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ABSTRACT

Non-iid data is prevalent in real-world federated learning problems. Data hetero-
geneity can come in different types in terms of distribution shifts. In this work, we
are interested in the heterogeneity that comes from concept shifts, i.e., shifts in the
prediction across clients. In particular, we consider multi-task learning, where we
want the model to adapt to the task of the client. We propose a parameter-efficient
framework to tackle this issue, where each client learns to mix between parameter-
efficient adaptors according to its task. We use Low-Rank Adaptors (LoRAs) as the
backbone and extend its concept to other types of layers. We call our framework
Federated Low-Rank Adaptive Learning (FLoRAL). This framework is not an
algorithm but rather a model parameterization for a multi-task learning objective,
so it can work on top of any algorithm that optimizes this objective, which includes
many algorithms from the literature. FLoRAL is memory-efficient, and clients
are personalized with small states (e.g., one number per adaptor) as the adaptors
themselves are federated. Hence, personalization is–in this sense–federated as
well. Even though clients can personalize more freely by training an adaptor
locally, we show that collaborative and efficient training of adaptors is possible
and performs better. We also show that FLoRAL can outperform an ensemble
of full models with optimal cluster assignment, which demonstrates the benefits
of federated personalization and the robustness of FLoRAL to overfitting. We
show promising experimental results on synthetic datasets, real-world federated
multi-task problems such as MNIST, CIFAR-10, and CIFAR-100. We also provide
a theoretical analysis of local SGD on a relaxed objective and discuss the effects of
aggregation mismatch on convergence.1

1 INTRODUCTION

––––
...

____

Figure 1: Personalization for client k by
mixing C adaptors.

In Federated Learning (FL), clients serve as decentralized
holders of private data, and they can collaborate via secure
aggregation of model updates, but one of the main chal-
lenges is the heterogeneity of the clients (Kairouz et al.,
2021). For example, heterogeneity can be in terms of data
distributions (statistical heterogeneity) or client capabil-
ities (system heterogeneity) (Gao et al., 2022). In this
work, we are interested in a statistical heterogeneity where
labels are predicted differently across clients. In particular,
this can be viewed under the lens of multi-task learning
(Marfoq et al., 2021) or clustering (Werner et al., 2023)
such that there are only a few ground-truth tasks or clusters
across all clients.

The central assumption in our work is that the personalized
models across clients should be similar enough to benefit
from collaboration, but they also need to be sufficiently
different and expressive to fit and generalize on their per-
sonal data. The differences between clients can be thought

1Code: https://anonymous.4open.science/r/FLoRAL-8478
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of as 1) statistical in terms of data (e.g., shifts in distributions) or structural in terms of model (e.g.,
structured differences in subsets of parameters). To learn these differences efficiently, we often
assume that they are low-complexity differences.

Most approaches maintain that the personalized models are either close in distance to the global
model via proximal regularization (Li et al., 2021a; Sadiev et al., 2022; Beznosikov et al., 2021) or
meta-learning (Fallah et al., 2020), or that the personalized models belong to a cluster of models
(Marfoq et al., 2021; Werner et al., 2023). Other approaches also assume model heterogeneity, where
clients might have a local subset of parameters that are not averaged (Pillutla et al., 2022; Mishchenko
et al., 2023) where it can personalize to the local task by construction (Almansoori et al., 2024). For
example, a specific subset of parameters can be chosen to be the last layer or some added adaptors.

It has been shown that fine-tuning works particularly well for personalization (Cheng et al., 2021).
One well-known example is using Low-Rank Adaptors (LoRA) (Hu et al., 2021) for personalizing
large language models to different tasks, where the fine-tuning is done on additive low-rank matrices.
Thus, the personalized models differ from the base model only in low-rank matrices. Inspired by
the efficiency of low-rank adaptors in multi-task learning for language models and the idea that fine-
tuning changes parameters along a low-dimensional intrinsic subspace (Li et al., 2018; Aghajanyan
et al., 2020), we use low-rank adaptors in the FL setting and show that they can offer significant
improvements with a relatively small memory budget.

Thus, instead of regularizing the complexity of a personalized model by its proximity to a reference
solution or clustering full models, we explicitly parameterize the personalized models as having
low-rank differences from the global model. This is done by introducing a small number of low-
rank adaptors per layer and a mixture vector per client that mixes between those adaptors. Thus,
it implicitly regularizes the personal models through a weight-sharing mechanism that enforces a
low-rank difference from the global model. Our approach can be seen as a hybrid that 1) explicitly
constrains the complexity of the difference (per layer) between the global model and the personalized
model and 2) casts the problem of learning these differences as a multi-task learning problem via
the local mixture vectors. The main benefit of this approach is that low-rank adaptors can also be
federated, i.e., collaboratively learned, and the number of local personalization parameters per client
is minimal. This means our approach can be efficiently employed in the cross-device setting as well.

Contributions Here, we summarize our contributions:
1. We propose the Federated Low-Rank Adaptive Learning (FLoRAL), an efficient and lightweight

FL framework for personalization. It acts as an extension to multi-task learning algorithms that
are specifically designed for FL.

2. Perhaps counter-intuitively, we show experimentally that a model with a mixture of adaptors
can beat a mixture of models, even though the number of parameters is significantly larger, e.g.,
9x larger. Also, a model with a mixture of adaptors on stateless clients (e.g., see Section 5) can
generalize better than a model with a dedicated fine-tuned adaptor on stateful clients. This is a
perfect demonstration of the efficiency of FLoRAL and the benefits of collaborative learning.

3. We release the code for this framework, which includes plug-and-play
wrappers for PyTorch models (Paszke et al., 2019) that are as simple as
Floral(model, rank=8, num_clusters=4). We also provide minimal exten-
sions of Flower client and server modules (Beutel et al., 2022), making the adoption of our
method in practice and reproducing the experiments seamless and easy.

4. We run various experiments and ablation studies showing that our FLoRAL framework is efficient
given resource constraints in terms of relative parameter increase.

5. We provide the convergence rate for local SGD on a multi-task objective with learnable router
and highlight the difficulties that arise from aggregation mismatch. We also provide an extended
analysis in the appendix showing better variance reduction from weight sharing.

2 RELATED WORK

Multi-task Learning Our problem can be seen as a multi-task learning problem in which the
solutions share a base model. The closest work to ours in this respect is FedEM (Marfoq et al.,
2021), which works by assigning to each client a personalized mixture vector that mixes between

2
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a small number of full models such that each model solves one task. FedEM then proceeds with
an algorithm based on expectation maximization. One problem is that their approach assumes that
the full models should be mixed. In contrast, we assume that the mixed components are only the
adaptors, which constitute a small fraction of the model and are thus much more efficient in terms
of memory. Other related works on clustering include IFCA (Ghosh et al., 2020), FedSoft (Li et al.,
2022), and Federated-Clustering (Werner et al., 2023). The main difference from our work is that we
only cluster a small component of the whole model, allowing the clients to benefit from having a
shared base model that is learned among all the clients.

Personalization Another approach to personalization is by introducing a proximal regularizer with
respect to a reference model. Ditto (Li et al., 2021a) is a stateful algorithm that trains the local models
by solving a proximal objective with respect to a reference model. The reference model is the FedAvg
solution, which is attained concurrently by solving the non-regularized objective. Meta-learning
approaches, inspired by Finn et al. (2017), can extend naturally to personalization. For example,
Fallah et al. (2020) propose to solve a local objective that is an approximate solution after one local
gradient step. Meta-learning also assumes that the local solutions are close to the FedAvg solution
as they mimic fine-tuning from the FedAvg solution in some sense. In our approach, we do not
assume that the clients are stateful nor that the FedAvg solution is meaningful or close to any of the
local solutions. We assume that the local models can benefit from collaboration but still allow for
personalization via different mixtures, which is much more memory efficient and can be managed by
the server.

LoRA Using mixture of LoRAs in FL is not new due to their popularity. The idea of mixing LoRAs
has been explored recently (Wu et al., 2024b) for language models. SLoRA (Babakniya et al., 2023)
focuses on parameter-efficient fine-tuning after federated training and thus does not federate the
adaptors. Both FedLoRA (Wu et al., 2024a) and pFedLoRA (Yi et al., 2024) assume that the LoRAs
are not federated as well, where they both also introduce a specific two-stage algorithm to train those
LoRAs. The federated mixture of experts (Reisser et al., 2021) trains an ensemble of specialized
models, but they specialize in input rather than prediction. FedJETs (Dun et al., 2023) uses whole
models as experts in addition to a pre-trained feature aggregator as a common expert that helps the
client choose the right expert. Other works explore mixture of LoRAs (Zhu et al., 2023; Yang et al.,
2024) for adaptation but in a different, non-collaborative context.

Representation Learning Other successful approaches in FL work by feature, prototype, or
representation aggregation (Tan et al., 2022; Nguyen et al., 2022; Zhang et al., 2023), which makes
them orthogonal to our work.

3 PRELIMINARY

Notation We denote [N ] = {1, 2, . . . , N}. We reserve some indices for specific objects: k ∈ [K]
is a superset index2 denoting the client with K being the number of clients, and c ∈ [C] is a subset
index denoting the cluster with C being the number of clusters. The number of clients in cluster c
is Kc. The client sampling distribution is K, or Kc when given cluster c. The number of samples
in client k is Nk, and the total number of samples is N =

∑K
k=1 N

k. We will use bold lowercase
characters to denote vectors, e.g., w denotes a vector of parameters, and uppercase bold characters
for matrices, e.g., W + L denotes the adaptive layer. As a relevant example, the adaptive parameters
can be written in vector form as w = [vec(W)⊤ vec(L)⊤]⊤, where vec(·) is a vectorization operator.
A simplex ∆C−1 is such that

∑C
c=1 πc = 1 and πc ≥ 0 (∀c ∈ [C]) for all π ∈ ∆C−1.

3.1 FEDERATED LEARNING

Federated learning (FL) is a framework for training a model on distributed data sources while the
data remains private and on-premise. Let K be the number of clients and the local loss function for
client k be fk(w). The global objective is

min
w

Ek∼K[f
k(w)], (FL)

2We reserve the superset for clients and the subset for clusters.
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where K is a client distribution with support [K]. The functions fk(w) can be stochastic as well.

The most straightforward algorithm for optimizing (FL) is FedAvg (McMahan et al., 2023), which
proceeds in a cycle as follows: 1) send copies of the global model to the participating clients, 2) train
the copies locally on the client’s data, and then 3) send back the copies and aggregate them to get the
new global model.

The objective (FL) assumes that a single global model can obtain an optimal solution that works for
all the objectives, which is often not feasible due to heterogeneities in data distribution and system
capabilities (Kairouz et al., 2021). A natural approach would be to consider personalized solutions
wk for each client k, an approach called PersonalizedFL (PFL).

min
{wk}K

k=1

Ek∼K[f
k(wk)] + Γ(w1, · · · ,wK). (PFL)

Without the regularizer Γ, the objective would simply amount to local independent training for each
client, so clients do not benefit from collaboration and can suffer from a low availability of data.
Adding the regularizer Γ helps introduce a collaboration incentive or inductive bias. For example,
Ditto has Γ(w1, · · · ,wK ;w∗) = λ

2

∑K
k=1∥wk −w∗∥2, where w∗ is the solution of (FL), which

implies that the personalized solutions should stay close to the (FL) solution.

The Ditto (Li et al., 2021a) objective still assumes that a single global solution is a good enough
center for all clients, which can be limiting and impractical for real-world heterogeneous problems.
Given a proximal regularization, an improvement on this assumption would be to introduce more
than one center or cluster, such that clients belonging to some cluster are close to its center. The
problem of finding the cluster centers is called Clustered FL (CFL).

Let C be the number of ground-truth clusters and assume that it is known. Let Kc be the client
sampling distribution of cluster c. We can reformulate the objective to account for clusters as follows

min
{wc}C

c=1

C∑
c=1

Ek∼Kc [f
k(wc)]. (CFL)

We can generalize the previous objectives under one objective by introducing (learnable) client
mixtures πk ∈ ∆C−1 for all k ∈ [K] with regularization Γ, e.g. for weight sharing, which we denote
as Mixed Federated Learning (MFL)

min
{wc}C

c=1,{πk}K
k=1

C∑
c=1

Ek∼K
[
πk
c f

k(wc)
]
+ Γ({wc}Cc=1),

s.t. πk ∈ ∆C−1,∀k ∈ [K], .

(MFL)

We can see that local losses from different clusters are mixed differently according to each client.
From this formulation, the previous optimization problems can be recovered with the following
settings

Γ(·) = 0 and C = 1 −→ (FL),

C = K and πk
c = 1{k = c} −→ (PFL),

Γ(·) = 0 and πk
c = 1{k ∈ supp(Kc)} −→ (CFL),

where 1 is the indicator function.

Finally, in our formulation we use particular form of Γ, where we split wc as wc = [uc,ac] and
define

Γ({wc}Cc=1) =

{
0 if ui = uj ∀i, j ∈ [C],

+∞ otherwise.
This weight-sharing across clients is based on the inductive bias that the optimal personalized solutions
have low-complexity differences across the population (i.e., differences that could be explained in
a parameter-efficient way). Therefore, in the rest of the paper, we do not use Γ({wc}Cc=1), but we
replace it with explicit parametrization, where wc = (u,ac). We refer to {ac}c∈[C] as adaptors. The
final objective, which we call MFL with Weight Sharing (MFL-WS), is of the form

min
u,{ac}C

c=1,{πk}K
k=1

C∑
c=1

Ek∼K
[
πk
c f

k(u,ac)
]

s.t. πk ∈ ∆C−1,∀k ∈ [K].

(MFL-WS)

4
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In the next section, we discuss the particular choice of adaptors.

3.2 PARAMETER-EFFICIENT ADAPTORS

Linear layer This LoRA was introduced in (Hu et al., 2021). Let W ∈ Rdout×din be the base
linear layer. We introduce a low-rank adaptive layer L := UV⊤ with rank r, where U ∈ Rm×r and
V ∈ Rn×r. We initialize L such that U is random (or initialized similarly to W) and V is zero. The
low-rank adaptive layer W̃ is

W̃ := W + L = W +UV⊤. (1)

Relative parameter budget It is easy to see that the number of parameters in a linear LoRA is
(m+ n)r, which can be much smaller than mn for small r. We can have a constraint on the number
of parameters relative to the model size, i.e., (m+n)r ≤ ρmn, where ρ > 0 is the relative parameter
budget per adaptor (e.g., ρ = 0.01 for a maximum of 1% increase in model size per adaptor). Given
a specific ρ based on system capabilities, r can be automatically set to be the maximum such that
r ≤ ρmn/(m+ n), or just r = ⌊ρmn/(m+ n)⌋. Note how r attains its largest values when m = n,
where the equation simply becomes r ≤ ρn/2. We hereafter refer to ρ as the budget (per adaptor),
and set it to either 1% or 10% in the experiments. Note that for certain models, it is impossible to
satisfy the budget if ρmn/(m+ n) < 1, so we enforce a minimum rank of 1 (otherwise, there will
be no adaptors).

Convolution layer Consider a 2D convolution layer. Let W ∈ Rcout×cin×k1×k2 be the base
convolution layer. We similarly introduce a “low-rank” adaptive convolution layer L = U ∗ V
with rank r, such that the adaptive convolution W̃ becomes (W + L) ∗ x = W ∗ x + L ∗ x =
W ∗ x+U ∗ (V ∗ x), where ∗ is the convolution operator. We call these adaptive layers Convolution
LoRAs (ConvLoRAs), which are more general than a linear LoRA on a matricized convolution as is
often done in practice, e.g., in the official implementation (Hu et al., 2021).

We can have more than one way of defining U and V. Note that one of the convolutions in the
adaptor should share the same padding, stride, and dilation as the base convolution, while the other
should be such that it does not change the resolution of the input. Depending on what is meant by
“rank” for convolution layers, we can either reduce the rank channel-wise, filter-wise, both, or as a
linear layer by matricizing the convolution. We discuss these in detail in Appendix F.1 and show that
a novel channel+filter-wise implementation is more parameter-efficient and performs better. More
details about low-rank constructions of convolution layers can be found in (Jaderberg et al., 2014;
Khodak et al., 2022).

Bias Biases are vectors, so a low-rank parameterization would not be possible, and there is no
straightforward way to have a parameter-efficient adaptor except by considering weight-sharing or a
single constant. Due to biases contributing a small percentage of the overall number of parameters in
large models, we consider adaptive biases as b+ Lb with extra biases Lb initialized to 0. Although
this adaptor is not parameter-efficient relative to b, the small impact on the overall parameter count
means that this is not a significant limitation. Moreover, as demonstrated in Appendix G.3, this
approach can be crucial for achieving optimal accuracy.

4 ANALYSIS FOR (MFL)

In order to connect the analysis with our FLoRAL framework, we can consider a vector pa-
rameterization of the model given client k and cluster c as in (MFL-WS). Namely, we have
wk

c,t = (uk
t ,a

k
c,t), where it is understood as the concatenation of the two vectors with the em-

phasis that uk
t does not depend on the cluster. For example, uk

t = vec(Wk
t ) can be the base layer

and akc,t = (vec(Uk
c,t)⊤ vec(Vk

c,t)
⊤)⊤ can be the LoRA adaptor. The analysis proceeds without

assumptions on the form of wk
c,t. In Appendix B, we show the benefits of weight-sharing under

suitable assumptions that make use of such a structure.

Recall πk ∈ ∆C−1 the ground-truth router of client k. In general, the probability of sampling a
single client k is often chosen to be proportional to the number of its data points, i.e., p(k) ∝ Nk

5
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(note this is different from sampling a cohort, which is explained below). On the other hand,
the probability that client k samples cluster c is p(c|k) = πk

c by construction. Since we have
p(k, c) = p(c|k)p(k) ∝ πk

cN
k, we can divide p(k, c) by p(c) =

∑
k p(k, c) to get p(k|c). Overall,

we have p(c|k) = πk
c by construction and p(k) = Nk

N by assumption, so that

p(k, c) =
Nk

N
πk
c , p(c) =

K∑
k=1

Nk

N
πk
c , p(k|c) = πk

cN
k∑K

k′=1 πk′cNk′
. (2)

Thus, we use the per-cluster aggregator p(k|c) since we aggregate variables per cluster, e.g., aggregate
wk

c,t across clients.

We now introduce notations for the analysis. Denote π̂k
c,t the learned estimate of πk

c at iteration t.

Denote pk
c := p(k|c) = πk

cN
k∑K

k′=1
πk′

c Nk′
and similarly p̂k

c,t =
π̂k

c,tN
k∑K

k′=1
π̂k′

c,tNk′
. Define the aggregation

operators Ek|c[w
k
c,t] :=

∑K
k=1 p

k
cw

k
c,t and Ec|k[w

k
c,t] :=

∑C
c=1 π

k
cw

k
c,t. Additionally, we denote

using Ê the same aggregation operators but taken with respect to p̂k
c,t and π̂k

c,t, respectively.

Recall that the mixed (or personalized) objective of client k is Ec|k[f
k(wk

c,t)] :=
∑C

c=1 π
k
c f

k(wk
c,t).

The objective (MFL) can be stated more succinctly as

min
w1,··· ,wC

Ec,k[f
k(wc)]. (3)

Remark 4.1. Consider a cluster assignment router (i.e., one-hot w.r.t. c). Let k ∼ K and c̄ be its
associated cluster. Then, Ec|k[f

k(wc)] = fk(wc̄) and Ek|c[f
k(wc)] = fc̄(wc̄).

Local SGD With the above notation in hand, we consider the local SGD setting (Stich, 2019). We
note that our work is orthogonal to (Wang & Ji, 2024) since they can estimate p(k) with an unbiased
participation indicator variable, whereas we assume that p(k) is known and estimate p(c|k) instead,
which itself cannot be unbiased because of the dependency of the estimate on the optimal objective
values. Further, the analysis Pillutla et al. (2022) cannot be directly adapted because it is concerned
with a split of global and local variables (i.e., weights and mixture, respectively), whereas we take
into account weight sharing across clusters and train mixtures explicitly. Thus, we follow the generic
local SGD framework with perturbed iterates and demonstrate the benefits of our parameterization
where applicable.

For client k and cluster c, the algorithm starts with the initialization wk
c,0 = Êk|c[w

k
c,0] with π̂k

c,0 =

1/C, without loss of generality. We define the aggregated gradient as gk
c,t = ∇f it(wk

c,t) for
independently sampled clients it ∼ K every H steps, i.e., it = · · · = it0 for all t ≥ t0 where
t0 = t− (t mod H). Though similar, we will explicitly reserve the random variables it for denoting
sampled clients at time t and k for denoting a “tracking” variable of the expected performance
over clients, which will be independent of it. Let c ∈ [C] and define fc := Eit|c[f

i]. Assume
an unbiased estimate Eit|c∇f it(wk

c,t) = ∇fc(wk
c,t), where we denote Eit|c the expectation with

respect to it given c. Let w∗
c be any point satisfying ∇fc(w∗

c ) = 0. We run T gradient steps
wk

c,t+1 = wk
c,t − ηtg

k
c,t with a learning rate ηt. Synchronization happens every H iterations so

that wk
c,t+1 = Êk|c[w

k
c,t − ηtg

k
c,t], ∀t such that (t+ 1) mod H = 0. The algorithm we use in the

analysis is the following

wk
c,t+1 =

{
wk

c,t−ηt∇fit (wk
c,t), if (t+1) mod H>0

Êk|c,π̂t
[wk

c,t−ηt∇fit (wk
c,t)], otherwise,

(4)

π̂t+1 ∝
{

π̂t, if (t+1) mod H>0

exp(−ηtfc(w
k
c,t+1)), otherwise. (5)

All of the practical implementation details will be discussed in more detail in the next section.

Following the local SGD analysis in (Stich, 2019), we make the following corresponding assumptions.
Assumption 4.2 (L-smoothness and µ-strong convexity). fc is L-smooth and µ-strongly convex. In
other words, ∀w,v ∈ Rd,∀c, the following holds

fc(v)− fc(w)− ⟨∇fc(w),v −w⟩ ≤ L
2 ∥v −w∥, (6)

fc(v)− fc(w)− ⟨∇fc(w),v −w⟩ ≥ µ
2 ∥v −w∥. (7)

6
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Assumption 4.3 (Bounded second moment). ∀w ∈ Rd, ∀c ∈ [C], Eit|c∥∇f it(w)∥2 ≤ G2.

Assumption 4.4 (Bounded variance). ∀w ∈ Rd, ∀c ∈ [C], Eit|c∥∇fc(w)−∇f it(w)∥2 ≤ σ2.

The main quantity of interest in our analysis is the total variation distance ∥δc,t∥1 where δc,t :=
(|p̂k

c,t − pk
c |)Kk=1. We may also refer to it as the aggregation mismatch, or just mismatch.

Using the router update in (5), we can obtain the convergence bound of local SGD but with an extra
O( G

µT ) term and a learning rate inversely proportional to max{L,G} instead of L. This seems to
be unavoidable without extra assumptions due to a circular dependency between δc,t and fc(w

k
c,t).

However, we show in Corollary A.5 that local SGD descent is recovered when p̂k
c,t = pk

c . The
convergence rate for this general case can be seen in Theorem A.9.

Here, we present a convergence bound given an assumption on the decrease of ∥δc,t∥21. The exact
bound can be found in Theorem A.10. We defer all proofs to Appendix A.

Theorem 4.5. Consider the setup in Section 4. Let σ̃2 = σ2∥pc∥2, κ = L
µ , and Uc =

mink; p(c)≤πk
c
{p(c)/πk

c }. Initialize π̂k
c,0 = 1/C for all k ∈ [K], and assume |pk

c − p̂k
c,t| ≤

|pk
c − p̂k

c,0| for all t ≥ 0. Assume that fc(w∗
c ) = 0 without loss of generality, and assume that

∥δc,t∥21 ≤ (t + s)−β∥δc,0∥21 for β ∈ (0, 1). Let ηt ≤ α
t+s with α = 1

µ and s ≥ max{3H, 4κ/Uc}.
Then,

Efc(ŵc,T )− fc(w
∗
c ) ≤ O

(
σ̃2

µT
+

G2∥δc,0∥21
µT 1+β

+
G2κH2

µT 2

)
. (8)

Observe that we recover local SGD asymptotically when ∥δc,0∥1 = 0 and Uc = 1 (which is the case
for (FL)), or when β → 1 since ∥δc,0∥1 ≤ 2. Observe also that we obtain a general notion of variance
reduction through σ̃2 = σ2∥pc∥2. Indeed, ∥pc∥2 = 1/K in the (FL) case and ∥pc∥2 = 1/Kc for
cluster c in the (CFL) case, where Kc is the number of clients in cluster c.

Note that Uc ≥ p(c) ≈ 1/C for balanced clustered FL problems, but this can become as low as p(k)
when a cluster contains one client. The difficulty is inherent for such edge cases, but the dependence
on U−1

c in the bound appears only in higher-order terms (see Theorem A.10 for the full bound). We
believe that having independent learning rates per client should remove the min in Uc, and a finer
analysis on the quantity p̂k

c,t/p
k
c can bound Uc further from below, but we leave this for future work.

In Appendix B, we extend the analysis to the (FML) case with weight sharing (explained in the
next section). Given fine-grained variances and cluster heterogeneity conditions for which weight
sharing works best, we can demonstrate better variance reduction of the base layer under a trade-off
with cluster heterogeneity (see (33), for example). A better understanding of weight sharing and the
assumptions in Appendix B is an interesting direction for future work.

5 PRACTICAL IMPLEMENTATION

Mixture of adaptors The (MFL) objective suggests that any learning algorithm will have to run
at least C forward passes per step for each client, which is necessary for computing the objective.
One way to circumvent that is by “moving” the mixture inside the objective. This allows us to mix
the weights and perform one forward pass. We call this new problem Federated Mixture Learning
(FML)3

min
{wc}C

c=1,{πk}K
k=1

Ek∼K

[
fk

(
C∑

c=1

πk
cwc

)]
+ Γ({wc}Cc=1),

s.t. πk ∈ ∆C−1,∀k ∈ [K].

(FML)

Observe that for convex fk, this proxy acts as a lower bound since fk
(∑C

c=1 π
k
cwc

)
≤∑C

c=1 π
k
c f

k (wc) due to Jensen’s inequality. Thus, for convex losses fk, minimizing (MFL) implies
minimizing (FML), but not vice versa. In this sense, (FML) could be seen as a more general problem,

3The “M” in the acronym follows the position of the mixture in the objective.
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and (MFL) is a relaxation. We note that this problem is similar to FedEM (Marfoq et al., 2021), but
we only use K mixture vectors of size C and we do not have sample-specific weights.

This formulation is especially useful for additive adaptors since the weights can be merged into one.
Also, it allows us to mix the C adaptors and run one forward pass, which is often more efficient than
running C forward passes. This is particularly true for inference, in which the weights can be merged
once so that forward passes come without extra cost. The benefits of weight sharing can also manifest
through better variance reduction, which is demonstrated in Appendix B.

Learning the mixture weights Instead of optimizing πk directly in ∆C−1, we consider the
parameterization πk = Softmax(θk) for some vector θk ∈ RC . In other words, we have πk

c =
exp(θk

c )∑C
c′=1

exp(θk
c′ )

.

Note that θk is a local parameter and not aggregated. The cost of storing θk in each client is minimal
as it is of size C, which is often significantly small compared to the model size d. Even if we consider
stateless clients, the server should be able to handle an extra storage and communication budget of θk,
which is KC. Note that the server does not need to know the IDs of the clients and that the clients
can learn the θk from scratch every round, as it is not expensive. Let us consider a scenario where
the cost KC is prohibitive. Suppose the model size is d = 1000 and the client participation ratio is
p = 0.1%. The extra cost for the server will be pKd = K < KC for C > 1. Thus, the prohibitive
scenario occurs only when pd < C, which is often not the case as d is rarely this small (e.g., a 32 by
32 linear layer with bias has more 1000 parameters), let alone p. The only drawback with stateless
clients is the need to learn θk from scratch every round, which is cheap to learn given the current
model.

In Appendix C, we make a connection between the router update in (5) for (MFL) and the gradient
descent update of πk on (FML) under the Softmax parameterization, and show conditions under
which they become equivalent.

Algorithm 1 Simple FLoRAL Averaging

1: Let wk
c,t = (uk

t ,a
k
c,t)

2: for τ = 0, H, 2H, · · · , ⌊T−1
H ⌋ do ▷ Comm. rounds

3: Sample clients Sτ ∼ K
4: for all k ∈ Sτ in parallel do
5: for t = τ, · · · , τ +H − 1 do ▷ Local epoch

6: π̂k
c,t =

exp(θk
c,t)∑C

c=1 exp(θk
c,t)

7: θkc,t+1 = θkc,t − ηt∇θk
c,t
fk(
∑C

c=1 π̂
k
c,tw

k
c,t)

8: wk
c,t+1 = wk

c,t − ηt∇wk
c,t
fk(
∑C

c=1 π̂
k
c,tw

k
c,t)

9: end for
10: end for
11: uk

τ+H ←
∑

k∈Sτ
Nkuk

τ+H∑
k∈Sτ

Nk ▷ Synchronize base layers

12: akc,τ+H ←
∑

k∈Sτ
π̂k

c,τ+HNkak
c,τ+H∑

k∈Sτ
π̂k

c,τ+HNk ▷ Synchronize adaptors

13: end for

FLoRAL problem and algorithm We obtain the FLoRAL problem by employing the weight
sharing regularizer in (MFL-WS) to (FML) and using low-rank adaptors ac. Weight sharing and
low-rankedness are explicit in the parameterization.

The algorithm we use to solve (FLoRAL) in practice is shown in Algorithm 1 and is straightforward.
We use simultaneous gradient descent for u and ac, so we simply write the update in terms of the
concatenation wc. One trick we employ to ensure better convergence is LoRA preconditioning,
which is detailed in Appendix D.

8
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6 EXPERIMENTS

Table 1: Accuracy of different methods on our tasks. π∗ indicates the use of optimal routing. Full =
100% data, Reduced = 5% data. R = Rotate, LS = Label Shift. Bold = best, italic = second best.

Method π∗
MNIST CIFAR-10 CIFAR-100

Full Reduced Full Reduced Full ReducedR LS R LS R LS R LS

FedAvg 91.5 0.6 25.8 2.4 78.2 0.6 23.2 0.9 64.4 0.3 21.9 0.4 45.6 0.3 18.7 0.4 29.2 1.8 20.7 1.4

Local Adaptor 86.6 0.3 84.5 1.8 47.4 5.4 32.0 2.3 66.3 0.5 68.8 0.5 33.5 0.5 30.8 0.8 85.1 0.8 39.5 2.8

Ensemble ✗ 92.0 0.1 93.8 0.5 66.7 5.3 86.4 0.4 71.0 2.8 46.4 9.2 42.4 0.9 41.7 4.6 86.2 0.0 43.7 3.2

Ensemble ✓ 95.8 0.3 95.6 0.3 88.2 1.4 87.6 1.3 73.7 0.2 73.3 0.1 45.0 0.9 45.1 0.8 92.8 0.3 55.0 0.4

FLoRAL(1%) ✗ 91.3 0.6 89.7 3.2 73.1 3.7 46.0 9.9 65.5 0.4 62.8 8.8 45.2 0.3 44.2 0.9 81.3 0.5 52.2 0.5

FLoRAL(1%) ✓ 93.9 0.8 93.7 0.2 87.5 2.1 87.6 0.5 68.9 0.2 72.2 0.2 47.8 0.9 44.1 0.6 82.4 0.2 53.1 0.4

FLoRAL(10%) ✗ 91.8 1.0 93.1 0.9 75.7 2.3 70.8 7.1 65.1 0.3 56.2 5.5 44.5 0.4 42.1 0.2 87.3 0.3 51.2 1.0

FLoRAL(10%) ✓ 94.5 0.6 94.2 0.2 87.0 0.7 86.9 0.5 69.3 0.5 72.1 0.5 47.2 0.3 42.7 0.3 86.6 0.5 53.9 0.9

In this section, we empirically show the performance of our lightweight framework. In particular,
we show that our FLoRAL framework, which can have as few as 4% more parameters, can possibly
outperform an ensemble of models, which can collectively have up to 400% extra parameters. It can
also outperform clients equipped with a local adaptor. This clearly shows the benefit of collaborative
learning and how personalization and adaptation can also be done efficiently in a collaborative setting.

We consider datasets with known ground-truth clusters, for example, linear and MLP synthetic
datasets, MNIST and CIFAR-10 with rotation or label shift Ghosh et al. (2020); Werner et al. (2023),
CIFAR-100 with 10 clusters, each having 10 unique labels (Werner et al., 2023). Further, we consider
the same datasets with only 5% data availability per client (with 10 being the minimum number of
samples per client). This is to demonstrate the benefits of our approach, which would be when a large
model might overfit the local datasets. The results can be seen in Table 1. Further ablation studies on
ρ and C, the adaptors, and the type of ConvLoRAs can be found in Table 2, Table 4, and Table 5,
respectively.

In general, we follow the experimental setup in (Werner et al., 2023) or (Pillutla et al., 2022) and
implement our experiments using PyTorch (Paszke et al., 2019) and Flower (Beutel et al., 2022).
We use the simplest setup possible without any tricks other than LoRA preconditioning, which is
explained in Appendix D. We discuss another trick called LoRA centering in Appendix E, which we
believe is potentially useful but is still in the experimental phase. The algorithm we use in practice is
shown in Algorithm 1. Further details can be found in Appendix G.

We emphasize that we do not aim to improve over the state-of-the-art. However, we can refer readers
to (Werner et al., 2023) for a relevant comparison, where we should note that the algorithm they use
has a quadratic running time in the number of clients. We implemented and tested their linear-time
momentum-based algorithm, but it suffers from cluster collapse on our synthetic tasks.

Synthetic Consider a regression task where we want to learn y ∈ Rdy given x ∈ Rdx , where
x ∼ N (0, Idx

). We construct two versions of this regression task: one is based on a linear model plus
a personalized LoRA, and the other is based on a similar setup on the first layer of a two-layer ReLU
net. This dataset provides a proof of concept for our method. Namely, the target model for client k is

yk
lin(x) =

∑C
c=1 π

k
c (W + αUcV

⊤
c )x, (9)

where W ∈ Rdy×dx , Uc ∈ Rdy×r, Vc ∈ Rdx×r, and α ∈ R. Similarly, consider the 2-layer ReLU
neural net yk

mlp(x) = Φ(yk
lin(x))+ for Φ ∈ Rdy×dy , where we write the ReLU function as (·)+. We

discuss these datasets in more detail in Appendix G.1. The results in Section 6 show the performances
with K = 10 and C = 2 for the linear version and K = 20 and C = 4 for the MLP version. Note
that even the linear task is not easy to solve, and similar problems have been studied in the mixed
linear regression literature, e.g., see (Chen et al., 2021).

MNIST and CIFAR-10 We test our method on a clustered version of MNIST and CIFAR-10
datasets in which the clusters are generated according to one of the following tasks: 1) a rotation task,

9
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Table 2: Ablation of ρ and C.

C ρ
CIFAR-10 CIFAR-100R LS

×0.5 1% 66.5 36.3 48.8
×0.5 10% 66.8 41.6 50.9
×1 1% 70.2 74.1 51.7
×1 10% 71.5 74.2 57.4
×2 1% 69.0 73.8 51.3
×2 10% 70.8 74.1 54.8
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Table 3: Test loss on linear and MLP synthetic datasets.

where each cluster c rotates the image by 2πc/C degrees, and 2) a label shift task, where cluster c
shifts the labels by y 7→ (y + c) mod 10. Following (Werner et al., 2023), we choose C = 4 and
K = 300 for MNIST and sample 10% of the clients every round, and choose C = 4 and K = 20 for
CIFAR-10 and sample all clients every round. The model for MNIST is a 2-layer ReLU net, whereas
for CIFAR-10, it has two convolution layers followed by a 2-layer ReLU net classifier.

CIFAR-100 The CIFAR-100 task is to train a model that is not expressive enough to fit 100
labels yet expressive enough to fit 10 labels. Thus, we expect that the model would benefit from
collaboration with the right clients. The setup is to divide the 100 labels into C = 10 clusters such
that each cluster has 10 unique labels and then split each cluster uniformly into K/C = 10 clients
(so, in total, K = 100). The model used is VGG-8, a custom-sized model from the VGG-family
(Simonyan & Zisserman, 2015) that is specifically able to fit 10 labels but not 100. We sample
25 clients every round, which makes the task harder than (Werner et al., 2023) and can result in
overfitting.

Discussion The results in Figure 8 show the robustness of FLoRAL with respect to its hyperpa-
rameters, particularly when C is larger than the number of ground-truth clusters. As for Table 1,
we can see that FLoRAL is always competitive with the best baseline, which is ensembles with
optimal routers. A particularly interesting case is the reduced CIFAR-10-R experiments, in which
FLoRAL(1%) and FLoRAL(10%) surprisingly outperform ensembles even in the optimal routing
case, which seems slightly counter-intuitive. We believe this to be due to the variance reduction
shown in Appendix B. Note that FLoRAL(ρ) has Cρd extra parameters, whereas ensembles have
(C − 1)d. For example, when d = 1, 000 and C = 4, FLoRAL(1%) adds 40 parameters vs. 3, 000
for ensembles, and when C = 10, it is 100 vs. 9, 000. Local Adaptors require each client to have
its own adaptor (i.e., each client has a storage of size ρd). Regardless of its feasibility, FLoRAL is
shown to leverage the power of collaboration when local adaptors fail to do so. We note that the
low accuracies of FLoRAL with learned routing in reduced MNIST-LS can be alleviated with more
training rounds, e.g., see Appendix G.5 for plots. Overall, these results demonstrate that FLoRAL is
an efficient personalization method, and it can lead to better generalization in low-data regimes.

7 CONCLUSION

In this work, we presented a parameter-efficient method for collaborative learning and personalization.
Here are some future directions we are interested in exploring:
• Is there a principled way to understand the trade-off between parameter-efficiency and the accuracy

gains from increasing ρ or C and how to choose them in practice?
• (FML) can be formulated as a “multimodal optimization” problem (Wong, 2015), which can also

be described in terms of a model class that uses mixture-candidate distributions (Khan & Rue,
2023). It would be interesting to explore the design of efficient algorithms under their framework,
e.g., with a mixture of structured distributions (Louizos & Welling, 2016).

• Our framework is suitable for federated fine-tuning of language models. We are interested in
exploring this direction.

• The router π can route based on its input, as in mixture of experts (Shazeer et al., 2017). It can also
be learned per layer. Preliminary experiments suggest that these tweaks provide marginal benefits,
but there is still room for exploration.

• We are interested in designing methods for zero-shot generalization to unseen clients based on
FLoRAL. Is it possible to fine-tune the router without labels?
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A PROOFS

We reiterate the notations part from the main text here for clarity. Let pk
c :=

πk
cN

k∑K
k′=1

πk′
c Nk′

= p(k|c)

and p̂k
c,t :=

π̂k
c,tN

k∑K
k′=1

π̂k′
c,tNk′

. Define the expectation operators Ek|c[w
k
c,t] :=

∑K
k=1 p

k
cw

k
c,t and

Ec|k[w
k
c,t] :=

∑C
c=1 π

k
cw

k
c,t and similarly for their estimates Êk|c,π̂t

[wk
c,t] and Êc|k,π̂t

[wk
c,t]. We

drop π̂k
c,t from the notation for clarity. We use the variable i to denote client sampling, and i|c should

be understood as randomness in client sampling given cluster c, for example. Finally, let the global
function of cluster c be fc(w) := Ek|c[f

k(w)]. Note the absence of k in the weight.

The analysis roughly follows (Stich, 2019) and differ mostly in the appearance of the total variation
distance between pk

c and p̂k
c,t.

We start by introducing virtual iterates for tracking the aggregated weights (or gradients) with respect
to the true router (or the estimated router) at every time step, which will be mainly useful for
the analysis. These iterates coincide at the synchronization step, in which they become equal by
construction of the algorithm. The iterates are as follows

w̃c,t := Êk|c[w
k
c,t], g̃c,t := Êk|c[∇f it(wk

c,t)], (10)

w̄c,t := Ek|c[w
k
c,t], ḡc,t := Ek|c[∇fc(wk

c,t)], (11)

Note that w̃c,t+1 = w̃c,t − ηtg̃c,t and Eit|c[g̃c,t] = ḡc,t. Hence, using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2,
we have

Eit|c∥w̃c,t+1 −w∗
c∥2 = Eit|c∥w̃c,t −w∗

c − ηtg̃c,t∥2

= Eit|c∥w̃c,t −w∗
c − ηtg̃c,t − ηtḡc,t + ηtḡc,t∥2

= Eit|c∥w̃c,t −w∗
c − ηtḡc,t∥2︸ ︷︷ ︸

ideal aggregation descent

+η2t Eit|c∥ḡc,t − g̃c,t∥2︸ ︷︷ ︸
gradient aggregation error

+ 2ηt Eit|c⟨w̃c,t −w∗
c − ηtḡc,t, ḡc,t − g̃c,t⟩︸ ︷︷ ︸

correlation error

. (12)

In the original local SGD analysis, the correlation error is 0 since we aggregate the sampled gradients
exactly and thus the expectation gives Eit|c[g̃c,t] = ḡc,t. Note that the expectation Eit|c is implicitly
defined Eit|c[·|it−1, · · · ], which would be Eit|c[·|it0−1, · · · ], where t0 = t − (t mod H) since
it = · · · = it0 (because we sample clients every H round).

A.1 BOUNDING DESCENT

Lemma A.1 (Descent bound 1). Given the setting and the assumptions in Section 4, the following
holds

∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 + 2η2t ∥g̃c,t − ḡc,t∥2 + 2LηtÊk|c∥w̃c,t −wk
c,t∥2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c )]

Proof. From the ideal aggregation descent, we have

∥w̃c,t −w∗
c − ηtḡc,t∥2 = ∥w̃c,t −w∗

c∥2 + η2t ∥ḡc,t∥2 − 2ηt⟨w̃c,t −w∗
c , ḡc,t⟩

≤ ∥w̃c,t −w∗
c∥2 + η2tEk|c∥∇fc(wk

c,t)∥2 − 2ηt⟨w̃c,t −w∗
c , ḡc,t⟩,

where we have used Jensen’s inequality 4. As for the correlation error, we can write it as

2ηtEit|c⟨w̃c,t −w∗
c − ηtḡc,t, ḡc,t − g̃c,t⟩ = 2ηt⟨w̃c,t −w∗

c , ḡc,t − g̃c,t⟩ − 2η2t ⟨ḡc,t, ḡc,t − g̃c,t⟩.

4f(EX) ≤ Ef(X) for random variable X and convex f .
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We bound −η2t ⟨ḡc,t, ḡc,t − g̃c,t⟩ with Young’s inequality 5

−2η2t ⟨ḡc,t, ḡc,t − g̃c,t⟩ ≤ η2t ∥ḡc,t∥2 + η2t ∥ḡc,t − g̃c,t∥2

≤ η2tEk|c∥∇fc(wk
c,t)∥2 + η2t ∥ḡc,t − g̃c,t∥2,

where we have used Jensen’s inequality as before.

Adding everything together, we get

∥w̃c,t+1 −w∗
c∥2 ≤ ∥w̃c,t −w∗

c∥2 + 2η2tEk|c∥∇fc(wk
c,t)∥2 + 2η2t ∥g̃c,t − ḡc,t∥2

− 2ηtÊk|c⟨w̃c,t −w∗
c ,∇fc(wk

c,t)⟩
= ∥w̃c,t −w∗

c∥2 + 2η2tEk|c∥∇fc(wk
c,t)∥2 + 2η2t ∥g̃c,t − ḡc,t∥2

− 2ηtÊk|c⟨w̃c,t −wk
c,t,∇fc(wk

c,t)⟩ − 2ηtÊk|c⟨wk
c,t −w∗

c ,∇fc(wk
c,t)⟩.

Observe that, by Assumption 4.2 and∇fc(w∗
c ) = 0, we have

∥∇fc(wk
c,t)∥2 = ∥∇fc(wk

c,t)−∇fc(w∗
c )∥2 ≤ 2L[fc(w

k
c,t)− fc(w

∗
c )], (13)

and
−⟨wk

c,t −w∗
c ,∇fc(wk

c,t)⟩ ≤ −[fc(wk
c,t)− fc(w

∗
c )]−

µ

2
∥wk

c,t −w∗
c∥2. (14)

We bound ⟨w̃c,t −wk
c,t,∇fc(wk

c,t)⟩ with Young’s inequality

−2⟨w̃c,t −wk
c,t,∇fc(wk

c,t)⟩ ≤ 2L∥w̃c,t −wk
c,t∥2 +

1

2L
∥∇fc(wk

c,t)∥2

(13)
≤ 2L∥w̃c,t −wk

c,t∥2 + [fc(w
k
c,t)− fc(w

∗
c )].

We now plug in the results into the main bound

∥w̃c,t+1 −w∗
c∥2 ≤ ∥w̃c,t −w∗

c∥2 + 4Lη2tEk|c[fc(w
k
c,t)− fc(w

∗
c )] + 2η2t ∥g̃c,t − ḡc,t∥2

+ 2ηtLÊk|c∥w̃c,t −wk
c,t∥2 + ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c )])

− 2ηtÊk|c[fc(w
k
c,t)− fc(w

∗
c )]− ηtµÊk|c∥wk

c,t −w∗
c∥2

≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 2η2t ∥g̃c,t − ḡc,t∥2 + 2LηtÊk|c∥w̃c,t −wk

c,t∥2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c )],

where we have used Jensen’s inequality −Êk|c∥wk
c,t −w∗

c∥2 ≤ −∥w̃c,t −w∗
c∥2. This completes the

proof.

Lemma A.2 (Gradient aggregation error). Let δkc,t := |p̂k
c,t − pk

c | and δc,t := (δkc,t)
K
k=1. Then,

Eit|c∥ḡc,t − g̃c,t∥2 ≤ 2σ2∥pc∥2 + 2G2∥δc,t∥21. (15)

Proof. We divide the gradient aggregation error into controllable terms.

∥ḡc,t − g̃c,t∥2 = ∥
K∑

k=1

pk
c∇fc(wk

c,t)− p̂k
c,t∇f it(wk

c,t)∥2

= ∥
K∑

k=1

pk
c (∇fc(wk

c,t)−∇f it(wk
c,t)) + (pk

c − p̂k
c,t)∇f it(wk

c,t)∥2

≤ 2∥
K∑

k=1

pk
c (∇fc(wk

c,t)−∇f it(wk
c,t))∥2 + 2∥

K∑
k=1

δkc,t∇f it(wk
c,t)∥2. (16)

52⟨a,b⟩ ≤ γ∥a∥2 + γ−1∥b∥2 for γ > 0.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The first term can be bounded by noting Var(
∑K

k=1 ckXk) =
∑K

k=1 c
2
kVar(Xk) for independent

Xk, which holds since we condition on the previous iterates. We use Assumption 4.4 to obtain

Eit|c∥
K∑

k=1

pk
c (∇fc(wk

c,t)−∇f it(wk
c,t))∥2 ≤

K∑
k=1

(pk
c )

2Var(∇f it(wk
c,t)) ≤ σ2∥pc∥2. (17)

The second term can be bounded with Jensen’s inequality and Assumption 4.3. Note it = · · · = it0
for t0 = t− (t mod H) and δkc,t does not depend on it for t ≥ t0 by construction, as shown in (5),
so

Eit|c∥
K∑

k=1

δkc,t∇f it(wk
c,t)∥2 ≤ ∥δc,t∥1

K∑
k=1

δkc,tEit|c∥∇f
it(wk

c,t)∥2 ≤ ∥δc,t∥21G2. (18)

Combining (17) and (18) into (16) and taking expectation completes the proof.

Lemma A.3 (Weights second moment). Assume that ηt+1 ≤ ηt and ηt0 ≤ 2ηt, where t0 = t− (t
mod H), i.e., ηt ≤ ηt0 ≤ 2ηt. Then, we have

Eit|cEk|c∥w̄c,t −wk
c,t∥2 ≤ 4η2tH

2G2,

Eit|cÊk|c∥w̃c,t −wk
c,t∥2 ≤ 4η2tH

2G2.

Proof. Let t0 = t− (t mod H) and recall that by synchronization we have wk
c,t0 = w̄c,t0 = w̃c,t0 .

Using E∥X − EX∥2 = E∥X∥2 − ∥EX∥2 with X = wk
c,t −wk

c,t0 , we get

Eit|cEk|c∥w̄c,t −wk
c,t∥2 = Eit|cEk|c∥wk

c,t −wk
c,t0 − (w̄c,t −wk

c,t0)∥
2

= Eit|cEk|c∥wk
c,t −wk

c,t0∥
2 − ∥w̄c,t − w̄c,t0∥2

≤ Eit|cEk|c∥wk
c,t −wk

c,t0∥
2

= Ek|cEit|c∥
t−1∑
τ=t0

ητ∇f iτ (wk
c,τ )∥2

≤ 4η2tH

t−1∑
τ=t0

Ek|cEit|c∥∇f
iτ (wk

c,τ )∥2 (19)

4.3
≤ 4η2tH

2G2,

where (19) uses ηt ≤ ηt0 ≤ 2ηt and ∥
∑H

i=1 ai∥2 ≤ H
∑H

i=1∥ai∥2. Note that the bound for
Eit|cÊk|c∥w̃c,t −wk

c,t∥2 follows using the same argument. The assumption about the learning rate
implies that it does not decay by more than some factor (e.g., 1

2 ) before the next synchronization,
which can be easily satisfied by adding H in the denominator of ηt.

Lemma A.4 (Descent bound 2). Assume that ηt+1 ≤ ηt and ηt0 ≤ 2ηt, where t0 = t− (t mod H)
and δc,t defined as in Lemma A.2. Then,

∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 + 4η2t σ
2∥pc∥2 + 4η2tG

2∥δc,t∥21 + 8Lη3tH
2G2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c )].

Proof. The bound follows from applying Lemmas A.2 and A.3 on Lemma A.1.

Discussion Let us stop here and compare this bound with that of vanilla local SGD. First, we
observe that we retrieve the original variance reduction (up to a constant factor). Next, we see that the
directly incurred cost from aggregation mismatch is G2. The aggregation mismatch also manifests in
the optimality gap in the sense that it “dampens” the guarantee as the aggregation increases, which
we will make more precise later.

In general, the descent lemma above can recover local SGD’s descent lemma in the (FL) setting,
which immediately implies its convergence rate.
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Corollary A.5. Lemma A.4 recovers local SGD descent lemma from (Stich, 2019, Lemma 3.1) up to
constant factors.

Proof. Since C = 1 in local SGD, this trivially gives “uniform” routing and thus ∥δc,t∥1 = 0, i.e.,
p̂k
c,t = pk

c = 1/K. Note that we have used the same assumptions, so we can apply Lemma A.4 with
ηt ≤ 1

16L to obtain the descent lemma of local SGD up to constant factors (and up to application of
Lemmas A.2 and A.3).

Next, we want to bound the quantity ∥δc,t∥21 given the update (5), and relate the new bound to
Lemma A.4. After that, we can derive the convergence rate with the help of a technical lemma. We
also derive the convergence rate given a slow decay assumption on ∥δc,t∥21, which shows more clearly
the effect of aggregation mismatch on convergence.

A.2 BOUNDING THE TOTAL VARIATION DISTANCE

The following bound follows from the router update in (5).

Lemma A.6 (Total variation distance bound). Consider the choice π̂k
c,t =

exp(−ηtfc(w
k
c,t))∑C

c′=1
exp(−ηtfc(wk

c′,t))
,

and assume that we can write πk
c =

exp(−η̄fc(w
∗
c ))∑C

c′=1
exp(−η̄fc(w∗

c′ ))
, where fc is bounded below by 0 and

η̄ ≥ ηt, ∀t ≥ 0. Then,

∥δc,t∥21 ≤ 4ηtEk|c[fc(w
k
c,t)− fc(w

∗
c )] + η̄fc(w

∗
c ) + 4 logKC + 10Lη3tH

2G2.

Proof. Let t0 = t− (t mod H). We will consider the cases where t = t0 and t > t0 separately.

Case t = t0: Let Ẑk
t =

∑C
c′=1 exp(−ηtfc(wk

c′,t)) be the partition function of client k, so that
we can write π̂k

c,t = exp(−ηtfc(wk
c,t))/Ẑ

k
t . Recall that pk

c = p(k|c) ∝ Nkπk
c , and let Ẑc,t =∑K

k=1 N
kπ̂k

c,t be the partition function of cluster c. Equivalently define Zk and Zc,t to be the
partition functions of client k and cluster c give the optimal router πk

c , respectively. Observe

∥δc,t∥21 =

(
K∑

k=1

|p̂k
c,t − pk

c |

)2

=

(
K∑

k=1

pk
c |p̂k

c,t/p
k
c − 1|

)2

≤ 2
K∑

k=1

pk
c log

pk
c

p̂k
c,t

= 2

K∑
k=1

pk
c (ηtfc(w

k
c,t)− η̄fc(w

∗
c ) + log

Ẑk
t

Zk
+ log

Ẑc,t

Zc
)

≤ 2

K∑
k=1

pk
cηt(fc(w

k
c,t)− fc(w

∗
c )) + log

Ẑk
t

Zk
+ log

Ẑc,t

Zc
, (20)

where we have used Pinsker’s inequality, the router’s expression, and η̄ ≥ ηt.

Using max1≤k≤K{xk} ≤ log
∑K

k=1 exp(xk) ≤ max1≤k≤K{xk}+ logK, we can write

log
Ẑk
t

Zk
= log

C∑
c′=1

exp(−ηtfc(wk
c′,t))− log

C∑
c′=1

exp(−η̄fc(w∗
c′))

≤ max
1≤c′≤C

{−ηtfc(wk
c′,t)} − max

1≤c′≤C
{−η̄fc(w∗

c′)}+ logC

= min
1≤c′≤C

{η̄fc(w∗
c′)} − min

1≤c′≤C
{ηtfc(wk

c′,t)}+ logC, (†)
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and using similar arguments, we can show that

log
Ẑc,t

Zc
= log

K∑
k=1

Nkπ̂k
c,t − log

K∑
k=1

Nkπk
c

= log

K∑
k=1

exp(−ηtfc(wk
c,t) + log

Nk

Ẑk
t

)− log

K∑
k=1

exp(−η̄fc(w∗
c ) + log

Nk

Zk
)

= min
1≤k≤K

{η̄fc(w∗
c ) + log

Zk

Nk
} − min

1≤k≤K
{ηtfc(wk

c,t) + log
Ẑk
t

Nk
}+ logK. (∗)

By properties of the LogSumExp function, we have

− min
1≤c′≤C

{η̄fc(w∗
c′)} ≤ logZk ≤ − min

1≤c′≤C
{η̄fc(w∗

c′)}+ logC,

and similarly with log Ẑk
t and −ηt min1≤c′≤C fc(w

k
c′,t). Observe that − log N

Nk ≤ 0 and
min1≤k≤K{log N

Nk } ≤ logK since the uniform case has the lowest max probability. Now de-
fine the centered function f◦

c (·) := fc(·)−min1≤c′≤C{fc(·)} and note that f◦
c (·) ≤ fc(·). Adding

and subtracting logN to both terms in (∗) and using the expressions above, we can get

log
Ẑc,t

Zc
≤ min

1≤k≤K
{η̄fc(w∗

c ) + log
NZk

Nk
} − min

1≤k≤K
{ηtfc(wk

c,t) + log
NẐk

t

Nk
}+ logK

≤ η̄f◦
c (w

∗
c )− min

1≤k≤K
{ηtf◦

c (w
k
c,t)}+ 2 logK + logC. (††)

Combining (†) and (††), we get

log
Ẑk
t

Zk
+ log

Ẑc,t

Zc
≤ η̄fc(w

∗
c )− min

1≤c′≤C
{ηtfc(wk

c′,t)} − min
1≤k≤K

{ηtfc(wk
c,t)}+ 2 logKC

≤ η̄fc(w
∗
c ) + 2 logKC.

where the second inequality follows because mini{Ai +Bi} ≤ mini{Ai}+mini{Bi}. Applying
this inequality to the overall bound (20), we have

∥δc,t∥21 ≤ 2ηtEk|c[fc(w
k
c,t)− fc(w

∗
c )] + 2η̄fc(w

∗
c ) + 4 logKC. (21)

Case t > t0: Note that δc,t = δc,t0 by (5), so we get the same bound (21) but in terms of t0.
If we decompose the function gap Ek|c[fc(w

k
c,t0) − fc(w

∗
c )] = Ek|c[fc(w

k
c,t0) − Eit|cfc(w

k
c,t)] +

Ek|c[Eit|cfc(w
k
c,t)− fc(w

∗
c )], we see that it suffices to bound the first term to be able to write δc,t in

terms of function gap at step t. We can also take the expectations Eit|c out since neither wk
c,t0 nor

w∗
c depend on it = · · · = it0 .

Recall that wk
c,t0 = Ek|c[w

k
c,t0 ]. Using L-smoothness from Assumption 4.2, we get

Ek,it|c[fc(w
k
c,t0)− fc(w

k
c,t)] ≤ Ek,it|c⟨∇fc(w

k
c,t),w

k
c,t0 −wk

c,t⟩+
L

2
Ek,it|c∥w

k
c,t0 −wk

c,t∥2

(Young)
≤ γ−1Ek|c∥∇fc(wk

c,t)∥2 + (γ +
L

2
)Ek,it|c∥w

k
c,t0 −wk

c,t∥2

(19)
≤ γ−1Ek|c∥∇fc(wk

c,t)∥2 + (γ +
L

2
)4η2tH

2G2

(13)
≤ Ek|c[fc(w

k
c,t)− fc(w

∗
c )] + 10Lη2tH

2G2,

where we have chosen γ := 2L.

We complete the proof by taking the max of both cases, which simply amounts to adding both
cases.

The following descent lemma will be used to get the convergence rate without any assumptions on
∥δc,t∥1 other than what we have in the router update (5).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma A.7 (Descent bound 3). Let the conditions in Lemmas A.4 and A.6 be satisfied. With-
out loss of generality, assume that fc(w

∗
c ) = 0. If ηt ≤ γt

max{ 5
2 ,16G

2,4L} , where γt =

min{1,mink∈[K]; pk
c>0{p̂k

c,t/p
k
c}}, then

Eit|c∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 −
1

2
ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c )]

+ 4η2t σ
2∥pc∥2 + 16η2tG

2 logKC + 9η3tLH
2G2.

Proof. We apply Lemma A.6 on Lemma A.4 and rearrange to get

Eit|c∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 + 4η2t σ
2∥pc∥2 + 16η2tG

2 logKC

+ 40Lη5tH
2G4 + 8Lη3tH

2G2

+ ηt

K∑
k=1

(16η2tG
2pk

c + 4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c )].

In order to have a meaningful convergence of the optimality gap, we have to bound it from above, so
we should have

pk
c (16η

2
tG

2 + 8Lηt − 1) + pk
c − p̂k

c,t < −A, (22)

for some A > 0.

Suppose pk
c > p̂k

c,t, and recall that c is given, so we fix it. Write rkt := p̂k
c,t/p

k
c < 1. Then,

pk
c − p̂k

c,t = (1 − rkt )p
k
c < pk

c , so that (22) becomes pk
c (16η

2
tG

2 + 4Lηt − rkt ) < −A. If we set
ηt ≤ B

max{16G2,4L} for some B > 0, we would have pk
c (Bηt +B − rkt ) < −A, implying that

ηt <
1

B
(rkt −B −A/pk

c ) =
p̂k
c,t −A

Bpk
c

− 1.

Setting A = (1− (η̄ + 1)(rkt )
−1B)p̂k

c,t > 0 gives ηt < η̄, where η̄ is some strict upper bound of ηt
for all t, but we should also have (η̄ + 1)(rkt )

−1B < 1 ⇐⇒ B <
rkt
η̄+1 . Thus, we set B :=

rkt
η̄+2 ,

getting

A =
1

2
p̂k
c,t, ηt ≤

rkt
(η̄ + 2)max{16G2, 4L}

. (23)

Now, if pk
c ≤ p̂k

c,t with ηt ≤ D
max{16G2,4L} for some D > 0, (22) would imply ηt <

1−A
Dpk

c
− 1, so

that A = (1 − (η̄ + 1)D)pk
c > 0 gives ηt < η̄ but under the condition D < 1

η̄+1 . Thus, setting
D := 1

η̄+2 gives the same setting in (23) with 1 instead of rkt . Thus, for all k ∈ [K], we should have

ηt ≤
min{1, rkt }

(η̄ + 2)max{16G2, 4L}
.

We can restrict the denominator to max{1, 16G2, 4L} without loss of generality. Then, we can upper
bound ηt ≤ 1

(η̄+2) <
1
2 , so that η̄ = 1

2 suffices for this choice.

Overall, we have ηt ≤
min{1,mink∈[K]{p̂k

c,t/p
k
c}}

max{ 5
2 ,16G

2,4L} , and using (22) with A = 1
2 p̂

k
c,t, we get

Eit|c∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 −
1

2
ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c )]

+ 4η2t σ
2∥pc∥2 + 16η2tG

2 logKC + 8Lη3tH
2G2 + 40Lη5tH

2G4.

Given our choice of ηt, we note that 40Lη5tH
2G4 ≤ Lη4tH

2G2 ≤ Lη3tH
2G2, which completes the

proof.

Discussion Note that the learning rate is not as strict as it may look. First of all, note that p̂k
c,t < pk

c

is the case of interest, as otherwise, γt = 1. Taking the minimum for k such that pk
c > 0 makes sense

because p̂k
c,t ≥ pk

c = 0, so γt = 1.
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Now assume that p̂k
c,t ≤ pk

c for all t. The lowest value γt can attain is when pk
c = 1 and p̂k

c,t is very
small. This can happen, for example, when a cluster has one client. However, a uniform initialization
for the routers would have that

π̂k
c,0 = 1/C =⇒ p̂k

c,0 =
p(k)π̂k

c,0∑K
k′=1 p(k

′)π̂k′
c,0

= p(k).

Since pk
c =

p(k)πk
c

p(c) , we would then have p̂k
c,0/p

k
c = p(c)

πk
c
≤ 1 since we assumed p̂k

c,t ≤ pk
c .

Suppose πk
c = 1. If

∑K
k=1 π

k
c = 1, i.e., the number of clients in cluster c is 1, then we cannot

improve p̂k
c,0/p

k
c = p(k) any further. This can be even worse if there is one data point for client k.

However, these extreme heterogeneity scenarios are inherently difficult, so it is better to capture this
heterogeneity with some term, particularly when πk

c ≥ p(c), which follows from p̂k
c,t ≤ pk

c .

For example, assume that πk
c ≤ U−1

c p(c) for all k such that πk
c ≥ p(c), so that Uc ∈ [p(c), 1]. In

other words, we can choose Uc = mink; p(c)≤πk
c
{p(c)/πk

c }. This implies that p̂k
c,0/p

k
c = p(c)

πk
c
≥ Uc.

The value Uc is a uniformity measure, so that a larger Uc denotes a more uniform allocation of clients
in cluster c. For example, if Uc = 1, then, for all k such that πk

c ≥ p(c), we have πk
c = p(c). On the

other hand, if Uc = p(c), then it is possible for some clients k to have πk
c = 1, or in the worst case,

p(c) = p(k) when only one client is in cluster c (remember that clients with πk
c < p(c) are ignored).

When cluster sizes are comparable, we have p(c) ≈ 1/C, meaning that Uc ≥ 1/C.

Thus, in general, with uniform router initialization and when |pk
c − p̂k

c,t| ≤ |pk
c − p̂k

c,0| (which is a
mild restriction to ensure p̂k

c,0/p
k
c is smaller than p̂k

c,0/p
k
c ), we have

Uc = min
k; p(c)≤πk

c

{p(c)/πk
c } ≤ min{1, min

k∈[K]
{p(k)/pk

c}} ≤ γt ≤ 1. (24)

Regarding the min operator in Uc, it is only required because it is a uniform learning rate for all
clients, so it must converge for the worst client, which is the client with the least amount of data (i.e.,
lowest p(k)). Thus, we believe that this can be removed when considering learning rates per client.
We leave this analysis for future work.

A.3 CONVERGENCE RATES

In order to get convergence rates from descent lemmas, we make use of the following useful lemma,
which is based on (Stich et al., 2018, Lemma 3.3).
Lemma A.8. Let {at}t≥0, {bt}t≥0, and {ct}t≥0, be arbitrary non-negative sequences such that

at+1 ≤ (1− µηt)at − ηtbt + η2t ct.

Let ηt = α
t+s for t ≥ 0 and s ≥ 1, and choose α = 1

µ . Then, we have the following inequality

T−1∑
t=0

bt ≤ (s− 1)µa0 +

T−1∑
t=0

ηtct.

Proof. Let rt := 1− µηt. Then,

at+1 ≤ rtat − ηtbt + η2t ct

≤ rtrt−1at−1 − ηtbt − rtηt−1bt−1 + η2t ct + rtη
2
t−1ct−1

≤ −ηtbt − rtηt−1bt−1 − rtrt−1ηt−2bt−2

+ η2t ct + rtη
2
t−1ct−1 + rtrt−1η

2
t−2ct−2 + rtrt−1rt−2at−2

≤ · · ·

=⇒ aT+1 ≤ r0:Ta0 +

T∑
t=0

rt+1:T ηt(−bt + ηtct),

where we denote rt1:t2 :=
∏t2

t=t1
rt, which defaults to 1 when t1 > t2.
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Observe that
t2∑

t=t1

ηt =

t2∑
t=t1

α

t+ s
≥ α

∫ t2

t=t1

1

t+ s
= α log

t2 + s

t1 + s
.

Hence,

rt1:t2 =

t2∏
t=t1

(1− µηt) ≤
t2∏

t=t1

exp(−µηt) = exp(−µ
t2∑

t=t1

ηt) ≤
(
t1 + s

t2 + s

)µα

.

We can confirm that for α = 1/µ, we have

r−1
t ηt =

(
t+ s

t+ s− µα

)(
α

t+ s

)
=

α

t+ s− 1
= ηt−1,

so that rt = ηt

ηt−1
. This implies rt1:t2 =

ηt2

ηt1−1
= t1+s−1

t2+s ≤ t1+s
t2+s , so the inequality above is

almost tight when α = 1/µ (loose by a multiplicative factor of t1+s
t1+s−1 ). This also implies that

ηT = ηT−1rT = · · · = ηtrt+1:T = · · · = η0r1:T . so we can factor these terms out and divide both
sides by ηT . Hence, we have r0:T

ηT
= r0

η0
= (s− 1)µ, and by observing that 0 ≤ aT+1

ηT
, we can get the

desired bound.

Now we are ready to prove the main theoretical results of the paper.

Theorem A.9 (Convergence rate). Consider the setup in Section 4. Let σ̃2 = σ2∥pc∥2, κ = L
µ , and

Uc = mink; p(c)≤πk
c
{p(c)/πk

c }. Initialize π̂k
c,0 = 1/C for all k ∈ [K], and assume |pk

c − p̂k
c,t| ≤

|pk
c − p̂k

c,0| for all t ≥ 0. Assume that fc(w∗
c ) = 0, without loss of generality. Let ηt ≤ α

t+s with
α = 1

µ and s ≥ max{3H, 4κ/Uc, 16G
2/µUc}. Consider the weighted average after T iterations

ŵc,T := 1∑T−1
t=0 wt

∑T−1
t=0 wtw̃c,t with wt = (t+ s)2. Then, the following holds

Efc(ŵc,T )− fc(w
∗
c ) ≤ (8σ̃2 + 32G2 logKC)(

1

µT
+

2s− 1

µT 2
)

+
18κH2G2

µT 2
+

24(s− 1)s2G2

µT 3
.

If L ≥ 4G2, we have the following asymptotic bound

Efc(ŵc,T )−fc(w∗
c ) ≤ O

(
1

µT
+

κ/Uc +H

µT 2

)
σ̃2+O

(
logKC

µT
+

κH2

µT 2
+

(κ/Uc)
3 +H3

µT 3

)
G2.

Proof. Note that ηt satisfies Lemma A.7 by construction of s and (24). It also satisfies Lemma A.3
since for t ∈ [t0, t0 +H), we have ηt

ηt+H
= t+s+H

t+s ≤ 2 because s+ t ≥ s ≥ H .

Let {wt}t≥0 be a non-negative (averaging) sequence. We use Lemma A.8 on Lemma A.7 with

at = wtEit|c∥w̃c,t −w∗
c∥2, bt =

wt

2
fc(w̃c,t)− fc(w

∗
c ), ct = wt(A+Bηt),

where A = 4σ2∥pc∥2 + 16G2 logKC and B = 9LH2G2. Note fc(w̃c,t) − fc(w
∗
c ) ≤

Êk|c[fc(w
k
c,t)− fc(w

∗
c )] by Jensen’s inequality. Thus,

T−1∑
t=0

wtEit|c[fc(w̄c,t)− fc(w
∗
c )] ≤ 2(s− 1)µw0a0 + 2A

T−1∑
t=0

wtηt + 2B

T−1∑
t=0

wtη
2
t .

From the expression above, it makes sense to choose wt = (t+ s)2. Indeed,

T−1∑
t=0

wtηt =

T−1∑
t=0

α(t+ s) =
T (T − 1)

2µ
+

Ts

µ
, and

T−1∑
t=0

wtη
2
t =

T−1∑
t=0

α2 =
T

µ2
.
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Hence, using Jensen’s inequality with ŵc,T := 1∑T−1
t=0 wt

∑T−1
t=0 wtw̄c,t and letting D = ∥w̃c,0−w∗

c∥,
we have with the tower property of conditional expectations that

Efc(ŵc,T )− fc(w
∗
c ) ≤

2(s− 1)s2µD2∑T−1
t=0 wt

+ 2A(
T (T − 1) + 2Ts

2µ
∑T−1

t=0 wt

) + 2B
T

µ2
∑T−1

t=0 wt

.

We bound 1∑T−1
t=0 wt

using the fact
∑T−1

t=0 wt =
1
3T

3 + (s− 1
2 )T

2 + (s2 − s+ 1
6 )T ≥

1
3T

3. Using
this bound and plugging in A and B, we get

Efc(ŵc,T )− fc(w
∗
c ) ≤

6(s− 1)s2µD2

T 3
+ (8σ2∥pc∥2 + 32G2 logKC)(

1

µT
+

2s− 1

µT 2
)

+
18LH2G2

µ2T 2
.

We use µE∥w̃c,0 −w∗
c∥ ≤ 2G (Rakhlin et al., 2012, Lemma 2) and tower property of conditional

expectation in terms of Eit|c to get the desired bound.

Discussion Note that in Theorem A.9, we have ηt depending on G2 and the bound has an extra
O(G

2 logKC
µT ) term in the asymptotic bound, which comes from Lemma A.6, where we bounded

∥δc,t∥21 using (5). Furthermore, the terms Uc appear in our analysis, but we explain that they do not
affect the recovery of local SGD rates. Indeed, in the (FL) case, Uc ≥ p(c) = 1 since C = 1. Even if
we have C copies of (FL) with p(c) = 1/C, since p(k|c) = p(k), we would still have Uc = 1 (see the
definition in (24)). In the (CFL) case, if we have similar cluster sizes and client sizes, then Uc = 1/C,
which is the (linear) price to pay for learning the clusters given the uniform router initialization. This
dependence can be reduced further by taking into the decay of p̂k

c,t/p
k
c instead of assuming uniform

router initialization and non-increasing p̂k
c,t/p

k
c in t, but we leave such an analysis for future work.

We now prove a stronger convergence rate given a stronger assumption on the decrease of ∥δc,t∥21.
Namely, we assume that ∥δc,t∥21 ≤ (t+ s)−β∥δc,0∥21 for β ∈ (0, 1). This convergence rate does not
require a dependence on G2 in the learning rate, and it weakens O(G

2 logKC
µT ) proportionally to β.

This particular range of the exponent of β maintains the extra term in the asymptotic rate with an
explicit dependence on β. The exponent is bounded above by 1 for technical convenience, and we
believe this condition can be easily removed. In any case, exponents of 1 or larger would make the
extra terms incurred from ∥δc,t∥21 disappear asymptotically. Indeed, the original rate of local SGD
can be exactly recovered when ∥δc,t∥21 decays quickly (where Uc = 1 as explained above). We now
state the stronger convergence rate.

Theorem A.10 (Convergence Rate with decreasing ∥δc,t∥21). Consider the setup in Section 4. Let
σ̃2 = σ2∥pc∥2, κ = L

µ , and Uc = mink; p(c)≤πk
c
{p(c)/πk

c }. Initialize π̂k
c,0 = 1/C for all k ∈ [K],

and assume |pk
c − p̂k

c,t| ≤ |pk
c − p̂k

c,0| for all t ≥ 0. Assume that fc(w∗
c ) = 0 without loss

of generality, and assume that ∥δc,t∥21 ≤ (t + s)−β∥δc,0∥21 for β ∈ (0, 1). Let ηt ≤ α
t+s with

α = 1
µ and s ≥ max{3H, 4κ/Uc}. Consider the weighted average after T iterations ŵc,T :=

1∑T−1
t=0 wt

∑T−1
t=0 wtw̃c,t with wt = (t+ s)2. Then,

Efc(ŵc,T )− fc(w
∗
c ) ≤ 12σ̃2(

1

µT
+

2s− 1

µT 2
) + 48G2 ∥δc,0∥21

µT 1+β

+ 24G2 (s− 1 + 2∥δc,0∥21s−β)s2

µT 3
+ 48LH2G2 1

µ2T 2
.

Asymptotically,

Efc(ŵc,T )− fc(w
∗
c ) ≤ O

(
1

µT
+

κ/Uc +H

µT 2

)
σ̃2 +O

(
κH2

µT 2
+

(κ/Uc)
3 +H3

µT 3

)
G2

+O
(

1

µT 1+β
+

(κ/Uc)
2−β +H2−β

µT 3

)
∥δc,0∥21G2.
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Proof. Recall Lemma A.4
∥w̃c,t+1 −w∗

c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 4η2t σ

2∥pc∥2 + 4η2tG
2∥δc,t∥21 + 8Lη3tH

2G2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c )].

We use the exact same reasoning in Lemma A.7 to get that ηt ≤
min{1,mink∈[K]{p̂k

c,t/p
k
c}

max{5/2,4L} . Our choice
of ηt already satisfies this rate from (24), and it clearly satisfies Lemma A.3 by construction of s.
Thus, the overall bound becomes

1

2
fc(w̃c,t)− fc(w

∗
c ) ≤

1

2
ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c )]

≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 4η2t σ

2∥pc∥2 + 4η2tG
2∥δc,t∥21 + 8Lη3tH

2G2.

We can now invoke Lemma A.8 with

at = wtEit|c∥w̃c,t −w∗
c∥2, bt =

wt

2
Eit|c[fc(w̄c,t)− fc(w

∗
c )], ct = wt(At +Bηt),

where {wt}t≥0 is an averaging sequence, At = 4σ2∥pc∥2 + 4G2∥δc,t∥21, and B = 8LH2G2. Thus,
T−1∑
t=0

wtEit|c[fc(w̄c,t)− fc(w
∗
c )] ≤ 2(s− 1)µw0a0 + 2

T−1∑
t=0

wtηtAt + 2

T−1∑
t=0

wtη
2
tB.

We choose wt = (t+ s)2 as in Theorem A.9 and use the assumption that ∥δc,t∥21 ≤ (t+ s)−β∥δc,0∥21
for β ∈ (0, 1) to get
T−1∑
t=0

wtηtAt = α

T−1∑
t=0

(t+ s)At = 4ασ2∥pc∥2
T−1∑
t=0

(t+ s) + 4αG2
T−1∑
t=0

(t+ s)∥δc,t∥21

= 4ασ2∥pc∥2(
T (T − 1)

2
+ Ts) + 4αG2∥δc,0∥21

T−1∑
t=0

(t+ s)1−β .

Furthermore,
T−1∑
t=0

(t+ s)1−β ≤
∫ T

0

(t+ s)1−βdt =
1

2− β
((T + s)2−β − s2−β) ≤ (T + s)2−β .

Hence,
T−1∑
t=0

wtηtAt ≤ 2ασ2∥pc∥2T (T + 2s− 1) + 8αG2∥δc,0∥21(T 2−β + s2−β),

where we have used (T + s)2−β ≤ 2max{T, s}2−β ≤ 2(T 2−β + s2−β).

On the other hand, using
∑T−1

t=0
1

(t+s)β
≤ T , we get

T−1∑
t=0

wtη
2
tB ≤ 8α2LH2G2T.

Using the averaging ŵc,T := 1∑T−1
t=0 wt

∑T−1
t=0 wtw̄c,t, the fact that

∑T−1
t=0 wt ≥ 1

3T
3, and

µE∥w̃c,0 −w∗
c∥ ≤ 2G, as in Theorem A.9, we overall have

Efc(ŵc,T )− fc(w
∗
c ) ≤ 24G2 (s− 1)s2

µT 3
+ 12σ2∥pc∥2

T + 2s− 1

µT 2

+ 48G2∥δc,0∥21
T 2−β + s2−β

µT 3
+ 48LH2G2 1

µ2T 2
,

which completes the proof after rearranging the terms.

Remark A.11. Given uniform router initialization, we have ∥δc,0∥1 =
∑K

k=1|p(k) − pk
c | =∑K

k=1 p
k
c (1− p(k)/pk

c ) ≤ (1− Uc).
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B EXTENDING THE ANALYSIS TO (FML) WITH WEIGHT SHARING

In this section, we show the benefits of weight sharing in the (FML) case. We now consider iterates
that track the full expectation Ek,c instead of Ek|c.

w̃t := Êk,c[w
k
c,t], g̃t := Êk,c[∇f it(wk

c,t)], (25)

w̄t := Ek,c[w
k
c,t], ḡt := Ek,c[∇fc(wk

c,t)], (26)

Note that we have assumed that Eit|c∇f it(wk
c,t) = ∇fc(wk

c,t). However, we make an important
distinction here. In the previous analysis in Appendix A, we have written the expectation Eit|c, but,
in fact, this c is not the same as the c in Ek,c. The expectations Ek,c and Êk,c track the aggregated
iterates, whereas Eit,c takes expectation with respect to client sampling, which is independent of the
tracking variables. Thus, in order to make the distinction clear, we write the sampled cluster variable
as z and write the expectation with respect to sampling as Eit,z , so that p(it, z = c) =

∑
k∈it

p(k)πk
c

(recall that p(k, c) = p(k)p(c|k) = p(k)πk
c ).

Now we introduce finer variance and heterogeneity assumptions that help us achieve even better
variance reduction.

Assumption B.1 (Bounded variance of base model and adaptors). For any c ∈ [C] and k ∈ [K], and
given weight sharing wc = (u,ac) ∈ Rd, we have

Eit|z=c∥∇acf
it(wc)−∇acfc(wc)∥2 ≤ σ2

c , (27)

Eit,z∥∇uf
it(wc)− Ec′∇ufc′(wc)∥2 ≤ σ̄2. (28)

Assumption B.2 (Bounded heterogeneity of base model and adaptors). For any c ∈ [C], k ∈ [K],
t ≥ 0 and synchronization steps t0 mod H = 0, and given weight sharing wk

c,t = (uk
t ,a

k
c,t) ∈ Rd,

we have

Ek,c∥∇ufc(w
k
c,t)− Ec′∇ufc′(w

k
c,t)∥2 ≤ ∆2, (29)

Êc∥wk
c,t0 − Êcw

k
c,t0∥

2 = Êc∥akc,t0 − Êca
k
c,t0∥

2 = 0. (30)

The assumptions above are not made only for the convenience of establishing our result. They do have
practical relevance when these variance quantities are smaller than the one used in Assumption 4.4.
Namely, (27), which is a straightforward adaptation of Assumption 4.4, bounds the variance of the
sampled adaptors’ gradients separately (per cluster). On the other hand, (28) bounds the variance
of the base model’s gradient from the averaged objective across clusters. We expect both of these
bounds to be tighter than the variance of the full model’s gradient per cluster separately.

As for Assumption B.2, the weight sharing structure should be justified under these conditions. In
particular, (30) is not possible without weight sharing (see Appendix E for more details on enforcing
this on LoRAs). The first assumption (29) bounds the deviation of the base gradient across clusters,
which can be close to 0 with weight sharing and small adaptors.

Overall, these assumptions decompose the variance and heterogeneity errors in a way that makes the
benefits of weight sharing manifest, which is especially true using Assumption B.2.

B.1 ANALYSIS

We will now show that an extension of the previous analysis in Appendix A using the aforementioned
quantities and assumptions is possible and can lead to better variance reduction.

In the following lemma, we will make use of the quantity w∗ := Ec[w
∗
c ] =

∑C
c=1 p(c)w

∗
c , where

p(c) is the overall probability of cluster c, e.g., see (2). This quantity is not a real optimum, but
rather an analytical tool. Indeed, by Jensen’s inequality, we can write ∥w̃t −w∗∥2 ≤ ∥uk

t − u∗
t ∥2 +

Ec∥akc,t − a∗c,t∥2 when wk
c,t = (uk

t ,a
k
c,t). Thus, obtaining a upper bound on the optimality gap using

terms ∥w̃t −w∗∥2 suffices as it implies the upper bound of interest.
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Lemma B.3 (Descent bound with weight sharing). Define p := (p(k))Kk=1 (indexed as pk) and
πc = (πk

c )
K
k=1. Let δkt = (|πk

c −π̂k
c,t|)Cc=1 and w∗ := Ec[w

∗
c ]. Consider the setting and assumptions

in Section 4, with the addition of mean subtraction of adaptors after every synchronization so that
(30), and let Assumption B.1 and Assumption B.2 hold. Then,

∥w̃t+1 −w∗∥2 ≤ (1− ηtµ)∥w̃t −w∗∥2 + ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − π̂k

c,t)[fc(w
k
c,t)

+ 4η2t (G
2Ek∥δkt ∥21 + Ec[∥pc∥2σ2

c ] + 2σ̄2
C∑

c=1

∥p⊙ πc∥2 + 2∆2)

+ 8Lη3tH
2G2.

Proof. As in (12), the descent can be bounded as

Eit,z∥w̃t+1 −w∗∥2 = Eit,z∥w̃t −w∗ − ηtḡt∥2 + η2tEit,z∥ḡc,t − g̃t∥2

+ 2ηtEit,z⟨w̃t −w∗ − ηtḡt, ḡt − g̃t⟩.

From the ideal aggregation descent, we have

∥w̃t −w∗ − ηtḡt∥2 = ∥w̃t −w∗∥2 + η2t ∥ḡt∥2 − 2ηt⟨w̃t −w∗, ḡt⟩
≤ ∥w̃t −w∗∥2 + η2tEk,c∥∇fc(wk

c,t)∥2 − 2ηt⟨w̃t −w∗, ḡt⟩.

As for the correlation error, we use Young’s inequality and Jensen’s inequality as before

2ηt⟨w̃t −w∗ − ηtḡt, ḡt − g̃t⟩ = 2ηt⟨w̃t −w∗, ḡt − g̃t⟩ − 2η2t ⟨ḡt, ḡt − g̃t⟩
≤ 2ηt⟨w̃t −w∗, ḡt − g̃t⟩+ η2tEk,c∥∇fc(wk

c,t)∥2 + η2t ∥ḡt − g̃t∥2.

Adding everything together, we get

∥w̃t+1 −w∗∥2 ≤ ∥w̃t −w∗∥2 + 2η2tEk,c∥∇fc(wk
c,t)∥2 + 2η2t ∥g̃t − ḡt∥2

− 2ηtÊk,c⟨w̃t −wk
c,t,∇fc(wk

c,t)⟩ − 2ηtÊk,c⟨wk
c,t −w∗,∇fc(wk

c,t)⟩
(13)+(14)
≤ ∥w̃t −w∗∥2 + 2η2t ∥g̃t − ḡt∥2 − 2ηtÊk,c⟨w̃t −wk

c,t,∇fc(wk
c,t)⟩

+ ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − 2π̂k

c,t)[fc(w
k
c,t)− fc(w

∗)]− ηtµÊk,c∥wk
c,t −w∗∥2

≤ (1− ηtµ)∥w̃t −w∗∥2 + 2η2t ∥g̃t − ḡt∥2 + 2LηtÊk,c∥w̃t −wk
c,t∥2

+ ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − π̂k

c,t)[fc(w
k
c,t)− fc(w

∗)],

where the last inequality uses Jensen’s inequality and Young’s inequality.

The optimality gap can be bounded by − 1
2p

kπ̂k
c,t as in Lemma A.7 given a learning rate with a

numerator min{1,mink∈[K]{pkπ̂k
c,t/p

kπk
c }} = mink;πk

c>π̂k
c,t
{π̂k

c,t/π
k
c } this time, which allows

us to obtain a bound in terms of Êc[fc(w̃c,t)− fc(w
∗
c )].

The term Êk,c∥w̃t −wk
c,t∥2 can be bounded with Lemma A.3 by adding and subtracting Êcw

k
c,t0 =

w̃t0 and applying the variance formula

Êk,c∥wk
c,t − w̃t∥2 = Êk,c∥wk

c,t − Êcw
k
c,t0 − (w̃t − Êcw

k
c,t0)∥

2

≤ Êk,c∥wk
c,t − Êcw

k
c,t0∥

2

= Êk,c∥
t−1∑
τ=t0

ητ∇f iτ (wk
c,τ )∥2

(19)+(30)
≤ 4η2tH

2G2.
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It remains to bound ∥g̃t − ḡt∥2, in which the benefits of weight sharing will mainly manifest. We
start bounding ∥g̃t − ḡt∥2 as in Lemma A.2

Eit,z∥ḡt − g̃t∥2 ≤ 2Eit,z∥Ek,c[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

+ 2Eit,z∥
K∑

k=1

C∑
c=1

p(k)(πk
c − π̂k

c,t)[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

≤ 2Eit,z∥Ek,c[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

+ 2

K∑
k=1

p(k)Eit,z∥
C∑

c=1

(πk
c − π̂k

c,t)[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

18
≤ 2Eit,z∥Ek,c[∇fc(wk

c,t)−∇f it(wk
c,t)]∥2 + 2G2Ek∥δkt ∥21.

By noting that ∥(u,ac)∥2 = ∥u∥2 + ∥ac∥2, the first term can be decomposed further

2Eit,z∥Ek,c[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2 = 2Eit,z∥Ek,c[∇ufc(w
k
c,t)−∇uf

it(wk
c,t)]∥2

+ 2Eit,z∥Ek,c[∇ac
fc(w

k
c,t)−∇ac

f it(wk
c,t)]∥2.

The adaptor’s term can be bounded as follows

2Eit,z∥Ek,c[∇acfc(w
k
c,t)−∇acf

it(wk
c,t)]∥2

(Jensen)
≤ 2

C∑
c=1

p(c)EzEit|z=c∥
K∑

k=1

pk
c

(
∇ac

fc(w
k
c,t)−∇ac

f it(wk
c,t)
)
∥2

(27)
≤ 2

C∑
c=1

p(c)∥pc∥2σ2
c ,

For the base model’s term, we decompose it further

2Eit,z∥Ek,c[
(
∇ufc(w

k
c,t)−∇uf

it(wk
c,t)]

)
∥2

≤ 4Eit,z∥Ek,c[∇ufc(w
k
c,t)− Ec′∇ufc′(w

k
c,t)]∥2 (*)

+ 4Eit,z∥Ek,c[Ec′∇ufc′(w
k
c,t)−∇uf

it(wk
c,t)]∥2. (**)

Observe that we can write Ec′ [∇ufc′(w
k
c,t)] = Eit′,z′ [∇uf

it
′
(wk

c,t)], so that

(∗∗) = 4Varit,z

(
K∑

k=1

C∑
c=1

pkπk
c∇uf

it(wk
c,t)

)
(28)
≤ 4σ̄2

C∑
c=1

∥p⊙ πc∥2.

As for (∗),

(∗)
(Jensen)
≤ 4Ek,c∥∇ufc(w

k
c,t)− Ec′∇ufc′(w

k
c,t)]∥2

(29)
≤ 4∆2,

Adding the bounds for gradient error, we get

Eit,z∥ḡt − g̃t∥2 ≤ 2G2Ek∥δkt ∥21 + 2Ec[∥pc∥2σ2
c ] + 4σ̄2

C∑
c=1

∥p⊙ πc∥2 + 4∆2. (31)

Thus, we overall have the descent bound

∥w̃t+1 −w∗∥2 ≤ (1− ηtµ)∥w̃t −w∗∥2 + ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − π̂k

c,t)[fc(w
k
c,t)

+ 4η2t (G
2Ek∥δkt ∥21 + Ec[∥pc∥2σ2

c ] + 2σ̄2
C∑

c=1

∥p⊙ πc∥2 + 2∆2)

+ 8Lη3tH
2G2.

This completes the proof.
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Convergence rate The convergence rate will be almost identical to the main one, with the addition
of more terms from our new assumptions, and a finer, more precise total variation distance term,
which would introduce a logC term instead of a logKC using the same steps as in Lemma A.6. As
for the optimality gap, we would get it in terms of Êc[fc(w̃c,t) − fc(w

∗
c )], as it is not possible to

move the Êc inside with Jensen’s inequality since it is an average of different functions and not one
function. We believe this can be remedied by a careful use of perturbed iterates Ek,c[Êc′fc′(w

k
c,t)],

but we make no claims. Finally, recall that ∥w̃t −w∗∥2 ≤ ∥uk
t − u∗

t ∥2 + Ec∥akc,t − a∗c,t∥2 when
wk

c,t = (uk
t ,a

k
c,t), so that a bound on the perturbed iterates suffices.

Overall, we believe that obtaining a convergence rate from Lemma B.3 is straightforward given the
main results in Theorem A.9 and Theorem A.10 and is not interesting in itself, so we shall omit it.

B.2 BENEFITS OF WEIGHT SHARING

Using the above lemma, we will show the benefits of weight-sharing on some idealized examples
with well-balanced client datasets and cluster sizes. First, recall the gradient aggregation error in (31)

Eit,z∥ḡt − g̃t∥2 ≤ 2G2Ek∥δkt ∥21 + 2Ec[∥pc∥2σ2
c ] + 4σ̄2

C∑
c=1

∥p⊙ πc∥2 + 4∆2.

This descent bound follows from using the perturbed iterates in (25) and (26) and using Assump-
tion B.1 and Assumption B.2. We now present examples based on (FL) and (CFL).
Remark B.4. Consider a balanced FL problem with C = 1 and Nk = N/K. Clearly, πk

c = 1
for all k ∈ [K], so we trivially have δkt = 0. Furthermore, pc = 1/K, so ∥pc∥2 = 1

K , and∑C
c=1∥p⊙ πc∥2 = 1/K. Finally, ∆2 = 0. Thus,

Eit,z∥ḡt − g̃t∥2 ≤
4σ̄2 + 2σ2

1

K
,

which is the original variance reduction. Considering C (independent) copies with πk
c = 1/C and a

uniform router initialization π̂k
c,0 = 1/C, and assuming that the variances of the adaptors are similar,

i.e., σ2
1 = · · · = σ2

C , we get

Eit,z∥ḡt − g̃t∥2 ≤
4σ̄2

KC
+

2σ2
1

K
, (32)

where we can see the benefits of reducing the base model’s variance by averaging further across C
copies of (FL) problems with independent sampling. Indeed, if σ2

c = σ2
1 for all c ∈ [C], then we

would have σ2
1/K, but the full 1/KC factor remains for the base model.

Remark B.5. Consider a balanced clustered problem with Nk = N/K and πk
c = 1{k ∈ c}, so that

p(k) = 1
K and p(c) = Kc

K , where Kc =
∑K

k=1 1{k ∈ c}. Then, we have pk
c = p(c|k)p(k)/p(c) =

1{k∈c}
Kc

, so ∥pc∥2 = 1
Kc

. Similarly, Ec[∥pc∥2σ2
c ] =

∑C
c=1 σ2

c

K . Furthermore, we have
∑C

c=1∥p ⊙
pc∥2 =

∑C
c=1

∑K
k=1

1{k∈c}
K2 =

∑C
c=1

Kc

K2 = 1
K . Thus, when σ2

1 = · · · = σ2
C , we have

Eit,z∥ḡt − g̃t∥2 ≤
4σ̄2

K
+

2σ2
1

K/C
+ 2G2Ek∥δkt ∥21 + 4∆2. (33)

Now consider a uniform router initialization πk
c = 1/C. Note δk0 = (|1{k ∈ c} − 1/C|)Cc=1, so

∥δk0∥21 = (C−1
C + (C − 1) 1

C )2 = 4 (C−1)2

C2 . As for ∆2, we can only assume that it is close to 0.
Otherwise, the use of weight sharing will not be motivated.

We can see from the clustered example that understanding the trade-off between the reduction in
variances (via weight sharing) and the increase of ∆ heterogeneity is important and allows for more
principled mechanisms of weight sharing, which would be an interesting direction to explore.

C ROUTER UPDATE

C.1 DERIVATION OF ROUTER UPDATE FOR (MFL)

The update in (5) looks different from the one we use in practice. Indeed, consider the πk that
minimizes (MFL) for each k ∈ [K], i.e., πk = argminπ

∑C
c=1 πcf

k(wk
c,t). This is trivially
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πk = ec̄ where ei is basis vector of the i-th coordinate and c̄ = argmink∈[K] f
k(wk

c,t), i.e., πk is
one-hot at the lowest loss. Thus, πk will always lie at one of the vertices of ∆C−1.

However, consider now (MFL) with negative entropy regularization for the routers Γ(πk) =∑C
c=1 π

k
c logπ

k
c . We have

πk
t = argmin

π∈∆C−1

C∑
c=1

πcf
k(wk

c,t) + λent

C∑
c=1

πc logπc

= argmin
πc≥0

C∑
c=1

πcf
k(wk

c,t) + λent

C∑
c=1

πc logπc + λsim(

C∑
c=1

πc − 1)

=⇒ λent logπ
k
c,t = −fk(wk

c,t)− λentC − λsimC.

Let λ = λsim
λent

. We either have λsim = 0 or
∑C

c=1 π
k
c,t = 1, so

1 =

C∑
c=1

πk
c,t =

C∑
c=1

exp(−λ−1
ent f

k(wk
c,t)− C − λC)

exp(λC) =

C∑
c=1

exp(−λ−1
ent f

k(wk
c,t)− C)

λ =
1

C
log

C∑
c=1

exp(−λ−1
ent f

k(wk
c,t)− C) =⇒ πk

c,t =
exp(−λ−1

ent f
k(wk

c,t))∑C
c=1 exp(−λ

−1
ent fk(wk

c,t))
.

The above implies that the update (5) is, indeed, solving the following subproblem

argmin
π∈∆C−1

C∑
c=1

πcf
k(wk

c,t) +
1

ηt

C∑
c=1

πc logπc. (34)

C.2 CONNECTION TO GRADIENT DESCENT ON A SOFTMAX-PARAMETERIZED ROUTER

Here we show that using the router parameterization π̂c ∝ exp θc and the update in Algorithm 1
produces similar updates to (5) up to second-order terms in the exponent given a uniform router. We
first note that π̂c is invariant to constant shifts in θc under the parameterization given above. This
equivalently means that π̂c is invariant to constant multiplications (as it is always normalized). Note
that we do not make use of the time index t as we will be concerned with a single update across
cluster indices c, and since k is arbitrary, we drop it for clarity.

First, we rederive the Jacobian of Softmax, i.e., ∂π̂c′
∂θc

where π̂c =
exp θc∑C

c=1 exp θc
. Using the fact that the

gradient of LogSumExp is Softmax, i.e., ∂
∂θc

log
∑C

c=1 exp θc = π̂c, we get

∂π̂c′

∂θc
=

∂ log π̂c′

∂θc
π̂c′ = (δcc′ − π̂c)π̂c′ ,

where δcc′ equals 1 if c = c′, 0 otherwise.

Let ŵ :=
∑C

c=1 π̂cwc. The gradient of (FML) with respect to θc is

∂

∂θc
f(ŵ) =

C∑
c′=1

⟨∇f(ŵ),wc′⟩
∂π̂c′

∂θc

=

C∑
c′=1

⟨∇f(ŵ),wc′⟩(δcc′ − π̂c)π̂c′

= ⟨∇f(ŵ),

C∑
c′=1

δcc′π̂c′wc′⟩ − ⟨∇f(ŵ),

C∑
c′=1

π̂cπ̂c′wc′⟩

= π̂c⟨∇f(ŵ),wc − ŵ⟩.
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Using Taylor series expansion, we get
∂

∂θc
f(ŵ) = π̂c⟨∇f(ŵ),wc − ŵ⟩ = π̂c(f(wc)− f(ŵ))− π̂cΩ(∥wc − ŵ∥2).

If we assume low curvature and π̂−1
c = Ω(∥wc − ŵ∥2) for π̂c > 0, then the approximation becomes

exact up to Θ(1). In other words, as the difference between cluster c and the mixture increases,
i.e., ∥wc − ŵ∥2 becomes larger, we need π̂c to decrease at least as quickly so that it balances the
second-order term out.

Let us simply assume that ⟨∇f(ŵ),wc − ŵ⟩ ≈ f(wc) − f(ŵ) and that we reset θc before every
update so that π̂c = 1/C. Recall that θc is invariant to constant shifts. Thus, the step above will be

θc − η
∂

∂θc
f(ŵ) ≈ θc − ηπ̂c(f(wc)− f(ŵ)) = − η

C
f(wc)+

η

C
f(ŵ) +

1

C︸ ︷︷ ︸
do not depend on c

. (35)

This implies that π̂c ∝ exp(− η
C f(wc)) since θc is shift-invariant, which is equal to (5) with the

learning rate multiplied by C. In fact, we can remove router resetting, but it will then be related to the
momentum-like router update π̂c,t+1 ∝ π̂c,t exp(−ηf(wc,t)) for a properly scaled η with respect to∑t

τ=0 π̂c,τ . We leave this exposition for another work.

It should be noted that ignoring the second-order terms is not trivial. Nonetheless, it allowed us to
make a direct connection between the updates we use in practice to the theory. We also understand
now that the Softmax-parameterization is inferior when the curvature is high or when the mixed
weights are far from the "active" clusters (wc with large π̂c). The second case happens, for example,
when ŵ is in the origin and w1 and w2 are far and opposite to each other with π̂1 = π̂2, but
this ambiguity is inherent. Thus, we conclude that the main difficulty that could face a Softmax-
parameterized router trained with gradient descent is high curvature, which is a sound conclusion
since the log-weights are linear approximations of the function objectives.

D PRECONDITIONING LORAS

Consider the gradient of a linear adaptive layer W+L = W+UV⊤. Let GU := ∇Uf(W+UV⊤)
be the gradient w.r.t. parameter U, and similarly for V and W. Note that GW = G := ∇f(W +
UV⊤) because ∂(W +UV⊤)/∂W = I.

UV⊤ ← (U− ηtGU)(V − ηtGV)⊤

= UV⊤ − ηt(UG⊤
V +GUV⊤) +O(η2t )

= UV⊤ − ηt(UU⊤G+GVV⊤) +O(η2t ),
where we used the chain rule, GU = GV and GV = GU. For linear layers, we consider a specific
preconditioner designed for low-rank estimation (Tong et al., 2021).

GU ← GU(V⊤V + ϵI)−1, GV ← GV(U⊤U+ ϵI)−1, (36)

for some small ϵ > 0. We note that this idea has also been recently explored in the context of LoRAs
(Zhang & Pilanci, 2024). The problem of learning a mixture of LoRAs can be ill-conditioned since
they can learn at different rates, so we normalize their gradients to help them learn at the same rate
(Chen et al., 2022). Note that, as ϵ → 0, the scale of the dynamics of UV⊤ follows that of W,
i.e., UV⊤ − ηt(PUG+GPV), where PU := U(U⊤U)−1U⊤ is the projection matrix onto the
column space of U, and similarly for V.
For convolution layers, we scale by the Frobenius norm of the preconditioner instead, as the problem
would otherwise involve finding the deconvolution of the preconditioner, which is out of the scope of
this work. Since U⊤U and UU⊤ have the same eigenvalues and thus the same norms, the change in
UV⊤ will be proportional to UU⊤

∥UU⊤∥F
G+G VV⊤

∥VV⊤∥F
.

E CENTERING LORAS

The condition (30) in Assumption B.2 is intuitive as a practical implementation detail. Indeed,
Suppose that we have C = 2, and at synchronization, we have u = 5, a1 = 4, and a2 = 6. If the
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model is u+
∑

c πcac, then an equivalent parameterization is u = 10, a1 = −1, and a2 = 1, which
has less variation across a1 and a2. What we have done is simply the following

u← u+ Ec[ac],

ac ← ac − Ec[ac],∀c ∈ [C],

where p(c) = 1/2. Since we have additive personalization, it is always possible to add and subtract
arbitrary constants that will still yield the same parameterizations. Choosing Ec[ac] would simply
center the adaptors around zero.

In case of LoRAs, this is not exactly as straightforward as it might seem. Consider a LoRA
ac = (Uc,Vc), for example. The update ac = (Uc − Ec[Uc],Vc − Ec[Vc]) would not really
preserve the parameterization. We should, in fact, have that UcV

⊤
c ← UcV

⊤
c − Ec[UcV

⊤
c ]. It

remains to get the values of Uc and Vc individually after the reparameterization. We can take the
closest such values by minimizing the quantity

argmin
U,V

∥UV⊤ − (UcV
⊤
c − Ec[UcV

⊤
c ])∥2

But the solution is straightforward, as it is precisely the truncated SVD of UcV
⊤
c − Ec[UcV

⊤
c ]

(which is not unique). Namely,

U,Σ,V⊤ ← Trunc-SVDr(UcV
⊤
c − Ec[UcV

⊤
c ]), Uc ← UΣ1/p, Vc ← VΣ1/q, (37)

where r is the original rank of Uc and Vc, and p and q are chosen such that 1/p + 1/q = 1. The
choice p = 2 and q = 2 is standard, but it is not exactly clear how to optimally choose p and q in
case of LoRAs or in training FLoRAL models.

F ADAPTORS

F.1 CONVOLUTION LAYER

Here, we explain some of the implementations of ConvLoRAs. In our experiments, we choose the
channel+filter ConvLoRA, also called Balanced 2D, because it is the most parameter-efficient and
have the best performance as per Table 4.

Channel-wise We define U ∈ Rcout×r×k1×k2 and V ∈ Rr×cin×1×1. Let us assume that cout ≤
cin, without loss of generality. This could be seen as a linear transformation U of the cin filters to r
filters, followed by the a convolution layer V that is similar to the original one, except that it operates
on r filters instead. The order of the linear transformation and convolution can also be reversed
adaptively so that the number of parameters is minimized. In general, the given construction is more
economical in terms of added parameters when cout ≤ cin. This operation can be written as

Lchannel
ijab :=

r∑
k=1

UikabVkj11, (38)

and the number of its parameters is (coutk1k2 + cin)r.

Filter-wise The filter size of the convolution layer (k1, k2) can be reduced to rank-1 filters by
two consecutive convolutions with filter sizes (k1, 1) and (1, k2). Thus, for rank-r filters, we define
U ∈ Rcout×rcout×1×k2 and V ∈ Rrcout×cin×k1×1 as if we are decomposing the filter as a sum of
rank-1 matrices. Thus, with some abuse of notation, we get the following low-rank layer

Lfilter
ijab :=

r∑
k=1

Ui(rj+k)1bV(rj+k)ja1. (39)

It is understood here that the evaluation of what is between the parenthesis gives the index of a single
dimension. This adaptor has (coutk2 + cink1)coutr parameters, which is significantly more than the
channel-wise LoRA.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Channel+filter-wise : In case we want to combine channel-wise and filter-wise low-rank adaptation
for channel-wise low rank rc and filter-wise low rank rf , we define U ∈ Rcout×rfrc×1×k2 and
V ∈ Rrfrc×cin×k1×1, and the adaptive layer becomes

Lmix
ijab :=

rc∑
kc=1

rf−1∑
kf=0

Ui(rfkc+kf )1bB(rfkc+kf )ja1 =

rfrc∑
k=1

Uik1bVkja1. (40)

Letting r := rfrc, this formulation has (coutk2 + cink1)r parameters, which is an order of cout less
parameters. In general, we always set rf = 1 as filters are usually small. It is sufficient to beat the
channel-wise implementation as can will be seen in Section 3.2.

Reshaped linear : We can use a regular linear LoRA by stacking the filter dimension of the
convolution layer on the input or output channels, adding the LoRA, and then reshaping the layer
back into the original shape. In other words, we have U ∈ Rcoutk1k2×r and V ∈ Rr×cin , and the
convolution LoRA would be

Lconv
ijab := Llinear

(k1k2i+k2a+b)j . (41)
This layer has (coutk1k2 + cin)r, exactly like the channel-wise LoRA.

In our implementation, we choose the channel+filter option as it is the most parameter-efficient.
Indeed, let cmax := max(cin, cout) and cmin := min(cin, cout), and let kmax and kmin be
defined similarly. Note that we can always construct a channel+filter-wise ConvLoRA such
that it has (cminkmax + cmaxkmin)r parameters. Thus, one can check that this is less than
(cminkmaxkmin + cmax)r only when we have cmax/cmin ≤ kmax, which is likely satisfied as
the standard for most architectures is to have cmax/cmin ≤ 2, and clearly kmax ≥ 2.
We can constrain the number of parameters similarly to the linear layer as (cminkmax +
cmaxkmin)r ≤ ρcmincmaxkminkmax. Indeed, if cmax = cmin and kmax = kmin, we have
r ≤ ρcmaxkmax/2. The split of kernel sizes among the two layers can be done adaptively such that
r is maximized. In the experiment section, we refer to channel-wise ConvLoRAs methods where
r is maximized given ρ, and similarly for the channel+filter-wise ConvLoRAs methods where r is
maximized given ρ, which we denote as Balanced 2D ConvLoRA. We show the comparisons in
Figure 10 and Table 4.

F.2 NORMALIZATION LAYERS

We consider adaptors to batch normalization, instance normalization, layer normalization, and group
normalization. All of these normalization layers start by normalizing a hidden vector of some layer h
along specific dimensions to get ĥ and then take a Hadamard product along the normalized dimension
as γ ⊙ ĥ (ignoring bias). We propose a simple adaptor Lγ that has the same shape and works in
exactly the same manner but is initialized to zero. The adaptive output will then be (γ + Lγ)⊙ ĥ,
which is initially equal to the non-adaptive output.

One normalization layer that requires a more thorough treatment is batch normalization. This is
because it normalizes h with respect to running statistics calculated from previous batches, so the
adaptor would need to normalize with respect to the same running statistics if we want to maintain
the same additive form of the output under the same scale.

We now show a simple reparameterization of the BatchNorA that normalizes h with respect to the
adaptor statistics but trains its parameters with respect to the main statistics. This ensures that the
gradient of the adaptor has the same scale as the original gradient. This is useful because we are
interested in the federated learning case where those parameters are federated, but the statistics are
local. Note that this is not the same as FedBN (Li et al., 2021b), where both the parameters and the
statistics are local.

Batch NorA We will show here a batch norm adaptor that might be of interest to the readers, which
is left here in the appendix as it is still in the exploratory stage. Preliminary experiments show decent
improvements, as can be seen from Figure 2.

First, recall batch normalization

BN(x; γ, β) =
x− µ̂(x)√
σ̂2(x) + ϵ

γ + β,
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where x ∈ RB×d for batch size B and dimension d, µ̂(x) ∈ Rd and σ̂2(x) ∈ Rd are the batch mean
and variance (or statistics, for short), γ ∈ Rd and β ∈ Rd are learnable parameters, and ϵ is a small
number for numerical stability. Here, it is understood that the operation is applied on x batch-wise.
Often, batch statistics are estimated with a running (exponential) average during training, and then
fixed during evaluation.

When we are faced with multiple tasks or non-iid data distributions, batch normalization layers can
actually hurt performance because the batch statistics can be inaccurate and might not necessarily
converge (Wang et al., 2023). We would like to introduce an adaptor for batch norm layers Li =
[γi, βi], so an intuitive implementation would be as follows:

BN-Adaptori(x; γ, β, γi, βi) = BN(x; γ, β) + BNi(x; γi, βi),

where both γi and βi are initialized to 0 so that it is equivalent to the original case at initialization.

However, we want to ensure that our choice of γi and βi is invariant to the local batch statistics. In
other words, we want γi to behave as a perturbation to γ, and similarly for βi. Let us set ϵ = 0. Now,
observe that

BN-Adaptori(x) =
x− µ̂(x)√

σ̂2(x)
γ +

x− µ̂i(x)√
σ̂2
i (x)

γi + β + βi

=
x− µ̂(x)√

σ̂2(x)
γ +

√
σ̂2(x)√
σ̂2
i (x)

x− µ̂i(x)√
σ̂2(x)

γi + β + βi

=
x− µ̂(x)√

σ̂2(x)
γ +

√
σ̂2(x)√
σ̂2
i (x)

(
x− µ̂(x)√

σ̂2(x)
− µ̂i(x)− µ̂(x)√

σ̂2(x)

)
γi + β + βi.

Let m̂i :=
µ̂i(x)−µ̂(x)√

σ̂2(x)
be the (normalized) mean shift w.r.t. the global mean and ŝi :=

σ̂i(x)
σ̂(x) be the

relative deviation w.r.t. the global deviation. We can rewrite the above expression as

BN-Adaptori(x) =
x− µ̂(x)√

σ̂2(x)
γ + ŝ−1

i

(
x− µ̂(x)√

σ̂2(x)
− m̂i

)
γi + β + βi

=
x− µ̂(x)√

σ̂2(x)
(γ + ŝ−1

i γi)− m̂iŝ
−1
i γi + β + βi.

Thus, consider a reparameterization γ̃i := ŝiγi and β̃i := βi + m̂iγi so that LoRA-BNi(x) =

BN(x; γ, β) + BNi(x; γ̃i, β̃i). We would then have that

BN-Adaptori(x) =
x− µ̂(x)√

σ̂2(x)
(γ + ŝ−1

i γ̃i) + m̂iŝ
−1
i γ̃i + β + β̃i

=
x− µ̂(x)√

σ̂2(x)
(γ + γi) + β + βi.

Therefore, a reparameterization that is invariant to local batch statistics would be as follows

γi −→
σ̂i(x)

σ̂(x)
γi, βi −→ βi +

µ̂i(x)− µ̂(x)√
σ̂2(x)

sg(γi), (42)

where we used the stop gradient operator sg(γi) to emphasize that γi is given in βi’s parameterization
(i.e., would not pass its gradients through βi). Note that this γi is not the reparameterized one. It is
helpful to think of the expressions on the RHS of the arrows in (42) as arguments to the batch norm
function, and that γi and βi are parameters to be optimized.

Experiment Consider the following small adjustment to the synthetic MLP task. For each client
k, we first take a fixed sample of xk, compute the hidden vectors, and then normalize them before
feeding them to the activation function and final layer. The normalization is critically dependent
on the sampled xk for each client. This construction makes the problem more amenable to a batch
normalization layer after the first layer, so we use this model and consider Batch-NorA. In addition,
we consider use batch normalization in the VGG-8 model we originally used for CIFAR-100.
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Figure 2: Loss on Synthetic MLP + BN dataset.

The results in Figure 2 are decent and show that the particular setting of reparameterized Batch-NorA
Appendix F.2 with local statistics can offer good improvements. We note that the reparameterization
is equivalent to normalization with respect to the main batch norm and then rescaling and shifting
with respect to the adaptor’s parameters. The convenience of this reparameterization is that it does
not require any adjustment to the batch norm layer in the adaptor, and the reparameterization can be
seamlessly done with PyTorch’s parameterization module.

G EXTRA EXPERIMENTAL DETAILS

In this section, we show extra experimental details and show missing tables and figures.

G.1 SYNTHETIC LINEAR

Consider a regression task where we want to learn y ∈ Rdy given x ∈ Rdx , where x ∼ N (0, Idx
).

We construct two versions of this regression task: one is based on a linear model plus a personalized
LoRA, and the other is based on a similar setup on the first layer of a two-layer ReLU net. For
both problems, we sample the parameters of the dataset element-wise from the normal distribution
N (0, 1√

din
), where din is the input dimension of the layer.

The target and the model are such that

yk(x) =

C∑
c=1

πk
c (W + αUcV

⊤
c )x, ŷk(x) =

C∑
c=1

π̂k
c (Ŵ

k + Ûk
c (V̂

k
c )

⊤)x, (43)

where W ∈ Rdy×dx , Uc ∈ Rdy×r, Vc ∈ Rdx×r, and α ∈ R, and similarly for the trained parameters.
The ground-truth model is designed such that the clients share a common structure without making
any assumption about the distances of the personal solutions to the solution of (FL). Notice that α
can make the personal solutions arbitrarily far from W, yet they differ in rank r only. For example, a
simple construction would be W = I and Uc = Vc = ec, where ei is the standard basis vector of
the i-th coordinate (e.g., e1 = (1, 0, · · · )⊤). As for the ground-truth router assignment, we consider
a diagonal assignment such that πk

c = δ(k mod C)c, so clients mk are in the same cluster for positive
integers m.
For each client k, we take a fixed sample of xk and yk of size Nk such that Nk < d, but

∑K
k=1 N

k >

d, where d = dydx is the original model size. This is to make it difficult for the model to fit Ŵ locally
due to under-parameterization. Thus, collaboration is important to generalize well, but collaboration
with the wrong clients can be detrimental. For this dataset, we chose Nk ≈ 0.25d. The objective for
this regression task is the MSE loss 1

2∥ŷ
k(x)− yk∥2..
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Table 4: Ablation of ConvLoRAs.

ConvLoRA CIFAR-10 CIFAR-100R LS

Balanced 2D 70.2 74.1 51.7
In Layer 67.6 73.5 49.1
Out Layer 68.5 74.0 51.9
None 67.6 73.9 50.8

Table 5: Ablation of adaptors.

Adaptors Bias CIFAR-10 CIFAR-100R LS

ConvLoRA ✗ 69.8 72.7 45.1
✓ 67.6 73.4 45.8

LoRA ✗ 68.7 73.7 46.6
✓ 67.6 73.9 50.8

Both ✗ 68.9 73.3 47.9
✓ 70.2 74.1 51.7

None ✗ 64.6 21.9 12.1
✓ 64.6 21.9 12.1

G.2 SYNTHETIC MLP

Consider a 2-layer ReLU neural net, or multi-layer perceptron (MLP) for short6

yk := Φ

(
C∑

c=1

πk
c (W +UcV

⊤
c )x

)
+

, (44)

where now W ∈ Rdh×dx , Uc ∈ Rdh×r, Vc ∈ Rdx×r, and Φ ∈ Rdy×dh for some hidden dimension
dh, and a diagonal router assignment πk

c = δ(k mod C)c. We use normal initialization with variance
proportional to the input dimension of the layer.
The regression model has the exact same form. However, the hidden dimension is wider, i.e., it is
mdh for some integer m ≥ 1. This is mainly because we want to control for the effect of not being
able to fit the target model (we set m = 2 in our experiments). We also have Nk ≈ 0.5d, which is
twice as many data points than the linear task as this task is more difficult.

G.3 ABLATION AND HYPERPARAMETERS

Adaptors. We study the effect of removing each of the adaptors introduced in Section 3.2. We chose
the CIFAR-10 with both tasks and CIFAR-100 for the ablation study of the LoRAs, ConvLoRAs, and
bias adaptors. We show in Figure 8 and Table 5 that the full combination of LoRA, ConvLoRA, and
adaptive biases can consistently achieve the top accuracy.

ρ and C. In Table 2, we see that choosing C to be less than the number of ground-truth clusters can
hurt performance. On the other hand, using a significantly larger C can hurt performance for smaller
ρ, but a larger ρ fixes this by reaching similar accuracies to the case where we know the exact number
of ground-truth clusters. We can also see the plots in Figure 9.

ConvLoRA. We compare the different methods for implementing ConvLoRAs as proposed in
Section 3.2. We propose to balance the channels and the kernel sizes such that we achieve the
most parameter-efficient ConvLoRA, which we refer to as Balanced 2D as it is specific to the two
dimensional case. On the other hand, we can balance only the channels and fix the kernel sizes to
either the in layer or the out layer. We show in Table 4 and Figure 10 that the Balanced 2D case is
consistently the best option given a fixed ρ. Recall that MNIST and CIFAR-10 have 4 ground-truth
clusters, and CIFAR-100 have 10.

G.4 DATASETS META-DATA

See Table 6.

G.5 MISSING FIGURES

In this section, we simply show missing figures from our experiments for completeness. In particular,
we show plots of the aggregated testing loss per client, which shows how the other methods overfit in
comparison to FLoRAL, especially in the low-data regime.

6We write the ReLU function as (·)+.
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Table 6: Metadata of the considered federated datasets (K = # of clients, C = # of clusters, p = ratio
of sampled clients per round).

Dataset K C p Model
Synthetic Linear 10 2 100% Linear (43)
Synthetic MLP 20 4 100% MLP (44)
MNIST 300 4 10% MLP
CIFAR-10 20 4 100% 2×Conv→MLP
CIFAR-100 100 10 50% VGG-8
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Figure 3: Test loss on MNIST-R (left = Full, right = Reduced).
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Figure 4: Test loss on MNIST-LS (left = Full, right = Reduced).
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Figure 5: Test loss on CIFAR-10-R (left = Full, right = Reduced).
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Figure 6: Test loss on CIFAR-10-LS (left = Full, right = Reduced).
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Figure 7: Test loss on CIFAR-100 (left = Full, right = Reduced).
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Figure 8: Ablation study of FLoRAL Adaptors (left: CIFAR-10-R, middle: CIFAR-10-LS, right:
CIFAR-100).
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Figure 9: Varying ρ and C (left: CIFAR-10-R, middle: CIFAR-10-LS, right: CIFAR-100).
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Figure 10: Accuracy of ConvLoRA as described in Appendix G.3 (left: CIFAR-10-R, middle:
CIFAR-10-LS, right: CIFAR-100).
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