be realized by a ResNet-like construction, easing its implementation. We show that these
theoretical contributions lead to a SB framework that is not only more expressive but also signifi-
cantly faster than existing approaches, as validated by the significant improvements achieved across
a range of diverse tasks.
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Frank Noé, Alexandre Tkatchenko, Klaus-Robert Müller, and Cecilia Clementi. Machine learning
for molecular simulation. Annual review of physical chemistry, 71(1):361–390, 2020. URL
https://doi.org/10.1146/annurev-physchem-042018-052331.

OpenTopography. Southwest flank of mt. rainier, wa, 2025. URL https://doi.org/10.
5069/G9PZ56R1. Distributed by OpenTopography. Accessed 2025-08-11.

Henri Orland. Schrödinger bridges for systems of interacting particles. Physical Review E, 112(1):
014115, 2025.

Stefano Peluchetti. Diffusion bridge mixture transports, Schrödinger bridge problems and generative
modeling. Journal of Machine Learning Research (JMLR), 24(374):1–51, 2023. URL https:
//www.jmlr.org/papers/v24/23-0527.html.

Chris Philippidis, Chris Dewdney, and Basil J Hiley. Quantum interference and the quantum poten-
tial. Il Nuovo Cimento B (1971-1996), 52(1):15–28, 1979.
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Erwin Schrödinger. Über die umkehrung der naturgesetze. Sitzungsberichte der Preussischen
Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, pp. 144–153, 1931. URL
https://doi.org/10.1002/ange.19310443014.

Yunyi Shen, Renato Berlinghieri, and Tamara Broderick. Multi-marginal Schrödinger bridges with
iterative reference refinement. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2025. URL https://openreview.net/forum?id=VcwZ3gtYFY.

Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. Conditional simulation
using diffusion Schrödinger bridges. In Uncertainty in Artificial Intelligence (UAI), pp. 1792–
1802. PMLR, 2022. URL https://proceedings.mlr.press/v180/shi22a.html.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger
bridge matching. In Advances on Neural Information Processing Systems (NeurIPS), 2023. URL
https://openreview.net/forum?id=qy07OHsJT5.

Ana Cannas da Silva. Lectures on symplectic geometry. Lecture Notes in Mathematics, 1764, 2001.

Hae Jin Song and Laurent Itti. Riemannian-geometric fingerprints of generative models. In 2nd
Beyond Euclidean Workshop: Hyperbolic and Hyperspherical Learning for Computer Vision,
2025. URL https://openreview.net/forum?id=00LViVLqkN.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable gen-
eration. In International Conference on Machine Learning (ICML), 2023. URL https:
//proceedings.mlr.press/v202/song23k.html.

Benjamin Sterling, Chad Gueli, and Mónica F. Bugallo. Critically-damped higher-order Langevin
dynamics. arXiv preprint arXiv:2506.21741, 2025. URL https://arxiv.org/abs/
2506.21741.

Stas Syrota, Yevgen Zainchkovskyy, Johnny Xi, Benjamin Bloem-Reddy, and Søren Hauberg. Iden-
tifying metric structures of deep latent variable models. In International Conference on Machine
Learning (ICML), 2025. URL https://openreview.net/forum?id=FHzkr8FRie.

Sophia Tang, Yinuo Zhang, Alexander Tong, and Pranam Chatterjee. Branched Schrödinger bridge
matching. arXiv preprint arXiv:2506.09007, 2025. URL https://arxiv.org/abs/2506.
09007.

Andrea Testa, Søren Hauberg, Tamim Asfour, and Leonel Rozo. Geometric contact flows: Contacto-
morphisms for dynamics and control. In International Conference on Machine Learning (ICML),
2025. URL https://openreview.net/forum?id=v2nQ1e78Rc.

Panagiotis Theodoropoulos, Augustinos D Saravanos, Evangelos A Theodorou, and Guan-Horng
Liu. Momentum multi-marginal Schrödinger bridge matching. arXiv preprint arXiv:2506.10168,
2025. URL https://arxiv.org/abs/2506.10168.

Sahand Tokasi and Peter Pickl. Symplectic reduction of classical mechanics on shape space. Foun-
dations of Physics, 52(5):106, 2022.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajec-
torynet: A dynamic optimal transport network for modeling cellular dynamics. In Interna-
tional Conference on Machine Learning (ICML), pp. 9526–9536. PMLR, 2020. URL https:
//proceedings.mlr.press/v119/tong20a.html.

13

https://doi.org/10.1073/pnas.1922204117
http://eudml.org/doc/78968
https://doi.org/10.1002/ange.19310443014
https://openreview.net/forum?id=VcwZ3gtYFY
https://proceedings.mlr.press/v180/shi22a.html
https://openreview.net/forum?id=qy07OHsJT5
https://openreview.net/forum?id=00LViVLqkN
https://proceedings.mlr.press/v202/song23k.html
https://proceedings.mlr.press/v202/song23k.html
https://arxiv.org/abs/2506.21741
https://arxiv.org/abs/2506.21741
https://openreview.net/forum?id=FHzkr8FRie
https://arxiv.org/abs/2506.09007
https://arxiv.org/abs/2506.09007
https://openreview.net/forum?id=v2nQ1e78Rc
https://arxiv.org/abs/2506.10168
https://proceedings.mlr.press/v119/tong20a.html
https://proceedings.mlr.press/v119/tong20a.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026
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A EXTENDED STATE-OF-THE-ART ON SCHRÖDINGER BRIDGE SOLVERS

Existing methodologies for addressing the Schrödinger Bridge problem can be broadly divided into
two main categories, depending on their solution strategy: those that directly fit the stochastic dy-
namics on the probabilistic manifold, and those that leverage the analytic optimality conditions of
the problem to solve it. We review them in the sequel.

Schrödinger Bridge Solvers via Dynamics Parametrization. Traditional SB solvers often use
Iterative Proportional Fitting (IPF) (Kullback, 1968; Léonard, 2013), which alternates forward
and backward updates to successively match the initial and terminal marginals. However, IPF is
computationally expensive, as it stores full trajectories, and it suffers from error accumulation,
numerical instability, and reliance on strong priors (Vargas et al., 2021; Gushchin et al., 2024).
Recent matching-based approaches (Shi et al., 2023; Gushchin et al., 2024; Peluchetti, 2023)
improve scalability and robustness by learning time-reversed drifts via Markovian projections,
circumventing the need for full trajectory storage and mitigating the IPF discretization errors. While
Liu et al. (2024) extended this idea to the GSB setting, their assumption of Gaussian probability
paths limits the model’s expressivity. To overcome this, Tang et al. (2025) proposed branched
dynamics using Gaussian mixtures. This enables more flexible path structures but at the expense
of higher computational cost. For mmSB, iterative reference refinement with piecewise SB inter-
polation (Shen et al., 2025) suffers from inconsistencies in global trajectory construction due to its
piecewise nature and shows high sensitivity to the choice of initial reference process. Alternatively,
Tong et al. (2020) proposed a continuous normalizing flow for deterministic interpolation, removing
noise from the reference process but preventing the construction of a true probabilistic bridge.

Schrödinger Bridge Solvers via Optimality Conditions. The optimality conditions of the
SB problem take the form of dynamical equations on a Hamiltonian phase space, driven by dual
potential functions (Chow et al., 2020). These conditions allow the exact dynamics to be recovered
via integration and provide a flexible framework for generalization through modifications of the
Hamiltonian. Furthermore, the state-dependent nature of the Hamiltonian framework offers a natu-
ral way to obtain Markovian approximations of a stochastic process. Vargas et al. (2021) and Chen
et al. (2022) leveraged this view and solved the SB problem using control- and likelihood-based
approaches, both employing iterative forward-backward updates on the Hamiltonian dynamics. Liu
et al. (2022) extended this idea to the GSB setting, although without convergence guarantees. How-
ever, a critical bottleneck of these and derived methods is that a tractable integration of optimality
conditions relies on iterative updates of a reference process. For example, Buzun et al. (2025)
improved stability by directly modeling the dual potential and minimizing residuals of the Hamilto-
nian conditions, yet iterative updates incur significant computational overhead and may destabilize
training due to the dependence on self-generated samples (Bertrand et al., 2024). This issue persists
in mmSB settings (Theodoropoulos et al., 2025; Hong et al., 2025). Even when belief propagation
is used to reduce time complexity (Chen et al., 2023), scaling to high dimensions remains poor.
Therefore, while leveraging the optimality conditions offers clear advantages, it remains essential
to develop computationally efficient, non-iterative algorithms with favorable scaling properties.

B EXTENDED PRELIMINARIES ON DIFFERENTIAL GEOMETRY

B.1 HAMILTONIAN AND CONTACT HAMILTONIAN DYNAMICS

Hamiltonian and contact Hamiltonian dynamics are governed by specific energy constraints that
can be analyzed via differential geometry as flows on specialized manifolds. Hamiltonian dynamics
is energy-conserving and evolves on a symplectic manifold. Contact Hamiltonian dynamics is more
general, allowing for variable energy levels, and takes place on a contact manifold. Their formal
definitions and key differences are discussed next.

Symplectic and Contact Structures. LetM be a smooth compact manifold, and let TxM denote
the tangent space at x ∈ M. The collection of all the tangent spaces identifies the tangent bundle
TM = ∪x∈MTxM. A vector fieldX :M→ TM assigns a tangent vector v to each point x ∈M.
The set of all the vector fields over TM is denoted as Γ(TM). A differential 1-form α : TM→ R
is a smooth map field acting on vectors of the tangent bundle. For a smooth function f :M→ R,
the 1-form α = df generalizes the gradient from Euclidean spaces. Specifically, df measures the
variation of f under an infinitesimal displacement onM. This displacement is locally described by a
starting point x and a direction v, such that (x, v) ∈ TM. Alternatively, it can be globally expressed
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by a vector field X . The variation of f along the vector field X is given by df(X). This variation
is independent of the choice of reference frame. To preserve this invariance, df must transform
covariantly with X . Consequently, the 1-form α = df resides in the cotangent bundle T ∗M,
the dual space to TM. The symplectic and contact structures provide two distinct mechanisms
for associating a 1-form to a vector field, thereby establishing connections between the tangent and
cotangent bundles. By considering the dynamics governed by the vector field and the scalar function
defining the 1-form, a relationship between these elements emerges, as illustrated in Figure 9.

q1q2

f

q1q2

f

Figure 9: The same scalar function f , associated with the 1-form α = df , gives rise to two distinct vector fields
under the symplectic (left) and contact (right) geometric structures. The streamlines of these vector fields are
illustrated on a representation of the state manifold. In symplectic geometry, the streamlines are tangent to the
level curves of f , representing isoenergetic trajectories where f remains constant, thus describing the dynamics
of conservative systems. In contrast, in contact geometry, a single flow line can traverse different energy levels.

Symplectic Geometry. A differential 2-form ω : TM×TM→ R is a skew-symmetric, bilinear,
and smooth field of maps acting on pairs of tangent vectors. A 2-form is called symplectic if it is
both closed (dω = 0) and non-degenerate. The symplectic form lacks the properties required to
define an inner product. However, it still establishes a fundamental relation between differential
1-forms and vector fields: Given a 1-form df , the symplectic form ω uniquely determines a vector
field Xf that is tangent to the level sets of f . This relation is defined by,

df(X) = ω(Xf , X), ∀X ∈ Γ(TM). (11)

By definition, f remains constant along the flow of Xf , which in turn preserves the symplectic
form ω, i.e., LXf

ω = 0 where LXf
denotes the Lie derivative (Silva, 2001). In this framework, the

function f is interpreted as a conserved energy, or equivalently, as a HamiltonianH . The symplectic
structure thereby endows M with a natural geometric framework for formulating Hamiltonian
dynamics (Tokasi & Pickl, 2022). The pair (M, ω) is referred to as a symplectic manifold. Notably,
the non-degeneracy of ω implies thatM must be even-dimensional.

Contact Geometry. While symplectic manifolds provide a geometric framework for modeling
the dynamics of conservative systems in classical mechanics, a more general approach is required
to describe non-conservative systems. This is addressed by contact manifolds, the odd-dimensional
counterparts of symplectic manifolds (Geiges, 2001; Bravetti et al., 2017). A contact manifold is
defined as (M, η), where M is an odd-dimensional smooth manifold, and η is a non-degenerate
1-form known as the contact form (Geiges, 2008). The contact form satisfies the maximal non-
integrability condition, meaning that the top-degree differential form η ∧ (dη)d ̸= 0 is nowhere
vanishing onM. This form is constructed by taking the exterior product of η with the d-fold wedge
product of its exterior derivative dη, i.e.,

(dη)d = dη ∧ · · · ∧ dη︸ ︷︷ ︸
d times

. (12)

The (2d + 1)-form defines a volume form on M, ensuring that the hyperplanes ker(η) ⊂ TM,
constraining the dynamics on the contact manifold, do not form a foliation, i.e., they do not partition
the manifold into lower-dimensional submanifolds (Geiges, 2001; 2008). Geometrically, this
means that the contact distribution imposes non-holonomic constraints: it restricts the admissible
directions of motion at each point without confining the dynamics to a fixed submanifold or energy
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level. This property is crucial for modeling systems where energy can change over time, enabling
constraints on energy behavior without enforcing conservation.

Like symplectic geometry, contact geometry connects scalar functions to vector fields, enabling the
description of dynamical systems (Zadra, 2023). Given an energy function H : M → R, the
dynamics on a contact manifold are defined by a contact Hamiltonian vector field XH , as follows,

dH(X) = dη(XH , X)−LXH
η(X), ∀X ∈ Γ(TM). (13)

Unlike symplectic geometry, where dynamics are confined to energy-preserving flows along the
level sets of the Hamiltonian, contact geometry allows for an additional component of motion.
Specifically, the dynamics on a contact manifold are not restricted to the term dη(XH , X), which
lies tangent to the level sets of H , but also include a transverse component LXH

η(X), arising from
the non-degeneracy of the contact form. Consequently, while in symplectic geometry the symplectic
form ω is strictly preserved, contact geometry allows the contact form η to be preserved only up to
a scaling factor a ∈ R (Bravetti et al., 2017).

B.2 RIEMANNIAN AND JACOBI METRICS

The Jacobi metric gJ is a rescaled version of a Riemannian metric g that allows Hamiltonian dy-
namics on the cotangent bundle T ∗M to be represented as geodesics on the Riemannian manifold
(M, g). The construction is detailed below.

The Riemannian Metric. Let M be a smooth compact manifold. A Riemannian metric g :
TM × TM → R is a smooth, symmetric, and positive-definite bilinear field of maps defined
on pairs of vectors in the tangent bundle. This enables the introduction of an inner product on
the tangent spaces of the manifold, allowing us to measure distances and curve lengths. For a
smooth curve x(t) : [t0, t1] → M, the length l w.r.t. the metric g is l =

∫ t1
t0

√
g(ẋ(t), ẋ(t))dt,

where ẋ(t) ∈ Tx(t)M is the vector tangent to the curve at x(t). The curve minimizing this length
between two points x(t0) and x(t1) onM is called a geodesic. Geodesics generalize straight lines
in Euclidean space to curved spaces, representing the shortest paths in the geometry induced by g.

The Jacobi Metric. The geodesic flow x(t) on a Riemannian manifold (M, g) lifts to
the joint evolution of coordinates (x(t), α(x(t), ẋ(t)) on the cotangent bundle T ∗M (Abra-
ham & Marsden, 2008). This extended dynamics is governed by an energy function
H(x, α) : T ∗M → R = g−1(α, α), which remains constant along the flow. A reparame-
terization ds =

√
Hdt links the trajectory of the integrated dynamical system at time t on T ∗M

with the length of the corresponding geodesic on M. This framework reveals a fundamental
connection between geodesic flows and Hamiltonian dynamics in the special case where the
Hamiltonian consists solely of a kinetic energy term. The cotangent bundle T ∗M is naturally
equipped with a symplectic structure, making it a symplectic manifold (T ∗R, ω).
This formulation can be further generalized by introducing a potential energy function into the
Hamiltonian, given by H(x, α) = g−1(α, α) + F(x). In this setting, the geodesic structure un-
derlying the Hamiltonian flow is determined by the Jacobi metric,

gJ =
(
H −F(x)

)
g, (14)

which rescales the original metric g by a position-dependent conformal factor (Abraham & Marsden,
2008). The corresponding time reparameterization takes the form ds =

√
H −F(x) dt, restoring

the interpretation of the trajectory as a geodesic with respect to the metric gJ (Udrişte, 2000).

C INSIGHTS ON THE SCHRÖDINGER BRIDGE

C.1 HAMILTONIAN STRUCTURE OF THE GENERALIZED SCHRÖDINGER BRIDGE

This part presents the derivation of the Hamiltonian structure of the mmGSB problem (2), intro-
duced in section (3), obtained via the method of Lagrange multipliers. To transform the constrained
optimization problem into an unconstrained one, we incorporate the Fokker–Planck equation, scaled
by the Lagrange multiplier St, into the original running cost L (i.e., the Lagrangian), as follows,

J(vt, ρt, St) =

∫ 1

0

L(vt, ρt, St) dt; (15)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

L(vt, ρt, St) =
∫
M

(
1

2
∥vt(x)∥2 + U(x)

)
ρt(x) dx

+

∫
M
St(x)

(
∂tρ

t(x) +∇x · (ρt(x)vt(x))− ε∆ρt(x)
)︸ ︷︷ ︸

Fokker-Planck equation

dx. (16)

The optimality conditions resulting from the extremization of the cost functional J in equa-
tion (15) follow from the Euler–Lagrange equations, generalized to the setting of classical field
theory (Blohmann, 2024). In this framework, the arguments of the Lagrangian L, in equation (16),
are viewed as smooth fields defined over space and time. By setting to zero the variations of L with
respect to these fields, we obtain the stationarity conditions for J . For a generic field ψt(x), the
corresponding Euler–Lagrange equation takes the form,

dψL = ∂ψL+ ∂t(∂∂tψL) +∇x · (∂∇xψL) + ∆x(∂∆x
L) = 0. (17)

Applying equation (17) to equation (16) for the fields vt, ρt, and St, we obtain the following system
of optimality conditions,

dvL = vt(x)ρt(x)− ρt(x)∇xSt(x) = 0 =⇒ vt(x) = ∇xSt(x), (18a)

dρL =
1

2
∥vt(x)∥2 − ∂tSt(x)−∇xSt(x) · vt(x)− ε∆xS

t(x) + U(x) = 0, (18b)

dSL = ∂tρ
t(x) +∇x · (ρt(x)v(x))− ε∆xρ

t(x) = 0. (18c)

Substituting the expression for the optimal velocity from equation (18a) into equations (18b) and
(18c), we obtain the following Hamiltonian system,

∂tρ
t(x) = ∂SH(·) = −∇x · (ρt(x)∇xSt(x)) + ε∆ρt(x), (19a)

∂tS
t(x) = −∂ρH(·) = −1

2
∥∇xSt(x)∥2 − ε∆xS

t(x) + U(x), (19b)

with the corresponding Hamiltonian function,

H(ρt, St) =
1

2

∫
M
∥∇xSt(x)∥2ρt(x) dx−

∫
M
U(x)ρt(x) dx+ ε

∫
M
St(x)∆xρ

t(x) dx. (20)

The Hamiltonian system (19) can be reformulated in a linear and decoupled form by applying the
Hopf–Cole coordinate transformation (Léger & Li, 2021; Chow et al., 2020), derived from the
generating function F ,

F (ρt, St) = St(x)ρt(x)− ερt(x)(log ρt(x)− 1), (21)

which yields the transformed coordinates,

ρ̂t(x) = ∂SF (·) = ρt(x), (22a)

Ŝt(x) = −∂ρF (·) = St(x)− ε log ρt(x). (22b)

This transformation preserves the Hamiltonian structure of the dynamics, as it is compatible with
the underlying formulation. The Hopf–Cole transformation is well established in the literature,
not only for simplifying the mathematical form of the equations, but also for enabling the design
of efficient numerical integration schemes (Léger & Li, 2021). In our context, it is particularly
advantageous for obtaining a Hamiltonian with separable kinetic and potential energy components.
The Hamiltonian system (19) then becomes,

∂tρ̂
t(x) +∇x · (ρ̂t(x)∇xŜt(x)) = 0, (23a)

∂tŜ
t(x) + ε

1

ρ̂t(x)
∂tρ̂

t(x) = − 1

2

∥∥∥∇xŜt(x) + ε∇x log ρ̂t(x)
∥∥∥2

− ε∆xŜ
t(x)− ε2∆x log ρ̂

t(x) + U(x).

(23b)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Expanding the squared norm in equation (23b) and substituting ∂tρt(x) from equation (23a) yields,

∂tŜ
t(x)− ε 1

ρ̂t(x)
∇x · (ρ̂t(x)∇xŜt(x)) = −

1

2
∥∇xŜt(x)∥2 −

1

2
ε2∥∇x log, ρ̂t(x)∥2

− ε∇xŜt(x)∇x log ρ̂t(x)− ε∆xŜ
t(x)

− ε2∆x log ρ̂
t(x) + U(x).

(24)

Using the identity,

ε
1

ρ̂t(x)
∇x · (ρ̂t(x)∇xŜt(x)) = ε∆xŜ

t(x) + ε∇xŜt(x)∇x log ρ̂t(x), (25)

equation (24) simplifies to,

∂tŜ
t(x) = −1

2
∥∇xŜt(x)∥2 − ε2

1

2
∥∇x log ρ̂t(x)∥2 − ε2∆x log ρ̂

t(x) + U(x). (26)

This form reveals the emergence of the Fisher information, defined as,

I(ρ̂t(x)) =

∫
M
∥∇x log ρ̂t(x)∥2ρ̂t(x) dx, (27a)

∂ρ̂I(ρ̂
t(x)) = −2∆x log ρ̂

t(x)− ∥∇x log ρ̂t(x)∥2. (27b)

Thus, equations (23a) and (26) admit the linear decoupled Hamiltonian formulation described in
equation (3),

∂tρ̂
t(x) = ∂ŜH(·) = −∇x · (ρ̂t(x)∇xŜt(x));

∂tŜ
t(x) = −∂ρ̂H(·) = −1

2
∥∇xŜt(x)∥2 +

1

2
ε2∂ρ̂I(ρ̂

t(x)) + U(x),

governed by the Hamiltonian function,

H(ρ̂t, Ŝt) =
1

2

∫
M
∥∇xŜt(x)∥2ρ̂t(x) dx︸ ︷︷ ︸

Kinetic energy K

−
∫
M
U(x)ρ̂t(x) dx− 1

2
ε2I(ρ̂t(x))︸ ︷︷ ︸

Potential energy F

(28)

In this formulation, the Fisher information contributes to the potential energy and encodes the effect
of stochastic diffusion. Minimizing the Fisher information term promotes smoothness in the density
and steers the Hamiltonian flow toward the target distribution ρ1, providing greater robustness
due to the regularizing effect of diffusion. This mechanism has been studied in the literature and
employed in control applications for its regularization properties (Chen et al., 2025).

C.2 CONTACT HAMILTONIAN STRUCTURE OF THE NON-CONSERVATIVE GSB

Here we derive the contact Hamiltonian formulation of the NCGSB problem, introduced in equa-
tion (4) and discussed in Section 4. The structure of the derivation closely mirrors that of the GSB
in Appendix C.1, with one key distinction: the Lagrangian L now depends explicitly on the accu-
mulated action zt. Specifically, the augmented cost functional and Lagrangian are given by,

J(vt, ρt, St, zt) =

∫ 1

0

L(vt, ρt, St, zt) dt; (29)

L(vt, ρt, St, zt) =
∫
M

(
1

2
∥vt(x)∥2 + U(x)

)
ρt(x) dx− zt

+

∫
M
St(x)

(
∂tρ

t(x) +∇x · (ρt(x)vt(x))− ε∆ρt(x)
)
dx. (30)

Since L depends explicitly on the evolving action zt, the problem lies outside the scope of classical
variational calculus. Instead, it fits within the framework of non-conservative variational principles,
where the cost functional J evolves dynamically with the system. This is naturally addressed by the
Herglotz variational principle, which extends the Euler–Lagrange equations to systems with dissipa-
tive effects. The optimality conditions obtained from the variations of L, namely, the Herglotz-type
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Euler–Lagrange equations, for a generic field argument ψt(x) in this case take the form,

dψL = ∂ψL+ ∂t(∂∂tψL) +∇x · (∂∇xψL) + ∆x(∂∆x
L)− ∂zL ∂∂tψL = 0. (31)

Applying equation (31) for the fields vt, ρt, and St, and recovering the dynamics of zt from the
optimization problem (4), we obtain the following system of optimality conditions,

dvL = vt(x)ρt(x)− ρt(x)∇xSt(x) = 0 =⇒ vt(x) = ∇xSt(x), (32a)

dρL =
1

2
∥vt(x)∥2 − ∂tSt(x)−∇xSt(x) · vt(x)− ε∆xS

t(x) + U(x)− St(x) = 0, (32b)

dSL = ∂tρ
t(x) +∇x · (ρt(x)v(x))− ε∆xρ

t(x) = 0, (32c)

∂tz
t −

∫
M

(
1

2
∥vt(x)∥2 + U(x)

)
ρt(x) dx− zt = 0. (32d)

Compared to the optimality conditions for the GSB problem presented in equations (18), the set (32)
includes an additional term, −St(x), in equation (32b), which accounts for the dissipation term. By
substituting the expression for the optimal velocity from equation (32a) into equations (32c), (32b),
and equation (32d), we obtain the system of contact Hamiltonian dynamics,

∂tρ
t(x) = ∂SH(·) = −∇x · (ρt(x)∇xSt(x)) + ε∆xρ

t(x), (33a)

∂tS
t(x) = ∂ρH(·)− St(x)∂zH(·) = −1

2
∥∇xSt(x)∥2 − ε∆xS

t(x) + U(x)− St(x), (33b)

∂tz
t = St(x)∂SH(·)−H(·) =

∫
M

(
1

2
∥∇xSt(x)∥2 + U(x)

)
ρt(x) dx+ zt, (33c)

with the associated contact Hamiltonian function given by,

H(ρt, St, zt) =
1

2

∫
M
∥∇xSt(x)∥2ρt(x) dx−

∫
M
U(x)ρt(x) dx+ ε

∫
M
St(x)∆xρ

t(x) dx− zt.
(34)

In this case as well, it is beneficial to derive a decoupled and linearized representation of the
dynamics. To this end, we perform a coordinate transformation from the original variables
(ρt, St, zt) to an alternative canonical set (ρ̂t, Ŝt, ẑt), while preserving the contact structure. This
is achieved via a contact transformation generated by a generating function F , defined as,

F (ρt, St) =
1

2
St(x)ρt(x)− ερt(x)

(
log ρt(x)− 1

)
− 1

2
zt. (35)

which yields the transformed coordinates,

ρ̂t(x) = ∂SF (·) =
1

2
ρt(x), (36a)

Ŝt(x) = ∂ρF (·)− St(x) ∂zF (·) = St(x)− ε log ρt(x), (36b)

ẑt = St(x) ∂SF (·)− F (·) = zt + ερt(x)
(
log ρt(x)− 1

)
. (36c)

The coefficients 1
2 in equation (35) are required to eliminate exactly the nonlinear coupling term

St(x)∆xρ
t(x) from the Hamiltonian function. Indeed, by substituting the new coordinates (36) into

the dynamical system (33), we obtain the following transformed contact Hamiltonian dynamics,

∂tρ̂
t(x) = ∂ŜH(·) = −2∇x · (ρ̂t(x)∇xŜt(x)),

∂tŜ
t(x) = ∂ρ̂H(·)− Ŝt(x)∂ẑH(·) = −1

2
∥∇xŜt(x)∥2 +

1

2
ε2∂ρ̂I(ρ̂

t(x)) + U(x)

+ ẑt + 2ε log 2ρ̂t,

∂tẑ
t = Ŝt(x)∂ŜH(·)−H(·) =

∫
M

(
1

2
∥∇xŜt(x)∥2 + U(x)

)
ρ̂t(x) dx+

1

2
ε2I(ρ̂t)

− 2

∫
M
ε(log 2ρ̂t(x)− 1)ρ̂t(x) dx− ẑt,
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with the associated contact Hamiltonian function given by,

H(ρ̂t, Ŝt, ẑt) =
1

2

∫
M
∥∇xŜt(x)∥2ρ̂t(x) dx︸ ︷︷ ︸

Kinetic energy K

+ ẑt︸︷︷︸
Non-conservative potential

−
∫
M
U(x)ρ̂t(x) dx− 1

2
ε2I(ρ̂t)︸ ︷︷ ︸

Potential energy F

+2

∫
M
ε(log 2ρ̂t(x)− 1)ρ̂t(x) dx︸ ︷︷ ︸

Entropy B

.

(37)

C.3 GUIDED SCHRÖDINGER BRIDGE

We consider the bridge ρt, computed between the terminal marginals ρa and ρb, using any variant
of the SB problem (e.g., GSB, mmSB, NCGSB). This process can be modified to enforce desired
conditions y at any chosen time ts defined as,

y = f(xts), xts ∼ ρts , (38)

while preserving the underlying data manifold. Conditioning in this way modifies the probability
flow ρt (Guo et al., 2024) as,

ρt(x | y) = 1

Z
ρt(x) e−∥y−f(x̄ts )∥2

, (39)

where Z is a normalization constant, and x̄ts denotes a sample from the predicted prescribed dis-
tribution ρ̄ts conditioned on the current distribution ρt. This weight biases the generation toward
samples that satisfy the desired property y. In a dynamical setting, we perform this conditioning by
incorporating a control term Gt into the Fokker–Planck dynamics,

∂tρ
t(x) +∇x ·

[
ρt(x)

(
vt(x) +Gt(x)

)]
= ε∆xρ

t(x). (40)

A naive choice such as Gt(x) ∝ ∇xtf(xt) often drives the dynamics off the data manifold, produc-
ing unrealistic samples far from it and the target distribution ρb. Instead, Bayes’ rule provides the
correct structure of the guidance term. The gradient of the conditional log-likelihood decomposes
as,

∇xt log ρt(xt | y) = ∇xt log ρt(xt) +∇xt log ρt(y | xt)︸ ︷︷ ︸
estimated byGt

. (41)

Substituting the conditional form from equation (39) yields,

Gt(x) = ∇xt log e−∥y−f(x̄ts )∥2

= −∇xt∥y − f(x̄ts)∥2. (42)

Specifically, in the NCGSB framework (4), this guidance is incorporated directly into the drift vt by
adding the penalty ∥y − f(x̄ts)∥2 to the Lagrangian in the action dynamics constraint (4b),

min
vt

J(vt, ρt) =

∫ 1

0

∂tz
t dt,

s.t. ∂tz
t =

∫
M

(
1

2
∥vt(x)∥2 + U(x) + ∥y − f(x̄ts)∥2

)
ρt(x) dx− zt,

∂tρ
t(x) +∇x ·

(
ρt(x) vt(x)

)
= ε∆xρ

t(x),

ρ0 = ρa, ρ1 = ρb, ρtm = ρm, ∀m ∈ {1, . . . ,M}.

(43)

Here, the inclusion of ∥y − f(x̄ts)∥2 in the Lagrangian produces the desired −∇xt∥y − f(x̄ts)∥2
correction in the drift, while preserving the Schrödinger bridge structure and constraints.

D RESNET PARAMETERIZATION FOR DISCRETE GEODESICS

D.1 GEOMETRIC INTERPRETATION

As stated in the main paper, our objective is to compute a geodesic ρt on P+(M), induced by
the contact Hamiltonian dynamics, that is constrained to pass through a set of observed marginals
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{ρa, ρm, ρb} (i.e., discretized distributions along the probability path). These constraints naturally
lead to a discretized parameterization of ρt, where the overall density transformation is modeled as a
composition of maps, each connecting a pair of consecutive observations. In this context, a ResNet
architecture is ideally suited for this problem, as its sequential block structure directly mirrors this
piecewise, compositional nature of the approximated geodesic.

Geometrically, each parameterized pushforward defines a vector ∂tρtkθ in the tangent space of ρtk−1

θ ,
representing its change rate. The pair (ρ

tk−1

θ , ∂tρ
tk
θ ) thus corresponds to a point on the tangent

bundle T P+(M), with parameters θk ∈ Θ representing one of the possible coordinate charts for
this update. As such, the parameter space Θ forms a finite–dimensional subspace of T P+(M) (see
Fig. 5). The block transformation defines a smooth immersion Tθk : Θ→ T P+(M) with full-rank
Jacobian ∇xTθk , ensuring the pullback of the Wasserstein metric gW2 to Θ, denoted T ∗

θ g
W2 , is

well-defined and induces a Riemannian structure. This Riemannian metric identifies Θ with its dual
Θ∗ via the standard tangent–cotangent isomorphism (do Carmo, 1992). Consequently, the contact
Hamiltonian dynamics on T ∗P+(M)×R can be equivalently expressed in the reduced phase space
Θ∗ × R (Wu et al., 2025). At the same time, the Wasserstein manifold is approximated by the
finite-dimensional submanifold P+

θ (M), whose tangent space is T P+
θ (M) = Θ.

D.2 TRAINING ALGORITHM

Algorithm 1 Training the Contact Wasserstein Geodesic (CWG) Framework

Input: Dataset: samples from marginals xa, {i,j} ∼ ρa, xb, {i,j} ∼ ρb, xn, {i,j} ∼ {ρn}Nn=1.
Output: A trained ResNet T{θk}K

k=0
.

Part I: Initialization to Match the Initial Marginal
1: for i = 1 to E do ▷ Epoch loop
2: for j = 1 to B do ▷ Batch loop
3: xs ∼ λ ▷ Sample from reference distribution
4: xt0 = Tθ0(x

s) ▷ Apply initial block
5: minθ0 d

2
W2

(xt0 , xa, {i,j}) ▷ Match initial marginal
6: end for
7: end for

Part II: Geodesic Optimization
8: for i = 1 to E do
9: for j = 1 to B do

10: xs ∼ λ ▷ Sample from reference distribution
11: {xt0 , xt1 , . . . , xtK} = T{θk}K

k=0
(xs) ▷ Full ResNet transformation

12: minθ\θ0 ℓ({xtk}Kk=0, xb, {i,j}, xn, {i,j}) ▷ Minimize geodesic loss (equation (9))
13: end for
14: end for

D.3 TIME COMPLEXITY AND PRACTICAL CONSIDERATIONS

At each iteration of the geodesic optimization of Alg. 1, we sample N points xs ∈M of dimension
d from the reference distribution λ and pass them through the ResNet. Assuming its architecture
consists of K blocks, each being an MLP of L layers and hidden dimension W , the computational
cost of this forward pass is O(N dK LW ). The loss function ℓ in equation (9) requires M + K
evaluations of the Wasserstein distance between sample batches, and K evaluations of the factor
Φtk . For the Wasserstein distance, we employ the geomloss library (Feydy, 2020), which uses
the Sinkhorn algorithm with time complexity O(N(d+ Tsh)), where Tsh is the number of Sinkhorn
iterations until convergence (Feydy, 2020). To evaluate Φtk , we apply its complete definition,

Φtk = Htk +

∫
M

[
U
(
xtk

)
− 2ε

(
log

(
2ρtkθ

)
− 1

)]
ρtkθ dx+ 1

2ε
2I(ρtkθ ), (44)

to a batch of samples. As discussed in Sec. 3, the Fisher information I(ρtkθ ) in the potential energy
originates from the entropy regularization in the SB formulation and does not require explicit com-
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putation. Its effect is implicitly captured by the entropy-regularized Wasserstein distance. Therefore,
evaluating Φtk reduces to computing the scalar functions H and U , along with estimating the en-
tropy term log(2ρtkθ ) ρtkθ , which is the computational bottleneck. This term can be estimated using a
k-NN entropy estimator with time complexity O(dN logN) (Borelli et al., 2022). Considering all
components, and given that K ≥M , the overall time complexity becomes,

O(N dK LW )+O
(
N(K+M)(d+Tsh)

)
+O(K dN logN) ≈ O

(
NK

(
Tsh+d(LW+logN)

))
.

(45)
Our method demonstrates highly favorable scaling properties, offering a significant advantage over
existing approaches. Notably, its computational complexity scales linearly with data dimensional-
ity d and nearly linearly with the batch size N . This stands in stark contrast to existing methods
like (Hong et al., 2025), which scale quadratically in N and potentially exponentially in d. Fur-
thermore, our model’s performance is only weakly influenced by the number of marginals and it
circumvents the expensive outer iteration loops required for convergence in methods like (Chen
et al., 2023; Shen et al., 2025).

E IMPLEMENTATION DETAILS

E.1 EMPIRICAL APPROXIMATION OF THE WASSERSTEIN-2 DISTANCE

Let ρc and ρd be two probability distributions from which we draw batches of samples {xc,i}Ni=1 ∼
ρc and {xd,j}Mj=1 ∼ ρd, respectively. The Wasserstein-2 distance, denoted by dW2

(ρc, ρd), measures
the minimal cost of transporting mass between these two distributions. To approximate this distance
empirically, we first construct a cost matrix C ∈ RN×M , where each entry,

Cij = ∥xc,i − xd,j∥2, (46)

represents the squared Euclidean distance between sample xc,i and sample xd,j . A transport plan is
then defined as a matrix π ∈ RN×M

+ that assigns how much mass to move from each xc,i to each
xd,j , minimizing the total transport cost weighted by C. To avoid degenerate solutions where all
mass is concentrated on a few points, entropy regularization is introduced, encouraging smoother
and more distributed transport plans. For this computation, we employ the SamplesLoss function
from the geomloss library (Feydy, 2020), with parameters resumed in Table 7.

In the conditional generation setting, the probability flow ρt(x | y) is conditioned on the feature y =
f(xts), with xts ∼ ρs, to ensure that the generated samples satisfy y at time step ts. Therefore, when
comparing the prescribed distribution ρs with a marginal ρm, a modified Wasserstein-2 distance
d′W2

(ρs, ρm) incorporating the feature penalty is used. This distance is defined via the cost matrix

Cij = ∥xtsi − xm,j∥
2 + ∥y − f(xm,j)∥2, (47)

which penalizes transport plans assigning mass to samples xm,j inconsistent with the conditioning
feature y.

F EXTENDED RESULTS

F.1 EXPERIMENTAL SETUP

The LiDAR Manifold Navigation and Cell Sequencing experiments were conducted on a machine
equipped with 13th Gen Intel® Core™ i7-13850HX CPUs. The Image Generation experiment was
run on a system with an NVIDIA GeForce RTX5090 GPU (32GB VRAM, CUDA12.9, driver ver-
sion 575.64.03). Results for the LiDAR Manifold Navigation (Table 2), Single Cell Sequencing
(Table 3), Sea Temperature Prediction (Table 4 and Appendix F.4), and Robot Task Reconstruction
(Table 5) are based on a total of ten evaluations obtained from training runs with different initial
conditions. The tables report the mean and standard deviation of these distributions.

The ResNet architecture varies depending on the task. For the LiDAR Manifold Navigation and Cell
Sequencing experiments, each block is an MLP that processes the output of the previous block and
generates an update, which is added to the input with a step size τ : x ← x + τ block(x). Details
of this architecture are provided in Table 9. In contrast, for the Image Generation experiment, the
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input consists of images, and each block is implemented as a 2D U-Net. Details of this architecture
are provided in Table 10.

Parameter Value
Entropy 0.05
Euclidean norm order 2
Scaling 0.7

Table 7: SampleLoss parameters.

Parameter Lidar Cell Sea Robot
# samples N 1000 1000 200 100
Weight wb 10 10 100 10
Weight wm − 10 100 −
Weight wg 1 1 1 1

Table 8: Loss function (9) parameters for the experiments.

Component ResNet
Lidar Cell

Number of blocks K 20 5
Layers per block 3 3
Layer hidden size 30 128
Step size τ 0.1 0.1
Input dimension d 3 5

Table 9: Configuration of the ResNet

Component Image ResNet
Sea Robot

Number of blocks K 5 8
Input channels 1 3
Output channels 1 3
Layers per block 1 2
Downsampling blocks 2 (32 and 64 channels)
Upsampling blocks 2 (32 and 64 channels)
Step size τ 1 1
Input dimension d 4096 12288

Table 10: Configuration of the Image ResNet.

During training, the weights {wb, wm, wg} balancing the loss terms in equation (9),

ℓ = wb d
2
W2

(ρtKθ , ρb) + wm

M∑
m=1

d2W2
(ρ
tkm

θ , ρm) + wg

K∑
k=1

Φtk d2W2
(ρtkθ , ρ

tk−1

θ ),

along with the number of samples N used for Wasserstein distance estimation, are experiment-
specific and summarized in Table 8. The GPU memory consumption for the two image generation
experiments, comparing our CWG method with the baseline approaches, is reported in Table 11.
Due to the explicit handling of the full probability distribution (albeit in discretized form) within the
ResNet architecture, CWG exhibits particularly high memory requirements. In contrast, methods
such as GSBM and DSBM model only the drift component and subsequently integrate the dynamics.
While this makes them significantly more demanding in terms of computation time, they are more
memory-efficient than CWG.

Methodology CWG GSBM DSBM
Sea Temperature (MB) 25200± 200 9600± 300 9000± 200

Robot Task (MB) 16100± 200 12500± 300 10200± 200

Table 11: Comparison of GPU memory consumption across the methods evaluated in the Image Generation ex-
periment. CWG shows a decrease in memory usage for the Robotic Task Reconstruction experiments, whereas
the other methods exhibit an increase due to the reduced batch size used in this training (Table 8).

F.2 LIDAR MANIFOLD NAVIGATION

The LiDAR dataset (OpenTopography, 2025) consists of point clouds contained in the domain
[−5, 5]3 ⊂ R3. The objective of the experiment is to construct a bridge across the data manifold for
connecting two distributions while avoiding regions of high elevation and remaining closely aligned
with the manifold structure. The initial distribution ρa is composed by a mixture of 4 Gaussian
distributions, the target distribution ρb is composed of 2 Gaussians on the two sides of the mountain.
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The manifold shape is incorporated in the problem through the potential function U , inherited from
the baseline (Liu et al., 2024),∫

M
U(x)ρt(x) dx =

∫
M

(
Umanifold(x) + Uheight(x)

)
ρt(x) dx,

Umanifold(x) = wmanifold∥ψ(x)− x∥2, Uheight(x) = wheight∥ψ(z)(x)∥2.
(48)

Here, ψ(x) denotes the projection of a point x onto an approximate tangent plane, estimated from its
p nearest neighbors on the data manifold. The notation ψ(z)(x) refers to the z-coordinate of ψ(x),
i.e., the height of the fitted plane. The weights wmanifold and wheight control the relative importance
of the two terms in the potential function. We now detail the construction of ψ(x). Let Np(x) =
{xl1, . . . , xlp} denote the set of p nearest neighbors of x ∈ R3 in the dataset. To approximate the local
tangent plane, we employ a moving least-squares (MLS) procedure (Levin, 1998). Specifically, the
plane parameters (a, b, c) are obtained by solving,

min
a,b,c

1

p

p∑
i=1

w(x, xli)
(
ax

l(x)
i + bx

l(y)
i + c− xl(z)i

)2

, (49)

where the superscripts indicate coordinates and the weights are defined as,

w(x, xli) = exp
(
−∥x−xl

i∥
γ

)
, (50)

with γ being a scaling parameter. Given the fitted plane, the projection operator ψ(x) is defined as,

ψ(x) = x− x⊤n+ c

∥n∥2
n, n = [a b − 1]⊤, (51)

where n denotes the plane’s normal vector. Differentiation through ψ naturally restricts gradients to
this tangent plane, thereby ensuring that optimization of the state cost U evolves within the geometry
of the data manifold. The values of the parameters used in the computation of the projection operator
ψ(x) are provided in Table 12.

In the guided generation setting, the feature function f , defines as follows,

f(xb) = ReLU(wxx
(x)
b − bx) + ReLU(wyx

(y)
b − by), xb ∼ ρb (52)

is used to penalize samples from the terminal marginal distribution ρb on the left side of the moun-
tain. The parameters used in this experiment are listed in Table 13, and the results of guidance
fine-tuning are reported in Table 14. The training time (tt) metric shows that guiding the generation
requires only 10.7% of the original training time.

Table 12: Potential function U parameters for the
LiDAR Manifold Navigation experiment.

Parameter Value
Weight manifold wmanifold 5
Weight height wheight 1
Spatial scaling γ 0.1
# neighbor points p 20

Table 13: Parameters for the feature function f (52),
used for guided generation in the LiDAR Manifold
Navigation experiment.

Parameter Value
Weight (x) wx −1
Bias (x) bx 0
Weight (y) wy 1
Bias (y) by 0

F.3 SINGLE CELL SEQUENCING

The Embryoid Body (EB) stem cell differentiation dataset (Moon et al., 2019) captures cell state
progression across five developmental stages [t0, t1, t2, t3, t4] over a 27-day period. Snapshots were
collected at five discrete time intervals: t0 ∈ [0, 3], t1 ∈ [6, 9], t2 ∈ [12, 15], t3 ∈ [18, 21], and t4 ∈
[24, 27]. These stages involve significant structural changes, with cells moving and reorganizing
within increasingly stiff tissue while consuming and releasing mechanical energy (Zeevaert et al.,
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Table 14: Bridge energy J (↓) with penalty f in the LiDAR Manifold Navigation task, reported for our CWG
method before and after guidance fine-tuning.

Metric before after
J 12.31±0.18 2.49±0.43

tt (s) 280±20 310±25

2020; Kinney et al., 2014). Consequently, the resulting dynamics exhibit energy dissipation and are
better described by the NCGSB framework than by energy-conserving models. In this experiment,
we evaluate the framework’s ability to generalize to regions with no available data by dividing the
dataset into a training set [t0, t2, t4] and a validation set [t1, t3]. The geometry of the data manifold
is incorporated into the NCGSB problem through a potential function U , defined as,

U(xt) =
1

N1

N1∑
i=1

 1

N2

N2∑
j=1

e
1
γ ∥xt

j−xi∥2

(xtj − xi)
2

−1

, (53)

where xtj ∼ ρt denotes a sample from the posterior distribution, and xi ∼ {ρa, ρm, ρb} are samples
from the marginal distributions. N1 and N2 indicate the number of samples taken from ρt and
{ρa, ρm, ρb}, respectively, while γ represents a spatial scaling parameter. The exponential term acts
as a kernel-like weight that reduces the influence in the inverse summation

∑N1

i=1[·]−1 of the data
points far from the bridge. Globally, the potential function U measures the distance of the bridge ρt
from the available data {ρa, ρm, ρb} (the training set) and its minimization guides the construction
of a bridge that stays close to the known manifold while generalizing effectively to regions without
data (the validation set). While other approaches leveraging this dataset (Tong et al., 2020; Shen
et al., 2025) first embed the data into a 100-dimensional feature space using principal component
analysis (PCA) and then restrict the analysis to the first five dimensions, this procedure excessively
linearizes and flattens the data manifold, making navigation trivial and eliminating the need for
intermediate marginals (Shen et al., 2025). To better preserve the manifold’s geometry, we instead
apply the PHATE algorithm (Moon et al., 2019) to the 100-dimensional representation, producing a
5-dimensional nonlinear embedding that more faithfully captures the original structure.

In the results reported in Table 3, the scalar Hamiltonian function Htk in the pullback Jacobi metric,
T ∗
θ g̃J =

(
Htk − F(ρt) − B(ρt)

)
T ∗
θ g

W2 is linearly varied from an initial value Ht0 = 1 to a
final value HtK = 0.82. This law is treated as a hyperparameter of the methodology. All ten
experiments reported in Table 3 are conducted under this Hamiltonian behavior. A comparison
with the conservative case, where Ht0 = 1 is kept constant, is provided in Table 16. The superior
performance of the energy-varying case indicates that the problem is inherently non-conservative.

Table 15: Single Cell Sequencing Parameters.

Parameter Value
Spatial scaling γ 0.3
# bridge samples N1 1000
# marginal samples N2 3000

Table 16: Wasserstein error at validation (↓) and training
time (tt) (↓) in the ablation study comparing the energy-
varying (e-v) and energy-conserving (e-c) versions of
CWG on the Single Cell Sequencing task.

Metric CWG (e-v) CWG (e-c)
dW2

(xt1) 1.11±0.06 1.31±0.06

dW2
(xt3) 0.33±0.02 0.49±0.03

tt (s) 710±30 710±30

F.4 SEA TEMPERATURE PREDICTION

The NOAA OISST v2 High Resolution Dataset (Huang et al., 2021) is a long-term Climate
Data Record that integrates observations from multiple platforms (satellites, ships, buoys, and
Argo floats) into a global gridded product. For this experiment, we use daily averages of sea
surface temperature in the Gulf of Mexico between 1981 and 2024, represented as 64 × 64
single-channel images. We cluster the measurements over five-year periods and select five
representative months to define five time frames: January (t0), March (t1), May (t2), July
(t3), and September (t4). Each month corresponds to a distribution of images, denoted as
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{ρa (January), ρm1
(March), ρm2

(May), ρm3
(July), ρb (September)}. A sample from one of these

distributions is a heatmap of the Gulf’s temperature for a specific day in the corresponding month of
the specified five-year period. The goal of this test is to evaluate our method’s ability to interpolate
across missing time frames, generating realistic temperature maps for months without data. To this
end, we partition the dataset into a training set {t0, t2, t4} and a validation set {t1, t3}, and assess
the quality of predictions on the held-out months. To encourage generalization beyond the training
data, we introduce a potential function U that penalizes deviations from the learned data manifold.
Building on the approach of Song & Itti (2025), where generative models are evaluated by measur-
ing the distance between their outputs and a geometric manifold of real images learned by a VAE,
we adopt a similar strategy. Specifically, we use a state-of-the-art VAE architecture, with parameters
listed in Table 17, to learn the manifold of the training images in our dataset. The potential function
U(xt), for samples xt ∼ ρt, is then defined as the squared distance between a bridge sample xt and
its VAE-projected reconstruction x̃t = VAE(xt): U(xt) = ∥xt − x̃t∥2. Results for each five-year
periods are presented below.

In these results, the scalar Hamiltonian function Htk in the pullback Jacobi metric, T ∗
θ g̃J =

(
Htk −

F(ρt) − B(ρt)
)
T ∗
θ g

W2 is linearly varied from an initial value Ht0 = 1 to a final value HtK =
1.36. This law is treated as a hyperparameter of the methodology, and all ten experiments reported
in the following tables were conducted under this Hamiltonian behavior. The higher final energy
observed to be beneficial for the modeling of the warmer months can be associated with the increased
thermodynamical entropy of these cases, resulting in generally more diverse samples and larger
variation in the data manifold. By introducing higher energy, we encourage the model to effectively
capture this diversification, traversing regions of the data manifold that, in other contexts Arvanitidis
et al. (2018), are considered uncertain and typically avoided.

Table 17: Architecture of the ConvVAE used in the Sea Temperature Prediction experiment. All Conv2D and
ConvTranspose2D layers use kernel size 4, stride 2, and padding 1, followed by ReLU activations (except the
last layer, which uses Sigmoid).

Stage Layer (channels) Output size
Input Single-channel image 1× 64× 64

Encoder
Conv2D (1→32) 32× 32× 32
Conv2D (32→64) 64× 16× 16
Conv2D (64→128) 128× 8× 8
Flatten 8192

Latent space Linear→ µ 5
Linear→ log σ2 5

Decoder
Linear→ reshape 128× 8× 8
ConvT2D (128→64) 64× 16× 16
ConvT2D (64→32) 32× 32× 32
ConvT2D (32→1), Sigmoid 1× 64× 64

Table 18: FID scores at training and validation steps (↓), and training time (tt) (↓) in Sea Temperature (2020–
2024).

Metric CWG GSBM DSBM
FID(xt0) 41.56±1.89 − −
FID(xt1) 121.47±5.61 160.68±4.54 242.26±9.94

FID(xt2) 51.51±5.52 54.47±5.88 56.51±5.78

FID(xt3) 159.53±7.38 185.54±7.11 235.83±10.44

FID(xt4) 61.48±6.79 59.14±5.52 58.39±6.13

tt (s) 1030±50 73600±3200 19100±900
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Table 19: FID scores at training and validation steps (↓) in Sea Temperature (2015–2019).

Metric CWG GSBM DSBM
FID(xt0) 42.96±2.07 − −
FID(xt1) 130.33±5.94 145.97±6.12 220.76±8.61

FID(xt2) 58.72±5.46 62.13±5.69 65.47±6.16

FID(xt3) 135.25±6.73 142.82±7.27 228.14±9.26

FID(xt4) 63.02±6.14 59.73±5.86 61.29±6.05

Table 20: FID scores at training and validation steps (↓) in Sea Temperature (2010–2014).

Metric CWG GSBM DSBM
FID(xt0) 45.19±2.27 − −
FID(xt1) 132.47±6.58 168.93±6.24 255.36±10.19

FID(xt2) 60.57±6.08 59.79±5.98 61.89±6.23

FID(xt3) 140.84±6.01 144.60±6.83 235.08±9.07

FID(xt4) 54.92±5.23 51.63±5.55 50.27±5.94

Table 21: FID scores at training and validation steps (tt) (↓) Sea Temperature (2005–2009).

Metric CWG GSBM DSBM
FID(xt0) 47.28±2.43 − −
FID(xt1) 172.69±7.62 195.83±8.04 260.97±10.92

FID(xt2) 56.08±5.52 59.57±5.87 62.03±6.29

FID(xt3) 126.87±6.94 152.26±6.63 243.58±10.39

FID(xt4) 66.43±6.58 63.17±6.34 64.86±6.63

Table 22: FID scores at training and validation steps (↓) in Sea Temperature (2000–2004).

Metric CWG GSBM DSBM
FID(xt0) 49.83±2.64 − −
FID(xt1) 140.48±7.93 172.96±8.34 250.86±11.08

FID(xt2) 56.73±5.36 56.97±5.79 59.64±6.10

FID(xt3) 142.18±7.01 179.42±6.98 265.78±10.67

FID(xt4) 68.29±6.97 65.91±6.68 64.73±6.91

Table 23: FID scores at training and validation steps (↓) in Sea Temperature (1995–1999).

Metric CWG GSBM DSBM
FID(xt0) 51.79±2.71 − −
FID(xt1) 138.92±7.35 176.14±7.03 257.26±10.93

FID(xt2) 60.19±6.01 63.48±6.12 66.07±6.57

FID(xt3) 154.37±8.14 193.28±8.47 266.86±11.34

FID(xt4) 69.57±7.02 66.83±6.69 66.18±6.94

Table 24: FID scores at training and validation steps (↓) in Sea Temperature (1990–1994).

Metric CWG GSBM DSBM
FID(xt0) 54.87±2.93 − −
FID(xt1) 145.59±7.82 184.37±7.46 258.97±11.26

FID(xt2) 72.38±6.42 78.69±6.71 82.13±7.04

FID(xt3) 160.08±7.97 181.67±8.19 236.46±11.59

FID(xt4) 73.42±7.19 70.68±6.87 69.83±7.09
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Table 25: FID scores at training and validation steps (↓) in Sea Temperature (1985–1989).

Metric CWG GSBM DSBM
FID(xt0) 56.97±3.08 − −
FID(xt1) 151.27±8.13 188.79±7.68 262.47±11.64

FID(xt2) 66.89±6.31 69.19±6.47 71.23±7.08

FID(xt3) 157.58±8.73 160.37±8.91 258.96±11.78

FID(xt4) 66.02±7.41 62.87±7.16 61.59±7.34

Table 26: FID scores at training and validation steps (↓) in Sea Temperature (1981–1983).

Metric CWG GSBM DSBM
FID(xt0) 59.97±3.20 − −
FID(xt1) 166.08±8.91 188.79±9.02 252.59±12.03

FID(xt2) 69.29±6.65 71.68±6.74 73.87±7.26

FID(xt3) 168.73±8.46 185.57±8.08 260.47±11.92

FID(xt4) 77.83±7.68 74.97±7.34 74.29±7.57

F.5 ROBOTIC TASK RECONSTRUCTION

BridgeData V2 (Walke et al., 2023) is a large and diverse dataset of robotic manipulation behaviors,
designed to advance research in scalable robot learning. In this experiment, our goal is to reconstruct
the full video of a robot performing manipulation tasks while training the network only on images
from the beginning and end of the sequence, interpreted as samples from the endpoint distributions
ρa and ρb. No intermediate marginals ρm are used. Following the Sea Temperature Prediction
experiment, we introduce a potential function U that penalizes deviations from the learned data
manifold. This manifold is learned from the initial and final frames of the videos, and the penalty
encourages plausible intermediate frames consistent with these distributions. We employ a state-
of-the-art VAE architecture, with parameters listed in Table 27, to model the image manifold. The
potential function U(xt) for samples xt ∼ ρt is defined as the squared distance between a bridge
sample xt and its VAE reconstruction x̃t = VAE(xt): U(xt) = ∥xt − x̃t∥2. Figure 7 presents
snapshots of the reconstructions produced by our CWG method compared to the baselines. In this
experiment, the Hamiltonian function Htk is held constant, as varying it yields no apparent benefit.

In the guided generation setting, we define the feature function f as

f(xb) = ReLU(wcc
(x)
b − bc), (54)

where c(x)b denotes the (x)-coordinate pixel position of the centroid corresponding to the target
location of the item placed by the robot, extracted from the image xb sampled from the reference
marginal ρb. We impose a penalty f on this image (parameters of this function are available in Table
28) so that samples corresponding to placements in undesired locations are discouraged, while those
leading to desirable targets are favored.

The centroid extraction is performed by applying morphological opening and closing operations
from the OpenCV library to remove noise and refine object boundaries, followed by color-based
masking to isolate the object of interest.
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Figure 10: Reconstructions from CWG (top), GSBM (middle), and DSBM (bottom) in the Robot Task Recon-
struction experiment. Red row shows the reference.

Table 27: Architecture of the ConvVAE used in the Robot Task Reconstruction experiment. All Conv2D and
ConvTranspose2D layers use kernel size 4, stride 2, and padding 1, followed by ReLU activations (except the
last layer, which uses Sigmoid).

Stage Layer (channels) Output size
Input Single-channel image 3× 64× 64

Encoder
Conv2D (3→32) 32× 32× 32
Conv2D (32→64) 64× 16× 16
Conv2D (64→128) 128× 8× 8
Flatten 8192

Latent space Linear→ µ 2
Linear→ log σ2 2

Decoder
Linear→ reshape 128× 8× 8
ConvT2D (128→64) 64× 16× 16
ConvT2D (64→32) 32× 32× 32
ConvT2D (32→3), Sigmoid 3× 64× 64

Table 28: Parameters for the feature function f (54), used for guided generation in the Robot Task Reconstruc-
tion experiment.

Parameter Value
Weight wc 1
Bias bc 30
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