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Abstract

Last-iterate behaviors of learning algorithms in
repeated two-player zero-sum games have been
extensively studied due to their wide applica-
tions in machine learning and related tasks. Typ-
ical algorithms that exhibit the last-iterate con-
vergence property include optimistic and extra-
gradient methods. However, most existing results
establish these properties under the assumption
that the game is time-independent. Recently, [Feng
et al., 2023] studied the last-iterate behaviors of
optimistic and extra-gradient methods in games
with a time-varying payoff matrix, and proved that
in an unconstrained periodic game, extra-gradient
method converges to the equilibrium while opti-
mistic method diverges. This finding challenges
the conventional wisdom that these two methods
are expected to behave similarly as they do in time-
independent games. However, compared to uncon-
strained games, games with constrains are more
common both in practical and theoretical studies.
In this paper, we investigate the last-iterate behav-
iors of optimistic and extra-gradient methods in the
constrained periodic games, demonstrating that
similar separation results for last-iterate conver-
gence also hold in this setting.

1 INTRODUCTION
Learning from repeated plays in zero-sum games has been a
central research problem in game theory since the work of
[Brown, 1951] and [Robinson, 1951], soon after the appear-
ance of the minimax theorem of von Neumann. In classic
normal form zero-sum games, one has to compute proba-
bility distributions x∗

1 ∈ ∆n and x∗
2 ∈ ∆m that consist an
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equilibrium of the following problem

max
x1∈∆m

min
x2∈∆n

x⊤
1 Ax2 (Zero-Sum Game)

where A is an n × m payoff matrix, and an equilibrium
(x∗

1,x
∗
2) is a pair of randomized strategies such that neither

player can improve their payoff by unilaterally changing
their distributions. The dynamics of online learning algo-
rithm in games have been studied extensively. Among a
variety of learning methods, Multiplicative Weights Up-
date and Gradient Descent-Ascent, together with their opti-
mistic and extra-gradient variants are of particular interest
in time-independent games (i.e., the payoff matrix A is time-
independent).

Recently, the last iterate property, which captures the day-
to-day behaviors of learning algorithms in games rather
than their average behaviors, has attracted increasing in-
terest due to their wide applications in machine learning
and related tasks. In the regime of time-independent games,
there have been quite a few results showing the last iter-
ate convergence to Nash equilibrium in zero-sum games.
Typical examples include optimistic gradient descent as-
cent [Daskalakis et al., 2018], extra-gradient descent as-
cent [Liang and Stokes, 2019] for unconstrained zero-sum
games, as well as optimistic multiplicative weights update
[Daskalakis and Panageas, 2018a, Fasoulakis et al., 2022],
extra-gradient multiplicative weights update [Mertikopoulos
et al., 2019] for constrained zero-sum games. To conclude,
in the context of time-independent games, optimistic meth-
ods and extra-gradient methods exhibit similar behaviors :
they both possess the last-iterate convergence property and
converge by the same rate. Moreover, they can be analyzed
in a unified way [Mokhtari et al., 2020].

Despite aforementioned progresses on time-independent
games, only recently there have emerged researches on
learning in time-varying zero-sum games [Cardoso et al.,
2019, Fiez et al., 2021, Duvocelle et al., 2022, Zhang et al.,
2022, Anagnostides et al., 2023, Feng et al., 2023]. In par-
ticular, it has been established by [Feng et al., 2023] that
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the optimistic gradient descent-ascent and extra gradient de-
scent ascent have fundamentally different last iterate behav-
iors, unlike previous studies in time-independent zero-sum
games. Nevertheless, [Feng et al., 2023] focuses on the set-
ting of unconstrained zero-sum games. However, compared
to unconstrained games, games with constrains are more
common both in practical and theoretical studies. In this
paper, we aim to address the following question:

Is there a similar last-iterate convergence separation be-
tween optimistic and extra-gradient methods in constrained
time-varying games ?

Our contribution. We highlight the following two results
as our main contribution :

• We construct a constrained periodic game with a com-
mon equilibrium and prove optimistic multiplicative
weights update do not converge to the equilibrium in
this game. See Theorem 3.1.

• We prove that if the game series in a periodic game
with simplex constrains have a common equilibrium,
then Extra-gradient multiplicative weights update will
converge to this equilibrium. See Theorem 3.2.

By combining these two terms, we prove that there exist a
clear last-iterate convergence separation between optimistic
and extra-gradient methods in constrained periodic games,
thereby extending the results of [Feng et al., 2023] from
unconstrained to constrained settings.

Technical Comparison. The MWU-based algorithms
considered in this paper differ from the GDA-based algo-
rithms considered in [Feng et al., 2023] in two fundamental
ways. Firstly, variations of MWU algorithms are naturally
defined on the simplex constraints, allowing our analysis
to avoid the difficulty of projecting onto simplex. Secondly,
the algorithms considered in [Feng et al., 2023] have linear
structure, i.e., can be directly analyzed as linear systems,
while the MWU-based algorithms have non-linear, making
the techniques of [Feng et al., 2023] ineffective in our sce-
nario. At a high level, by considering variations of MWU
algorithms, we transform the technical difficulties arising
from constraints into difficulties related to analyzing non-
linear dynamics of MWU-based algorithms. It is worth not-
ing that a similar transformation can be observed in the line
of research on establishing last-iterate convergence in static
games: [Daskalakis et al., 2017] first proved convergence of
Optimistic GDA without constraints and then [Daskalakis
and Panageas, 2018a] extended their results to constrained
settings for Optimistic MWU.

Organization. In Section 2, we present the necessary
background for this work. In Section 3, we state our main
results. In Section 4, we explain the main ideas behind the
proof of our theoretical results. In Section 5, we provide
numerical experiments to support our theoretical findings.

Discussions on possible extensions of the current results are
presented in Section 6.

2 PRELIMINARIES

2.1 GAME THEORY

Zero-sum game. A two players zero-sum game consists of
two agents N = {1, 2}, and the losses of both players are
determined by a payoff matrix A ∈ Rm×n. At each time t,
the player 1 selects a mixed strategy xt1 from the simplex
constrains

∆m =

{
x ∈ Rm|

m∑
i=1

xi = 1, xi ≥ 0

}
,

and similarly, the player 2 selects a mixed strategy xt
2 from

the simplex constrains ∆n. Given that player 1 selects strat-
egy x1 ∈ ∆m and player 2 selects strategy x2 ∈ ∆n, player
1 receives loss u1(x, y) = −⟨x1, Ax2⟩, and player 2 re-
ceives loss u2(x, y) = ⟨x2, A

⊤x1⟩. Naturally, players want
to minimize their loss resulting the following min-max prob-
lem:

max
x1∈∆m

min
x2∈∆n

x⊤1 Ax2 (Zero-Sum Game)

A mixed strategy x ∈ ∆m is called fully mixed if xi > 0 for
all i ∈ [m]. The KL-divergence between two pairs of fully
mixed strategies (x, y) and (x′, y′) ∈ ∆m ×∆n is defined
as

KL ((x, y), (x′, y′)) =
∑
i∈[m]

xi ln
(

xi
x′i

)
+
∑
j∈[n]

yj ln

(
yj
y′j

)
.

The KL-divergence can be considered as a measurement of
the distance between two pairs of mixed strategies. Note
that for fixed (x, y), the KL-divergence will diverge to in-
finity when (x′, y′) approaches the boundary of the simplex
constrains, i,e., when some components of (x′, y′) tends to
zero.

Periodic zero-sum game. In this paper, we study games
in which the payoff matrices vary over time periodically.

Definition 2.1 (Periodic zero-sum games). A periodic game
with period T is an infinite sequence of zero-sum bilinear
games {At}∞t=0 ⊂ Rn×m, and At+T = At for all t ≥ 1.

Note that the time-independent game is a special case of the
periodic game with T = 1. The periodic game defined here
is the same as [Feng et al., 2023], except they consider the
unconstrained case while we consider the constrained case.
A continuous-time counterpart of the periodic zero-sum
game was also studied in [Fiez et al., 2021].

2.2 LEARNING DYNAMICS IN GAMES

In this paper we consider two types of learning dynam-
ics : Optimistic Multiplicative Weights Updates (OMWU)
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and Extra-gradient Multiplicative Weights Updates (Extra-
MWU), which are variants of the Multiplicative Weights
Updates algorithms (MWU). Both (OMWU) and (Extra-
MWU) possess the last-iterate convergence property in re-
peated game with a time-independent payoff matrix and
simplex constrains, as demonstrated in previous literature
[Daskalakis and Panageas, 2018a, Mertikopoulos et al.,
2019, Wei et al., 2021, Fasoulakis et al., 2022]. Here we
state their forms within a time-varying context.

MWU. The dynamics of MWU is

xt+1
1 =

(
xt1,ieη(Atxt2)

i∑m
s=1 xt1,seη(Atxt2)s

)m

i=1

,

xt+1
2 =

(
xt
2,je

−η(A⊤
t xt1)

j∑m
s=1 xt2,se−η(A⊤

t xt1)s

)n

j=1

. (MWU)

Here η represents the step size. (MWU) belongs to the
general class of Follow-the-Regularized-Leader algorithms
(FTRL), which play a central role in the online learning
problems [Shalev-Shwartz et al., 2012]. It is known that
when two players both use (MWU) to update their strategies
in a time-independent zero-sum game, the trajectories of
their strategies will not converge and may diverge to the
boundary of the simplex [Bailey and Piliouras, 2018].

Recently, there are also works that study the dynamical
behaviors of continuous-time partner of (MWU) and more
general FTRL dynamics in periodic game. It is shown that
these dynamics exhibit the Poincaré recurrence property in
a periodic game [Fiez et al., 2021].

Optimistic MWU. The dynamics of Optimistic-MWU is

xt+1
1 =

(
xt1,ie2η(Atxt2)

i−η(At−1xt−1
2 )i∑m

s=1 xt1,se2η(Atxt2)s−η(At−1xt−1
2 )s

)m

i=1

,

xt+1
2 =

(
xt2,je

−2η(A⊤
t xt1)

j+η(A⊤
t−1xt−1

1 )j∑m
s=1 xt2,se

−2η(A⊤
t xt1)s+η(A⊤

t−1xt−1
1 )s

)n

j=1

.

(OMWU)

Note that in (OMWU), t and t− 1 steps are used together to
update the step at time t+1. We will use (x01, x0

2), (x
−1
1 , x−1

2 )
to denote the initial conditions for (OMWU).

Optimistic method was proposed in [Popov, 1980] as a
variant of gradient descent ascent method in saddle-point
optimization problem. The last iterate convergence property
of Optimistic Gradient Descent-Ascent (OGDA) in uncon-
strained bilinear game with a time-independent payoff was
proved in [Daskalakis et al., 2017]. Recently, there are also
works analyzing the regret behaviors of OGDA under a time
varying setting [Anagnostides et al., 2023]. However, the
study of (OMWU) in the time-varying setting is still missing
in the literature, and the current work partially fills that gap.

Extra-gradient MWU. In Extra-MWU dynamics with a
step size of η, each iteration consists of two steps. In the first
step, a half step strategies vectors (xt+ 1

2
1 , xt+ 1

2
2 ) is calculated

based on the payoff vectors in the t-th round as follows :

xt+
1
2

1 =

(
xt1,ieη(Atxt2)

i∑m
s=1 xt1,seη(Atxt2)s

)m

i=1

,

xt+
1
2

2 =

(
xt2,je−η(A⊤

t xt1)
j∑n

s=1 xt2,se−η(A⊤
t xt1)s

)n

j=1

.

The second step for calculating the strategies (xt+1
1 , xt+1

2 )
is as follows :

xt+1
1 =

 xt1,ieη(Atx
t+1

2
2 )i∑m

s=1 xt
1,se

η(Atx
t+1

2
2 )s

m

i=1

,

xt+1
2 =

 xt2,je−η(A⊤
t x

t+1
2

1 )j∑n
s=1 xt

2,se
−η(A⊤

t x
t+1

2
1 )s

n

j=1

. (Extra-MWU)

Extra-gradient was firstly proposed in [Korpelevich, 1976]
as a modification of the gradient method in saddle-point op-
timization problem. It is known that Extra-gradient Descent-
Ascent (Extra-GDA) method converge to the equilibrium in
the time-independent bilinear zero-sum game with a linear
convergence rate [Liang and Stokes, 2019]. Convergence
of (Extra-GDA) on convex-concave game was analyzed in
[Nemirovski, 2004, Monteiro and Svaiter, 2010], and conver-
gence guarantees for special non-convex-non-concave time-
independent game of the more general Extra-gradient Mirror
Descent was provided in [Mertikopoulos et al., 2019].

2.3 RESULTS FROM DYNAMICAL SYSTEMS

In this paper, we analyze the last-iterate behavior of learning
algorithms in periodic games by modeling them as dynam-
ical systems. The resulting systems possess two character-
istics that make their analysis challenging: firstly, they are
non-autonomous, i.e., the evolution of the system not only
depends on its current state but also on the temporal vari-
ables; secondly, they are non-linear. In this section we intro-
duce the necessary backgrounds on this kind of dynamical
systems.

Definition 2.2 (Periodic dynamical system). Let X be a
subset of Rn. A discrete, T -periodic dynamical system is a
finite sequence f0, ..., fT −1 of maps where fi : X → X for
i = 0, ..., T −1. The sequence can be extended to a periodic
infinite by defining fi = fi mod T for i ≥ T . The trajectory
{xn} of a point x is given by the n-fold composition of these
p maps, i.e., xn = fn−1 ◦ · · · ◦ f1 ◦ f0(x).

Periodic dynamical systems are non-autonomous. The dy-
namical behaviors exhibited by non-autonomous systems
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can be highly intricate, and typically only results pertain-
ing to linear systems are available [Carvalho et al., 2015].
However, the study of periodic dynamical systems can be
simplified by analyzing an autonomous system derived from
the underlying periodic system [Franke and Selgrade, 2003,
Colonius and Kliemann, 2014]. For simplicity, we present
a proposition concerning the convergence behaviors of a
periodic system that is useful for our analysis.

Proposition 2.3 ([Franke and Selgrade, 2003]). Let f̃i =
fi+T −1 ◦ ... ◦ fi, for i ∈ [T ]. Then f̃i is a time-independent
dynamical system. If for all x ∈ X and each i ∈ [T ], it
holds that limn→∞ f̃n

i (x) = x∗ for some x∗ ∈ X , then the
periodic system defined by {fi}Ti=1 will converge to x∗ for
arbitrary initial points x ∈ X .

The proposition above demonstrates that in order to establish
the convergence of a periodic system, it suffices to demon-
strate the convergence of each corresponding autonomous
systems f̃i.

In the following, we consider the second characteristic of
the dynamical systems arising from our learning algorithms
: non-linearity. In general, non-linear dynamical systems ex-
hibit complex behaviors such as chaos [Hirsch et al., 2012],
thereby rendering the understanding of their global behavior
challenging. Subsequently, we present results pertaining to
the local behaviors of non-linear dynamical systems ϕ using
the technique of linearization [Galor, 2007].

Definition 2.4 (Stable, Unstable, and Center eigenspaces.).
Let ϕ : Rn → Rn be a continuous differentiable function,
and x̄ be a fixed point of ϕ, i.e., ϕ(x) = x. let Dϕ(x̄) be the
Jacobian matrix of ϕ at point x̄. The stable eigenspace of x̄
is defined as

Es(x̄) = span{Eigenvectors of D(x̄) whose eigenvalues

have modules < 1}.

Similarly, the unstable (rep. center ) eigenspace Eu(x̄) (rep.
Ec(x̄)) of x̄ is the subspace spanned by eigenvectors of
D(x̄) whose eigenvalues have modules > 1 (rep. = 1).

Proposition 2.5 ( [Galor, 2007]). Let ϕ : Rn → Rn be a
continuous differentiable function, and with the concepts
defined as above, we have

dimEs(x̄) + dimEu(x̄) + dimEc(x̄) = n.

Proposition 2.5 implies that any point in Rn can be decom-
posed to linear combination of the vectors belonging to the
three eigenspaces defined above. These three eigenspaces
provide a full characterization on the local behavior of ϕ
near the fixed point x̄ : if a point x is close to x̄, and lies in
the stable space Es(x̄), it will converge to x̄ after sufficient
number of iterations of ϕ. On the other hand, vectors in
Eu(x̄) or Ec(x̄) will not converge to x̄.

3 MAIN RESULTS
In this section we state our main results. Under the as-
sumption of the games in a periodic game have an unique
common equilibrium, we provide an example to show that
(OMWU) fails to converge to the equilibrium and even can
diverge to the boundary of the simplex, as stated in Theorem
3.1. Conversely, (Extra-MWU) can converge to the equilib-
rium, as shown in Theorem 3.2. This distinction provides
a separation on the last-iterate convergence behaviors of
(OMWU) and (Extra-MWU).

Theorem 3.1. For the periodic game defined by payoff
matrices

At =



[
0 1

1 0

]
, t is odd

[
0 −1

−1 0

]
, t is even

(1)

and sufficient small step size η , (OMWU) has following
properties :

• For an arbitrary small neighbourhood U of the equilib-
rium (x∗1, x∗2), there exists an initial condition within U
that causes (OMWU) to fail in converging to (x∗1, x∗2).

• If the initial condition (x01, x0
2), (x

−1
1 , x−1

2 ) ̸= (x∗1, x∗2),
then

lim
n→∞

KL ((x∗1, x∗2), (x
n
1 , xn2 )) = +∞.

It is known that in a time-independent zero-sum game,
(OMWU) and its several variants will converge to the equi-
librium of the game Daskalakis and Panageas [2018a,b].
The proofs for this kind of results are typically divided into
two steps :

• Firstly, when (xt1, xt
2) are far from the equilibrium

(x∗1, x∗2), the KL-divergence KL((x∗1, x∗
2), (xt

1, xt2)) de-
creases at each step, until (xt1, xt2) is sufficiently close
to (x∗1, x∗2).

• Secondly, there exists a sufficient small neighbourhood
of (x∗1, x∗2), such that every points in the neighbourhood
will eventually converge to this equilibrium.

Theorem 3.1 implies both of these two reasons that
lead to the last-iterate convergence of (OMWU) in time-
independent games fail in the time-varying game defined
by (1). Note that the second point in the theorem is stronger
than the first point. However, to provide a clear comparison
with (OMWU) in time-independent games, we state them
individually.

Refer to the requirement for η in Proposition A.7 in the Ap-
pendix.
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In Figure (1), we present the evolution of the KL-divergence
between equilibrium and strategies of players when using
OMWU.

Figure 1: KL-divergence of OMWU in periodic game.

Theorem 3.2. For a periodic game defined by the payoff
matrices {At}Tt=1 with an unique common fully mixed equi-
librium , (Extra-MWU) will converge to this equilibrium if
the step size η satisfies η ·maxt∈[T ]∥At∥< 1.

The last-iterate convergence property of Extra-MWU, and
more generally, Extra-gradient mirror descent in time-
independent game, was studied in [Mertikopoulos et al.,
2019]. Note that although they referred to the algorithm
they studied optimistic mirror descent, their method aligns
with the Extra-gradient paradigm in the sense that the al-
gorithm requires a two-step update in each round. The key
property utilized in their proof is that the Bregman diver-
gence (a generalization of the KL-divergence) between a
fully mixed equilibrium and current strategies of players,
when they use Extra-gradient mirror descent, is a decreasing
function. We demonstrate that this property also holds for
Extra-MWU in a periodic game if the game series in the
periodic game has a common fully mixed equilibrium.

In Figure (2), we present the trajectories of strategies for
a player using the Extra-MWU algorithm. The periodic
game here is the same as (1). We can see that the strategy
converges to the equilibrium (0.5, 0.5) of the player.

4 OUTLINE OF THE PROOF
In this section, we outline the main steps for proving the
results stated in Section 3. Further details are provided in
Appendices A and B.

4.1 PROOFS OF THEOREM 3.1

According to the update rule of (OMWU), xt+2
1 and xt+2

2

are determined by xt+1
1 , xt+1

2 , xt1 and xt1. The mixed strate-
gies of both players in the periodic game defined in Theo-
rem 3.1 lie within the simplex ∆2, indicating that xtj,2 can

As games with non-unique equilibrium have a measure of
zero in all games, this assumption is not overly restrictive.

Figure 2: Trajectories of strategies for a player when using Extra-
MWU in the periodic game defined in (1).

be determined by xtj,1 for j = 1, 2 through the equation
xtj,2 = 1− xt

j,1. Thus, by tracing the evolution of xtj,1, we
can trace the evolution of players’ mixed strategies. The
dynamics of (OMWU) in Theorem 3.1 can be described
equivalently by the mappings :

Gi : (xt1,1, xt+1
1,1 , xt

2,1, xt+1
2,1 ) → (xt+1

1,1 , xt+2
1,1 , xt+1

2,1 , xt+2
2,1 ),

i = 1, 2, where G1 is the update rule for even t and G2 is the
update rule for odd t. Furthermore, we have

(G1 ◦ G2)
t
(
(x−1

1,1, x01,1, x−1
2,1, x0

2,1)
)

= (x2t−1
1,1 , x2t

1,1, x2t−1
2,1 , x2t

2,1),

the divergence of (OMWU) can thus be deduced from the
divergence of G1 ◦ G2.

With the above construction, the proof of Theorem 3.1 is di-
vided into three parts. Firstly, Proposition 4.1 demonstrates
the existence of an initial condition in any arbitrary small
neighborhood of equilibrium that does not converge to it.
In the second part, Proposition 4.2 establishes that the KL-
divergence monotonically increases until either xt1 or xt2
approaches sufficiently close to the boundary. Lastly, in the
third part, Proposition 4.3 illustrates that any point close to
the boundary will ultimately converge to it, which lead the
KL-divergence tends to infinity.

Proposition 4.1. In any arbitrary small neighbourhood
U of the equilibrium (x∗

1, x∗
2) of (1), there exists an initial

condition in U such that the trajectory of (OMWU) starting
from this initial condition will not converge to (x∗

1, x∗
2).

We prove Proposition 4.1 by calculating the eigenvalues of
the Jacobi matrix of G2 ◦ G1 at the equilibrium, which is a
standard technique used in the local analysis of a dynam-
ical system [Galor, 2007]. Similar methods are also used
in proving the last-iterate convergence results for several
learning algorithms in time-independent games [Daskalakis
and Panageas, 2018a, Fasoulakis et al., 2022].

Proposition 4.2. Under the same conditions stated in Theo-
rem 3.1, there exists a constant c, which is independent of η,
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such that for any t ≥ 3,

KL((x∗1, x∗2), (x
t+2
1 , xt+2

2 ))−KL((x∗1, x∗2), (x
t
1, xt

2)) ≥ cη3

unless either xt
1 or xt

2 is O(η
1
2 )-close to the boundary.

We prove Proposition 4.2 by directly tracing the trajectories
of mixed strategies as they evolve under (OMWU). Proposi-
tion 4.2 also implies that if the current mixed strategies used
by players are far from boundary of the simplex constrains,
under each iterate of (OMWU), they will steadily approach
the boundary.

Proposition 4.3. There exists a neighborhood W of the
boundary of the simplex constrains such that for all
(x−1

1,1, x0
1,1, x−1

2,1, x02,1) ∈ W , we have

lim
n→∞

KL((x∗1,1,x
∗
1,1, x∗2,1, x∗2,1),

(G1 ◦ G2)
n(x−1

1,1, x01,1, x−1
2,1, x0

2,1)) = +∞.

By combining Proposition 4.3 and Proposition 4.2, we can
obtain a comprehensive understanding on the dynamics of
(OMWU) in the games defined in Theorem 3.1. Firstly,
when the mixed strategies are far away from the boundary
of the simplex, they will rapidly approach the boundary of
the simplex (Proposition 4.2). Secondly, once they are close
enough to the boundary, they will be attracted to it, causing
the KL-divergence tend to infinity (Proposition 4.3).

We prove Proposition 4.3 by analyzing the eigenvalues and
the corresponding stable eigenspace of the Jacobian matrix
of G1 ◦ G2 at its fixed points. Interestingly, we find that
these fixed points form a continuous curve, and none of
the points on this curve are equilibria. This phenomenon is
novel in periodic games because in time-independent games,
the dynamical system modeling the learning algorithm usu-
ally only has discrete equilibrium points as fixed points
[Daskalakis and Panageas, 2018a]. In Figure (3), we present
these curves composed of the fixed points of G1 ◦ G2 for
different step sizes.

Figure 3: Curves composed of the fixed points of G1 ◦ G2.

4.2 PROOFS OF THEOREM 3.2

Recall that in the (Extra-MWU) algorithm, each update from
(xt1, xt2) to (xt+1

1 , xt+1
2 ) is divided into two steps: Firstly, an

intermediate step (xt+
1
2

1 , xt+
1
2

2 ) is calculated based on the
players’ payoff in the t-th round of the game. Secondly,
(xt1, xt2) and the intermediate step are used together to cal-
culate (xt+1

1 , xt+1
2 ). Since we are discussing the periodic

game, the update rule of (Extra-MWU) in the current round
also depends on the special payoff matrix Ai for i ∈ [T ] in
that same round. We use

Fi : ∆m ×∆n → ∆m ×∆n

(xt1, xt2) → (xt+1
1 , xt+1

2 )

to denote the dynamical system determined by the (Extra-
MWU) algorithm with payoff matrix Ai. Thus the algorithm
is described by the T -periodic dynamical system defined by
{Fi}Ti=1.

From Proposition 2.3, for such a periodic dynamical system,
we can study its convergence property by analyzing the
corresponding non-autonomous system defined as follows:

F̃i = Fi+T −1 ◦ Fi+T −2 ◦ ... ◦ Fi+1 ◦ Fi,

where i ∈ [T ]. Furthermore, the periodic system converges
to (x∗1, x∗2) if F̃i converge to (x∗1, x∗

2) for all i. Thus, the
main step to prove Theorem 3.2 is to establish convergence
results for F̃i.

For a fixed (x1, x2), KL ((x1, x2), (x′
1, x′2)) = 0 if and only

if (x′
1, x′2) = (x1, x2). Thus to prove F̃i converges to the

equilibrium (x∗1, x∗2), it is enough to prove

lim
n→∞

KL ((x∗1, x∗
2),Fn

i (x1, x2)) = 0,

for arbitrary initial point (x1, x2). The following proposition
states that in a periodic zero-sum game, the KL-divergence
between the equilibrium and the current strategies decreases
under an iteration of F̃i.

Proposition 4.4. Under the same assumption as Theorem
3.2, for any i ∈ [T ] and n, if the step size η in (Extra-MWU)
satisfies η ·maxt∈[T ]∥At∥< 1, then we have

KL
(
(x∗1, x∗

2), F̃i(xnT +i
1 , xnT +i

2 )
)

≤ KL
(
(x∗

1, x∗
2), (x

nT +i
1 , xnT +i

2 )
)
,

and the equal holds if and only if (xnT +i
1 , xnT +i

2 ) =
(x∗1, x∗2).

The proof of Proposition 4.4 relies on a detailed analy-
sis of the behavior of the KL-divergence under two-step
method of proof of (MWU). Such a result, where the KL-
divergence decreases, also plays an important role in proving
convergence results for both (OMWU) and (Extra-MWU)

6



in static games [Mertikopoulos et al., 2019, Daskalakis and
Panageas, 2018a, Fasoulakis et al., 2022].

Proposition 4.4 is not sufficient to guarantee the conver-
gence of F̃i to the equilibrium, as the rate at which the
KL-divergence decreases can be slow when the current strat-
egy is close to the equilibrium. To address this issue, we
employ the following LaSalle invariance principle.

Proposition 4.5 (LaSalle [1976]). Let G be any set in Rm.
Consider a difference equations system defined by a map T :
G → G that is well defined for any x ∈ G and continuous at
any x ∈ G. Suppose there exists a scalar map V : Ḡ → R
satisfying

• V (x) is continuous at any x ∈ Ḡ,

• V (T (x))− V (x) ≤ 0 for any x ∈ G.

For any x0 ∈ G, if the solution to the following initial-value
problem x(n + 1) = T (x(n)), x(0) = x0, satisfying that
{x(n)}∞n=1 is bounded and x(n) ∈ G for any n ∈ N, then
there exists some c ∈ R such that

x(n) → M ∩ V −1(c)

as n → ∞, where V −1(c) = {x ∈ Rm|V (x) = c}, and M
is the largest invariant set in

E = {x ∈ G | V (T (x))− V (x) = 0}.

In our case, F̃i plays the role of T , ∆m ×∆n plays the role
of G, and according to Proposition 4.4, KL-divergence can
serve as the scalar map V . The LaSalle invariance principle
guarantees that the limit point under the iteration of F̃i lies
in the set consists of points (x1, x2) that makes

KL
(
(x∗

1, x∗2), F̃i(x1, x2)
)
= KL ((x∗

1, x∗2), (x1, x2))

Moreover, according to Proposition 4.4, the only possible
such (x1, x2) is the equilibrium point, this finish the proof
that under the iteration of F̃i, all initial points in ∆m ×
∆n will converge to the equilibrium of the periodic game.
Combining this with Proposition 2.3, we can conclude that
(Extra-MWU) will converge to the equilibrium.

5 EXPERIMENTS
In this section we provide additional numerical experiments
to support our theoretical findings. In each experiments we
construct periodic games with common equilibrium, and
provide numerical results on the mixed strategies and KL-
divegence of (Extra-MWU) and (OMWU) on these games.

5.1 EXPERIMENT 1

The payoff matrix in this experiment is a 2-periodic game
defined by

At =


((0, 0.25, 0.75), (1.5, 0, 0), (0, 1, 0)) , t is odd.

((0, 0.75, 0.25), (1.5, 0, 0), (0, 0, 1)) , t is even.

In Figure (4), we present experimental results for (Extra-
MWU). In (a) of Figure (4), we can see the mixed strategy of
2-player converge to the equilibrium point (1/3, 1/3, 1/3).
In (b) of Figure (4), we can see KL ((x∗1, x∗

2), (xt
1, xt2)) → 0

as time → ∞. This support the result in Theorem 3.2.

In Figure (5), we present experimental results for (OMWU).
In (a) of Figure (5), we can see the mixed strategy of 2-player
do not converge to the equilibrium. In (b) of Figure (5), we
can see KL ((x∗1, x∗2), (xt1, xt

2)) → ∞ as time → ∞. In (b)
of Figure (5), we can see KL ((x∗

1, x∗2), (xt1, xt2)) → ∞ as
time → ∞, this implies players’ mixed strategies will di-
verge to the boundary of the simplex, thus the phenomenon
here is similar to Theorem 3.1.

(a) Mixed strategy of 2-player (b) KL-divergence of 2-player

Figure 4: First experimental results for Extra-MWU.

(a) Mixed strategy of 2-player (b) KL-divergence of 2-player

Figure 5: First experimental results for OMWU.

5.2 EXPERIMENT 2

The payoff matrix in this experiment is a 4-periodic game
defined by

At =



((0,−1, 1), (1, 0,−1), (−1, 1, 0)) , tmod 4 = 0

((0, 1,−1), (−1, 0, 1), (1,−1, 0)) , tmod 4 = 1

((1,−3, 2), (−2, 1, 1), (1, 2,−3)) , tmod 4 = 2

((1,−2, 1), (−2, 1, 1), (1, 1,−2)) , tmod 4 = 3
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In Figure (9), we present experimental results for (Extra-
MWU). In (a) of Figure (9), we can see the mixed
strategy of 2-player converge to the equilibrium point
(0.25, 0.375, 0.375). In (b) of Figure (9), we can see
KL ((x∗

1, x∗2), (xt
1, xt2)) → 0 as time → ∞. This support

the result in Theorem 3.2.

In Figure (7), we present experimental results for (OMWU).
(a) of Figure (7) shows mixed strategy do not converge to the
equilibrium, and the strategy 3 tends to 0 as time process. In
(b) of Figure (7), we can see KL ((x∗

1, x∗
2), (xt

1, xt2)) → ∞
as time → ∞. This implies the players mixed strategies
tends to the boundary of the simplex constrains.

(a) Mixed strategy of 2-player (b) KL-divergence

Figure 6: Second experimental results for Extra-MWU.

(a) Mixed strategy of 2-player (b) KL-divergence

Figure 7: Second experimental results for OMWU.

6 GAMES WITHOUT A COMMON
EQUILIBRIUM

Since the main purpose of this work is to study the last-
iterate convergence behaviors of learning algorithms in the
time-varying games, it is natural to require that there should
be a reasonable point towards which we can hope these algo-
rithms will converge. This is why we assume that the game
series has a common equilibrium. An interesting question
arises when considering what the last-iterate behaviors of
(Extra-MWU) and (OMWU) look like in periodic games
where there is no common equilibrium.

In the following we present several experiments to provide
possible answers to this question. We summary our findings
in the following :

• In a T -periodic game without common equilibrium,
(Extra-MWU) will converge to a periodic orbit with pe-
riod T . This periodic orbit will not contain equilibrium
of the periodic game.

• In a T -periodic game without common equilibrium,
(OMWU) will diverge to the boundary.

In Figure (8), we present numerical results for a 3-periodic
game with payoff matrices

At =



((0,−1, 1), (1, 0,−1), (−1, 1, 0)) , tmod 3 = 0

((0, 1,−1), (−1, 0, 1), (1,−1, 0)) , tmod 3 = 1

((0, 0.25, 0.75), (1.5, 0, 0), (0, 1, 0)) , tmod 3 = 2

For t mod 3 = 0 and tmod 3 = 1, the equilibrium is

x∗ = y∗ = (1/3, 1/3, 1/3)

For t mod 3 = 2, the equilibrium for At is

(x∗, y∗) = ((0.5, 0.25, 0.25), (0.25, 0.375, 0.375)) .

In (a) of Figure 8, the three curves represent xt1,1 when
t mod 3 = 0, 1 and 2. The convergence of these three
curves to distinct values suggests that the mixed strategy
will converge to a periodic orbit with a period of three in
(Extra-MWU). In (b) of Figure 8, it can be observed that the
green curve, representing the components of the third pure
strategy in the mixed strategy, converges to zero over time.
This indicates that the mixed strategy tends to approach
its boundary in (OMWU). These experimental findings are
representative, and similar phenomena also occur in other
periodic games without a common equilibrium.

We believe that the existing techniques for establishing the
last-iterate convergence property are insufficient in prov-
ing that (Extra-MWU) will converge to a periodic orbit in
a periodic game without a common equilibrium, as these
techniques necessitate the limit state of learning algorithms
being a single point [Daskalakis et al., 2017, Daskalakis
and Panageas, 2018a, Mertikopoulos et al., 2019]. A pos-
sible approach to address this problem is to investigate the
relationship between Extra-MWU and monotone dynamical
systems, which have been shown to converge to periodic
orbits in periodic environments [Hirsch and Smith, 2006].

(a) Components of 1-strategy,
Extra-MWU

(b) Mixed strategy, OMWU

Figure 8: Experimental results for no common equilibrium.
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7 CONCLUSION
In this paper, we investigate the last-iterate behavior of Opti-
mistic Multiplicative Weights Updates (OMWU) and Extra-
gradient Multiplicative Weights Updates (Extra-MWU) in
periodic zero-sum games with simplex constraints. Our
main findings establish a separation in the last-iterate con-
vergence behaviors between OMWU and Extra-MWU, as-
suming that the game series within the periodic game. This
is interesting because it challenges the conventional wisdom
that these two algorithms should exhibit similar behaviors
[Mokhtari et al., 2020]. Our results also extend the findings
of [Feng et al., 2023] from the unconstrained setting to the
more practical constrained setting. An interesting future di-
rection is to study the dynamical behaviors of these methods
in periodic games without common equilibrium.
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Supplementary Material
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A PROOF OF THEOREM 3.1
We introduce an equivalence of the dynamics of Optimistic MWU which tracing the first pure strategies of the two players
in the case where both two players have only two pure strategies.

By the definition of the dynamics sytem of OMWU, when t is even, according to the definition of At in Theorem 3.1, we
have

xt+2
1,1 =

xt+1
1,1 e2η(At+1xt+1

2 )1−η(Atxt2)
1∑2

s=1 xt+1
1,s e2η(At+1xt+1

2 )s−η(Atxt2)s

=
xt+1
1,1 e2ηxt+1

2,2 +ηxt2,2

xt+1
1,1 e2ηxt+1

2,2 +ηxt2,2 + xt+1
1,2 e2ηxt+1

2,1 +ηxt2,1

=
xt+1
1,1 e2η(1−xt+1

2,1 )+η(1−xt2,1)

xt+1
1,1 e2η(1−xt+1

2,1 )+η(1−xt2,1) + (1− xt+1
1,1 )e2ηxt+1

2,1 +ηxt2,1

=
xt+1
1,1 e3η−2ηxt+1

2,1 −ηxt2,1

xt+1
1,1 e3η−2ηxt+1

2,1 −ηxt2,1 + (1− xt+1
1,1 )e2ηxt+1

2,1 +ηxt2,1
,

where the third equality arises from that xt+1
1 , xt1 ∈ ∆2. By similar computation, it holds that

xt+2
2,1 =

xt+1
2,1 e−3η+2ηxt+1

1,1 +ηxt1,1

xt+1
2,1 e−3η+2ηxt+1

1,1 +ηxt1,1 + (1− xt+1
2,1 )e−2ηxt+1

1,1 −ηxt1,1

For the case when t is odd, we have

xt+2
1,1 =

xt+1
1,1 e−3η+2ηxt+1

2,1 +ηxt2,1

xt+1
1,1 e−3η+2ηxt+1

2,1 +ηxt2,1 + (1− xt+1
1,1 )e−2ηxt+1

2,1 −ηxt2,1
,

xt+2
2,1 =

xt+1
2,1 e3η−2ηxt+1

1,1 −ηxt1,1

xt+1
2,1 e3η−2ηxt+1

1,1 −ηxt1,1 + (1− xt+1
2,1 )e2ηxt+1

1,1 +ηxt1,1
.

From the above expression, it can be found that xt+2
1,1 , xt+2

2,1 can be entirely determined by the vector {xt
1,1, xt+1

1,1 , xt
2,1, xt+1

2,1 }
in the case of when t is odd and when t is even.
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Next, we provide two formal functions mapping (xt1,1, xt+1
1,1 , xt2,1, xt+1

2,1 ) to (xt+1
1,1 , xt+2

1,1 , xt+1
2,1 , xt+2

2,1 ). Let

G1 :[0, 1]× [0, 1]× [0, 1]× [0, 1] → [0, 1]× [0, 1]× [0, 1]× [0, 1]

(z1, z2, z3, z4) →(
z2,

z1e3η−2ηz4−ηz3

z2e3η−2ηz4−ηz3 + (1− z2)e2ηz4+ηz3
,

z4,
z4e−3η+2ηz2+ηz1

z4e−3η+2ηz2+ηz1 + (1− z4)e−2ηz2−ηz1

)
and

G2 :[0, 1]× [0, 1]× [0, 1]× [0, 1] → [0, 1]× [0, 1]× [0, 1]× [0, 1]

(z1, z2, z3, z4) →(
z2,

z1e−3η+2ηz4+ηz3

z2e−3η+2ηz4+ηz3 + (1− z2)e−2ηz4+ηz3
,

z4,
z4e3η−2ηz2−ηz1

z4e3η−2ηz2−ηz1 + (1− z4)e2ηz2+ηz1

)
.

According to their definition, we have

G1

(
(xt1,1, xt+1

1,1 , xt2,1, xt+1
2,1 )

)
=

(
xt+1
1,1 ,

xt+1
1,1 e3η−2ηxt+1

2,1 −ηxt2,1

xt+1
1,1 e3η−2ηxt+1

2,1 −ηxt2,1 + (1− xt+1
1,1 )e2ηxt+1

2,1 +ηxt2,1
,

xt+1
2,1 ,

xt+1
2,1 e−3η+2ηxt+1

1,1 +ηxt1,1

xt+1
2,1 e−3η+2ηxt+1

1,1 +ηxt1,1 + (1− xt+1
2,1 )e−2ηxt+1

1,1 −ηxt1,1

)
.

and

G2

(
(xt1,1, xt+1

1,1 , xt2,1, xt+1
2,1 )

)
=

(
xt+1
1,1 ,

xt+1
1,1 e−3η+2ηxt+1

2,1 +ηxt2,1

xt+1
1,1 e−3η+2ηxt+1

2,1 +ηxt2,1 + (1− xt+1
1,1 )e−2ηxt+1

2,1 −ηxt2,1
,

xt+1
2,1 ,

xt+1
2,1 e3η−2ηxt+1

1,1 −ηxt1,1

xt+1
2,1 e3η−2ηxt+1

1,1 −ηxt1,1 + (1− xt+1
2,1 )e2ηxt+1

1,1 +ηxt1,1

)
.

Combining our computation for xt+2
1,1 and xt+2

2,1 above, when t is even

G1

(
(xt1,1, xt+1

1,1 , xt2,1, xt+1
2,1 )

)
= (xt+1

1,1 , xt+2
1,1 , xt+1

2,1 , xt+2
2,1 )

and when t is odd, we have

G2

(
(xt1,1, xt+1

1,1 , xt2,1, xt+1
2,1 )

)
= (xt+1

1,1 , xt+2
1,1 , xt+1

2,1 , xt+2
2,1 ).

By the property of G1 and G2, it holds that

(x2t−1
1,1 , x2t1,1, x2t−1

2,1 , x2t2,1) = (G1 ◦ G2)
t
(
(x−1

1,1, x01,1, x−1
2,1, x0

2,1)
)

and

(x2t
1,1, x2t+1

1,1 , x2t2,1, x2t+1
2,1 ) = G2 ◦ (G1 ◦ G2)

t
(
(x−1

1,1, x01,1, x−1
2,1, x0

2,1)
)
.

The following proposition addresses the behavior of points in the neighborhood of equilibrium for OMWU in periodic game
when comparing the convergence in the OMWU in static games.



Proposition 4.1. In any arbitrary small neighbourhood U of the equilibrium (x∗1, x∗2) of (1), there exists an initial condition
in U such that the trajectory of (OMWU) starting from this initial condition will not converge to (x∗

1, x∗2).

Proof. By computation, the eigenvalues of the Jacobi matrix of G1 ◦ G2 at equilibrium (0.5, 0.5, 0.5, 0.5) are

• η2

2 −
√

(η2+η+1)(η2−η+1)

2 + 1
2 ,

• η2

2 −
√

(η2+η+1)(η2−η+1)

2 + 1
2 ,

• η2

2 +

√
(η2+η+1)(η2−η+1)

2 + 1
2 ,

• η2

2 +

√
(η2+η+1)(η2−η+1)

2 + 1
2 .

It can be computed that η2

2 +

√
(η2+η+1)(η2−η+1)

2 + 1
2 > 1 and η2

2 −
√

(η2+η+1)(η2−η+1)

2 + 1
2 < 1. The eigenvectors

in the eigenspace corresponding to η2

2 −
√

(η2+η+1)(η2−η+1)

2 + 1
2 can be verified to consistently have negative second

elements. Thus, the decomposition of any vector in the simplex constrains must contains the eigenvectors corresponding

to η2

2 +

√
(η2+η+1)(η2−η+1)

2 + 1
2 . Therefore, by Proposition 2.5, the iterations of these vectors will diverge from the

equilibrium.

Subsequently, we present compelling evidence demonstrating that the KL-divergence tends towards infinity. With the initial
conditions as stated in Theorem 3.1, the proof is divided into two stages :

• Stage 1 : we will show that when the current position is far from the boundary of [0, 1], the KL-divergence will stably
increase. Thus both of these variables approach to the boundary. Formally, our goal in this stage is to demonstrate the
following proposition.
Proposition 4.2. Under the same conditions stated in Theorem 3.1, there exists a constant c, which is independent of η,
such that for any t ≥ 3,

KL((x∗
1, x∗2), (x

t+2
1 , xt+2

2 ))−KL((x∗
1, x∗

2), (x
t
1, xt2)) ≥ cη3

unless either xt
1 or xt

2 is O(η
1
2 )-close to the boundary.

• Stage 2 : The convergence of either xt
1 or xt

2 to the boundary results in the divergence of at least one of them towards
infinity, leading to an unbounded KL-divergence. This phenomenon is described by the following proposition.
when either xt

1 or xt
2 close to boundary, at least one of them will converge to the boundary, which leads to the

KL-divergence goes to infinity. This can be described by the following proposition.
Proposition 4.3. There exists a neighborhood W of the boundary of the simplex constrains such that for all
(x−1

1,1, x01,1, x−1
2,1, x0

2,1) ∈ W , we have

lim
n→∞

KL((x∗
1,1,x

∗
1,1, x∗2,1, x∗

2,1),

(G1 ◦ G2)
n(x−1

1,1, x0
1,1, x−1

2,1, x02,1)) = +∞.

A.1 PROOF OF STAGE 1

In this subsection, we first illustrate that under a stronger conditions than those in Proposition 4.2, the second elements of
the iterative vectors x1 and x2 increase with every two time iteration. Following that, we prove that the strong condition can
be generalized to the condition in Proposition 4.2. Before presenting the main lemma in this subsection, we first introduce
some necessary transition expressions in the dynamic system.

Lemma A.1. If 2 | t, then

1.
xt+1
1,1

xt+1
1,2

=
xt−1
1,1

xt−1
1,2

· e−2η(2xt2,2−xt−1
2,2 −xt−2

2,2 );

2.
xt+1
2,1

xt+1
2,2

=
xt−1
2,1

xt−1
2,2

· e2η(2xt1,2−xt−1
1,2 −xt−2

1,2 );

We utilize Matlab for computation.



3.
xt+2
1,1

xt+2
1,2

=
xt1,1
xt1,2

· e2η(2xt+1
2,2 −xt2,2−xt−1

2,2 );

4.
xt+2
2,1

xt+2
2,2

=
xt2,1
xt2,2

· e−2η(2xt+1
1,2 −xt1,2−xt−1

1,2 );

5.
xt+2
1,1

xt+2
1,2

=
xt+1
1,1

xt+1
1,2

· e−3η+2η(2xt+1
2,2 +xt2,2);

6.
xt+1
2,1

xt+1
2,2

=
xt2,1
xt2,2

· e−3η+2η(2xt1,2+xt−1
1,2 );

Proof. By the definition of dynamic system of OMWU, when t is even,

xt+1
1,1 =

xt1,1e2η(Atxt2)
1−η(At−1xt−1

2 )1∑2
s=1 xt

1,se
2η(Atxt2)s−η(At−1xt−1

2 )s

=
xt1,1e

−2ηxt2,2−ηxt−1
2,2

xt
1,1e

−2ηxt2,2−ηxt−1
2,2 + xt1,2e

−2ηxt2,1−ηxt−1
2,1

(2)

and

xt+1
1,2 =

xt1,2e2η(Atxt2)
2−η(At−1xt−1

2 )2∑2
s=1 xt1,se2η(Atxt2)s−η(At−1xt−1

2 )s

=
xt
1,2e

−2ηxt2,1−ηxt−1
2,1

xt
1,1e

−2ηxt2,2−ηxt−1
2,2 + xt

1,2e
−2ηxt2,1−ηxt−1

2,1

=
xt1,2e

−3η+2ηxt2,2+ηxt−1
2,2

xt
1,1e

−2ηxt2,2−ηxt−1
2,2 + xt

1,2e
−2ηxt2,1−ηxt−1

2,1

. (3)



By the similar computation, we have

xt1,1 =
xt−1
1,1 e2ηxt−1

2,2 +ηxt−2
2,2

xt−1
1,1 e2ηxt−1

2,2 +ηxt−2
2,2 + xt−1

1,2 e3η−2ηxt−1
2,2 −ηxt−2

2,2

, (4)

xt1,2 =
xt−1
1,2 e3η−2ηxt−1

2,2 −ηxt−2
2,2

xt−1
1,1 e2ηxt−1

2,2 +ηxt−2
2,2 + xt−1

1,2 e3η−2ηxt−1
2,2 −ηxt−2

2,2

, (5)

xt+2
1,1 =

xt+1
1,1 e2ηxt+1

2,2 +ηxt2,2

xt+1
1,1 e2ηxt+1

2,2 +ηxt2,2 + xt+1
1,2 e3η−2ηxt+1

2,2 −ηxt2,2
, (6)

xt+2
1,2 =

xt+1
1,2 e3η−2ηxt+1

2,2 −ηxt2,2

xt+1
1,1 e2ηxt+1

2,2 +ηxt2,2 + xt+1
1,2 e3η−2ηxt+1

2,2 −ηxt2,2
, (7)

xt2,1 =
xt−1
2,1 e−2ηxt−1

1,2 −ηxt−2
1,2

xt−1
2,1 e−2ηxt−1

1,2 −ηxt−2
1,2 + xt−1

2,2 e−3η+2ηxt−1
1,2 +ηxt−2

1,2

, (8)

xt2,2 =
xt−1
2,2 e−3η+2ηxt−1

1,2 +ηxt−2
1,2

xt−1
2,1 e−2ηxt−1

1,2 −ηxt−2
1,2 + xt−1

2,2 e−3η+2ηxt−1
1,2 +ηxt−2

1,2

, (9)

xt+1
2,1 =

xt
2,1e

2ηxt1,2+ηxt−1
1,2

xt
2,1e

2ηxt1,2+ηxt−1
1,2 + xt2,2e

3η−2ηxt1,2−ηxt−1
1,2

, (10)

xt+1
2,2 =

xt2,2e
3η−2ηxt1,2−ηxt−1

1,2

xt
2,1e

2ηxt1,2+ηxt−1
1,2 + xt2,2e

3η−2ηxt1,2−ηxt−1
1,2

, (11)

xt+2
2,1 =

xt+1
2,1 e−2ηxt+1

1,2 −ηxt1,2

xt+1
2,1 e−2ηxt+1

1,2 −ηxt1,2 + xt+1
2,2 e−3η+2ηxt+1

1,2 +ηxt1,2
, (12)

xt+2
2,2 =

xt+1
2,2 e−3η+2ηxt+1

1,2 +ηxt1,2

xt+1
2,1 e−2ηxt+1

1,2 −ηxt1,2 + xt+1
2,2 e−3η+2ηxt+1

1,2 +ηxt1,2
. (13)

Then we have

xt+1
1,1

xt+1
1,2

=
xt1,1
xt1,2

· e3η−2η(2xt2,2+xt−1
2,2 ), (14)

xt
1,1

xt
1,2

=
xt−1
1,1

xt−1
1,2

· e−3η+2η(2xt−1
2,2 +xt−2

2,2 ), (15)

xt+2
1,1

xt+2
1,2

=
xt+1
1,1

xt+1
1,2

· e−3η+2η(2xt+1
2,2 +xt2,2), (16)

xt
2,1

xt
2,2

=
xt−1
2,1

xt−1
2,2

· e3η−2η(2xt−1
1,2 +xt−2

1,2 ), (17)

xt+1
2,1

xt+1
2,2

=
xt2,1
xt2,2

· e−3η+2η(2xt1,2+xt−1
1,2 ), (18)

xt+2
2,1

xt+2
2,2

=
xt+1
2,1

xt+1
2,2

· e3η−2η(2xt+1
1,2 +xt1,2). (19)

Equation (14) follows from the ratio of equation (2) to equation (3).

Equation (15) follows from the ratio of equaiton (4) to equation (5).

Equation (16) follows from the ratio of equaiton (6) to equation (7), implying item 5 in the lemma.

Equation (17) follows from the ratio of equaiton (8) to equation (9).



Equation (18) follows from the ratio of equaiton (10) to equation (11), implying item 6 in the lemma.

Equation (19) follows from the ratio of equaiton (12) to equation (13).

It holds that

xt+1
1,1

xt+1
1,2

=
xt−1
1,1

xt−1
1,2

· e−2η(2xt2,2−xt−1
2,2 −xt−2

2,2 ),

xt+2
1,1

xt+2
1,2

=
xt1,1
xt1,2

· e2η(2xt+1
2,2 −xt2,2−xt−1

2,2 ),

xt+1
2,1

xt+1
2,2

=
xt−1
2,1

xt−1
2,2

· e2η(2xt1,2−xt−1
1,2 −xt−2

1,2 ),

xt+2
2,1

xt+2
2,2

=
xt2,1
xt2,2

· e−2η(2xt+1
1,2 −xt1,2−xt−1

1,2 ).

The first equation comes from the combination of equation 14 and equation 15, implying item 1 in the lemma.

The second equation comes from the combination of equation 14 and equation 16, implying item 3 in the lemma.

The third equation comes from the combination of equation 17 and equation 18, implying item 2 in the lemma.

The fourth equation comes from the combination of equation 18 and equation 19, implying item 4 in the lemma.

The following lemma is a simple but useful tool in our proof.

Lemma A.2. Let u, v ∈ [ 12 , 1− η
1
2 ], 0 ≤ w ≤ 1, if

1− v

v
≤ 1− u

u
· ew, (20)

then we have u− v ≤ w. If

1− v

v
≥ 1− u

u
· ew, (21)

then we have u− v ≥ 1
2wη

1
2 .

Proof. First, we consider the case when 1−v
v ≤ 1−u

u · ew,

1− v

v
≤ 1− u

u
· ew

≤ 1− u

u
· (1 + 2w),

where the inequality comes from ew ≤ 1 + 2w when 0 < w ≤ 1. This simplifies to:

u− v ≤ 2v(1− u)w

≤ 2 · 1 · 1
2
· w = w,

where the second line arises from v ≤ 1 and u ≥ 1
2 .

Then we consider the second part of the lemma,

1− v

v
≥ 1− u

u
· ew

≥ 1− u

u
· (1 + w),



where the inequality comes from ew ≥ 1 + w. This simplifies to:

u− v ≥ v(1− u)w

≥ 1

2
wη

1
2 ,

where the second inequality follows from v ≥ 1
2 and u ≤ 1− η

1
2 .

The following lemma shows the effect of initial conditions on x11,2 and x1
2,2.

Lemma A.3. For the dynamic system in Theorem 3.1, when x01,2, x02,2 > 1
2 + 2p for p ∈ (0, 1

4 ), and η is sufficiently small
such that p ≥ 16η

1
2 , then for any possible x−1

1,1, x−1
1,2, we have

x11,2, x12,2 >
1

2
+ p.

Proof. By equality (2) with t = 0, it holds that

x11,2 =
x01,2e

−2ηx02,1−ηx−1
2,1

x01,1e
−2ηx02,2−ηx−1

2,2 + x01,2e
−2ηx02,1−ηx−1

2,1

≥
x0
1,2e

−3η

x01,1 + x01,2

= x01,2e
−3η ≥ (

1

2
+ 2p) · (1− 3η) ≥ 1

2
+ p.

The last inequality comes from p ≥ 16η
1
2 . Applying the same method, we can also conclude that x12,2 ≥ 1

2 + p.

Next, we give the key lemma for the proof of Proposition 4.2. Note that in comparison to Theorem 3.1, the following lemma
asks a stronger condition: the initial points x0

1,2 and x02,2 are larger than 1
2 . Later, we will demonstrate how this condition can

be relaxed.

Lemma A.4. For the same periodic game as Theorem 3.1 defined by payoff matrices

At =



[
0 1

1 0

]
, t is odd

[
0 −1

−1 0

]
, t is even

(22)

Let 0 < p < 1
4 , and η sufficiently small so that p ≥ 16η

1
2 . And the initial points satisfy the condition

x01,2, x02,2 ≥ 1

2
+ 2p.

For t is even and t ≥ 4, if for any k < t, xk1,2, xk2,2 ≤ 1−√
η, it holds that

1. 3
4pη

3 ≤ xt+1
2,2 − xt−1

2,2 ≤ 12η2,

2. 3
2pη

3
2 ≤ xt2,2 − xt+1

2,2 ≤ 3η,

3. 3
4pη

3 ≤ xt+2
1,2 − xt

1,2 ≤ 12η2,

4. 3
4pη

3 ≤ xt+1
1,2 − xt−1

1,2 ,

5. 3
4pη

3 ≤ xt+2
2,2 − xt

2,2,

6. 3
2pη

3
2 ≤ xt+1

1,2 − xt+2
1,2 ≤ 3η.



Proof. By Lemma A.3, we obtain

x11,2, x12,2 >
1

2
+ p. (23)

We will do induction on t.

Base case:
In this part, our goal is to prove the following:

1. 3
4pη

3 ≤ x52,2 − x3
2,2 ≤ 12η2,

2. 3
2pη

3
2 ≤ x42,2 − x5

2,2 ≤ 3η,

3. 3
4pη

3 ≤ x61,2 − x4
1,2 ≤ 12η2,

4. 3
4pη

3 ≤ x51,2 − x3
1,2,

5. 3
4pη

3 ≤ x62,2 − x4
2,2,

6. 3
2pη

3
2 ≤ x51,2 − x6

1,2 ≤ 3η.

We will prove above in accordance with the sequence of the given order.

We will begin by providing an estimate for x2
1,2. From item 5 of lemma A.1 with t = 0, we obtain

x21,1
x21,2

=
x1
1,1

x1
1,2

· e−3η+2η(2x12,2+x02,2).

From x0
2,2, x1

2,2 ∈ [ 12 + p, 1], it holds that

x11,1
x11,2

· e6pη ≤
x2
1,1

x21,2
≤

x11,1
x11,2

· e3η.

Because x11,1 + x11,2 = 1, x2
1,1 + x21,2 = 1, combining with lemma A.2,

3pη
3
2 ≤ x11,2 − x2

1,2 ≤ 3η,

which leads to

x2
1,2 ≥ x11,2 − 3η ≥ 1

2
+ p− 3η ≥ 1

2
+

1

2
p, (24)

where the frist inequality follows from x11,2 ∈ [ 12 + p, 1], and the last inequality arises from p ≥ 16η
1
2 .

Then we provide the estimate for x12,2 − x32,2, by item 2 in Lemma A.1,

x3
2,1

x3
2,2

=
x12,1
x12,2

· e2η(2x21,2−x11,2−x01,2).

From inequality (24), we have x2
1,2 ≥ 1

2 , thus together with x1
1,2, x01,2 ∈ [ 12 + p, 1],

−1 ≤ 2x21,2 − x11,2 − x01,2 ≤ 1.

Combining with Lemma A.2, we have

−2η ≤ x1
2,2 − x32,2 ≤ 2η. (25)

Then we show the estimate for x32,2 − x2
2,2, by item 6 in Lemma A.1, we have

x32,1
x32,2

=
x2
2,1

x2
2,2

· e−3η+2η(2x21,2+x11,2).



From inequality (24), we have

x22,1
x12,2

· e4pη ≤
x3
2,1

x32,2
≤

x22,1
x12,2

· e3η.

According to Lemma A.2, we obtain

2pη
3
2 ≤ x32,2 − x2

2,2 ≤ 3η. (26)

Now we provide the estimate for x41,2 − x21,2. From item 3 in Lemma A.1,

x4
1,1

x4
1,2

=
x21,1
x21,2

· e2η(2x32,2−x22,2−x12,2).

From inequalities (25) and (26), it holds that

x21,1
x21,2

· e−2η2

≤
x4
1,1

x4
1,2

≤
x21,1
x21,2

· e8η
2

.

By Lemma A.2, we have

−8η2 ≤ x4
1,2 − x21,2 ≤ 2η2. (27)

Next we provide the estimate of x31,2 − x41,2, by item 5 in Lemma A.1,

x41,1
x41,2

=
x3
1,1

x3
1,2

· e−3η+2η(2x32,2+x22,2).

According to the estimate of x22,2 and x3
2,2 in the inequalities (25) and (26), it holds that

x31,1
x31,2

· e3pη ≤
x4
1,1

x41,2
≤

x31,1
x31,2

· e3η.

Using Lemma A.2, we have

3

2
pη

3
2 ≤ x31,2 − x41,2 ≤ 3η. (28)

proof of item 1.
According to item 2 lemma A.1 with t = 4, we have

x5
2,1

x5
2,2

=
x32,1
x32,2

· e2η(2x41,2−x31,2−x21,2).

Combining with the inequalities (27) and (28), it holds that

x5
2,1

x3
2,2

· e 3
2pη

5
2 ≤

x3
2,1

x3
2,2

≤
x52,1
x52,2

· e12η
2

.

By lemma A.2, we have

3

4
pη3 ≤ x52,2 − x3

2,2 ≤ 12η2. (29)

proof of item 2.
From item 6 in lemma A.1 with t = 4,

x52,1
x52,2

=
x4
2,1

x4
2,2

· e−3η+2η(2x41,2+x31,2).



Using inequalities (27) and (28),

x42,1
x42,2

· e3pη ≤
x5
2,1

x52,2
≤

x42,1
x42,2

· e3η.

Then we can use lemma A.2, and obtain

3

2
pη

3
2 ≤ x42,2 − x52,2 ≤ 3η. (30)

proof of item 3.
From item 3 in lemma A.1 with t = 4,

x6
1,1

x6
1,2

=
x41,1
x41,2

· e2η(2x52,2−x42,2−x32,2).

According to inequalities (29) and (30), we have

−3η ≤ −(x4
2,2 − x52,2) + (x5

2,2 − x32,2) ≤ −3

2
pη

3
2 + 12η2,

which is equivalent to

−3η ≤ −(x42,2 − x5
2,2) + (x52,2 − x3

2,2) ≤ −3

4
pη

3
2 ,

where the right-side inequality follows from p ≥ 16η
1
2 . Then

x61,1
x61,2

· e2η· 34pη
3
2 ≤

x41,1
x41,2

≤
x61,1
x61,2

· e2η·3η,

x6
1,1

x6
1,2

· e 3
2pη

5
2 ≤

x4
1,1

x4
1,2

≤
x61,1
x61,2

· e6η
2

.

By lemma A.2, it can be concluded that

3

4
pη3 ≤ x61,2 − x4

1,2 ≤ 6η2 ≤ 12η2.

proof of item 4.
By (29), (30), (25) and (26), we have

x42,2 −
3

2
pη

3
2 ≥ x52,2 ≥ x3

2,2 ≥ x22,2.

From item 1 in lemma A.1,

x51,1
x51,2

=
x31,1
x31,2

· e−2η(2x42,2−x32,2−x22,2).

Therefore, we obtain

x51,1
x5
1,2

· e6pη
5
2 ≤

x31,1
x31,2

.

By Lemma A.2,

x5
1,2 − x31,2 ≥ 3pη3. (31)

proof of item 5.
By (28) and (31),

x5
1,2 ≥ x31,2 ≥ x4

1,2 +
3

2
pη

3
2 .



From item 4 in lemma A.1 with t = 4,

x62,1
x62,2

=
x42,1
x42,2

· e−2η(2x51,2−x41,2−x31,2).

Then it holds that

x62,1
x6
2,2

· e3pη
5
2 ≤

x42,1
x42,2

.

Combining with Lemma A.2, it holds that

x62,2 − x4
2,2 ≥ 3

2
pη3.

proof of item 6.
By (29), (30) and (25),

x42,2 ≥ x52,2 ≥ x32,2 ≥ 1

2
+

1

2
p.

According to item 5 of lemma A.1,

x61,1
x61,2

=
x5
1,1

x5
1,2

· e−3η+2η(2x52,2+x42,2),

which leads to

x51,1
x51,2

· e3pη ≤
x6
1,1

x61,2
≤

x51,1
x51,2

· e3η.

Combining with lemma A.2, we have

3

2
pη

3
2 ≤ x51,2 − x61,2 ≤ 3η.

Induction step:

Now assume that the result in the lemma holds for t = k,

1. 3
4pη

3 ≤ xk+1
2,2 − xk−1

2,2 ≤ 12η2,

2. 3
2pη

3
2 ≤ xk2,2 − xk+1

2,2 ≤ 3η,

3. 3
4pη

3 ≤ xk+2
1,2 − xk1,2 ≤ 12η2,

4. 3
4pη

3 ≤ xk+1
1,2 − xk−1

1,2 ,

5. 3
4pη

3 ≤ xk+2
2,2 − xk2,2,

6. 3
2pη

3
2 ≤ xk+1

1,2 − xk+2
1,2 ≤ 3η.

Then we prove the case of t = k + 2, just as follows,

1. 3
4pη

3 ≤ xk+3
2,2 − xk+1

2,2 ≤ 12η2,

2. 3
2pη

3
2 ≤ xk+2

2,2 − xk+3
2,2 ≤ 3η,

3. 3
4pη

3 ≤ xk+4
1,2 − xk+2

1,2 ≤ 12η2,

4. 3
4pη

3 ≤ xk+3
1,2 − xk+1

1,2 ,

5. 3
4pη

3 ≤ xk+4
2,2 − xk+2

2,2 ,

6. 3
2pη

3
2 ≤ xk+3

1,2 − xk+4
1,2 ≤ 3η.



proof of item 1.
According to item 2 in lemma A.1 with t → k + 2, we have

xk+3
2,1

xk+3
2,2

=
xk+1
2,1

xk+1
2,2

· e2η(2xk+2
1,2 −xk+1

1,2 −xk1,2).

Combining with the item 3 and 6 in induction assumption, it holds that

xk+3
2,1

xk+3
2,2

· e 3
2pη

5
2 ≤

xk+1
2,1

xk+1
2,2

≤
xk+3
2,1

xk+3
2,2

· e6η
2

.

By lemma A.2, we have

3

4
pη3 ≤ xk+3

2,2 − xk+1
2,2 ≤ 6η2 ≤ 12η2. (32)

proof of item 2.
From item 6 in lemma A.1 with t → k + 2,

xk+3
2,1

xk+3
2,2

=
xk+2
2,1

xk+2
2,2

· e−3η+2η(2xk+2
1,2 +xk+1

1,2 ).

By induction assumption, we have xk+2
1,2 ≥ xk1,2 ≥ xk−2

1,2 ≥ · · · ≥ x0
1,2 ≥ 1

2 + p, Using item 6 in the induction assumption,
we have xk+1

1,2 ≥ xk+2
1,2 ≥ 1

2 + p, then

xk+2
2,1

xk+2
2,2

· e6pη ≤
xk+3
2,1

xk+3
2,2

≤
xk+2
2,1

xk+2
2,2

· e3η.

Then we can use lemma A.2, and obtain

3

2
pη

3
2 ≤ xk+2

2,2 − xk+3
2,2 ≤ 3η. (33)

proof of item 3.
From item 3 in lemma A.1 with t → k + 2,

xk+4
1,1

xk+4
1,2

=
xk+2
1,1

xk+2
1,2

· e2η(2xk+3
2,2 −xk+2

2,2 −xk+1
2,2 ).

and

2xk+3
2,2 − xk+2

2,2 − xk+1
2,2 = −(xk+2

2,2 − xk+3
2,2 ) + (xk+3

2,2 − xk+1
2,2 ).

According to inequalities (32) and (33), we have

−3η ≤ −(xk+2
2,2 − xk+3

2,2 ) + (xk+3
2,2 − xk+1

2,2 ) ≤ −3

2
pη

3
2 + 12η2,

which is equivalent to

−3η ≤ −(xk+2
2,2 − xk+3

2,2 ) + (xk+3
2,2 − xk+1

2,2 ) ≤ −3

4
pη

3
2 .

The right side inequality follows from p ≥ 16η
1
2 . Then

xk+4
1,1

xk+4
1,2

· e2η· 34pη
3
2 ≤

xk+2
1,1

xk+2
1,2

≤
xk+4
1,1

xk+4
1,2

· e2η·3η,

xk+4
1,1

xk+4
1,2

· e 3
2pη

5
2 ≤

xk+2
1,1

xk+2
1,2

≤
xk+4
1,1

xk+4
1,2

· e6η
2

.



It can be concluded that

3

4
pη3 ≤ xk+4

1,2 − xk+2
1,2 ≤ 6η2 ≤ 12η2.

proof of item 4.
According to item 2 and item 5 in induction assumption, we have xk+2

2,2 ≥ xk2,2 ≥ xk+1
2,2 + 3

2pη
3
2 . From item 1 in lemma A.1,

xk+3
1,1

xk+3
1,2

=
xk+1
1,1

xk+1
1,2

· e−2η(2xk+2
2,2 −xk+1

2,2 −xk2,2)

Therefore, we obtain

xk+3
1,1

xk+3
1,2

· e3pη
5
2 ≤

xk+1
1,1

xk+1
1,2

.

Using Lemma A.2,

xk+3
1,2 − xk+1

1,2 ≥ 3

2
pη3. (34)

proof of item 5.
By item 6 in induction assumption and (34),

xk+3
1,2 ≥ xk+1

1,2 ≥ xk+2
1,2 +

3

2
pη

3
2 .

From item 4 in lemma A.1,

xk+4
2,1

xk+4
2,2

=
xk+2
2,1

xk+2
2,2

· e−2η(2xk+3
1,2 −xk+2

1,2 −xk+1
1,2 ).

Therefore, we obtain

xk+4
2,1

xk+4
2,2

· e3pη
5
2 ≤

xk+2
2,1

xk+2
2,2

.

Then it holds that

xk+4
2,2 − xk+2

2,2 ≥ 3

2
pη3.

proof of item 6.
By (32), (33) and induction assumption,

xk+2
2,2 ≥ xk+3

2,2 ≥ xk+1
2,2 ≥ 1

2
+ p.

According to item 5 in lemma A.1,

xk+4
1,1

xk+4
1,2

=
xk+3
1,1

xk+3
1,2

· e−3η+2η(2xk+3
2,2 +xk+2

2,2 ),

which leads to

xk+3
1,1

xk+3
1,2

· e6pη ≤
xk+4
1,1

xk+4
1,2

≤
xk+3
1,1

xk+3
1,2

· e3η.

Combining with lemma A.2,

3

2
pη

3
2 ≤ 3pη

3
2 ≤ xk+3

1,2 − xk+4
1,2 ≤ 3η.



It is natural that the closer the points are to the boundary, the larger the KL-divergence. The following lemma quantifies the
KL-divergence of the points to the equilibrium and the distance between the points and the boundary in ℓ1 norm.

Lemma A.5. For two point x = (x1, x2) ∈ ∆2, x′ = (x′1, x′2) ∈ ∆2, and c ≥ 0 such that given p ∈ (0, 1
2 )

x2 − c ≥ x′
2 ≥ 1

2
+ p,

then we have

KL((
1

2
,
1

2
), (x1, x2))−KL((

1

2
,
1

2
), (x′1, x′

2)) ≥ pc.

Proof. By the definition of KL-divergence, it holds that

KL

(
(
1

2
,
1

2
), (x1, x2)

)
=

1

2
ln(

1

2x1
) +

1

2
ln(

1

2x2
).

Thus,

KL

(
(
1

2
,
1

2
), (x1, x2)

)
−KL

(
(
1

2
,
1

2
), (x′1, x′

2)

)
=

1

2
ln

(
x′
1x′2

x1x2

)
=

1

2
ln

(
(1− x′2)x′2
(1− x2)x2

)
≥ 1

2
ln

(
(1− x2 + c)(x2 − c)

(1− x2)x2

)
=

1

2
ln

(
1 +

2x2 − 1− c

(1− x2)x2

)
≥ 1

2
ln

(
1 +

2x2 − 1− (x2 − 1
2 )

(1− x2)x2

)
≥ 1

2
ln(1 + 4pc) ≥ pc.

The second equality arises from x = (x1, x2) ∈ ∆2 and x′ = (x′1, x′
2) ∈ ∆2. The third line follows from the decreasing

monotonicity with respect to x′
2. The fifth line and the last line are a result of x2 − c ≥ 1

2 + p.

When we apply Lemma A.5 to Lemma A.4, the following proposition is derived.

Proposition A.6. For the periodic game defined in 1, let p ∈ (0, 1
4 ) and sufficient small η such that p ≥ 16η

1
2 , when t ≥ 3,

if

x01,2, x02,2 ≥ 1

2
+ 2p,

and for any k < t, xk1,2, xk
2,2 ≤ 1−√

η, then it holds that

KL
(
(x∗1, x∗2), (x

t+2
1 , xt+2

2 )
)
−KL

(
(x∗1, x∗2), (x

t
i,1, xt

i,2)
)
≥ 3

4
p2η3.

Proof. Under the conditions in the lemma, according to item 1, 3, 4, and 5 in Lemma A.4, we have for any t ≥ 3, and
i = 1, 2

xt+2
i,2 − xti,2 ≥ 3

8
pη3.

Futhermore, when t is even,

xt+2
i,2 > xti,2 > · · · > x4

i,2 >
1

2
+

1

2
p,



where the last inequality comes from the proof in Lemma A.4 and the condition p ≥ 16η
1
2 . And when t is odd,

xt+2
i,2 > xti,2 > · · · > x3

i,2 >
1

2
+

1

2
p.

Then using Lemma A.5, we have that

KL
(
(x∗1, x∗2), (x

t+2
1 , xt+2

2 )
)
−KL

(
(x∗1, x∗2), (x

t
1, xt

2)
)
≥ 3

8
p2η3.

Proposition A.6 auctually states that when x01,2, x01,2 > 1
2 , and the iterative points never enter the neighborhood of boundary,

it holds that KL-divergence will always increase with an constant depending on η and the distance of (x01, x02) to the
equilibrium. Note that we have no constraint on the value of (x−1

1 , x−1
2 ).

In fact, the condition x01,2, x01,2 > 1
2 is not necessary. All possible cases of (x01, x02) are following

1. x01,2 > 1
2 , x02,2 > 1

2 ,

2. x01,2 < 1
2 , x02,2 > 1

2 ,

3. x01,2 < 1
2 , x02,2 < 1

2 ,

4. x01,2 > 1
2 , x02,2 < 1

2 ,

Proposition A.6 states the result that under the initial condition in the first case. The key lemma in the proof of Proposition A.6
is Lemma A.4. Then combining the relation between KL-divergence and the distance to the boundary in ℓ1 norm, the result
in the proposition is concluded.

In Figure 9(d), we present the trajectories of mixed strategies of both players under the initial condition x01 = x02 =
(0.45, 0.55). It illustrates the findings from Lemma A.4. Similar result are observed in the other cases as in Lemma A.4, as
shown in Figure 9(a), 9(b), and 9(c).

(a) (b) (c) (d)

Figure 9: Trajectories of strategies for both players when using OMWU in the periodic game defined in (1).

Then we can extend Proposition A.6 to encompass general initial conditions:

Proposition A.7. For the periodic game defined in 1, let p = 1
2 min(|x01,1 − x∗

1,1|, |x02,1 − x∗
2,1|), and sufficient small η such

that p ≥ 16η
1
2 , when t ≥ 3, if for any k < t, xk

1,2, xk
2,2 ≤ 1−√

η, then it holds that

KL
(
(x∗1, x∗2), (x

t+2
1 , xt+2

2 )
)
−KL

(
(x∗1, x∗2), (x

t
1, xt

2)
)
≥ 3

4
p2η3.

Here, both x∗1,1 and x∗2,1 are equal to 1
2 in game (1). Hence, parameter p defined in Proposition A.7 satisfies the initial

condition in Proposition A.6. The conclusions of Proposition 4.2 can be directly derived from Proposition A.7.

The step size of 200 is employed here to enhance the clarity in observing the increment of strategies with a probability greater than 1
2

after every two iterations.



A.2 PROOF OF STAGE 2

Lemma A.4 states that the iterative vector (xn
1,1, xn+1

1,1 , xn
2,1, xn+1

2,1 )⊤ will be close to one of (0, 0, ·, ·), (1, 1, ·, ·), (·, ·, 0, 0),
(·, ·, 1, 1) after a sufficient number of steps. Without loss of generality, let’s assume that the iterative vector is close to
(0, 0, ·, ·). The other cases are symmetric to it.

The following lemma demonstrates that the composition of G1 ◦ G2 has continuous fixed points on the boundary.

Lemma A.8. For every a ∈ [0, 1], (0, 0, a, ae−3η

ae−3η+(1−a) ) is a fixed point of G1 ◦ G2.

Proof. Recall the definition of G1 and G2, for any a ∈ (0, 1), we have

G2

(
(0, 0, a,

ae−3η

ae−3η + (1− a)
)

)

=

0, 0,
ae−3η

ae−3η + (1− a)
,

ae−3η

ae−3η+(1−a)e
3η

ae−3η

ae−3η+(1−a)e
3η + (1− ae−3η

ae−3η+(1−a) )


=

(
0, 0,

ae−3η

ae−3η + (1− a)
, a

)
,

and

G1

(
(0, 0,

ae−3η

ae−3η + (1− a)
, a)

)
=

(
0, 0, a,

ae−3η

ae−3η + (1− a)

)
.

Thus, it holds that

G1 ◦ G2

(
(0, 0, a,

ae−3η

ae−3η + (1− a)
)

)
=

(
0, 0, a,

ae−3η

ae−3η + (1− a)

)
.

The following lemma provides the description for the eigenvalues and eigenvectors of Jacobi matrix at the fixed points.

Lemma A.9. For a ∈ (0, 1), all the eigenvalues of the Jacobian matrix of G1 ◦ G2 at points (0, 0, a, ae−3η

ae−3η+(1−a) ) are no
larger than 1. Moreover, the central eigenspace corresponds to eigenvalue 1 is generated by vectors (0, 0, ∗1, ∗2).

Proof. It can be computed that

0, 0, 1, e
− 2ηa(1−a)(e3η−1)

a+(1−a)e3η

are the eigenvalues of Jacobian matrix of G1 ◦ G2 at points (0, 0, a, ae−3η

ae−3η+(1−a) ).

Here, since a ∈ (0, 1), it holds that e−
2ηa(1−a)(e3η−1)

a+(1−a)e3η < 1. And the eigenvector corresponding to 1 is w1 = (0, 0, e−3η(a+
(1− a)e3η)2, 1)⊤, with its first two elements being zero.

Lemma A.10. Consider the composition dynamical system G1 ◦ G2 which maps (xn−1
1,1 , xn1,1, xn−1

2,1 , xn2,1)⊤ to

(xn+1
1,1 , xn+2

1,1 , xn+1
2,1 , xn+2

2,1 )⊤. Then, for any points v close to (0, 0, a, ae−3η

ae−3η+(1−a) )
⊤ for arbitrary a ∈ (0, 1), the first

two elements of v will finally converge to zero.

Proof. By Lemma A.8 for any a ∈ (0, 1), (0, 0, a, ae−3η

ae−3η+(1−a) ) is a fixed point of the dynamical system G1 ◦ G2. Denote

the Jacobian matrix of G1 ◦ G2 at (0, 0, a, ae−3η

ae−3η+(1−a) ) as J .

According to Lemma A.9, the neighborhood W of the boundary of simplex can be decomposed as follows,

W = W1 +W0,

We employed Matlab for computation.



where W1 is the eigenspace corresponding to eigenvalue 1 and is spanned by w1 = (0, 0, e−3η(a+ (1− a)e3η)2, 1)⊤, as
mentioned in Lemma A.9. Additionally, W0 is the eigenspace corresponding to eigenvalues with modules smaller than
1. Naturally, for any point v close to (0, 0, a, ae−3η

ae−3η+(1−a) )
⊤, v can be decomposed as (v1 + v0), where v1 ∈ W1 and

v0 ∈ W0. By Proposition 2.5, with n enough large, (G1 ◦ G2)
n(v) will converge to the space (0, 0, a, ae−3η

ae−3η+(1−a) )
⊤ +W1.

Consequently, it can be concluded that the first two elements of the iterative vector converge to zero.

With the above preparation, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. We only discuss about the case when (xn−1
1,1 , xn1,1, xn−1

2,1 , xn
2,1)

⊤ is close to (0, 0, ·, ·), while the
other case are similar.

It can be computed by the update rule of dynamic of (OMWU), when (xn−1
1,1 , xn

1,1, xn−1
2,1 , xn

2,1)
⊤ is close to (0, 0, ·, ·), it is

auctually close to (0, 0, a, ae−3η

ae−3η+(1−a) ) for some a ∈ (0, 1).

According to Lemma A.10, when (xn−1
1,1 , xn

1,1, xn−1
2,1 , xn

2,1)
⊤ lies in the neighborhood of (0, 0, a, ae−3η

ae−3η+(1−a) ), it holds that
xn−1
1,1 and xn

1,1 will converge to 0. This results in the fact that KL-divergence tends to infinity.

B PROOF OF THEOREM 3.2
The proof is a combination of three parts:

1 The KL-divergence is a decreasing function throughout the composition of Extra-MWU in a period, starting from an
arbitrary initial point. (Proposition B.12)

2 Discrete-time LaSalle invariance principle, which provides a sufficient condition for a discrete dynamical system to
converge. (Proposition B.13)

3 A characterization of attractors of periodic dynamical system. (Proposition 2.3)

Let h : ∆m → R be the negative entropy function, i.e., h(x) =
∑m

i xi ln xi , and h∗(·) be the convex conjugate of h(·),
i.e.,

h∗ : Rm → R
y → max

x∈∆m

{⟨y, x⟩ − h(x)}.

Note that we have ∇h(x) = (1 + ln(xi))
m
i=1.

Lemma B.1 (Page 148 in Shalev-Shwartz et al. [2012]). We have

h∗(y) = ln

(
m∑
s=1

eys

)
, ∇h∗(y) =

(
eyi∑m
s=1 e

ys

)m

i=1

.

Definition B.2. We define the equivalence relation “ ∼ ” between two vectors in Rm as follows : For two vectors y and
y′ ∈ Rm,

y ∼ y′ ⇐⇒ ∃ c = (c, ..., c) ∈ Rm,

such that y − y′ = c.

We denote the space generated by Rm module the above equivalence relation as Rm/ ∼, and use [y] to represent the
equivalence class that y lies in.

Remark B.3. With the equivalence relation defined above, the function ∇h∗ can be thought as a function defined on Rm/ ∼,
i.e.,

∇h∗ : Rm/ ∼ → ∆m

[y] →
(

eyi∑m
s=1 e

ys

)m

i=1

.



Moreover, the function ∇h(·) can be thought as a function take values in Rm/ ∼, i.e.,

∇h : ∆m → Rm/ ∼
x → [(1 + ln(xi))

m
i=1].

In the following, for a vector y ∈ Rm, we will use [y] to represent to equivalence class in Rm/ ∼ that y lies in.

Lemma B.4. ∇h∗(·) and ∇h(·) are inverse functions to each other, i.e., we have both ∇h∗ ◦ ∇h : ∆m → ∆m and
∇h ◦ ∇h∗ : Rm/ ∼→ Rm/ ∼ are identity maps.

Proof. It is directly to verify

[y] ∇h∗

−→
(

eyi∑m
s=1 e

ys

)
∇h−→

[(
1 + ln(

eyi∑m
s=1 e

ys
)

)m

s=1

]
.

and note that
[(

1 + ln( eyi∑m
s=1 eys )

)m
s=1

]
= [y], thus ∇h ◦ ∇h∗ = Id.

It is also similar to verify ∇h∗ ◦ ∇h = Id.

Lemma B.5. h : ∆◦
m → R is 1-strongly convex and has 1-Lipschitz continuous gradients, and h∗(·) is 1-strongly convex

and has 1-Lipschitz continuous gradients.

Proof. It can be computed that for i ∈ [n]

∂h

∂xi
= ln(xi) + 1,

∂2h

∂x2i
=

1

xi
,

∂2h

∂xi∂xj
= 0.

From x ∈ ∆◦
m, we have that 1

xi ≥ 1. So h is diagonal matrix with each diagonal element larger than 1. Then we have that
h is 1-strongly convex and ∇h is 1-Lipschitz continuous. The statemens about h∗(·) follows from the standard Fenchel
duality property, for example, see Theorem 1 in Zhou [2018].

The vanilla Multiplicative Weights Updates algorithm (MWU) for one player can be written as the following function :

MWU : ∆m × Rm/ ∼ → ∆m

(x, [y]) →
(

xieyi∑m
s=1 xseys

)m

i=1

.

Definition B.6. We define a function ϕ : ∆m × Rm/ ∼→ Rm/ ∼ as follow:

ϕ : ∆m × Rm/ ∼ → Rm/ ∼
(x, [y]) → [∇h(x) + y] .

Proposition B.7. The following diagram is commutative :

∆m × Rm/ ∼
MWU

yy

ϕ(·)

&&

∆m

∇h(·)
-- Rm/ ∼

∇h∗(·)

mm

Proof. For any (x, [y]) ∈ ∆m × Rm/ ∼, our goal is to prove that

1. ∇h ◦MWU(x, [y]) = ϕ(x, [y]),
2. ∇h∗ ◦ ϕ(x, [y]) = MWU(x, [y]).



We start by proving the first item. It is directly to calculate

∇h ◦MWU(x, y) = ∇h

((
xie

yi∑m
s=1 xseys

)m

i=1

)
=

(
1 + ln

(
xie

yi∑m
s=1 xseys

))m

i=1

=

[(
1 + yi + ln(xi)− ln(

m∑
s=1

xse
ys)

)m

i=1

]
= [(yi + ln(xi))

m
i=1] ,

and

ϕ(x, [y]) = [(1 + ln(xi) + yi)] .

Since as equivalence class, we have [(yi + ln(xi))
m
i=1] = [(1 + ln(xi) + yi)

m
i=1], this prove the first item.

For the second item, it is directly to calculate

∇h∗ ◦ ϕ(x, [y]) = ∇h∗ ([(1 + ln(xi) + yi)
m
i=1])

= ∇h∗ ([(ln(xi) + yi)
m
i=1])

=

(
eln(xi)+yi∑m
s=1 e

ln(xs)+ys

)m

i=1

=

(
xieyi∑m

s=1 xseys

)
= MWU(x, [y]).

This prove the second item.

Lemma B.8. For arbitrary p ∈ ∆m, if y ∈ Rm and x = ∇h∗([y]), then

⟨∇h(x)− y, x − p⟩ = 0.

Proof. From Lemma B.4, we have

∇h(∇h∗([y])) = y + c,

where c is a constant vector, therefore ⟨∇h(x)− y, x − p⟩ can be transitioned to

⟨c, x − p⟩
=⟨c, x⟩ − ⟨c,p⟩
=0.

The second equality arises from x and p belong to the simplex, i.e.,
∑

xi =
∑

pi = 1.

Lemma B.9. We have

∥MWU(x, [y1])−MWU(x, [y2])∥≤ ∥y1 − y2∥.

Proof. From Proposition B.7, we have

∥MWU(x, [y1])−MWU(x, [y2])∥ = ∥∇h∗ (ϕ(x, y1))−∇h∗ (ϕ(x, y2)) ∥
≤ ∥ϕ(x, y1)− ϕ(x, y2)∥
= ∥y1 − y2∥,

where the first inequality from h∗ has 1-Lipschitz continuous gradient, see Lemma B.5, and the last equality is from the
definition of ϕ.



Lemma B.10 (Three-points identity Chen and Teboulle [1993]). For ant p, x, x′ ∈ ∆m, the following equality holds

KL(p, x′) = KL(p, x) + KL(x, x′) + ⟨(ln(x′
i/xi)mi=1) , (xi − pi)

m
i=1⟩

Proof. By definiton, it holds that

KL(p, x′) = h(p)− h(x′)− ⟨∇h(x′),p − x′)⟩,
KL(p, x) = h(p)− h(x)− ⟨∇h(x),p − x)⟩,
KL(x, x′) = h(x)− h(x′)− ⟨∇h(x′), x − x′)⟩.

Then KL(x, x′) + KL(p, x)−KL(p, x′) gives

KL(p, x′) = KL(p, x) + KL(x, x′) + ⟨∇h(x′)−∇h(x),p − x⟩.

By replacing ∇h(x) with (ln xi + 1)
m
i=1, the result can be concluded.

Lemma B.11. Let x† = MWU(x, y), then

KL(p, x†) = KL(p, x)−KL(x†, x) + ⟨y, x† − p⟩.

Proof. In Lemma B.10, take x = x† and x′ = x, it turns out to be

KL(p, x†) = KL(p, x)−KL(x†, x) + ⟨∇h(x)−∇h(x†), x† − p⟩
= KL(p, x)−KL(x†, x) + ⟨∇h(x)− ϕ(x, [y]), x† − p⟩
= KL(p, x)−KL(x†, x) + ⟨y, x† − p⟩,

where the second equality comes from Proposition B.7 and the last equality is from the definition of ϕ and the fact that for
any two vectors y, y′ ∈ [y], we have ⟨y,p⟩ = ⟨y′,p⟩.

Let Fi : ∆m ×∆n → ∆m ×∆n be the (Extra-MWU) algorithm with payoff matrix Ai, for any initial condition (x0, y0)
and any i ∈ [T ], the following Property shows the KL-divergence will decrease after an iteration by

F̃i = Fi+T −1 ◦ Fi+T −2 ◦ ... ◦ Fi+1 ◦ Fi.

Proposition B.12. For any i ∈ [T ] and n, if the step size η in (Extra-MWU) satisfies η ·maxt∈[T ]∥At∥< 1, then we have

KL
(
(x∗1, x∗2), F̃i(xnT +i

1 , xnT +i
2 )

)
< KL

(
(x∗

1, x∗2), (x
nT +i
1 , xnT +i

2 )
)
,

and the equal holds if and only if (xnT +i
1 , xnT +i

2 ) = (x∗1, x∗2).

Proof. In fact, from F̃i(xnT +i
1 , xnT +i

2 ) = (x(n+1)T +i
1 , x(n+1)T +i

2 ), it holds that

KL
(
(x∗1, x∗2), F̃i(xnT +i

1 , xnT +i
2 )

)
−KL

(
(x∗

1, x∗
2), (x

nT +i
1 , xnT +i

2 )
)

=KL
(
(x∗1, x∗2), (x

(n+1)T +i
1 , x(n+1)T +i

2 )
)
−KL

(
(x∗1, x∗2), (x

nT +i
1 , xnT +i

2 )
)

=

T −1∑
j=0

(
KL
(
(x∗1, x∗2), (x

nT +i+j+1
1 , xnT +i+j+1

2 )
)
−KL

(
(x∗

1, x∗2), (x
nT +i+j
1 , xnT +i+j

2 )
))

.

In the following we will prove for any j ∈ [T ], we have

KL
(
(x∗1, x∗2), (x

nT +i+j+1
1 , xnT +i+j+1

2 )
)
−KL

(
(x∗

1, x∗
2), (x

nT +i+j
1 , xnT +i+j

2 )
)
< 0,

which implies Proposition B.12.



In following, for a fixed j ∈ [T ], we use x to represent (xnT +i+j
1 , xnT +i+j

2 ), x† to represent (xnT +i+j+ 1
2

1 , xnT +i+j+ 1
2

2 ),
and x‡ to represent (xnT +i+j+1

1 , xnT +i+j+1
2 ). Similarly, we use y to represent (ynT +i+j

1 , ynT +i+j
2 ), y† to represent

(ynT +i+j+ 1
2

1 , ynT +i+j+ 1
2

2 ).

By the definition of (Extra-MWU), for i ∈ [2] we have

xnT +i+j+ 1
2

i = MWU(xnT +i+j
i , ynT +i+j

i ),

xnT +i+j+1
i = MWU(xnT +i+j

i , ynT +i+j+ 1
2

i ),

which leads to

x†i = MWU(xi, yi),

x‡i = MWU(xi, y†i ).

Replacing x† with x‡ and p with x∗ in Lemma B.11, we have

KL(x∗, x‡)−KL(x∗, x†) = −KL(x‡, x) + ⟨y†, x‡ − x∗⟩.

Let p = x‡ in Lemma B.11, we have

KL(x‡, x) = KL(x‡, x†) + KL(x†, x)− ⟨y, x† − x‡⟩.

Combining the above two equalities, it holds that

KL(x∗, x‡)−KL(x∗, x†)

=−KL(x‡, x†)−KL(x†, x) + ⟨y†, x‡ − x∗⟩+ ⟨y, x† − x‡⟩
=−KL(x‡, x†)−KL(x†, x) + ⟨y†, x† − x∗⟩+ ⟨y† − y, x‡ − x†⟩

≤ − 1

2

∥∥x‡ − x†∥∥2 − 1

2

∥∥x† − x
∥∥2 + ⟨y†, x† − x∗⟩+ 1

2

∥∥y† − y
∥∥2 + 1

2

∥∥x‡ − x†∥∥2
=
1

2

∥∥y† − y
∥∥2 − 1

2

∥∥x† − x
∥∥2 + ⟨y†, x† − x∗⟩.

Next, we estimate
∥∥y† − y

∥∥2 and ⟨y†, x† − x∗⟩. Recall the definition of y and y† :

y = (ynT +i+j
1 , ynT +i+j

2 )

= (ηAnT +i+jxnT +i+j
2 ,−ηA⊤

nT +i+jxnT +i+j
1 )

= (ηAi+jxi+j
2 ,−ηA⊤

i+jxnT +i+j
1 )

= η ·
[

Ai+j

−A⊤
i+j

]
x,

and

y† = (ynT +i+j+ 1
2

1 , ynT +i+j+ 1
2

2 )

= (ηAnT +i+jxnT +i+j+ 1
2

2 ,−ηA⊤
nT +i+jxnT +i+j+ 1

2
1 )

= (ηAi+jxnT +i+j+ 1
2

2 ,−ηA⊤
i+jxnT +i+j+ 1

2
1 )

= η ·
[

Ai+j

−A⊤
i+j

]
x†.

Then we have that ∥∥y† − y
∥∥2 ≤ η2 ∥Ai+j∥2 ·

∥∥x† − x
∥∥ .



and

⟨y†, x† − x∗⟩

=− (x∗1)
⊤Ai+jxnT +i+j+ 1

2
2 + (xnT +i+j+ 1

2
1 )⊤Ai+jx∗2

=(x∗1)
⊤Ai+jx∗

2 − (x∗
1)

⊤Ai+jxnT +i+j+ 1
2

2 + (xnT +i+j+ 1
2

1 )⊤Ai+jx∗2 − (x∗1)
⊤Ai+jx∗2

≤0,

where the last inequality comes from x1 is the maxima player, and x2 is the minima player.

Let q = maxt∈[T ]∥At∥, then we have

KL(x∗, x‡)−KL(x∗, x†)

≤1

2
(η2q2 − 1)

∥∥x† − x
∥∥2 + ⟨y†, x† − x∗⟩

≤1

2
(η2q2 − 1)

∥∥x† − x
∥∥2 < 0.

Then it can be concluded that

KL
(
(x∗

1, x∗2), (x
nT +i+j+1
1 , xnT +i+j+1

2 )
)
−KL

(
(x∗

1, x∗
2), (x

nT +i+j
1 , xnT +i+j

2 )
)
< 0,

which leads to the result.

Proposition B.13 (Discrete-time LaSalle invariance principle , LaSalle [1976]). Let G be any set in Rm. Consider a
difference equations system defined by a map T : G → G that is well defined for any x ∈ G and continuous at any x ∈ G.
Suppose there exists a scalar map V : Ḡ → R satisfying

• V (x) is continuous at any x ∈ Ḡ,

• V (T (x))− V (x) ≤ 0 for any x ∈ G.

For any x0 ∈ G, if the solution to the following initial-value problem

x(n+ 1) = T (x(n)), x(0) = x0,

satisfying that {x(n)}∞n=1 is bounded and x(n) ∈ G for any n ∈ N, then there exists some c ∈ R such that x(n) →
M ∩ V −1(c) as n → ∞, where

V −1(c) = {x ∈ Rm|V (x) = c},

and M is the largest invariant set in E = {x ∈ G | V (T (x))− V (x) = 0}.

Proposition B.14. For any i ∈ [T ] and (x01, x0
2) ∈ ∆m ×∆n, we have

lim
n→∞

F̃n
i

(
(x01, x0

2)
)
= (x∗

1, x∗2).

Proof. In Proposition B.13, we replace the dynamical system T by F̃i and the scalar map V by the KL-divergence
KL ((x∗

1, x∗2), ·). Note that as KL-divergence is defined as +∞ on the boundary of simplex, thus KL ((x∗1, x∗2), ·) is continu-
ous function on the simplex.

From Proposition B.12, the invariant set M can only the the single point set {(x∗1, x∗
2)}, thus we have

lim
n→∞

F̃n
i

(
(x01, x0

2)
)
= (x∗

1, x∗2).

The following Proposition character the attractor of a periodic dynamical system.

Proposition B.15 (Theorem 3 in Franke and Selgrade [2003]). Let Ω be an attractor for the T -periodic dynamical system
f0, f1, ..., fT −1.Then Ω = ∪T −1

i=0 Ωi,where Ωi is an attractor for the map fi+T −1 ◦ ... ◦ fi, for i ∈ [T ].

Now Theorem 3.2 directly follows from Proposition 2.3, as it has been shown in our case Ωi = {(x∗1, x∗2)}.
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