
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROOTTRACKER: A LIGHTWEIGHT FRAMEWORK TO
TRACE ORIGINAL MODELS OF FINE-TUNED LLMS IN
BLACK-BOX CONDITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) demonstrate remarkable performance in various
applications, yet their training demands extensive resources and time. Conse-
quently, fine-tuning pre-trained LLMs has become a prevalent strategy for adapt-
ing these models to diverse downstream tasks, thereby reducing costs. Despite
their benefits, LLMs have vulnerabilities, such as susceptibility to adversarial
attacks, potential for jailbreaking, fairness issues, backdoor vulnerabilities, and
the risk of generating inappropriate or harmful content. Since fine-tuned mod-
els inherit some characteristics from their original models, they may also inherit
these issues and vulnerabilities. In this work, we propose a lightweight frame-
work, RootTracker, specifically designed to trace the original models of fine-tuned
LLMs. The core idea is to identify a set of prompts that can assess which pre-
trained LLM a fine-tuned model most closely resembles. This process is con-
ducted in a “knockout tournament” style, where the model is repeatedly tested
against pairs of LLMs until the original pre-trained model is identified. To evalu-
ate the effectiveness of our framework, we created 200 distinct fine-tuned models,
derived from original models including GPT-Neo, GPT-2, TinyLlama, and Pythia.
The results demonstrate that our framework accurately identified the original mod-
els for 85.7% of the fine-tuned versions. Therefore, we advocate for timely up-
dates to model versions or deliberate obfuscation of model types when deploying
large models.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT (Achiam et al., 2023) and LLaMA (Touvron et al.,
2023), have demonstrated exceptional performance across a wide range of applications, from natu-
ral language processing to complex decision-making tasks (Brown et al., 2020; Devlin et al., 2019;
Vaswani, 2017). The effectiveness of these models in handling diverse and intricate tasks has led to
their widespread adoption in both academic research and industry applications. However, the train-
ing of such large models from scratch demands substantial computational resources and time, often
involving hundreds of GPUs and significant energy consumption (Strubell et al., 2020; Schwartz
et al., 2020). Consequently, fine-tuning pre-trained LLMs has become increasingly popular. This
approach leverages the general capabilities of an already trained model, adapting it to specific tasks
with considerably reduced resource expenditure, thereby broadening the accessibility of LLM tech-
nologies for a variety of downstream applications.

Despite their capabilities, LLMs are not without issues. Research indicates that these models can
inadvertently generate biased or harmful content (Welbl et al., 2021; Gallegos et al., 2024; Chu et al.,
2024). Furthermore, even with implemented safety measures, studies reveal “jailbreaking” attacks
that can circumvent these protections, potentially inducing the generation of toxic content (Qi et al.,
2024; Shayegani et al., 2023; Li et al., 2023a; Deng et al., 2023). Moreover, studies have shown
that fine-tuned models may retain the vulnerabilities and biases of their original pre-trained versions
(Li et al., 2021; Zhang et al., 2023; Bagdasaryan & Shmatikov, 2021), which can perpetuate or
even amplify these issues in downstream applications. Therefore, if an application employs a model
fine-tuned from older open-source LLMs, it may inherit the vulnerabilities of those models, making
it susceptible to attacks. For instance, we used the same jailbreak prompts to successfully attack

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

multiple fine-tuned versions of GPT-2-XL (details provided in Appendix A.1). Additionally, this
phenomenon inspires us to consider that carefully designed prompts can be utilized to trace the
original model of a fine-tuned version.

In this work, we introduce RootTracker, a novel lightweight, extensible, and modular framework de-
signed to identify the original pre-trained models of fine-tuned LLMs under black-box conditions.
The primary concept of our framework is to use a set of prompts to identify the original models of
fine-tuned models. To achieve this, the framework is divided into four components: Models Prepa-
ration, Database Construction, Single Pair Classifier, and Knockout Round. First, Models Prepa-
ration leverages prompt tuning to efficiently generate a substantial number of fine-tuned models for
training and testing. Database Construction then creates a comprehensive prompt database using
multimodal prompts generated by various high-performing LLMs, providing a rich search space
for the Single Pair Classifier. This classifier evaluates fine-tuned models to determine their original
models, utilizing a search and optimization approach that is significantly less resource-intensive than
model tuning. Finally, the Knockout Round, inspired by elimination tournaments in sports, extends
the Single Pair Classifier to assess multiple original models, enhancing the overall functionality of
the framework.

To evaluate the effectiveness of our framework, we generated 200 distinct fine-tuned models derived
from original models including GPT-Neo, GPT-2, TinyLlama, and Pythia. The framework achieved
an accuracy rate of 85.7% in identifying multiple original models (utilizing the knockout round).
Additionally, an ablation study underscored the unique and indispensable roles of each framework
component. We further tested the framework on 11 parameter-tuned LLMs, successfully tracing the
origins of 8 models, demonstrating strong generalization capabilities. The results also show that our
framework enables accurate tracing of the lineage of these models, facilitating the identification of
associated attack mechanisms. This emphasizes the need for LLM service providers to regularly
update their models or implement obfuscation techniques to mitigate potential vulnerabilities.

2 ROOTTRACKER

LLMs for
Training

LLMs for
Testing

Prompt
Database

Prompt
Embeddings

Result

Best k Prompts
Rating and Select Prompts

via 𝐿

Optimized
Best k Prompts

Optimize via
Heuristics algorithm

Vote

Metric 1 Metric 2 Metric k...

Evaluate Using kNN

Single Pair Classifier

Prompt Database

Prompt from GPT

Prompt from Claude

Prompt from OPT

Prompt from Llama
...

Vanilla LLMs

GPT

...

Claude

OPT

Llama

Database Construction

(GPTs, OPTs)

LLMs for Training

LLMs for Testing

Fine-tuned LLM Pairs

GPT v1

GPT v2
...

OPT v1

OPT v2
...

Claude v1

Claude v2
...

Llama v1

Llama v2
...

Fine-tuned LLMs

Fine-tuning

Models Preparation

Vanilla LLMs

GPT

...

Claude

OPT

Llama

Pairing

(LLM1, LLM2)
Classifier

(LLM3, LLM4)
Classifier

(LLM5, LLm6)
Classifier

LLM1

LLM4

(LLM1, LLm5)
Classifier

(LLM1, LLm4)
Classifier

LLM5

LLM1

LLM5

Knockout Round

Use LLM Classifier
Base on Our Need

LLM Under Test

Figure 1: RootTracker framework

This section describes the architecture of our framework, RootTracker. As illustrated in Figure 1,
RootTracker is composed of four principal components: Models Preparation, Database Construc-
tion, Single Pair Classifier, and Knockout Round. The subsequent sections will provide a detailed ex-
ploration of each component, highlighting their roles and interdependencies within the RootTracker
framework.

2.1 MODELS PREPARATION

As shown in Figure 1, this component aims to generate as many fine-tuned models as possible. The
reason for this is that, for a single vanilla LLM, it is not straightforward to find enough existing
fine-tuned models for training and testing. Specifically, we select a range of vanilla original models

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that are commonly used as base models for fine-tuning. We then apply fine-tuning—specifically,
prompt tuning—to generate various fine-tuned versions. Prompt tuning is chosen for this purpose
because it demonstrates performance comparable to parameter tuning while using a significantly
smaller number of parameters (Lester et al., 2021).

In addition, prompt tuning offers two primary advantages. Firstly, it significantly reduces training
time since it only involves appending prompts to the original models, facilitating the efficient cre-
ation of multiple fine-tuned versions. Secondly, it lowers storage requirements by saving only the
prompts used for tuning rather than the entire set of model parameters. These prompts encapsulate
the necessary adjustments to adapt the base model for specific tasks. Additionally, to enhance in-
ference speed, we can opt to store not only the prompts but also the output embeddings from the
training samples. Compared to storing the entire model, storing embeddings requires significantly
less space. By doing so, we bypass the need for re-embedding during the inference phase, thereby
accelerating the overall classification process.

2.2 DATABASE CONSTRUCTION

This component focuses on constructing a comprehensive database of prompts used in the search
step of the Single Pair Classifier. The database is designed to encompass a wide range of modalities.
As illustrated in the Database Construction section of Figure 1, we begin by selecting a variety of
high-performing LLMs (such as GPT-4, Claude-3, and Gemini). We then instruct these models to
generate multiple prompts. The input instructions for these LLMs are structured as follows: First,
we clearly and thoroughly describe the issue to be addressed with the prompts, emphasizing the
tracking of the original models of fine-tuned versions. Next, we specify the need for diverse prompt
modalities, including various topics, structures, and lengths, to broaden the range of prompts and ex-
pand the search space for the subsequent search step. Finally, we have each LLM generate multiple
rounds of prompts, incorporating human feedback to ensure the production of varied prompt modal-
ities. The prompts generated by these LLMs are then consolidated to form the extensive database
required for our downstream processes (an example is provided in Appendix A.2).

2.3 SINGLE PAIR CLASSIFIER

This component serves as the core analytical engine of the framework, classifying the origins of the
fine-tuned models. It employs multiple analytical steps to accurately distinguish between the base
models used in the fine-tuning process, as illustrated in the Single Pair Classifier section of Figure
1. Each Single Pair Classifier functions as a binary classifier. Instead of determining whether the
original model of a test model is a specific one, it assesses which of two possible original models
the test model more closely resembles. For instance, if the test model is based on GPT and the
classifier is designed to differentiate between GPT and Llama, the classifier’s output would lean
toward GPT. Similarly, if the same GPT-based test model is evaluated by a classifier designed to
distinguish between Claude and Llama, and if GPT’s features are more similar to those of Llama,
the classifier would lean toward Llama.

The rationale for employing this pairwise comparison approach instead of a single model that scores
similarity to all original models and selects the highest score is twofold. First, considering only two
models at a time reduces overlaps and provides clearer boundaries in the high-dimensional numeric
space. Second, some prompts may readily distinguish between models A and B but struggle to
differentiate between A and C. Including C in the same evaluation as A and B could compromise
the classifier’s performance.

Single Pair Classifier is structured as a pipeline that includes the following sequential steps: Search
k Seed Prompts, Optimize k Seed Prompts, k Metrics and Vote. Each of these steps will be explained
in detail below.

Search k Seed Prompts. This step focuses on selecting the k best prompts from the prompt
database established during the Database Construction phase. The selection process initially screens
for prompts that can effectively distinguish between the features of two original models. To quanti-
tatively assess the prompts, their outputs are embedded using sentence embeddings—preferable to
word embeddings for sentences—to convert them into a high-dimensional numeric space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To evaluate whether a prompt effectively differentiates between two original models, we utilize the
fine-tuned models obtained during the Model Preparation phase. First, we classify the fine-tuned
models according to their corresponding original models. Next, we select the two sets of models
relevant to the Single Pair Classifier. These sets are then divided into training and testing models,
ensuring that the number of training models in each set is equal to minimize bias.

In the training phase, a well-performing prompt can be defined as follows: when a prompt is input
into the two sets of models, it produces two sets of outputs. If the outputs within the same set
are close together (with distance defined as the cosine distance after embedding) while the outputs
between different sets are far apart, then the prompt is considered effective. We employ a loss
function as the metric to assess this performance.

The loss function utilized is a variation of the contrastive loss function (Hadsell et al., 2006), specif-
ically tailored for this application. This specialized loss function excels at drawing outputs from the
same model type closer together, while pushing those from different types apart. The details of this
loss function are as follows.

Let’s denote 2 embeddings e1 = ⟨u1, u2, . . . , um⟩ and e2 = ⟨v1, v2, . . . , vn⟩. cos sim(·, ·) as the
cosine similarity between 2 vectors. The use of cosine similarity allows for measuring how close or
far apart the embeddings are.

For embeddings in the same class, the intra-class pairwise loss is calculated by:

Lintra1 =

m∑
i=1

m∑
j=i+1

(1− cos sim(ui, uj))

Lintra2 =

n∑
i=1

n∑
j=i+1

(1− cos sim(vi, vj))

(1)

For embeddings in different classes, the inter-class pairwise loss is calculated by:

Linter =

m∑
i=1

n∑
j=1

max(0,margin− (1− cos sim(ui, vj))) (2)

where margin is a predefined threshold.

The final contrastive loss, which is the mean of all these losses, is:

L =
1

N
(Lintra1 + Lintra2 + Linter) (3)

where N is the total number of terms in Lintra1 , Lintra2 , and Linter. This averages the loss from same
class pairs and different class pairs. The loss function considers intra-class distance (same type
of model) and inter-class distance (different types of models), aiming to minimize the former and
maximize the latter.

Optimize k Seed Prompts. This step is designed to enhance the performance of prompts through
fine-grained adjustments and to broaden the search space. To improve the performance of the k
seed prompts, we implement a modified genetic algorithm (GA) (details are provided in Appendix
A.3). This algorithm is particularly well-suited for solving optimization problems by simulating the
processes of natural selection and genetics. Our GA operates as follows:

• Fitness Function: We use the loss function, as described earlier, to evaluate the fitness of each
prompt. This function measures how effectively a prompt generates the desired responses.

• Genes: The characters that can be used in the prompts—including uppercase and lowercase let-
ters, symbols, and spaces—constitute the gene pool for constructing prompt strings.

• Crossover: Two existing prompts are combined at random points to produce new prompts, mim-
icking biological recombination between genes.

• Mutation: With a certain probability, random changes are introduced to the prompts to explore a
wider search space. This could involve changing a character in a prompt to another character from
the gene pool.

• Selection: After evaluating the fitness of the prompts, a subset is selected for breeding the next
generation based on their fitness scores.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The use of a genetic algorithm is justified as it expands the search space beyond the initial database,
increasing the likelihood of finding optimal prompts. This method leverages evolutionary principles,
such as selection and variation, to iteratively improve the prompts.

k Metrics and Vote. This step aims to evaluate a model from different perspectives using various
prompts and to aggregate the results through a voting mechanism. In the k metrics step, each metric
functions as a classifier built with k optimized prompts. For each prompt, we input it into two
classes of training models corresponding to different original models and map their outputs to an
embedding space. The same procedure is applied to the model under test. We then utilize the k-
nearest neighbors (kNN) algorithm to classify the test model’s output based on its proximity to the
training embeddings. This process is repeated for all k metrics.

Finally, a specialized voting mechanism aggregates the results from each prompt to determine the
predominant classification of the model under test. This voting mechanism tallies the sum of two
types of reference points (the k points chosen for decision-making) in each kNN iteration. The final
result is determined by comparing the total counts of these two types of reference points across all
metrics, with the majority type prevailing. By utilizing the intermediate results of kNN rather than
relying solely on the final outcome, this voting method allows for a more comprehensive considera-
tion of the overall results, thereby reducing biases that may arise from depending solely on the final
kNN results (see Appendix A.4).

2.4 KNOCKOUT ROUND

In scenarios involving multiple model classes (≥ 2 possible original models), multiple pairwise
comparisons are necessary, as illustrated in the Knockout Round section of Figure 1. To expedite
this process, a knockout tournament mechanism, similar to those used in sports competitions, is em-
ployed. This approach reduces the number of comparisons from the combinatorial number C(n, 2)
to just n−1, thereby demonstrating the scalability of the framework. Furthermore, when new model
types are introduced, only pairwise comparisons with the existing model types are required.

The knockout mechanism initially divides the models into two disjoint groups, where they compete
in pairwise matches, with the winners advancing to the next round. This setup effectively simplifies
the comparison process, as the number of competitors is halved with each round until a final winner
is determined (an example is provided in Appendix A.5).

In addition, traditional knockout rounds focus solely on the winner, which means that a single mis-
judgment (where the correct result loses) can jeopardize the entire outcome of the tournament. To
mitigate this issue, we have implemented a double knockout round system that introduces both a
winners’ bracket and a losers’ bracket. Initially, all entries start in the winners’ bracket, and any
entry that loses is moved to the losers’ bracket. An entry is only eliminated from contention after
losing a second time in the losers’ bracket. However, if an entry wins in the losers’ bracket, it has
the opportunity to compete against the winners’ bracket later on. This effectively reduces the risk
of a single erroneous judgment compromising the entire knockout round (an example is provided in
Appendix A.5).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Original Test Models. To test our framework comprehensively, we use four pre-trained LLM
models (TinyLlama v1.1 (Zhang et al., 2024a), GPT-Neo-1.3B (Black et al., 2021), Pythia-1.4B
(Biderman et al., 2023), GPT-2-XL (Radford et al., 2019)) as the original models.

Search Database. Our method initially searches a database to identify five well-performing
prompts as seeds for further optimization. Therefore, the prompts in this database must encompass
a wide variety of forms and types. To minimize human bias and generate a diverse array of prompts,
we utilized 20 LLMs (models list is shown in Appendix A.6). Each model generated 50 unique
prompts across different modalities, topics, and construction methods, culminating in a database

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of 1000 prompts. This database serves as the search space for the seeds needed for subsequent
optimizations.

Fine-tuning Method. Next, we need to fine-tune these original LLM models. Since prompt tuning
(Lester et al., 2021) does not require as much computational power as parameter tuning (Lv et al.,
2023; Hu et al., 2023; Malladi et al., 2023; Ouyang et al., 2022), nor does it consume extensive
training time, it becomes a viable option. The study (Lester et al., 2021) has also demonstrated that,
with increasing parameter sizes, the effectiveness of prompt tuning approaches that of parameter-
level fine-tuning. Prompt tuning typically involves optimizing a prompt’s embedding and appending
it before the original prompt embedding to enhance the model’s performance on downstream tasks.
However, in our case, the goal is not to pursue performance on these tasks but to test the framework
by increasing the number of tuned models that we do not need to optimize the tuning prompts.
Therefore, we employed GPT-4-turbo (Achiam et al., 2023) and Claude-3-Opus (Anthropic, 2024) to
generate 60 varied tuning prompts (10 for training, 50 for testing) for each original model. Here, we
crafted additional testing models to evaluate the generalization ability of the framework, specifically
testing its performance in varied, unseen scenarios.

Embedding Method. During the embedding stage, we employed the sentence embedding tech-
nique to process the outputs. Additionally, to balance the performance of the embedding model with
the demands on device capabilities, we opted to use gte-large-en-v1.5 (Zhang et al., 2024b).

3.2 TRACE ACCURACY WITHOUT KNOCKOUT ROUND

In accordance with our framework’s methodology, we group potential model types into pairs and use
a binary classifier to make evaluations. Since we are working with four original models, there are
six possible pairings, necessitating the use of six distinct binary classifiers for these combinations.
We have trained each of these classifiers and assessed their accuracy on the respective model pairs.
We recorded the accuracy for individual models and calculated the overall accuracy, as detailed in
Table 1.

Table 1: Classifiers’ Accuracy. This table lists classifiers by name, each denoted by two original models
they distinguish (e.g., TinyLlama-v1.1, GPT-Neo-1.3B). “Accuracy (1st)” and “Accuracy (2nd)” indicate the
classifiers’ accuracy rates for the first and second original models, respectively.

Classifier Accuracy (1st) Accuracy (2nd) Total Accuracy
(TinyLlama-v1.1, GPT-Neo-1.3B) 100% 98% 99%
(TinyLlama-v1.1, Pythia-1.4B) 100% 76% 88%
(TinyLlama-v1.1, GPT-2-XL) 100% 100% 100%
(GPT-Neo-1.3B, Pythia-1.4B) 74% 100% 87%
(GPT-Neo-1.3B, GPT-2-XL) 86% 100% 93%
(Pythia-1.4B, GPT-2-XL) 98% 98% 98%

Total Average Accuracy 94.2%

From Table 1, it is evident that the binary classifiers derived from our framework achieve an aver-
age overall accuracy of 94.2%, with the minimum and maximum overall accuracies being 87% and
100%, respectively. This demonstrates that the classifiers obtained through our Framework are ca-
pable of effectively categorizing the base models when distinguishing between two original models.
Additionally, it is observable that some original models exhibit superior classification performance
(such as GPT-2-XL, with an accuracy reaching 100%), while others show relatively poorer perfor-
mance (such as Pythia-1.4B, with an accuracy only achieving 76%). We believe the reason for this
disparity is that the former type of model has more distinctive output characteristics, which results
in embeddings that are more concentrated in high-dimensional space. In contrast, the latter type
of model has less pronounced output features, leading to embeddings that are more dispersed in
high-dimensional space.

3.3 TRACE ACCURACY WITH KNOCKOUT ROUND

To support the evaluation of multiple (two or more) possible original models, our framework in-
corporates a Knockout Round (Section 2.4). To assess the performance of our framework in tasks

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Classifier Accuracy with Knockout Rounds. This table presents the framework’s accuracy in distin-
guishing multiple original models, listing the accuracy rates for each original model separately. Additionally, it
includes the accuracy for three rounds, each with a different knockout round order.

Original Models Accuracy Average
Round 1 Round 2 Round 3

TinyLlama-v1.1 92% 96% 98% 95.3%
GPT-Neo-1.3B 76% 76% 76% 76.0%
Pythia-1.4B 82% 76% 78% 78.7%
GPT-2-XL 94% 94% 90% 92.7%

Total Average Accuracy 85.7%

involving judgments on multiple potential original models, we expanded our experiments (Section
3.2) to include the Knockout Round. We then evaluated the fine-tuned models of four original mod-
els, as shown in Table 2. We tested the accuracy of judgments for each original model separately.
Additionally, we employed three different grouping orders from the Knockout Round for each model
and calculated the average as the final performance measure.

From Table 2, it is apparent that after incorporating the Knockout Round, the overall average accu-
racy of our framework is 85.7%. This indicates that our framework is capable of effectively making
judgments across multiple potential original models.

3.4 COMPARISON

To the best of our knowledge, there is only one prior study (Foley et al., 2023) that closely aligns
with our application scenario. This previous work employed classifiers based on parameter tuning
of LLMs, which necessitated substantial computational resources, thereby limiting its extensibility.
In comparison, our results show an accuracy of 85.7% in identifying multiple candidate original
models, slightly exceeding the 80% accuracy rate reported in that study, which correctly identified
8 out of 10 fine-tuned models.

Additionally, our framework requires significantly less computational power and has lower hard-
ware demands, as it utilizes search and optimization strategies rather than relying on model tuning.
Moreover, our approach minimizes storage requirements by only necessitating the retention of orig-
inal models and their corresponding tuning prompts, rather than the complete storage of fine-tuned
models. Furthermore, our framework is designed to adapt seamlessly to the inclusion of new orig-
inal models, accommodating the ongoing evolution of large models. Thanks to its modular design,
components within our framework can be easily replaced, facilitating updates with newer method-
ologies.

3.5 ABLATION STUDY

Table 3: Ablation Study Results. This table records the accuracy results of an ablation study. The “Random”
column displays results using randomly generated prompts. The “Search” column presents results when omit-
ting the search step. The “Optimize” column shows results without the optimization step. The “Vote” column
details results without the voting mechanism.

Classifier Random Search Optimize Vote
(TinyLlama-v1.1, GPT-Neo-1.3B) 60% 60% 98% 89%
(TinyLlama-v1.1, Pythia-1.4B) 67% 71% 91% 89%
(TinyLlama-v1.1, GPT-2-XL) 53% 83% 98% 98%
(GPT-Neo-1.3B, Pythia-1.4B) 52% 71% 87% 85%
(GPT-Neo-1.3B, GPT-2-XL) 60% 66% 87% 90%
(Pythia-1.4B, GPT-2-XL) 64% 83% 96% 95%

Average 59.3% 72.3% 92.8% 91.0%

Compare with Random Prompts. In order to demonstrate the effectiveness of our framework,
we conducted experiments using five random prompts. As shown in Table 3, the experimental setup

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

is the same as in Section 3.2, except that the prompts obtained through our framework were replaced
with five randomly selected prompts.

From this table, we can see that the total average accuracy is 59.3%, which represents a decrease
of 34.9% compared to the results of our framework. Additionally, the minimum accuracy among
these classifiers is 52%, and the maximum accuracy is 67%, both significantly lower than what we
achieved with our framework. This indicates the effectiveness of our framework. Moreover, even
randomly selected prompts managed to maintain a certain level of accuracy. Our analysis suggests
that outputs from different original models inherently possess distinct characteristics, which allows
even random prompts to reflect some unique features, albeit less conspicuously.

Without Search. To demonstrate the effectiveness of the Search component, this experiment re-
moved the search part, replacing the seeds from the framework with five random prompts from the
prompts database. The rest of the experimental setup was the same as in Section 3.2.

The experimental results, as shown in Table 3, indicate that the total average accuracy is 72.3%,
which is a significant decrease compared to the results obtained with the use of Search. Addition-
ally, the performance of individual classifiers also shows a substantial decline. Analysis suggests
that, unlike the Optimization part which only fine-tunes the prompts, the Search part introduces
significant variability in the modality, topics, and structure of each prompt, thereby having a more
pronounced impact on the accuracy of judgments.

Without Optimization. To illustrate the effectiveness of the Optimization, this experiment re-
moved the optimization component and directly used the results of the search to judge the models.
The rest of the experimental setup was the same as in Section 3.2.

The experimental results, as shown in Table 3, reveal that the total average accuracy is 92.8%.
This represents a slight decrease compared to the results achieved with the use of Optimization.
Additionally, there is a minor decline in the performance of individual classifiers. Analysis suggests
that the Optimization phase involves finer and more subtle adjustments based on the seeds identified
during the search. The optimized prompts are relatively similar to each other, which leads to a
smaller impact on the outcomes.

Without Vote. To illustrate the effectiveness of the Vote, this experiment removed the vote compo-
nent, using only the best-performing prompt from the Optimization part. The rest of the experimental
setup was the same as in Section 3.2.

As shown in Table 3, the total average accuracy is 91.0%, which shows a slight decrease compared
to the results obtained with the use of the vote component. Analysis suggests that the Vote part, by
utilizing multiple models for judgment, reduces biases that might occur if a model performs well
only on the training set, thereby enhancing the overall generalization performance of the model. The
varied degrees of decline among different classifiers are believed to be due to some prompts being
more distinctive corner cases, which are already well-distinguished by the two models, making the
contribution of the voting mechanism to their judgment capabilities quite limited.

Different Knockout Round Orders. In Section 3.3, we utilized three different grouping orders
of the Knockout Round to judge each original model, as shown in Table 2. It is evident that the
accuracy differences between different Knockout Round orders for each original model are small,
with the largest variance being only 6% across three judgments. This demonstrates that the order of
the Knockout Round has a relatively small impact on our framework, indicating that our framework’s
performance is robust across different orders.

3.6 GENERALIZATION

To comprehensively demonstrate the generalization ability of our method, we conducted rigorous
testing on a diverse set of 11 different parameter tuning models. We implemented our previously
described framework, omitting any additional training steps, to evaluate the original versions of these
models. This approach allowed us to assess the robustness and adaptability of our framework under
varying conditions, free from the influence of further model-specific optimizations. Our method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

successfully identified the original configurations of 8 out of the 11 models (as shown in Appendix
A.7), highlighting the effectiveness of our approach in recognizing and adapting to different models.

3.7 LIMITATION

The main limitation of our approach is that it relies on a predefined pool of original models. Con-
sequently, we can only determine which LLM the fine-tuned model closely resembles, rather than
identifying its exact origin if it falls outside this pool. However, in real-world attack scenarios, this
limitation is less restrictive, as most fine-tuned LLMs are typically derived from well-known open-
source models. In addition, due to limitations in computing resources, we evaluated our method
using only 1.4B parameter versions of LLMs. However, we ensured that our experiments included
the most mainstream 1.4B LLMs. Given the extensibility of our framework, we plan to expand the
pool of LLMs as soon as sufficient computing resources become available.

4 RELATED WORK

Model Features and Characteristics Our framework leverages concepts similar to model water-
marking and fingerprinting to identify the pre-trained origins of fine-tuned models. Watermarking
works (Adi et al., 2018; Jia et al., 2021; Uchida et al., 2017; Lao et al., 2022; Clements & Lao,
2022; Li et al., 2022; Cong et al., 2022; Bansal et al., 2022; Wang et al., 2022) involve embedding
identifiable information within a model to verify its authenticity or ownership, while fingerprint-
ing works (Lukas et al., 2021; Chen et al., 2022; Peng et al., 2022; Pan et al., 2022; Liu et al.,
2022) capture unique model characteristics that can be used to trace its lineage. By connecting these
techniques with model features and characteristics, our framework identifies distinct features that
link fine-tuned models to their original pre-trained versions. This approach facilitates the accurate
determination of a model’s provenance, enhancing model transparency and accountability. Recent
research (Foley et al., 2023) also demonstrates that fine-tuned models retain the characteristics of
their original pre-trained models.

LLMs Vulnerability LLMs face significant vulnerabilities that challenge their safe use. Some
issues include jailbreaking (Qi et al., 2024; Shayegani et al., 2023; Li et al., 2023a; Deng et al.,
2023; Lapid et al., 2024), where models bypass safety protocols to generate unethical content, and
susceptibility to adversarial attacks (Qi et al., 2024; Zou et al., 2023; Bailey et al., 2023; Xu et al.,
2023) that can manipulate outputs through malicious inputs. Additionally, LLMs can be compro-
mised by backdoor attacks (Yan et al., 2023; Zhao et al., 2023; Yan et al., 2024), where specific
triggers can cause the model to behave in unexpected or harmful ways. Furthermore, LLMs may
also generate harmful content unintentionally (Zellers et al., 2019; Welbl et al., 2021), such as mis-
information or hate speech, which can have serious consequences for individuals and communities.
Moreover, these models often reflect biases inherent in their training data (Gallegos et al., 2024; Li
et al., 2023b; Chu et al., 2024), perpetuating societal inequalities and reinforcing stereotypes. The
combination of these issues significantly impacts the normal functioning of LLMs and can lead to
societal harms, such as discrimination and the spread of false information. Therefore, it is crucial
that we work actively to address these challenges. Besides, some studies (Li et al., 2021; Zhang
et al., 2023; Bagdasaryan & Shmatikov, 2021) have demonstrated that vulnerabilities in pre-trained
models are often inherited by their fine-tuned models. This evidence suggests that identifying the
original pre-trained models used as the basis for fine-tuning is helpful for analyzing the robustness of
the fine-tuned models. Such identification can also facilitate the detection of bugs and vulnerabilities
in these models.

5 CONCLUSION

In this work, we introduced RootTracker, a lightweight and extensible framework that employs
search and optimization techniques to identify the original pre-trained models of fine-tuned LLMs.
Our framework features a modular design, which facilitates updates and methodological enhance-
ments while also supporting the integration of new model types, making it highly adaptable to the
evolving landscape of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX secu-
rity symposium (USENIX Security 18), pp. 1615–1631, 2018.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. In Claude-3 Model Card, 2024.

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 1505–1521, 2021.

Luke Bailey, Euan Ong, Stuart Russell, and Scott Emmons. Image hijacks: Adversarial images
can control generative models at runtime. In Forty-first International Conference on Machine
Learning, 2023.

Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington, Varun Manjunatha,
John P Dickerson, and Tom Goldstein. Certified neural network watermarks with randomized
smoothing. In International Conference on Machine Learning, pp. 1450–1465. PMLR, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow. If you use this software, please cite it using
these metadata, 58(2), 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, pp. 1877–1901, 2020.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji, Xingjun Ma,
Bo Li, and Dawn Song. Copy, right? a testing framework for copyright protection of deep
learning models. In 2022 IEEE symposium on security and privacy (SP), pp. 824–841. IEEE,
2022.

Zhibo Chu, Zichong Wang, and Wenbin Zhang. Fairness in large language models: a taxonomic
survey. ACM SIGKDD explorations newsletter, 26(1):34–48, 2024.

Joseph Clements and Yingjie Lao. Deephardmark: Towards watermarking neural network hardware.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 4450–4458,
2022.

Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A watermarking scheme for self-supervised
learning pre-trained encoders. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pp. 579–593, 2022.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei
Zhang, and Yang Liu. Jailbreaker: Automated jailbreak across multiple large language model
chatbots. arXiv preprint arXiv:2307.08715, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Myles Foley, Ambrish Rawat, Taesung Lee, Yufang Hou, Gabriele Picco, and Giulio Zizzo. Match-
ing pairs: Attributing fine-tuned models to their pre-trained large language models. In Annual
Meeting of the Association for Computational Linguistics, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed. Bias and fairness in large language models:
A survey. Computational Linguistics, pp. 1–79, 2024.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5254–5276, 2023.

Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. En-
tangled watermarks as a defense against model extraction. In 30th USENIX security symposium
(USENIX Security 21), pp. 1937–1954, 2021.

Yingjie Lao, Weijie Zhao, Peng Yang, and Ping Li. Deepauth: A dnn authentication framework
by model-unique and fragile signature embedding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 9595–9603, 2022.

Raz Lapid, Ron Langberg, and Moshe Sipper. Open sesame! universal black-box jailbreaking of
large language models. In ICLR 2024 Workshop on Secure and Trustworthy Large Language
Models, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu Meng, and Yangqiu Song. Multi-
step jailbreaking privacy attacks on chatgpt. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 4138–4153, 2023a.

Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. Backdoor attacks
on pre-trained models by layerwise weight poisoning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 3023–3032, 2021.

Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-Tao Xia, and Xiaochun Cao. Defending
against model stealing via verifying embedded external features. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pp. 1464–1472, 2022.

Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. A survey on fairness in large
language models. arXiv preprint arXiv:2308.10149, 2023b.

Gaoyang Liu, Tianlong Xu, Xiaoqiang Ma, and Chen Wang. Your model trains on my data? pro-
tecting intellectual property of training data via membership fingerprint authentication. IEEE
Transactions on Information Forensics and Security, 17:1024–1037, 2022.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by con-
ferrable adversarial examples. In International Conference on Learning Representations, 2021.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. Metav: A meta-verifier approach to task-agnostic
model fingerprinting. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pp. 1327–1336, 2022.

Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. Fingerprint-
ing deep neural networks globally via universal adversarial perturbations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 13430–13439, 2022.

Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal.
Visual adversarial examples jailbreak aligned large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 21527–21536, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54–63, 2020.

Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. Jailbreak in pieces: Compositional adversarial
attacks on multi-modal language models. In The Twelfth International Conference on Learning
Representations, 2023.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pp. 269–277, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu. Non-transferable learning: A new
approach for model ownership verification and applicability authorization. In 10th International
Conference on Learning Representations, ICLR 2022, 2022.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in detox-
ifying language models. In Findings of the Association for Computational Linguistics: EMNLP
2021, pp. 2447–2469, 2021.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang, Jingfeng Zhang, and Mohan Kankanhalli. An
llm can fool itself: A prompt-based adversarial attack. In The Twelfth International Conference
on Learning Representations, 2023.

Jun Yan, Vansh Gupta, and Xiang Ren. Bite: Textual backdoor attacks with iterative trigger injec-
tion. In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang
Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt
injection. In Proceedings of the 2024 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 6065–6086, 2024.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
reranking models for multilingual text retrieval. arXiv preprint arXiv:2407.19669, 2024b.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Xin Jiang, and Maosong Sun. Red alarm for pre-trained models: Universal vulnerability to
neuron-level backdoor attacks. Machine Intelligence Research, 20(2):180–193, 2023.

Shuai Zhao, Jinming Wen, Anh Luu, Junbo Zhao, and Jie Fu. Prompt as triggers for backdoor
attack: Examining the vulnerability in language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 12303–12317, 2023.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

A APPENDIX

A.1 INHERITED VULNERABILITIES

Some studies (Li et al., 2021; Zhang et al., 2023; Bagdasaryan & Shmatikov, 2021) have demon-
strated that vulnerabilities in pre-trained models are often inherited by their fine-tuned models. To
verify this, we conducted a small experiment using various fine-tuned versions of GPT-2-XL to as-
sess whether they exhibit similar vulnerabilities. We employed the Jailbreak method to identify these
weaknesses. When presented with a violent query, the models generally responded with nonsensical
outputs, such as the following:

Figure 2: Meaningless content example 1

Figure 3: Meaningless content example 2

However, once a successful jailbreak method was applied, all models produced violent responses,
such as the following:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: Violent content example 1

Figure 5: Violent content example 2

Figure 6: Violent content example 3

This phenomenon shows that fine-tuned models with the same original model may share some char-
acteristics and vulnerabilities.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 EXAMPLE OF INSTRUCTION IN DATABASE CONSTRUCTION

Instruction (prompt):

Issue: I aim to use prompts to differentiate various types of large language models (LLMs), such
that the outputs from different models will vary for the same input prompt.

Requirements: The prompts should vary in modality, cover diverse topics, be structured in different
ways, and have varying lengths. Please assist in generating 100 such prompts.

Then, we will apply this instruction to the LLMs selected for Database Construction. If the LLMs
fail to generate the required multimodal prompts, we will initiate multiple rounds of generation and
incorporate human feedback to guide the LLMs towards producing a broader variety of prompts.

A.3 OPTIMIZATION ALGORITHM

Algorithm 1 Genetic Algorithm for Prompt Optimization

Input: Initial prompt P , Population size N , Number of generations G, Mutation rate m, Crossover
rate c

Output: Optimized prompt and fitness value
1: Initialize population P with N mutated versions of P
2: Calculate loss L for each prompt in P
3: Set best fitness← L(P)
4: Set best prompt← P
5: for each generation g from 1 to G do
6: Select top N/2 prompts from P based on L
7: Initialize next generation P ′ ← ∅
8: while size of P ′ < N do
9: Randomly select parents p1, p2 from the selected prompts

10: Perform crossover with probability c to generate children c1, c2
11: Mutate c1 and c2 with probability m
12: Add c1 and c2 to P ′

13: end while
14: Set P ← P ′

15: for each prompt p in P do
16: Calculate loss L(p)
17: if L(p) < best fitness then
18: Set best fitness← L(p)
19: Set best prompt← p
20: end if
21: end for
22: end for
23: return best prompt, best fitness

A.4 TRADITIONAL VOTING MECHANISM

Table 4: Traditional voting mechanism

Classifier Accuracy (1st) Accuracy (2nd) Total Accuracy
(TinyLlama-v1.1, GPT-Neo-1.3B) 100% 98% 99%
(TinyLlama-v1.1, Pythia-1.4B) 100% 82% 91%
(TinyLlama-v1.1, GPT-2-XL) 100% 100% 100%
(GPT-Neo-1.3B, Pythia-1.4B) 58% 100% 79%
(GPT-Neo-1.3B, GPT-2-XL) 82% 100% 91%
(Pythia-1.4B, GPT-2-XL) 98% 96% 97%

Total Average Accuracy 92.8%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For Table 4, we can see that the total average accuracy of traditional voting mechanism is 92.8%. It
is slightly lower than our voting mechanism’s result: 94.2%.

A.5 EXAMPLE OF KNOCKOUT ROUND

Traditional Knockout Round The Knockout mechanism initially employs a series of mutually
exclusive classifiers to determine which LLM the LLM under test (LUT) most closely resembles. In
the first round, there are no overlapping classifiers such as (LLMa, LLMb) and (LLMb, LLMc).
For instance, in the first round, the LLM classifiers evaluate the LUT and conclude that it most
closely resembles LLM1, LLM4, and LLM5. In the subsequent knockout round, we select the clas-
sifier that distinguishes between LLM1 and LLM4, and in the final round, we choose the classifier
for LLM1 and LLM5. Ultimately, it is determined that the LUT most closely resembles LLM5.

Double Knockout Round In the initial phase of our testing framework, we employ a set of mu-
tually exclusive classifiers to evaluate which of several predefined language models (LMs) the lan-
guage model under test (LMUT) most closely resembles. Each classifier is specific to a pair of
models, such as (LMa, LMb), ensuring no overlaps like (LMb, LMc) in the first round. Suppose in
the first round, the classifiers indicate that LMUT shares similarities with LM1, LM4, and LM5.

In the double knockout setup, LMUT first faces LM4 in a direct comparison. Let’s say LMUT loses
this round and is moved to the losers’ bracket, while LM4 progresses in the winners’ bracket. In the
losers’ bracket, LMUT is next pitted against LM1. Winning this round allows LMUT to challenge
another model from the winners’ bracket, providing a chance for redemption.

Continuing in the losers’ bracket, LMUT then competes against LM5 and wins, setting up a rematch
with LM4. In this final round, if LMUT defeats LM4, it faces one last match against LM5, which
had been progressing in the winners’ bracket. If LMUT wins this ultimate match, it is determined
that LMUT most closely resembles LM5, completing its journey from an initial setback to ultimate
validation. This double knockout approach ensures that a single early loss does not eliminate a
potentially strong candidate prematurely and validates the final result through multiple rounds of
testing.

A.6 DATABASE GENERATION USING 20 MODELS

We generate the prompts database using these models:

Claude-2, Claude-3-Opus, Claude-3.5-Sonnet, Claude-instant, Gemini-1.0-Pro, Gemini-1.5-Pro,
GPT-3.5-Turbo, GPT-4-Turbo, GPT-4o, Llama-3-8B-T, Llama-3-70B-T, Llama-3.1-70B-FW-128k,
Llama-3.1-405B-T, Mistral-Large-2, Mixtral-8x7B-Chat, Mixtral-8x22B-T, Qwen-1.5-110B-T,
Qwen-72B-T, Qwen2-72B-Chat.

A.7 OTHER FINE-TUNED MODELS

Table 5: Results of other models

Model Name Original Model Result T/F
gpt-neo-1.3B-apps gpt-neo-1.3B gpt-neo-1.3B T
gpt-neo-1.3B-apps-all-2 gpt-neo-1.3B gpt-neo-1.3B T
gpt-neo-1.3B-resized-embed gpt-neo-1.3B gpt-neo-1.3B T
TinyLlama v1.1-flight-25k TinyLlamav1.1 pythia-1.4b F
tinyllama-1.1b-sum-sft-fullv1.1 TinyLlamav1.1 gpt-neo-1.3B F
Pythia-Greentext-1.4b pythia-1.4b pythia-1.4b T
fin-pythia-1.4b pythia-1.4b pythia-1.4b T
pythia-1.4b-gpt4all-pretrain pythia-1.4b gpt-neo-1.3B F
pythia-1.4b-sft-full pythia-1.4b pythia-1.4b T
tldr-gpt2-xl gpt2-xl gpt2-xl T
BetterGPT2 gpt2-xl gpt2-xl T

Total True 8/11

16

	Introduction
	RootTracker
	Models Preparation
	Database Construction
	Single Pair Classifier
	Knockout Round

	Experiments
	Experimental Setup
	Trace Accuracy without Knockout Round
	Trace Accuracy with Knockout Round
	Comparison
	Ablation Study
	Generalization
	Limitation

	Related Work
	Conclusion
	Appendix
	Inherited Vulnerabilities
	Example of Instruction in Database Construction
	Optimization Algorithm
	Traditional Voting Mechanism
	Example of Knockout Round
	Database Generation Using 20 Models
	Other Fine-tuned Models

