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ABSTRACT

Large Language Models (LLMs) demonstrate remarkable performance in various
applications, yet their training demands extensive resources and time. Conse-
quently, fine-tuning pre-trained LLMs has become a prevalent strategy for adapt-
ing these models to diverse downstream tasks, thereby reducing costs. Despite
their benefits, LLMs have vulnerabilities, such as susceptibility to adversarial
attacks, potential for jailbreaking, fairness issues, backdoor vulnerabilities, and
the risk of generating inappropriate or harmful content. Since fine-tuned mod-
els inherit some characteristics from their original models, they may also inherit
these issues and vulnerabilities. In this work, we propose a lightweight frame-
work, RootTracker, specifically designed to trace the original models of fine-tuned
LLMs. The core idea is to identify a set of prompts that can assess which pre-
trained LLM a fine-tuned model most closely resembles. This process is con-
ducted in a “knockout tournament” style, where the model is repeatedly tested
against pairs of LLMs until the original pre-trained model is identified. To evalu-
ate the effectiveness of our framework, we created 200 distinct fine-tuned models,
derived from original models including GPT-Neo, GPT-2, TinyLlama, and Pythia.
The results demonstrate that our framework accurately identified the original mod-
els for 85.7% of the fine-tuned versions. Therefore, we advocate for timely up-
dates to model versions or deliberate obfuscation of model types when deploying
large models.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT (Achiam et al., 2023) and LLaMA (Touvron et al.,
2023), have demonstrated exceptional performance across a wide range of applications, from natu-
ral language processing to complex decision-making tasks (Brown et al., 2020; Devlin et al., 2019;
Vaswani, 2017). The effectiveness of these models in handling diverse and intricate tasks has led to
their widespread adoption in both academic research and industry applications. However, the train-
ing of such large models from scratch demands substantial computational resources and time, often
involving hundreds of GPUs and significant energy consumption (Strubell et al., 2020; Schwartz
et al., 2020). Consequently, fine-tuning pre-trained LLMs has become increasingly popular. This
approach leverages the general capabilities of an already trained model, adapting it to specific tasks
with considerably reduced resource expenditure, thereby broadening the accessibility of LLM tech-
nologies for a variety of downstream applications.

Despite their capabilities, LLMs are not without issues. Research indicates that these models can
inadvertently generate biased or harmful content (Welbl et al., 2021; Gallegos et al., 2024; Chu et al.,
2024). Furthermore, even with implemented safety measures, studies reveal “jailbreaking” attacks
that can circumvent these protections, potentially inducing the generation of toxic content (Qi et al.,
2024; Shayegani et al., 2023; Li et al., 2023a; Deng et al., 2023). Moreover, studies have shown
that fine-tuned models may retain the vulnerabilities and biases of their original pre-trained versions
(Li et al., 2021; Zhang et al., 2023; Bagdasaryan & Shmatikov, 2021), which can perpetuate or
even amplify these issues in downstream applications. Therefore, if an application employs a model
fine-tuned from older open-source LLMs, it may inherit the vulnerabilities of those models, making
it susceptible to attacks. For instance, we used the same jailbreak prompts to successfully attack
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multiple fine-tuned versions of GPT-2-XL (details provided in Appendix A.1). Additionally, this
phenomenon inspires us to consider that carefully designed prompts can be utilized to trace the
original model of a fine-tuned version.

In this work, we introduce RootTracker, a novel lightweight, extensible, and modular framework de-
signed to identify the original pre-trained models of fine-tuned LLMs under black-box conditions.
The primary concept of our framework is to use a set of prompts to identify the original models of
fine-tuned models. To achieve this, the framework is divided into four components: Models Prepa-
ration, Database Construction, Single Pair Classifier, and Knockout Round. First, Models Prepa-
ration leverages prompt tuning to efficiently generate a substantial number of fine-tuned models for
training and testing. Database Construction then creates a comprehensive prompt database using
multimodal prompts generated by various high-performing LLMs, providing a rich search space
for the Single Pair Classifier. This classifier evaluates fine-tuned models to determine their original
models, utilizing a search and optimization approach that is significantly less resource-intensive than
model tuning. Finally, the Knockout Round, inspired by elimination tournaments in sports, extends
the Single Pair Classifier to assess multiple original models, enhancing the overall functionality of
the framework.

To evaluate the effectiveness of our framework, we generated 200 distinct fine-tuned models derived
from original models including GPT-Neo, GPT-2, TinyLlama, and Pythia. The framework achieved
an accuracy rate of 85.7% in identifying multiple original models (utilizing the knockout round).
Additionally, an ablation study underscored the unique and indispensable roles of each framework
component. We further tested the framework on 11 parameter-tuned LLMs, successfully tracing the
origins of 8 models, demonstrating strong generalization capabilities. The results also show that our
framework enables accurate tracing of the lineage of these models, facilitating the identification of
associated attack mechanisms. This emphasizes the need for LLM service providers to regularly
update their models or implement obfuscation techniques to mitigate potential vulnerabilities.

2 ROOTTRACKER
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Figure 1: RootTracker framework

This section describes the architecture of our framework, RootTracker. As illustrated in Figure 1,
RootTracker is composed of four principal components: Models Preparation, Database Construc-
tion, Single Pair Classifier, and Knockout Round. The subsequent sections will provide a detailed ex-
ploration of each component, highlighting their roles and interdependencies within the RootTracker
framework.

2.1 MODELS PREPARATION

As shown in Figure 1, this component aims to generate as many fine-tuned models as possible. The
reason for this is that, for a single vanilla LLM, it is not straightforward to find enough existing
fine-tuned models for training and testing. Specifically, we select a range of vanilla original models
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that are commonly used as base models for fine-tuning. We then apply fine-tuning—specifically,
prompt tuning—to generate various fine-tuned versions. Prompt tuning is chosen for this purpose
because it demonstrates performance comparable to parameter tuning while using a significantly
smaller number of parameters (Lester et al., 2021).

In addition, prompt tuning offers two primary advantages. Firstly, it significantly reduces training
time since it only involves appending prompts to the original models, facilitating the efficient cre-
ation of multiple fine-tuned versions. Secondly, it lowers storage requirements by saving only the
prompts used for tuning rather than the entire set of model parameters. These prompts encapsulate
the necessary adjustments to adapt the base model for specific tasks. Additionally, to enhance in-
ference speed, we can opt to store not only the prompts but also the output embeddings from the
training samples. Compared to storing the entire model, storing embeddings requires significantly
less space. By doing so, we bypass the need for re-embedding during the inference phase, thereby
accelerating the overall classification process.

2.2 DATABASE CONSTRUCTION

This component focuses on constructing a comprehensive database of prompts used in the search
step of the Single Pair Classifier. The database is designed to encompass a wide range of modalities.
As illustrated in the Database Construction section of Figure 1, we begin by selecting a variety of
high-performing LLMs (such as GPT-4, Claude-3, and Gemini). We then instruct these models to
generate multiple prompts. The input instructions for these LLMs are structured as follows: First,
we clearly and thoroughly describe the issue to be addressed with the prompts, emphasizing the
tracking of the original models of fine-tuned versions. Next, we specify the need for diverse prompt
modalities, including various topics, structures, and lengths, to broaden the range of prompts and ex-
pand the search space for the subsequent search step. Finally, we have each LLM generate multiple
rounds of prompts, incorporating human feedback to ensure the production of varied prompt modal-
ities. The prompts generated by these LLMs are then consolidated to form the extensive database
required for our downstream processes (an example is provided in Appendix A.2).

2.3 SINGLE PAIR CLASSIFIER

This component serves as the core analytical engine of the framework, classifying the origins of the
fine-tuned models. It employs multiple analytical steps to accurately distinguish between the base
models used in the fine-tuning process, as illustrated in the Single Pair Classifier section of Figure
1. Each Single Pair Classifier functions as a binary classifier. Instead of determining whether the
original model of a test model is a specific one, it assesses which of two possible original models
the test model more closely resembles. For instance, if the test model is based on GPT and the
classifier is designed to differentiate between GPT and Llama, the classifier’s output would lean
toward GPT. Similarly, if the same GPT-based test model is evaluated by a classifier designed to
distinguish between Claude and Llama, and if GPT’s features are more similar to those of Llama,
the classifier would lean toward Llama.

The rationale for employing this pairwise comparison approach instead of a single model that scores
similarity to all original models and selects the highest score is twofold. First, considering only two
models at a time reduces overlaps and provides clearer boundaries in the high-dimensional numeric
space. Second, some prompts may readily distinguish between models A and B but struggle to
differentiate between A and C. Including C in the same evaluation as A and B could compromise
the classifier’s performance.

Single Pair Classifier is structured as a pipeline that includes the following sequential steps: Search
k Seed Prompts, Optimize k Seed Prompts, k Metrics and Vote. Each of these steps will be explained
in detail below.

Search k Seed Prompts. This step focuses on selecting the k best prompts from the prompt
database established during the Database Construction phase. The selection process initially screens
for prompts that can effectively distinguish between the features of two original models. To quanti-
tatively assess the prompts, their outputs are embedded using sentence embeddings—preferable to
word embeddings for sentences—to convert them into a high-dimensional numeric space.
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To evaluate whether a prompt effectively differentiates between two original models, we utilize the
fine-tuned models obtained during the Model Preparation phase. First, we classify the fine-tuned
models according to their corresponding original models. Next, we select the two sets of models
relevant to the Single Pair Classifier. These sets are then divided into training and testing models,
ensuring that the number of training models in each set is equal to minimize bias.

In the training phase, a well-performing prompt can be defined as follows: when a prompt is input
into the two sets of models, it produces two sets of outputs. If the outputs within the same set
are close together (with distance defined as the cosine distance after embedding) while the outputs
between different sets are far apart, then the prompt is considered effective. We employ a loss
function as the metric to assess this performance.

The loss function utilized is a variation of the contrastive loss function (Hadsell et al., 2006), specif-
ically tailored for this application. This specialized loss function excels at drawing outputs from the
same model type closer together, while pushing those from different types apart. The details of this
loss function are as follows.

Let’s denote 2 embeddings e1 = ⟨u1, u2, . . . , um⟩ and e2 = ⟨v1, v2, . . . , vn⟩. cos sim(·, ·) as the
cosine similarity between 2 vectors. The use of cosine similarity allows for measuring how close or
far apart the embeddings are.

For embeddings in the same class, the intra-class pairwise loss is calculated by:

Lintra1 =

m∑
i=1

m∑
j=i+1

(1− cos sim(ui, uj))

Lintra2 =

n∑
i=1

n∑
j=i+1

(1− cos sim(vi, vj))

(1)

For embeddings in different classes, the inter-class pairwise loss is calculated by:

Linter =

m∑
i=1

n∑
j=1

max(0,margin− (1− cos sim(ui, vj))) (2)

where margin is a predefined threshold.

The final contrastive loss, which is the mean of all these losses, is:

L =
1

N
(Lintra1 + Lintra2 + Linter) (3)

where N is the total number of terms in Lintra1 , Lintra2 , and Linter. This averages the loss from same
class pairs and different class pairs. The loss function considers intra-class distance (same type
of model) and inter-class distance (different types of models), aiming to minimize the former and
maximize the latter.

Optimize k Seed Prompts. This step is designed to enhance the performance of prompts through
fine-grained adjustments and to broaden the search space. To improve the performance of the k
seed prompts, we implement a modified genetic algorithm (GA) (details are provided in Appendix
A.3). This algorithm is particularly well-suited for solving optimization problems by simulating the
processes of natural selection and genetics. Our GA operates as follows:

• Fitness Function: We use the loss function, as described earlier, to evaluate the fitness of each
prompt. This function measures how effectively a prompt generates the desired responses.

• Genes: The characters that can be used in the prompts—including uppercase and lowercase let-
ters, symbols, and spaces—constitute the gene pool for constructing prompt strings.

• Crossover: Two existing prompts are combined at random points to produce new prompts, mim-
icking biological recombination between genes.

• Mutation: With a certain probability, random changes are introduced to the prompts to explore a
wider search space. This could involve changing a character in a prompt to another character from
the gene pool.

• Selection: After evaluating the fitness of the prompts, a subset is selected for breeding the next
generation based on their fitness scores.
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The use of a genetic algorithm is justified as it expands the search space beyond the initial database,
increasing the likelihood of finding optimal prompts. This method leverages evolutionary principles,
such as selection and variation, to iteratively improve the prompts.

k Metrics and Vote. This step aims to evaluate a model from different perspectives using various
prompts and to aggregate the results through a voting mechanism. In the k metrics step, each metric
functions as a classifier built with k optimized prompts. For each prompt, we input it into two
classes of training models corresponding to different original models and map their outputs to an
embedding space. The same procedure is applied to the model under test. We then utilize the k-
nearest neighbors (kNN) algorithm to classify the test model’s output based on its proximity to the
training embeddings. This process is repeated for all k metrics.

Finally, a specialized voting mechanism aggregates the results from each prompt to determine the
predominant classification of the model under test. This voting mechanism tallies the sum of two
types of reference points (the k points chosen for decision-making) in each kNN iteration. The final
result is determined by comparing the total counts of these two types of reference points across all
metrics, with the majority type prevailing. By utilizing the intermediate results of kNN rather than
relying solely on the final outcome, this voting method allows for a more comprehensive considera-
tion of the overall results, thereby reducing biases that may arise from depending solely on the final
kNN results (see Appendix A.4).

2.4 KNOCKOUT ROUND

In scenarios involving multiple model classes (≥ 2 possible original models), multiple pairwise
comparisons are necessary, as illustrated in the Knockout Round section of Figure 1. To expedite
this process, a knockout tournament mechanism, similar to those used in sports competitions, is em-
ployed. This approach reduces the number of comparisons from the combinatorial number C(n, 2)
to just n−1, thereby demonstrating the scalability of the framework. Furthermore, when new model
types are introduced, only pairwise comparisons with the existing model types are required.

The knockout mechanism initially divides the models into two disjoint groups, where they compete
in pairwise matches, with the winners advancing to the next round. This setup effectively simplifies
the comparison process, as the number of competitors is halved with each round until a final winner
is determined (an example is provided in Appendix A.5).

In addition, traditional knockout rounds focus solely on the winner, which means that a single mis-
judgment (where the correct result loses) can jeopardize the entire outcome of the tournament. To
mitigate this issue, we have implemented a double knockout round system that introduces both a
winners’ bracket and a losers’ bracket. Initially, all entries start in the winners’ bracket, and any
entry that loses is moved to the losers’ bracket. An entry is only eliminated from contention after
losing a second time in the losers’ bracket. However, if an entry wins in the losers’ bracket, it has
the opportunity to compete against the winners’ bracket later on. This effectively reduces the risk
of a single erroneous judgment compromising the entire knockout round (an example is provided in
Appendix A.5).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Original Test Models. To test our framework comprehensively, we use four pre-trained LLM
models (TinyLlama v1.1 (Zhang et al., 2024a), GPT-Neo-1.3B (Black et al., 2021), Pythia-1.4B
(Biderman et al., 2023), GPT-2-XL (Radford et al., 2019)) as the original models.

Search Database. Our method initially searches a database to identify five well-performing
prompts as seeds for further optimization. Therefore, the prompts in this database must encompass
a wide variety of forms and types. To minimize human bias and generate a diverse array of prompts,
we utilized 20 LLMs (models list is shown in Appendix A.6). Each model generated 50 unique
prompts across different modalities, topics, and construction methods, culminating in a database
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of 1000 prompts. This database serves as the search space for the seeds needed for subsequent
optimizations.

Fine-tuning Method. Next, we need to fine-tune these original LLM models. Since prompt tuning
(Lester et al., 2021) does not require as much computational power as parameter tuning (Lv et al.,
2023; Hu et al., 2023; Malladi et al., 2023; Ouyang et al., 2022), nor does it consume extensive
training time, it becomes a viable option. The study (Lester et al., 2021) has also demonstrated that,
with increasing parameter sizes, the effectiveness of prompt tuning approaches that of parameter-
level fine-tuning. Prompt tuning typically involves optimizing a prompt’s embedding and appending
it before the original prompt embedding to enhance the model’s performance on downstream tasks.
However, in our case, the goal is not to pursue performance on these tasks but to test the framework
by increasing the number of tuned models that we do not need to optimize the tuning prompts.
Therefore, we employed GPT-4-turbo (Achiam et al., 2023) and Claude-3-Opus (Anthropic, 2024) to
generate 60 varied tuning prompts (10 for training, 50 for testing) for each original model. Here, we
crafted additional testing models to evaluate the generalization ability of the framework, specifically
testing its performance in varied, unseen scenarios.

Embedding Method. During the embedding stage, we employed the sentence embedding tech-
nique to process the outputs. Additionally, to balance the performance of the embedding model with
the demands on device capabilities, we opted to use gte-large-en-v1.5 (Zhang et al., 2024b).

3.2 TRACE ACCURACY WITHOUT KNOCKOUT ROUND

In accordance with our framework’s methodology, we group potential model types into pairs and use
a binary classifier to make evaluations. Since we are working with four original models, there are
six possible pairings, necessitating the use of six distinct binary classifiers for these combinations.
We have trained each of these classifiers and assessed their accuracy on the respective model pairs.
We recorded the accuracy for individual models and calculated the overall accuracy, as detailed in
Table 1.

Table 1: Classifiers’ Accuracy. This table lists classifiers by name, each denoted by two original models
they distinguish (e.g., TinyLlama-v1.1, GPT-Neo-1.3B). “Accuracy (1st)” and “Accuracy (2nd)” indicate the
classifiers’ accuracy rates for the first and second original models, respectively.

Classifier Accuracy (1st) Accuracy (2nd) Total Accuracy
(TinyLlama-v1.1, GPT-Neo-1.3B) 100% 98% 99%
(TinyLlama-v1.1, Pythia-1.4B) 100% 76% 88%
(TinyLlama-v1.1, GPT-2-XL) 100% 100% 100%
(GPT-Neo-1.3B, Pythia-1.4B) 74% 100% 87%
(GPT-Neo-1.3B, GPT-2-XL) 86% 100% 93%
(Pythia-1.4B, GPT-2-XL) 98% 98% 98%

Total Average Accuracy 94.2%

From Table 1, it is evident that the binary classifiers derived from our framework achieve an aver-
age overall accuracy of 94.2%, with the minimum and maximum overall accuracies being 87% and
100%, respectively. This demonstrates that the classifiers obtained through our Framework are ca-
pable of effectively categorizing the base models when distinguishing between two original models.
Additionally, it is observable that some original models exhibit superior classification performance
(such as GPT-2-XL, with an accuracy reaching 100%), while others show relatively poorer perfor-
mance (such as Pythia-1.4B, with an accuracy only achieving 76%). We believe the reason for this
disparity is that the former type of model has more distinctive output characteristics, which results
in embeddings that are more concentrated in high-dimensional space. In contrast, the latter type
of model has less pronounced output features, leading to embeddings that are more dispersed in
high-dimensional space.

3.3 TRACE ACCURACY WITH KNOCKOUT ROUND

To support the evaluation of multiple (two or more) possible original models, our framework in-
corporates a Knockout Round (Section 2.4). To assess the performance of our framework in tasks
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Table 2: Classifier Accuracy with Knockout Rounds. This table presents the framework’s accuracy in distin-
guishing multiple original models, listing the accuracy rates for each original model separately. Additionally, it
includes the accuracy for three rounds, each with a different knockout round order.

Original Models Accuracy Average
Round 1 Round 2 Round 3

TinyLlama-v1.1 92% 96% 98% 95.3%
GPT-Neo-1.3B 76% 76% 76% 76.0%
Pythia-1.4B 82% 76% 78% 78.7%
GPT-2-XL 94% 94% 90% 92.7%

Total Average Accuracy 85.7%

involving judgments on multiple potential original models, we expanded our experiments (Section
3.2) to include the Knockout Round. We then evaluated the fine-tuned models of four original mod-
els, as shown in Table 2. We tested the accuracy of judgments for each original model separately.
Additionally, we employed three different grouping orders from the Knockout Round for each model
and calculated the average as the final performance measure.

From Table 2, it is apparent that after incorporating the Knockout Round, the overall average accu-
racy of our framework is 85.7%. This indicates that our framework is capable of effectively making
judgments across multiple potential original models.

3.4 COMPARISON

To the best of our knowledge, there is only one prior study (Foley et al., 2023) that closely aligns
with our application scenario. This previous work employed classifiers based on parameter tuning
of LLMs, which necessitated substantial computational resources, thereby limiting its extensibility.
In comparison, our results show an accuracy of 85.7% in identifying multiple candidate original
models, slightly exceeding the 80% accuracy rate reported in that study, which correctly identified
8 out of 10 fine-tuned models.

Additionally, our framework requires significantly less computational power and has lower hard-
ware demands, as it utilizes search and optimization strategies rather than relying on model tuning.
Moreover, our approach minimizes storage requirements by only necessitating the retention of orig-
inal models and their corresponding tuning prompts, rather than the complete storage of fine-tuned
models. Furthermore, our framework is designed to adapt seamlessly to the inclusion of new orig-
inal models, accommodating the ongoing evolution of large models. Thanks to its modular design,
components within our framework can be easily replaced, facilitating updates with newer method-
ologies.

3.5 ABLATION STUDY

Table 3: Ablation Study Results. This table records the accuracy results of an ablation study. The “Random”
column displays results using randomly generated prompts. The “Search” column presents results when omit-
ting the search step. The “Optimize” column shows results without the optimization step. The “Vote” column
details results without the voting mechanism.

Classifier Random Search Optimize Vote
(TinyLlama-v1.1, GPT-Neo-1.3B) 60% 60% 98% 89%
(TinyLlama-v1.1, Pythia-1.4B) 67% 71% 91% 89%
(TinyLlama-v1.1, GPT-2-XL) 53% 83% 98% 98%
(GPT-Neo-1.3B, Pythia-1.4B) 52% 71% 87% 85%
(GPT-Neo-1.3B, GPT-2-XL) 60% 66% 87% 90%
(Pythia-1.4B, GPT-2-XL) 64% 83% 96% 95%

Average 59.3% 72.3% 92.8% 91.0%

Compare with Random Prompts. In order to demonstrate the effectiveness of our framework,
we conducted experiments using five random prompts. As shown in Table 3, the experimental setup
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is the same as in Section 3.2, except that the prompts obtained through our framework were replaced
with five randomly selected prompts.

From this table, we can see that the total average accuracy is 59.3%, which represents a decrease
of 34.9% compared to the results of our framework. Additionally, the minimum accuracy among
these classifiers is 52%, and the maximum accuracy is 67%, both significantly lower than what we
achieved with our framework. This indicates the effectiveness of our framework. Moreover, even
randomly selected prompts managed to maintain a certain level of accuracy. Our analysis suggests
that outputs from different original models inherently possess distinct characteristics, which allows
even random prompts to reflect some unique features, albeit less conspicuously.

Without Search. To demonstrate the effectiveness of the Search component, this experiment re-
moved the search part, replacing the seeds from the framework with five random prompts from the
prompts database. The rest of the experimental setup was the same as in Section 3.2.

The experimental results, as shown in Table 3, indicate that the total average accuracy is 72.3%,
which is a significant decrease compared to the results obtained with the use of Search. Addition-
ally, the performance of individual classifiers also shows a substantial decline. Analysis suggests
that, unlike the Optimization part which only fine-tunes the prompts, the Search part introduces
significant variability in the modality, topics, and structure of each prompt, thereby having a more
pronounced impact on the accuracy of judgments.

Without Optimization. To illustrate the effectiveness of the Optimization, this experiment re-
moved the optimization component and directly used the results of the search to judge the models.
The rest of the experimental setup was the same as in Section 3.2.

The experimental results, as shown in Table 3, reveal that the total average accuracy is 92.8%.
This represents a slight decrease compared to the results achieved with the use of Optimization.
Additionally, there is a minor decline in the performance of individual classifiers. Analysis suggests
that the Optimization phase involves finer and more subtle adjustments based on the seeds identified
during the search. The optimized prompts are relatively similar to each other, which leads to a
smaller impact on the outcomes.

Without Vote. To illustrate the effectiveness of the Vote, this experiment removed the vote compo-
nent, using only the best-performing prompt from the Optimization part. The rest of the experimental
setup was the same as in Section 3.2.

As shown in Table 3, the total average accuracy is 91.0%, which shows a slight decrease compared
to the results obtained with the use of the vote component. Analysis suggests that the Vote part, by
utilizing multiple models for judgment, reduces biases that might occur if a model performs well
only on the training set, thereby enhancing the overall generalization performance of the model. The
varied degrees of decline among different classifiers are believed to be due to some prompts being
more distinctive corner cases, which are already well-distinguished by the two models, making the
contribution of the voting mechanism to their judgment capabilities quite limited.

Different Knockout Round Orders. In Section 3.3, we utilized three different grouping orders
of the Knockout Round to judge each original model, as shown in Table 2. It is evident that the
accuracy differences between different Knockout Round orders for each original model are small,
with the largest variance being only 6% across three judgments. This demonstrates that the order of
the Knockout Round has a relatively small impact on our framework, indicating that our framework’s
performance is robust across different orders.

3.6 GENERALIZATION

To comprehensively demonstrate the generalization ability of our method, we conducted rigorous
testing on a diverse set of 11 different parameter tuning models. We implemented our previously
described framework, omitting any additional training steps, to evaluate the original versions of these
models. This approach allowed us to assess the robustness and adaptability of our framework under
varying conditions, free from the influence of further model-specific optimizations. Our method
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successfully identified the original configurations of 8 out of the 11 models (as shown in Appendix
A.7), highlighting the effectiveness of our approach in recognizing and adapting to different models.

3.7 LIMITATION

The main limitation of our approach is that it relies on a predefined pool of original models. Con-
sequently, we can only determine which LLM the fine-tuned model closely resembles, rather than
identifying its exact origin if it falls outside this pool. However, in real-world attack scenarios, this
limitation is less restrictive, as most fine-tuned LLMs are typically derived from well-known open-
source models. In addition, due to limitations in computing resources, we evaluated our method
using only 1.4B parameter versions of LLMs. However, we ensured that our experiments included
the most mainstream 1.4B LLMs. Given the extensibility of our framework, we plan to expand the
pool of LLMs as soon as sufficient computing resources become available.

4 RELATED WORK

Model Features and Characteristics Our framework leverages concepts similar to model water-
marking and fingerprinting to identify the pre-trained origins of fine-tuned models. Watermarking
works (Adi et al., 2018; Jia et al., 2021; Uchida et al., 2017; Lao et al., 2022; Clements & Lao,
2022; Li et al., 2022; Cong et al., 2022; Bansal et al., 2022; Wang et al., 2022) involve embedding
identifiable information within a model to verify its authenticity or ownership, while fingerprint-
ing works (Lukas et al., 2021; Chen et al., 2022; Peng et al., 2022; Pan et al., 2022; Liu et al.,
2022) capture unique model characteristics that can be used to trace its lineage. By connecting these
techniques with model features and characteristics, our framework identifies distinct features that
link fine-tuned models to their original pre-trained versions. This approach facilitates the accurate
determination of a model’s provenance, enhancing model transparency and accountability. Recent
research (Foley et al., 2023) also demonstrates that fine-tuned models retain the characteristics of
their original pre-trained models.

LLMs Vulnerability LLMs face significant vulnerabilities that challenge their safe use. Some
issues include jailbreaking (Qi et al., 2024; Shayegani et al., 2023; Li et al., 2023a; Deng et al.,
2023; Lapid et al., 2024), where models bypass safety protocols to generate unethical content, and
susceptibility to adversarial attacks (Qi et al., 2024; Zou et al., 2023; Bailey et al., 2023; Xu et al.,
2023) that can manipulate outputs through malicious inputs. Additionally, LLMs can be compro-
mised by backdoor attacks (Yan et al., 2023; Zhao et al., 2023; Yan et al., 2024), where specific
triggers can cause the model to behave in unexpected or harmful ways. Furthermore, LLMs may
also generate harmful content unintentionally (Zellers et al., 2019; Welbl et al., 2021), such as mis-
information or hate speech, which can have serious consequences for individuals and communities.
Moreover, these models often reflect biases inherent in their training data (Gallegos et al., 2024; Li
et al., 2023b; Chu et al., 2024), perpetuating societal inequalities and reinforcing stereotypes. The
combination of these issues significantly impacts the normal functioning of LLMs and can lead to
societal harms, such as discrimination and the spread of false information. Therefore, it is crucial
that we work actively to address these challenges. Besides, some studies (Li et al., 2021; Zhang
et al., 2023; Bagdasaryan & Shmatikov, 2021) have demonstrated that vulnerabilities in pre-trained
models are often inherited by their fine-tuned models. This evidence suggests that identifying the
original pre-trained models used as the basis for fine-tuning is helpful for analyzing the robustness of
the fine-tuned models. Such identification can also facilitate the detection of bugs and vulnerabilities
in these models.

5 CONCLUSION

In this work, we introduced RootTracker, a lightweight and extensible framework that employs
search and optimization techniques to identify the original pre-trained models of fine-tuned LLMs.
Our framework features a modular design, which facilitates updates and methodological enhance-
ments while also supporting the integration of new model types, making it highly adaptable to the
evolving landscape of LLMs.
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A APPENDIX

A.1 INHERITED VULNERABILITIES

Some studies (Li et al., 2021; Zhang et al., 2023; Bagdasaryan & Shmatikov, 2021) have demon-
strated that vulnerabilities in pre-trained models are often inherited by their fine-tuned models. To
verify this, we conducted a small experiment using various fine-tuned versions of GPT-2-XL to as-
sess whether they exhibit similar vulnerabilities. We employed the Jailbreak method to identify these
weaknesses. When presented with a violent query, the models generally responded with nonsensical
outputs, such as the following:

Figure 2: Meaningless content example 1

Figure 3: Meaningless content example 2

However, once a successful jailbreak method was applied, all models produced violent responses,
such as the following:
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Figure 4: Violent content example 1

Figure 5: Violent content example 2

Figure 6: Violent content example 3

This phenomenon shows that fine-tuned models with the same original model may share some char-
acteristics and vulnerabilities.
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A.2 EXAMPLE OF INSTRUCTION IN DATABASE CONSTRUCTION

Instruction (prompt):

Issue: I aim to use prompts to differentiate various types of large language models (LLMs), such
that the outputs from different models will vary for the same input prompt.

Requirements: The prompts should vary in modality, cover diverse topics, be structured in different
ways, and have varying lengths. Please assist in generating 100 such prompts.

Then, we will apply this instruction to the LLMs selected for Database Construction. If the LLMs
fail to generate the required multimodal prompts, we will initiate multiple rounds of generation and
incorporate human feedback to guide the LLMs towards producing a broader variety of prompts.

A.3 OPTIMIZATION ALGORITHM

Algorithm 1 Genetic Algorithm for Prompt Optimization

Input: Initial prompt P , Population size N , Number of generations G, Mutation rate m, Crossover
rate c

Output: Optimized prompt and fitness value
1: Initialize population P with N mutated versions of P
2: Calculate loss L for each prompt in P
3: Set best fitness← L(P )
4: Set best prompt← P
5: for each generation g from 1 to G do
6: Select top N/2 prompts from P based on L
7: Initialize next generation P ′ ← ∅
8: while size of P ′ < N do
9: Randomly select parents p1, p2 from the selected prompts

10: Perform crossover with probability c to generate children c1, c2
11: Mutate c1 and c2 with probability m
12: Add c1 and c2 to P ′

13: end while
14: Set P ← P ′

15: for each prompt p in P do
16: Calculate loss L(p)
17: if L(p) < best fitness then
18: Set best fitness← L(p)
19: Set best prompt← p
20: end if
21: end for
22: end for
23: return best prompt, best fitness

A.4 TRADITIONAL VOTING MECHANISM

Table 4: Traditional voting mechanism

Classifier Accuracy (1st) Accuracy (2nd) Total Accuracy
(TinyLlama-v1.1, GPT-Neo-1.3B) 100% 98% 99%
(TinyLlama-v1.1, Pythia-1.4B) 100% 82% 91%
(TinyLlama-v1.1, GPT-2-XL) 100% 100% 100%
(GPT-Neo-1.3B, Pythia-1.4B) 58% 100% 79%
(GPT-Neo-1.3B, GPT-2-XL) 82% 100% 91%
(Pythia-1.4B, GPT-2-XL) 98% 96% 97%

Total Average Accuracy 92.8%
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For Table 4, we can see that the total average accuracy of traditional voting mechanism is 92.8%. It
is slightly lower than our voting mechanism’s result: 94.2%.

A.5 EXAMPLE OF KNOCKOUT ROUND

Traditional Knockout Round The Knockout mechanism initially employs a series of mutually
exclusive classifiers to determine which LLM the LLM under test (LUT) most closely resembles. In
the first round, there are no overlapping classifiers such as (LLMa, LLMb) and (LLMb, LLMc).
For instance, in the first round, the LLM classifiers evaluate the LUT and conclude that it most
closely resembles LLM1, LLM4, and LLM5. In the subsequent knockout round, we select the clas-
sifier that distinguishes between LLM1 and LLM4, and in the final round, we choose the classifier
for LLM1 and LLM5. Ultimately, it is determined that the LUT most closely resembles LLM5.

Double Knockout Round In the initial phase of our testing framework, we employ a set of mu-
tually exclusive classifiers to evaluate which of several predefined language models (LMs) the lan-
guage model under test (LMUT) most closely resembles. Each classifier is specific to a pair of
models, such as (LMa, LMb), ensuring no overlaps like (LMb, LMc) in the first round. Suppose in
the first round, the classifiers indicate that LMUT shares similarities with LM1, LM4, and LM5.

In the double knockout setup, LMUT first faces LM4 in a direct comparison. Let’s say LMUT loses
this round and is moved to the losers’ bracket, while LM4 progresses in the winners’ bracket. In the
losers’ bracket, LMUT is next pitted against LM1. Winning this round allows LMUT to challenge
another model from the winners’ bracket, providing a chance for redemption.

Continuing in the losers’ bracket, LMUT then competes against LM5 and wins, setting up a rematch
with LM4. In this final round, if LMUT defeats LM4, it faces one last match against LM5, which
had been progressing in the winners’ bracket. If LMUT wins this ultimate match, it is determined
that LMUT most closely resembles LM5, completing its journey from an initial setback to ultimate
validation. This double knockout approach ensures that a single early loss does not eliminate a
potentially strong candidate prematurely and validates the final result through multiple rounds of
testing.

A.6 DATABASE GENERATION USING 20 MODELS

We generate the prompts database using these models:

Claude-2, Claude-3-Opus, Claude-3.5-Sonnet, Claude-instant, Gemini-1.0-Pro, Gemini-1.5-Pro,
GPT-3.5-Turbo, GPT-4-Turbo, GPT-4o, Llama-3-8B-T, Llama-3-70B-T, Llama-3.1-70B-FW-128k,
Llama-3.1-405B-T, Mistral-Large-2, Mixtral-8x7B-Chat, Mixtral-8x22B-T, Qwen-1.5-110B-T,
Qwen-72B-T, Qwen2-72B-Chat.

A.7 OTHER FINE-TUNED MODELS

Table 5: Results of other models

Model Name Original Model Result T/F
gpt-neo-1.3B-apps gpt-neo-1.3B gpt-neo-1.3B T
gpt-neo-1.3B-apps-all-2 gpt-neo-1.3B gpt-neo-1.3B T
gpt-neo-1.3B-resized-embed gpt-neo-1.3B gpt-neo-1.3B T
TinyLlama v1.1-flight-25k TinyLlamav1.1 pythia-1.4b F
tinyllama-1.1b-sum-sft-fullv1.1 TinyLlamav1.1 gpt-neo-1.3B F
Pythia-Greentext-1.4b pythia-1.4b pythia-1.4b T
fin-pythia-1.4b pythia-1.4b pythia-1.4b T
pythia-1.4b-gpt4all-pretrain pythia-1.4b gpt-neo-1.3B F
pythia-1.4b-sft-full pythia-1.4b pythia-1.4b T
tldr-gpt2-xl gpt2-xl gpt2-xl T
BetterGPT2 gpt2-xl gpt2-xl T

Total True 8/11
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