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Abstract

Modern regression problems often involve high-dimensional data and a careful1

tuning of the regularization hyperparameters is crucial to avoid overly complex2

models that may overfit the training data while guaranteeing desirable properties3

like effective variable selection. We study the recently introduced direction of4

tuning regularization hyperparameters in linear regression across multiple related5

tasks. We obtain distribution-dependent bounds on the generalization error for the6

validation loss when tuning the L1 and L2 coefficients, including ridge, lasso and7

the elastic net. In contrast, prior work develops bounds that apply uniformly to8

all distributions, but such bounds necessarily degrade with feature dimension, d.9

While these bounds are shown to be tight for worst-case distributions, our bounds10

improve with the “niceness” of the data distribution. Concretely, we show that under11

additional assumptions that instances within each task are i.i.d. draws from broad12

well-studied classes of distributions including sub-Gaussians, our generalization13

bounds do not get worse with increasing d, and are much sharper than prior work14

for very large d. We also extend our results to a generalization of ridge regression,15

where we achieve tighter bounds that take into account an estimate of the mean of16

the ground truth distribution.17

1 Introduction18

Hyperparameter tuning is a common problem in machine learning that typically involves a lot19

of experimentation and domain expertise, and commonly used approaches lack formal optimality20

guarantees. In this work, we study hyperparameter tuning in regularized linear regression, which21

is a popular technique used in various applications. For a linear regression problem with n inputs22

in d dimensions arranged in an input matrix, X ∈ Xn ⊆ Rd×n, and output vector y ∈ Rn,23

a regularized least squares estimator is given by ŵ = argminw ∥X⊺w − y∥2 + r(λ,w). Here24

r(λ,w) can take several forms, including the L2 regularization for ridge regression [Hoerl and25

Kennard, 1970, Tikhonov, 1977], ŵλ = argminw ∥X⊺w − y∥2 + λ∥w∥2 and the elastic net,26

ŵλ1,λ2 = argminw ∥X⊺w − y∥2 + λ1∥w∥1 + λ2∥w∥22 [Hastie et al., 2009]. Our work can be27

viewed as an approach for learning to optimize [Chen et al., 2022], a fast growing research direction28

for leveraging machine learning to develop optimization methods. The key idea is to automate29

the design of an optimization method (in this case, linear regression by learning the regularization30

hyperparameters) by using a set of training problems. This data-driven approach can be used to31

develop methods that can effectively solve repeated related problems.32

Determining a good regularization coefficient λ constitutes finding a balance between avoiding33

overfitting, allowing good generalization and variable selection. Popular methods for tuning hyperpa-34

rameters involve finding the best parameter from a discrete set of values, also known as grid-search.35

These approaches either fail to give theoretical guarantees on optimality in the continuous space,36
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or require strong data-dependent assumptions (see Balcan et al. 2022 for a discussion). Our work37

involves a data-driven approach to tuning the regularization hyperparameters in ridge regression, lasso38

and the elastic net which interpolates the two. We assume access to a set of related linear regression39

tasks. Each task is assumed to be sampled similarly, that is, all inputs are sampled from the same40

distribution, and all ground truth functions are assumed to be sampled from the same distribution41

across tasks. We formalize this notion in Section 2. This makes our setting similar to multi-task42

learning, since previously seen tasks inform the procedure for future unknown tasks.43

We study finding λ by computing the Expected Risk Minimizer (ERM) estimate of λ that minimizes44

the expected test error, estimated using given validation data for each task. Prior work on data-driven45

tuning of regularization hyperparameters for linear regression [Balcan et al., 2022, 2023] provides46

distribution-independent generalization bounds for the ERM that apply to worst-case distributions.47

Contrary to prior work, we give distribution-dependent generalization bounds for learning the48

regularization hyperparameters, assuming i.i.d. samples within each task. We show that, depending49

on the “niceness" of the distribution, our bounds are much tighter than the worst-case bounds obtained50

in prior work when the feature dimension d is large.51

In fact, much of the work in data-driven algorithm design (see Appendix A) has focused on52

data-independent guarantees. Technically, the primary approach has been to bound the pseudo-53

dimension which implies generalization guarantees for worst-case distributions. Some prior work has54

given bounds on the Rademacher complexity for tuning parameters in data-driven algorithm design55

(e.g. [Balcan et al., 2018]), but there is no clear evidence of the advantage over data-independent56

techniques.57

Summary of contributions. Our key results are summarized as follows:58

• We provide generalization guarantees for tuning the regularization parameter in ridge regression59

in Theorem C.2. We show that the error term can be broken into an error induced from a finite60

sampling of validation examples, and from a finite sampling of tasks. We show how to bound both61

of these in terms of Rademacher complexities, and compute upper bounds on the Rademacher62

complexities. We also consider the special case assuming well-specified linear maps in Theorem63

C.2. We show that our data-dependent bounds are tighter than the previously best known bounds64

from Balcan et al. [2023] (Section C).65

• In Section D, we give distribution-dependent generalization error bounds for tuning the L1-penalty66

(lasso) as well as for tuning the L1 and L2 penalties simultaneously (the elastic net). The analysis67

extends our technique for ridge regression, by applying it to the piecewise structured solution68

of lasso and the elastic net. We show that our bounds are much tighter than worst-case bounds69

from prior work for data drawn according to the well-studied sub-Gaussian distribution. Roughly70

speaking, for number of training examples n = Ω̃(d + log T ), we show that the generalization71

error is at most Õ( 1√
nT

), compared to the Õ
( √

d√
T

)
distribution-independent upper bound shown72

by Balcan et al. [2023] (which they show cannot be improved for worst-case distributions).73

• We propose a generalized version of ridge regression, which we call the Re-centered Ridge74

Regression in Section E, where the L2-norm penalty is measured w.r.t. to a parameter µ instead of75

the origin. We derive generalization bounds for this estimator in Theorem E.1 and show that they76

are tighter than the bounds derived in Section C depending on the error of a given estimate µ̂ of the77

optimal value of the parameter, µ∗.78

1.1 Informal results and key insights79

We present informal versions of our main results in this Section. We denote the expected validation80

loss (on a future unknown task) by lv , and denote the ERM parameters and the optimal values of the pa-81

rameters by λERM and λ∗ respectively. These and other notation are described in detail in Section 2.82

Theorem 1.1 (Informal Theorem C.1). Assume a set of T tasks sampled from the same (unknown)83

distribution given as quadruples of training and validation data (Xt, yt, Xt
v, y

t
v), where each sample84

within each task is drawn i.i.d. Further assume that we have a bounded and L-Lipschitz validation85

loss function l. With probability 1− δ, the ERM estimator for validation loss satisfies,86

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

Exv [∥xv∥] + Õ

(√
ln(T/δ)√

T

)
.
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Here M = max ∥Xy∥2, ΛT
D = E [maxt 1/V (XtXt⊺)], and V (·) denotes the smallest non-zero87

singular value of a matrix.88

Intuitively, the leading term is the dominant error term that depends on ΛT
D. While it is non-trivial89

to compute ΛT
D for arbitrary distributions, we show that ΛT

D = O( dnT
2/d) for a very general class90

of distributions where each entry of each input x is sampled independently from a distribution with91

a bounded probability density function. We note the following key insights from Section C.92

• For well-specified problems (as defined in Section 2), we are able to reduce our bounds to93

lv(λERM ) − lv(λ
∗) = O

(
1√
T
(T 2/d +

√
log(T/δ))

)
1 when n ≥ 6d, for a general class of94

distributions where each entry of each input x is sampled independently. The tightest known bound95

for squared loss functions from the literature is O
(√

d+log(1/δ)√
T

)
from Balcan et al. [2023]. We96

also extend the distribution independent analysis of Balcan et al. [2023] for ridge regression using97

ideas from Balcan et al. [2022] and Bartlett et al. [2022] to derive a bound of O
(√

log d+log(1/δ)√
T

)
98

in Appendix B. Our bounds are better than the distribution-independent bounds proven in Appendix99

B when d = Ω(T ), although under the additional assumption that examples within each task are100

i.i.d. We also note our bounds are better than the previously published bounds, specifically in Balcan101

et al. [2023], for a larger regime d = Ω
(

log T
log log T

)
, because the previous distribution-independent102

bounds are weaker2 than the distribution-independent bounds for ridge regression that we establish103

in Appendix B.104

• Our bounds suggest a way to determine a sufficient number of examples for training and validation105

for tuning ridge parameters: training examples reduce error from noise, while validation examples106

reduce error from variance in ground truth distribution. We explain this in more detail in Section C.107

In Section D, we further establish generalization bounds for tuning L1 and L2 penalties simultaneously108

in the elastic net under similar settings and assumptions. Unlike the ridge regression results, we109

additionally assume that the L2 coefficient λ2 is bounded away from zero, which is a common110

assumption in prior work (e.g. Balcan et al. 2022). We get somewhat weaker generalization error111

bounds for elastic net than ridge regression under slightly stronger conditions, but for interesting “nice”112

distributions like sub-Gaussian data our elastic net bounds qualitatively match the ridge regression113

bounds.114

Theorem 1.2 (Informal Theorem D.2). Consider the task of tuning λ = (λ1, λ2) ∈ [0,Λ1]× [Λ2,∞).115

Assume a set of T tasks sampled from the same (unknown) distribution given as quadruples of training116

and validation data (Xt, yt, Xt
v, y

t
v), where each within-task sample is drawn i.i.d. Further assume117

that we have a bounded and L-Lipschitz validation loss function l. With probability 1− δ, the ERM118

estimator for validation loss satisfies,119

lv(λERM )− lv(λ
∗) ≤

Õ

(
LΛ1

√
d ln(T/δ)√
nvT

)(
EX

[
max
t,E

1

V (Xt
EX

t⊺
E ) + Λ2

]
+ EX,y

[
max
E

∥y∥
√
V ∗(XEX

⊺
E )

V ∗(XEX
⊺
E ) + Λ2

])
.

Here V ∗(A) is the non-zero singular value σi of matrix A that maximizes
√

σi(A)

σi(A)+Λ2
, and V (·) is as120

in Theorem 1.1. We have suppressed the dependence on ∥xv∥ for simplicity here.121

We further show in Proposition D.3 that for sub-Gaussian data distribution, the generalization122

error corresponding to the above bound is Õ(1/
√
nT ) for sufficiently large n ≥ Ω

(
d+ log T

Λ2

)
,123

improving upon prior work [Balcan et al., 2023] that gives a bound of O
(√

d+log(1/δ)√
T

)
which124

1Note that our bounds can be combined with results in prior work to give a bound on the generalization error

in the above as lv(λERM )− lv(λ
∗) = O

(
min

{
1√
T
(T 2/d +

√
log(T/δ)),

√
log d+log(1/δ)

√
T

})
. So for most

of our discussions we focus on giving examples and regimes where the new bounds developed in this work are
sharper.

2Please note that the bounds in Balcan et al. [2023] applies to a larger class of problems beyond ridge
regression.
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applies to worst-case distributions but has a polynomial dependence on the feature dimension d. Prior125

work, however, does not assume the samples within each task to be i.i.d. draws.126

1.2 Related work127

Hyperparameter tuning for regularized linear regression. Several methods for tuning regulariza-128

tion parameters in linear regression have been suggested in the literature. Several of these approaches129

however, have been purely empirical with no theoretical guarantees [Gibbons, 1981], or involve130

strong data-dependent assumptions [Golub et al., 1979]. A new line of work, proposed by Balcan131

et al. [2022] seeks to find regularization parameters across several related tasks, as opposed to finding132

separate regularization parameters for each task. The best known bounds in this direction were given133

by Balcan et al. [2023], where they use pseudo-dimension arguments to prove that T = O(d/ϵ2)134

tasks are sufficient for learning up to an ϵ tolerance in the validation error, where d is the feature135

space dimension. In this paper, we make the additional assumption that instances within each task136

are sampled i.i.d. and give data-dependent bounds that show a potentially tighter dependence of137

T on d depending on the data distribution. For example, as explained in Section C, we are able138

to get T = O(1/ϵ
2d

d−4 ) dependence for a general class of distributions. We further note that our139

bounds provide additional insights into the error bound. While the bound in Balcan et al. [2023] was140

independent of the number of training and validation samples, our bounds decrease as the number of141

samples increase.142

Rademacher Complexity bounds for linear regression. Using Rademacher complexities to show143

data-dependent generalization bounds for linear regression is well-studied in the literature [Shalev-144

Shwartz and Ben-David, 2014, Pontil and Maurer, 2013, Awasthi et al., 2020]. However, analyzing145

generalization error on multi-task learning is not common but has been done in some prior work146

[Pontil and Maurer, 2013, Maurer et al., 2016]. Pontil and Maurer [2013] restrict their attention147

to finding regression parameters for a fixed set of tasks with a bounded trace norm on the matrix148

of ground truth parameters. In this paper we study finding regularization parameters for solving149

a future unknown task, and use some of their techniques to simplify computation of Rademacher150

complexities. Maurer et al. [2016] discuss meta-learning optimal representations for learning for151

fixed, as well as unknown tasks using Gaussian complexities. Our approach of dividing generalization152

error into error from finite sampling of validation and tasks respectively is similar to their approach153

of dividing generalization error into error from learning from a representation and learning the154

representation respectively. Several tighter variants of Rademacher complexity such as the local155

Rademacher complexity [Bartlett et al., 2005] and offset Rademacher complexity [Liang et al., 2015]156

have also been proposed in literature. It has been shown by several works that these techniques can157

possibly give tighter bounds than simple Rademacher complexities [Jana et al., 2023]. Analyzing158

our problem of finding regularization parameters through possibly tighter variants of Rademacher159

complexities remains an open question for future work. Balcan et al. [2018] provide general bounds160

on the Rademacher complexity based on certain dispersion parameters, which roughly correspond161

to smoothness of problem instances (similar to our assumptions in Proposition C.3), but their upper162

bounds for tuning regularized regression problems also degrade with d.163

Another related line of work studies multi-task learning for linear regression, but framed as an164

in-context learning problem for transformers [Ahn et al., 2023, Zhang et al., 2024, Wu et al., 2024].165

The assumptions on the tasks and examples within tasks needed for their theoretical results on sample166

complexity are typically stronger than our results. For example, Assumption 1 of Wu et al. [2024]167

states that the linear regression map w in different tasks come from a Gaussian distribution, and the168

data vectors (X(i), y(i)) are i.i.d. draws from a Gaussian with the mean of y depending on w. We169

have results for general distributions (Theorems C.1, D.2), as well as instantiations of our bounds170

for broader classes of distributions including bounded-density distributions (Proposition C.3) and171

sub-Gaussian distributions (Proposition D.3). However, our bounds are not directly comparable172

as the goal is to learn different quantities from the multiple “pre-training” tasks. They learn a173

common d× d matrix Γ using gradient descent which linearly maps (X, y,Xv) for any unseen test174

task to predictions yv. In contrast, we learn how to set the L1 and L2 penalties for predicting yv175

by regularized linear regression and give uniform convergence guarantees. Note that while their176

approach only achieves approximate Bayes optimality in certain restrictive regimes, we are always177

provably near Bayes-optimal.178

See Appendix A for additional related work.179
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1.3 Convergence guarantees for cross-validation180

While we study the general multi-task setting introduced by Balcan et al. [2022] throughout this work,181

as observed by Balcan et al. [2022], a special case where these guarantees apply is in establishing182

formal guarantees for the convergence of cross-validation over a single training dataset (single183

task setting) in terms of the number of iterations or “folds” of cross-validation used to tune the184

hyperparameter. For example, if one does leave-one-out cross-validation (LOOCV), then the number185

of folds or iterations needed is equal to n, the size of the training set of the task. This can be very186

inefficient, as one needs to solve n regression problems for each value of the hyperparameter λ.187

Another related approach is Monte-Carlo cross-validation, where one does a random independent188

training-validation split in a fixed proportion (e.g. 80% training + 20% validation) to compute the189

validation loss of each hyperparameter, and sets the best hyperparameter. For this setting, Appendix190

B implies that O(log d/ϵ2) iterations are enough to get an ϵ-additive-approximation to running an191

arbitrarily large number of folds (in terms of expected validation loss), but under the conditions of192

Proposition C.3, in the high-dimensional regime d = Ω(log T ), our bounds imply that O
(
(log 1

ϵ )
2

ϵ2

)
193

iterations are sufficient, which is an improvement if d = Ω
((

log 1
ϵ

)2)
as well. Note that this194

improvement comes under the additional assumption that examples within the entire dataset are i.i.d.195

(not assumed by prior work).196

2 Problem setting and notation197

Throughout the paper, we will denote vectors by small case variables (e.g. x) and column-wise198

collection of vectors by large case variables (e.g. X). We start with defining the typical linear199

regression setting, where each task is given with validation data as a quadruple (X, y,Xv, yv) of200

training and validation data. Here for each training input x, x ∈ X ⊆ Rd and similarly for each201

validation input xv, xv ∈ X ⊆ Rd. We further denote the ith element of X and y as X(i) and y(i)202

respectively. We assume all training and validation examples are sampled i.i.d., which is stronger203

than the assumptions of Balcan et al. [2022, 2023] where the tasks are assumed to be i.i.d. but the204

examples within tasks may not be i.i.d. We call a linear regression problem well-specified if the205

expected value of the output is a linear function of the input. This is a popular setting for linear206

regression studied in previous works such as Liang et al. [2015] and relevant in many practical207

situations. Consequently, we denote a well-specified linear map by the feature vector w ∈ W ⊆ Rd208

as: fw : X × E → R so that fw(x, ϵ) = x⊺w+ ϵ. Here E ⊆ R is the set of possible noise values that209

we can observe. We will denote the set of all well-specified linear maps by Fws = {fw : w ∈ W}.210

For the well-specified linear map setting, we will assume that for each task there exists fw ∈ Fws211

so that for any input X(i), there is ϵ(i) such that fw(X(i), ϵ(i)) = y(i). We further assume that each212

training and validation input for each task is sampled from the same distribution denoted by DX .213

Thus, x ∼ DX and X ∼ Dn
X . Similarly, we assume that all training and validation noise vectors214

for each task are sampled from the same distribution denoted by DE , so that ϵ ∼ Dn
E . The ground215

truth feature vectors for each task are also assumed to be sampled i.i.d. from the distribution DW .216

For notational convenience, we will denote an element wise operation on a collection of inputs as217

the function applied to the matrix of inputs. So for given X, y there exists ϵ ∈ En, s.t. f(X, ϵ) = y.218

We will denote an ordered set of such tasks given with validation data (each with a possibly different219

input-output map) as a problem instance that we denote by S. Formally,220

S = {(Xt, yt, Xt
v, y

t
v) : X

t ∈ Xn, Xt
v ∈ Xnv ,∃w∗t ∈ W, ϵt ∈ En, ϵtv ∈ Env

s.t. yt = Xt⊺w∗t + ϵt, ytv = Xt⊺
v w∗t + ϵtv,∀t ∈ [T ]}.

We denote different tasks using superscript. So if we have T tasks, the training data will be denoted221

as Xt ∈ Xn and yt ∈ Rn for t ∈ [T ] and validation data will be denoted as Xt
v ∈ Xnv and222

ytv ∈ Rnv for t ∈ [T ].223

We also study a generalization of this setting. We denote the set of deterministic maps as F = {f :224

X × E → R} that takes an input in X ⊆ Rd and random noise and returns the output. Here E ⊆ Rm225

is a possibly more general set of possible noise vectors. Similar to before, for given X, y there exists226

ϵ ∈ En, s.t. f(X, ϵ) = y. We assume the ground truth map for each task is sampled i.i.d. from the227
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distribution DF . The problem instance in the general setting can then be denoted as:228

S = {(Xt, yt, Xt
v, y

t
v) : X

t ∈ Xn, Xt
v ∈ Xnv ,∃f t ∈ F , ϵt ∈ En, ϵtv ∈ Env ,

s.t. yt = f t(Xt, ϵt), ytv = f t(Xt
v, ϵ

t
v)∀t ∈ [T ]}. (1)

Assume we have an estimator as a function of X, y that takes λ as a hyperparameter. Denote this229

estimator as ŵλ(X, y). We define the empirical validation loss as:230

lv(λ, S) =
1

T

∑
t

1

nv

∑
i

l(Xt(i)T
v ŵλ(X

t, yt), yt(i)v ).

Intuitively, we compute the estimator for the given value of lambda for each training instance231

(Xt, yt). We then compute the empirical validation loss on each task using the respectively computed232

estimators, and average the loss across all tasks. For notational convenience, we will denote ŵ(Xt, yt)233

as ŵt wherever obvious from context.234

The objective of finding hyperparameters in machine learning is often to minimize the expected235

validation loss given as lv(λ) = ES [lv(λ, S)]
3. This is a popular setting studied in previous works236

such as Balcan et al. [2023]. We can define the expected validation loss as:237

lv(λ) = EX∼Dn
X ,f∼DF ,ϵ∼Dn

E
[Exv∼DX ,ϵv∼DE [l(x⊺

vŵλ(X, f(X, ϵ)), f(xv, ϵv)]] ,

which is the just expected value of lv(λ, S) over the the sampling of the problem instance S. If the238

tasks are linear well-specified, we can directly assume a distribution over the variables w∗ ∼ DW .239

We can then rewrite the expected validation loss as:240

lv(λ) = EX∼Dn
X ,w∗∼DW ,ϵ∼Dn

E
[Exv∼DX ,ϵv∼DE [l(x⊺

vŵλ(X,X⊺w∗ + ϵ), (x⊺
vw

∗ + ϵv))]] ,

In this paper, we study the problem of finding the optimal hyperparameters for the ridge regression241

estimator as defined in Section C, and a generalization of ridge regression defined in Section E. Our242

bounds depend on the well-conditioned nature of the sample covariance matrix, and we will denote243

the smallest singular value of any matrix with the notation V (.).244

We defer formal details of our results and complete proofs to the Appendix. In Appendix C, we give245

our sample complexity bounds for ridge regression (Theorem C.1) and show that for a broad class246

of “nice” distributions (Proposition C.3) our bounds improve upon those established in prior work.247

We next establish sample complexity bounds for simultaneously tuning the L1 and L2 penalties in248

elastic net regression (Theorem D.2). For isotropic sub-Gaussian distributions, provided that the249

number of examples in each training problem instance is sufficiently large, we show that our bounds250

imply sample complexity independent of the feature dimension d, significantly improving over the251

unavoidable linear dependence for worst-case distributions shown by prior work.252

3 Discussion and future work253

Distribution-dependent generalization guarantees are widely studied in statistical learning theory254

as an effective way to take into account the niceness of the distribution and give tighter learning255

guarantees. We study the fundamental problem of tuning the regularization parameter of linear256

regression across tasks. Our bounds improve upon previous distribution-independent results. In257

particular, we show that our bounds do not get worse with the feature dimension for various nice258

distributions, which is unavoidable for distribution-independent bounds. We also extend our results259

to generalizations including re-centered ridge regression.260

An interesting direction for future work is to show lower bounds to better understand the tightness of261

our results. Another interesting direction is the development of computationally efficient algorithms262

for implementing the ERM for tuning the regularization hyperparameters. A main challenge is that263

the validation loss as a function of L1 and L2 penalties is piecewise-polynomial with a combinatorial264

number of pieces in the worst-case [Balcan et al., 2022].265

3Note that EA∼D [.] represents the expectation with respect to random variable A when drawn from distribu-
tion D. In the subsequent parts of the paper, we will omit the distribution, and even the random variable when
obvious from context.
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A Additional Related Work384

Empirical Bayes. Empirical Bayes (EB) involves finding the best Bayesian estimator for a set of385

parameters (say θi) assumed to be sampled from an unknown prior, given samples (say Xi ∼ p(θi))386

drawn from distributions that depend on parameters θi. As a typical example, consider a Gaussian387

Sequence Model, where one observes Xi = θi + ϵi for i ∈ [n]. Here ϵi ∼ N (0, σ2). The idea,388

originally proposed by Robbins and Johnson [1992], involves assuming θi being sampled from an389

unknown prior (distinguishing this from a purely Bayesian method where we assume a prior), and390

using the shared structure to find better estimates. Commonly, Empirical Bayes approaches are391

divided into f -modeling and g-modeling [Efron, 2014, Shen and Wu, 2024]. While in f -modeling392

we explicitly find prior parameters, g-modeling works by directly finding the target variable without393

finding the prior explicitly. Empirical Bayes has been heavily studied in statistics literature, providing394

sample complexity bounds in certain circumstances such as the Poisson model [Jana et al., 2023].395

Empirical Bayes approach to linear regression involves assuming an prior on ground truth vector396

with unknown parameters. From our results from Section F, we see that EB estimation of linear397

regression parameters under a Gaussian prior is equivalent to our setting of learning ridge parameters398

from multiple tasks. While ours is a g-modeling approach where we don’t estimate prior parameters399

directly, asymptotic optimality of f -modeling approaches have been shown previously [Zhang et al.,400

2005]. Though our generalization guarantees for ridge regression hold for all priors, including401

non-Gaussian priors, the best ridge estimator is not Bayes optimal for non-Gaussian priors. Several402

empirical [Park and Casella, 2008, Kim et al., 2024] and theoretical [Wei and Zhang, 1995] papers403

have studied EB methods for linear regression under other priors.404

Data-driven algorithm design. Data-driven algorithm design is a recently introduced paradigm405

for designing algorithms and provably tuning hyperparameters in machine learning [Balcan, 2020].406

Apart from regression, the framework has been successfully used for designing several fundamental407

learning algorithms (e.g. [Balcan and Sharma, 2024, Blum et al., 2021, Bartlett et al., 2022, Jin et al.,408

2024], as well as solving optimization problems including clustering, linear and integer programming409

(e.g. Balcan et al. 2024, Khodak et al. 2024, Cheng and Basu 2024, Sakaue and Oki 2024).410

B A distribution-independent bound for tuning ridge regularization based on411

prior work412

While prior work [Balcan et al., 2022, 2023] establishes asymptotically tight bounds on the learning-413

theoretic complexity of simultaneously tuning L1 and L2 regularization coefficients in the elastic414

net, no direct bounds are given for just ridge regression. Balcan et al. [2022] provide Õ(log d) on the415

pseudo-dimension of the 0-1 loss function class for tuning ridge-regularized classification, which416

is smaller than the Θ(d) bounds for elastic net. Here we provide a simple extension to their results417

and show that a similar O(log d) upper bound can be shown for tuning the regularization in ridge418

regression.419

We first recall some useful results from prior work. The following lemma is due to Balcan et al.420

[2022].421

Lemma B.1. Let A be an r × s matrix. Consider the matrix B(λ) = (A⊺A+ λIs)
−1 and λ > 0.422

Then each entry of B(λ) is a rational polynomial Pij(λ)/Q(λ) for i, j ∈ [s] with each Pij of degree423

at most s− 1, and Q of degree s.424

In addition, we will also need the definition of the refined GJ framework introduced by Bartlett et al.425

[2022].426

Definition 1 (Bartlett et al. [2022]). A GJ algorithm Γ operates on real-valued inputs, and can427

perform two types of operations:428

• Arithmetic operations of the form v = v0 ⊙ v1, where ⊙ ∈ {+,−,×, /}.429

• Conditional statements of the form “if v0 ≥ 0 then . . . else . . . ”.430

In both cases, v0, v1 are either inputs or values previously computed by the algorithm (which are431

rational functions of the inputs). The degree of a GJ algorithm is defined as the maximum degree of432

any rational function of the inputs that it computes. The predicate complexity of a GJ algorithm is the433

number of distinct rational functions that appear in its conditional statements.434
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The following theorem due to Bartlett et al. [2022] is useful in obtaining a pseudodimension bound435

by showing a GJ algorithm that computes the loss for all values of the hyperparameters, on any fixed436

input instance.437

Theorem B.2 (Bartlett et al. [2022]). Suppose that each function f ∈ F is specified by n real438

parameters. Suppose that for every x ∈ X and r ∈ R, there is a GJ algorithm Γx,r that given f ∈ F ,439

returns “true" if f(x) ≥ r and “false" otherwise. Assume that Γx,r has degree ∆ and predicate440

complexity Λ. Then, Pdim(F) = O(n log(∆Λ)).441

Let HRidge denote the loss function class that consists of functions (each function corresponds to a442

distinct value of λ ∈ (0,∞)) computing the validation loss on any input instance (X, y,Xv, yv) for443

using a fixed Ridge parameter λ as in the notation of [Balcan et al., 2022]. We have the following444

result, which implies distribution-independent sample complexity of Õ
(

log d
ϵ2

)
for tuning λ.445

Theorem B.3. The pseudo-dimension of the function class HRidge is O(log d).446

Proof. For a fixed problem instance P = (X, y,Xv, yv), the ridge solution is given by ŵλ =447

(XX⊺ +λI)−1Xy and the validation loss ℓλ(P ) is ∥X⊺
v ŵλ − yv∥2. By Lemma B.1, ŵλ is a rational448

function of λ with degree at most d, and the validation loss is also a rational function of λ with degree449

at most 2d. This gives us a GJ algorithm for computing whether ℓλ(P ) ≥ r for any instance P and450

r ∈ R, with degree at most 2d and predicate complexity 1. Theorem B.2 now implies the claimed451

pseudo-dimension bound.452

C Sample complexity bounds for tuning Ridge Regularization453

In this section, we study generalization guarantees on the ERM estimate of λ for the ridge estimator454

defined in Definition 2. We give our main result in Theorem C.1, and study a slightly tighter variant455

for the well-specified case in Theorem C.2. Finally, we give Proposition C.3, which instantiates the456

bound for a general class of “nice” distributions.457

Definition 2 (Ridge Estimator). The ridge estimator for a linear regression task (X, y) with regular-458

ization hyperparameter λ ≥ 0 is given as:459

ŵλ(X, y) = argmin
w

∥X⊺w − y∥2 + λ∥w∥2

=⇒ ŵλ(X, y) = (XX⊺ + λI)−1Xy.

Denote the optimal λ as λ∗ so that460

lv(λ
∗) = min

λ
lv(λ).

We wish to estimate λ∗ using ERM on the empirical validation loss which satisfies:461

λERM = argmin
λ

lv(λ, S) = argmin
λ

1

T

∑
t

1

nv

∑
i

l(Xt(i)⊺
v ŵλ(X

t, yt), yt(i)v ). (2)

Thus λERM is the value of λ that gives the least average validation loss over all of the tasks. We462

will make the following assumptions on the loss function l(yp, yt), valid over all possible values of463

X, y, xv, yv under the support of D, and for all possible estimators ŵ, ŵ1, ŵ2:464

Assumption 1 (Boundedness). l(x⊺
vŵ(X, y), yv) ≤ C.465

Assumption 2 (Lipschitzness). |l(x⊺
vŵ1(X, y), yv) − l(x⊺

vŵ2(X, y), yv)| ≤ L|x⊺
v(ŵ1(X, y) −466

ŵ2(X, y))|.467

Remarks. Note that many popular loss functions, such as the squared loss l(a, b) = (a− b)2, are not468

bounded on all inputs. We assume that we only receive inputs so that the assumptions hold for the469

chosen values of C,L. We briefly justify our assumptions below:470

1. Boundedness: Boundedness of the loss function is a common assumption made in the literature471

for proving generalization bounds [Shalev-Shwartz and Ben-David, 2014]. A lot of common472

loss functions, such as the squared loss are not bounded for all inputs. Prior work addresses473

this by assuming boundedness of the inputs [Balcan et al., 2023]. Assuming boundedness, or474

well-behaved tail distributions is a common assumption that rely on the fact that real-world data475

typically has well-behaved tail distributions [Kontorovich, 2014, Rodríguez-Gálvez et al., 2024].476
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2. Lipschitzness: Lipschitzness is another common assumption for proving generalization bounds477

in literature. For a lot of loss functions, such as the squared loss (Proposition H.2), hinge loss,478

etc., Lipschitzness follows directly from the boundedness of the loss function.479

Finally, note that, while we allow for any loss function that satisfies the above assumptions, we480

restrict our attention to regularised least-squares estimators.481

Theorem C.1. Given a loss function that satisfies Assumptions 1 and 2 above, the expected validation482

loss error using the ERM estimator defined in Equation 2 is bounded with probability ≥ 1− δ as:483

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

E [∥xv∥] +
2L√
nvT

√
Exv [∥xv∥2]EX,y

[
∥y∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 5C

√
ln(16/δ)

2T
.

Here M2 = max ∥Xy∥2, b2v = max ∥xv∥2 and ΛT
D = EX [maxt 1/V (XtXt⊺)].484

Proof. We write lv(λERM ) − lv(λ
∗) = lv(λERM ) − lv(λERM , S) + lv(λERM , S) − lv(λ

∗, S) +485

lv(λ
∗, S)− lv(λ

∗). We note, as usual, that lv(λERM , S)− lv(λ
∗, S) ≤ 0 and lv(λ

∗, S)− lv(λ
∗) is486

bounded by a Hoeffding bound (Theorem G.1). Notably, with probability ≥ 1− δ,487

lv(λ
∗, S)− lv(λ

∗) ≤ C

√
ln(1/δ)

2T
.

It remains to bound lv(λERM ) − lv(λERM , S) ≤ supλ lv(λ) − lv(λ, S). Lemma I.1 allows us to488

break this into error induced from a finite sampling of validation examples, and error induced from489

finite sampling of training data. We get that with probability at least 1− δ:490

sup
λ

lv(λ)− lv(λ, S) ≤ 2Eσ,S̃tr

sup
λ

1

T

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )


+ 2Eσ,S̃val

sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]
+ 2C

√
2 ln(4/δ)

T
.

Where all σt and σt(i) are i.i.d. Rademacher variables. We observe that the second term above is491

much similar to the Rademacher complexity of typical linear regression . We proceed similarly, and492

in Lemma I.2 we use Lipschitzness of the loss function to upper bound the second term above in493

terms of the distribution of outputs y.494

Eσ,S̃val

[
sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(xt(i)⊺

v ŵλ, y
t(i)
v )

] ]
≤

L√
nvT

√
Exv [∥xv∥2]EX,y

[
∥y∥/

√
V (XX⊺)

]
. (3)

In order to upper bound the first term, which is the expected Rademacher complexity of validation loss495

with a fixed validation set, we show in Lemma I.3 that
∑

i l(X
t(i)⊺
v ŵt

λ, y
t(i)
v ) is Lipschitz in 1

V T+λ
496

(according to Definition 6) for fixed y
t(i)
v . Here V T = mint V (XtXt⊺) and V (.) is the smallest497

non-zero eigenvalue of the matrix. We use this Lipschitzness to bound the first term with probability498

≥ 1− δ as:499

Eσ,S̃tr

[
sup
λ

1

nvT

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

]
≤ MLΛT

D√
T

E [∥xv∥] +
MLbvΛ

T
D√

nvT

√
log(T/δ)

2
.
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We now replace δ by δ/4 in the 3 probabilistic bounds above so that the following holds with500

probability at least 1− δ:501

lv(λERM )−lv(λ
∗) ≤

2MLΛT
D√

T
E [∥xv∥] +

2L√
nvT

√
Exv [∥xv∥2]EX,y

[
∥y∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 2C

√
2 ln(16/δ)

T
+ C

√
ln(4/δ)

2T
.

To get the desired result, we note that C
√

ln(4/δ)
2T ≤ C/2

√
2 ln(16/δ)

T .502

The above theorem is very generally applicable, only requiring mild assumptions on the regularity503

of the loss function. We present a couple different variants of the above theorem in this paper that504

can be more useful for different circumstances. In Theorem C.2, we give a slightly tighter version of505

Theorem C.1 for the well-specified case. We give a variant of Theorem C.1 that takes an estimate of506

the expected value of the ground truth to achieve tighter guarantees in Theorem E.1. We also present507

an alternative to Theorem C.1 in Appendix M, that proceeds similarly to previous proof techniques508

such as the ones presented in Maurer et al. [2016].509

Remark: Simplifying to Theorem 1.1 We note that E [∥xv∥] ≤
√

E [∥xv∥2], and further that we510

can replace the term EX,y

[
∥y∥/

√
V (XX⊺)

]
in Lemma I.2 with MΛT

D. This yields the simplifation511

of the first two terms in Theorem C.1 to the first term in Theorem 1.1. For the latter terms, the512

reduction is more straight forward since we only focus on the dependence on T .513

C.1 Well-specified tasks514

The bound in Theorem C.1 depends on the joint distribution of X, y, which in turn depends on515

the distribution of the function space DF and noise vectors DE . In this Section, we present a516

slightly tighter version of the above bound where we refine the second term based on a well-specified517

assumption. This allows us to easily analyze the bounds using distributions of w∗ and ϵ. We instantiate518

one such analysis in Proposition C.3.519

Theorem C.2. Given a loss function that satisfies Assumptions 1 and 2 above, and tasks that are520

well-specified linear maps, the expected validation loss error using the ERM estimator defined in521

Equation 2 is bounded with probability ≥ 1− δ as:522

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

E [∥xv∥] +
2L√
nvT

√
Exv [∥xv∥2]E

[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 5C

√
ln(16/δ)

2T
.

Here M2 = max ∥Xy∥2 and b2v = max ∥xv∥2 ΛT
D = E [maxt 1/V (XtXt⊺)].523

Proof Sketch. We proceed with this proof similarly to Theorem C.1 by breaking the error term into524

error induced from finite sampling of validation data, and error from finite sampling of tasks. The525

bound for the first term proceeds similarly. For the second term, we use the well-specified assumption526

to modify Lemma I.2 by using Lipschitzness in x⊺
v(ŵ −w∗). We do this in Lemma I.4, which allows527

us to bound the trace product in terms of the matrix of (ŵt
λ−w∗t). This results in a potentially tighter528

bound in terms of the distributions of w∗, ϵ.529

In order to better understand the bound from the above theorem, we instantiate it for the case530

when each entry of each input x is sampled i.i.d. in Proposition C.3. Under the mild smoothness531

assumptions, we obtain a bound that is much tighter than the best known bound from literature, as532

long as d = Ω
(

log T
log log T

)
, as we see later.533

Proposition C.3. Under the conditions of Theorem C.2, assume that each entry in the input x534

is sampled independently from a zero-mean distribution with density bounded by C0 such that535
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E [xx⊺] = Σ = σ2
x/dId. Further assume the covariance matrices of both x,w∗ to have constant536

trace as d increases. So, tr(Σ) = σ2
x = const and tr(E [w∗w∗⊺]) = σ2

w = const. If n ≥ 6d, the537

generalization error bound given in Theorem C.2 is O
(

1√
T
(T 2/d +

√
log(T/δ))

)
.538

Proof Sketch. The main challenge for instantiating the bound is computing ΛT
D. We use results from539

Mourtada [2022] that give tight bounds on the behavior of eigenvalues of the matrix Σ̂n = 1
nXX⊺. In540

particular, we find that E [1/V (XX⊺)] = O(d/n), and ΛT
D = O( dnT

2/d). Thus, we can instantitate541

the bound in Theorem C.2 as:542

lv(λERM )− lv(λ
∗) = O

(
d

n

T 2/d

√
T

+

√
E [tr(w∗w∗⊺)] +

√
E [ϵ2]O(d/n)√

nvT
+

√
log(T/δ)√

T

)
.

Which gives the desired result using the assumptions of constant trace and n ≥ 6d.543

Discussion and comparison with previous work. We make the following observations regarding544

the computed bounds in the above theorems:545

1. The quantity ΛT
D is closely related to E [1/V (XX⊺)], which is a common feature in many546

analyses for linear regression, and for which many techniques have been developed to find reliable547

upper bounds [Yaskov, 2014, Mourtada, 2022]. We instantiate one such bound for the well-548

specified case when the inputs x are sampled from an isotropic distribution, such that each element549

of x is sampled independently from a distribution with bounded density in Proposition C.3.550

2. Compared to previous work, our bounds above are distribution-dependent and much tighter.551

Prior work from Balcan et al. [2023] give a bound of O
(√

d+log(1/δ)√
T

)
for the squared loss,552

which is weaker than our bound as long as d = Ω
(

log T
log log T

)
, depending on the distribution.553

We additionally show a distribution independent bound of O
(√

log d+log(1/δ)√
T

)
in Appendix B554

based on prior work Balcan et al. [2023, 2022]. Our bounds beat the new distribution independent555

analysis bounds when d = Ω(T ), depending on the distribution. We note further that our556

techniques are much more general, in that they don’t rely on the specific nature of the loss function,557

and consequently work for any Lipschitz loss. As noted below, our bounds also get smaller with558

increasing number of training examples, which is a feature not present in previous bounds.559

3. Our bounds decrease as the number of training examples (n) increase, which was not true in560

previous work. To see this, first note that the third term in the bounds of both theorems M.1 and561

C.2 depend on ΛT
D which decreases with the number of examples following a discussion similar562

to point 1 above. The values of the dominant terms also decrease with the number of training563

examples up to a certain point.564

To see a clearer picture, we would again redirect the attention of the reader to Proposition C.3565

and its proof in Appendix J, where we show that, under the assumptions of the Lemma, the566

generalization bound behaves as:567

lv(λERM )− lv(λ
∗) = Oδ

(
d

n

T 2/d

√
T

+

√
E [tr(w∗w∗⊺)] +

√
E [ϵ2]O(d/n)√

nvT

)
.

As n → ∞, the bound does not get tighter than Oδ

(√
E[∥w∗w∗⊺∥2]√

nvT

)
. This makes practical sense,568

increasing the number of training examples helps deal with the variance in noise and increasing569

validation examples or tasks helps deal with the variance in ground truth values. Given a fixed570

number of supervised examples, if the ground truth varies very heavily, we would like to use571

a higher number of examples in the validation split.572

D Sampling complexity tuning LASSO and Elastic Net573

We will now establish similar distribution-dependent bounds on the generalization error for tuning574

the regularization coefficient in LASSO.575
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Definition 3 (LASSO Estimator). The LASSO estimator for a linear regression task (X, y) with576

regularization hyperparameter λ1 ∈ [Λ,Λ] is given as:577

ŵλ1
(X, y) = argmin

w
∥X⊺w − y∥2 + λ1∥w∥1.

Under the same boundedness and Lipschitzness assumptions on the loss function as above, along578

with a full rank assumption (Assumption 3 in the appendix), we have the following result.579

Theorem D.1. The expected validation loss error using the ERM estimator for LASSO is bounded580

with probability ≥ 1− δ as:581

lv(λERM )− lv(λ
∗) ≤ 2LΛΛ̃T

DExv
[∥xv∥]

√
d√

T

+
2L
√
Exv [∥xv∥2]√
nvT

EX,y

[
max
E

(
∥y∥√

V (XEX
⊺
E )

+ Λ

√
d

V (XEX
⊺
E )

)]

+
LbvΛΛ̃

T
D√

nvT

√
2 ln(T/δ) + 5C

√
ln(16/δ)

2T
.

Here b2v = max ∥xv∥2 and Λ̃T
D = ES̃tr

[
maxE,t

1
V (Xt

EX
t⊺
E )

]
.582

Proof Sketch. The proof follows the same overall structure as the proof of Theorem C.2. The relevant583

lemmas for bounding the Rademacher complexity for LASSO are Lemmas K.3 and K.4 established584

in Appendix K. The key difference comes from the difference in the LASSO solution. Unlike ridge,585

there is no fixed closed form solution for all values of λ1. The solution ŵλ1
is a piecewise linear586

function of λ1 and the closed form expressions for within fixed pieces is known. We use this to bound587

the relevant Rademacher complexity for the class of loss functions which express the validation loss588

as a function of λ1.589

We also give the following bound on the generalization error of simultaneously tuning L1 and L2590

penalties for λ1 ∈ [Λ1,Λ1], λ2 ∈ [Λ2,∞) (see Appendix L).591

Theorem D.2. The expected validation loss error using the ERM estimator for Elastic Net is bounded592

with probability ≥ 1− δ as:593

lv(λERM )− lv(λ
∗) ≤ 2LΛ

√
d√

T

Exv
[∥xv∥] + bv

√
log(T/δ)

2nv

EX

[
max
t,E

1

V (Xt
EX

t⊺
E ) + Λ2

]

+
2L
√
Exv

[∥xv∥2]√
nvT

EX,y

[
max
E

(
∥y∥
√
V ∗(XEX

⊺
E )

V ∗(XEX
⊺
E ) + Λ2

+
Λ1

√
d

V (XEX
⊺
E ) + Λ2

)]
+ 5C

√
ln(16/δ)

2T
.

(4)

Here V ∗(M) is the non-zero singular value of M that maximizes
√

σi(M)

σi(M)+Λ2
.594

As above, we show that our bounds are much sharper than prior work for well-studied “nice” dis-595

tributions. For sub-Gaussian data distribution we show that our bounds on the generalization error596

are independent of the feature dimension d. In contrast, prior work on worst-case distributions Bal-597

can et al. [2023] shows a tight Θ(d) bound on the pseudo-dimension for tuning the elastic net598

regularization coefficients. Formally we have the following proposition (proof in Appendix L).599

Proposition D.3. Consider the expected validation error of an ERM estimator for the Elastic Net600

hyperparameters over the range λ1 ∈ [Λ1,Λ1], λ2 ∈ [Λ2,∞). Assume further that all tasks are601

well-specified such that all inputs x are sampled from sub-Gaussian distributions with independent602

entries. Concretely, assume that each entry in the input x is sampled independently from a zero-mean603

sub-Gaussian distribution such that E [xx⊺] = Σ = (σ2
x/d)Id. We further restrict the covariance604

matrices of both x,w∗ to have constant trace as d increases. So, tr(Σ) = σ2
x = const and605

tr(E [w∗w∗⊺]) = σ2
w = const. For sufficiently large n ≥ Ω

(
d+ log T

Λ2

)
, the generalization error606
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bound given in Theorem D.2 is Õ
(
1/

√
nT
)

, where the soft-O notation suppresses dependence on607

quantities apart from T, n and d.608

Remark D.4. As in Section 1.3, the results here apply to bounding the convergence rate for single-task609

cross-validation. For Monte-Carlo cross-validation, the bound on the number of sufficient iterations610

is improved from O(d/ϵ2) due to prior work [Balcan et al., 2023] to O(1/nϵ2) for sufficiently large611

n as in Proposition D.3. Also, we note that the comment in Footnote 1 applies to our Elastic Net612

bounds as well, and in the above we have lv(λERM )− lv(λ
∗) = Õ

(
min

{
1√
nT

,
√
d√
T

})
.613

E Re-centered Ridge Regression614

We note that the bounds above in the well-specified case in Theorem C.2 depend on the quantity615

Ew∗
[
∥w∗∥2

]
. This can be quite large if w∗ is not centered around 0. We thus suggest using the616

following estimator, and give generalization guarantees for ERM estimation of the regularization617

hyperparamter.618

Definition 4 (Re-centered Ridge Estimator [van Wieringen, 2023]). The re-centered ridge estimator619

for a linear regression task (X, y) with hyperparameters λ, µ is given as:620

ŵ(λ,µ)(X, y) = argmin
w

∥X⊺w − y∥2 + λ∥w − µ∥2

=⇒ ŵ(λ,µ)(X, y) = (XX⊺ + λI)−1Xy + λ(XX⊺ + λI)−1µ.

Intuitively, instead of penalizing the distance of w from origin, this estimator penalizes its distance621

from a known, central point.622

In the following, we assume we have a fixed estimate of the optimal µ∗ given as µ̂, and bound the623

validation error on the ERM estimate of λ using the MSE in µ̂. We are able to get a tighter bound624

than in Theorem C.2, where we replace all E [w∗w∗⊺] with the variance of w∗, and only incur an625

additional error term that depends on the closeness of the estimate µ̂ to the actual µ∗.626

Theorem E.1. For a validation loss function that satisfies Assumptions 1 and 2 given in Section627

C, and tasks that are well-specified linear maps, the expected validation loss error using the ERM628

estimator defined in Equation 2 using the re-centered ridge estimator for a given µ̂ is bounded with629

probability ≥ 1− δ as:630

lv(λERM , µ̂)− lv(λ
∗, µ∗) ≤ LExv

[∥xv∥] ∥µ̂− µ∗∥+ 2MLΛT
D√

T
E [∥xv∥]

+
2L√
nvT

√
Exv

[∥xv∥2]E
[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 5C

√
ln(16/δ)

2T
.

Here M2 = max ∥Xy∥2 and ΛT
D = E [maxt 1/V (XtXt⊺)].631

Proof. We start by decomposing the excess risk on validation set as632

lv(λERM , µ̂)− lv(λ
∗, µ∗) ≤ lv(λERM , µ̂)− lv(λERM , µ∗) + lv(λERM , µ∗)− lv(λ

∗, µ∗) (5)

We bound the first term as follows:633

lv(λERM , µ̂)− lv(λERM , µ∗) ≤ sup
λ

lv(λ, µ̂)− lv(λ, µ
∗)

= sup
λ

E
[
l(x⊺

vŵ(λ,µ̂), yv)− l(x⊺
vŵ(λ,µ∗), yv)

]
≤ sup

λ
E
[
L(x⊺

v(ŵ(λ,µ̂) − ŵ(λ,µ∗))
]

= L sup
λ

E
[
|λx⊺

v(XX⊺ + λI)−1(µ̂− µ∗)|
]

≤ L sup
λ

E
[
∥λ(XX⊺ + λI)−1xv∥

]
∥µ̂− µ∗∥

≤ LE [∥xv∥] ∥µ̂− µ∗∥.
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634

For the second term, we see that generalization error in finding λ is the same as generalization error635

in finding λ for the well-specified case if we replace w∗ by w∗ − µ∗. To see this,636

ŵ(λ,µ∗)(X, y) = argmin
w

∥X⊺w − y∥2 + λ∥w − µ∗∥2

= argmin
w

∥X⊺w − (X⊺w∗ + ϵ)∥2 + λ∥w − µ∗∥2

= argmin
w

∥X⊺(w − µ∗)−X⊺(w∗ − µ∗) + ϵ∥2 + λ∥w − µ∗∥2

So that the optimization problem reduces to the same problem as in Definition 2 with a shifting of637

the axes. Thus, we get a similar bound for the second term of Equation 5 as in Theorem C.2, only638

requiring replacing w∗ with w∗ − µ∗, which was the intended effect.639

F Bayes estimation using multi-task learning640

In this paper, we have given generalization guarantees on finding the optimal regularized estimator641

using a finite sample of tasks. In this section we are interested in conditions for when the optimal642

regularized estimator is also provably optimal for multi-task learning. To argue optimality of an643

estimator for a future, unknown task it is crucial to define the relationship between tasks already seen644

and the future task. Given any such relationship, we can re-formulate it to form a prior. Thus, the645

optimality of any estimator reduces to the case when the estimator is equal to the Bayesian estimator646

with the given prior. Of course, if the prior is known it is straight-forward to find such an estimator.647

The key challenge of this line of work, and for Empirical Bayes methods, is to find an approximate648

estimator from an unknown prior.649

We show that the optimal regularized estimator is equal to the Bayesian estimator, and hence the650

optimal multi-task learning estimator when the regularization takes a form similar to the prior. For651

example, a re-centered ridge estimator is optimal if the prior is Gaussian. Note that our reduction of652

multi-task learning crucially depends on the (unknown) prior being frequentist in the sense that the653

tasks are assumed to be sampled randomly from this prior distribution, as opposed to the prior being654

a belief over the sampling of tasks.655

It is well-known Wasserman [2010] that for squared loss l(ŵ, w∗) = ∥ŵ − w∗∥2, the Bayesian656

estimator is given by ŵ = E [w∗|X, y]. The same estimator is the Bayesian estimator for the expected657

validation loss given as lv(ŵ) = EXv,yv

[
∥X⊺

v ŵ − yv∥2
]

as shown in Theorem F.1.658

Theorem F.1. Given a linear problem (X, y) such that ∃w∗, ϵ, y = X⊺w∗ + ϵ. Given a prior over659

w∗ ∼ π, the Bayesian estimator corresponding to the validation loss lv = EXv,yv

[
∥X⊺

v ŵ − yv∥2
]
,660

where (Xv, yv) are sampled from the same map as (X, y), is given as:661

ŵ = E [w∗|X, y]

In other words, the Bayesian estimator is equal to the mean of the posterior.662

Proof. Define the Bayesian risk as:663

Bπ(ŵ) =

∫
EXv,yv

[
∥X⊺

v ŵ − yv∥2
]
Pr(w∗|X, y)m(X, y)dXdydw∗.

Here m(X, y) denotes the marginal distribution on X, y. We note that yv is sampled from the same664

ground truth w∗ as y so we can re-write this as:665

Bπ(ŵ) =

∫
EXv,ϵv

[
∥X⊺

v (ŵ − w∗)− ϵv∥2
]
Pr(w∗|X, y)m(X, y)dXdydw∗

=

∫
(EXv

[
∥X⊺

v (ŵ − w∗)∥2
]
+ nv∥ϵv∥2) Pr(w∗|X, y)m(X, y)dXdydw∗

= nv∥ϵv∥2 +
∫

EXv
[tr(XvX

⊺
v (ŵ − w∗)(ŵ − w∗)⊺)] Pr(w∗|X, y)m(X, y)dXdydw∗

= nv∥ϵv∥2 +
∫

tr(EXv
[XvX

⊺
v ] (ŵ − w∗)(ŵ − w∗)⊺)) Pr(w∗|X, y)m(X, y)dXdydw∗.
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Since XvX
⊺
v is PSD, we can write EXv [XvX

⊺
v ] = AA⊺ for some matrix A. We want to minimise666

the Bayesian risk with respect to ŵ:667

∇ŵBπ(ŵ) = 2

∫
AA⊺(ŵ − w∗) Pr(w∗|X, y)m(X, y)dXdydw∗

= 2AA⊺(ŵ − E [w∗|X, y]).

Since AA⊺ is PSD, the Hessian is PSD, so that the minimizer is obtained at668

ŵ = E [w∗|X, y] .

669

For a Gaussian conjugate prior, we know that the mean of the posterior equals to the mode of the670

posterior. Thus, the Bayesian estimator equals the MAP estimator for a Gaussian prior. The following671

result states a slightly more general version of the statement.672

Theorem F.2. Given a well-specified task (X, y) such that ∃w∗, ϵ, s.t. y = X⊺w∗ + ϵ. Further673

assume that w∗ ∼ π, ϵ ∼ N(0, σ2I), where π is log-concave so that π(w) = exp(−f(w)). The674

log-likelihood of w given as l(w) is then:675

l(w) = −∥y −X⊺w∥2

2σ2
− f(w).

Define the MAP estimator as follows:676

wMAP = ŵ = max
w

l(w).

The MAP estimator is equal to the Bayesian estimator for expected validation loss, that is ŵ =677

wBayes = E [w∗|X, y], if f is convex and ∇rf(ŵ) = 0 for r > 2.678

Proof. Since l(w) is concave,679

∇wl(ŵ) = 0

=⇒ ∇f(ŵ) +
X(X⊺w − y)

σ2
= 0. (6)

We also know that for some normalization constant Z,680

E [w∗|X, y] =
1

Z

∫
Rd

w exp

(
−∥y −X⊺w∥2

2σ2
− f(w)

)
dw

=
1

Z

∫
Rd

(ŵ + t) exp

(
−∥y −X⊺(ŵ + t)∥2

2σ2
− f(ŵ + t)

)
dt

= ŵ +
1

Z

∫
Rd

t exp

(
−∥y −X⊺(ŵ + t)∥2

2σ2
− f(ŵ + t)

)
dt . (7)

Where in the last step we use the fact that the likelihood integrates to Z. Now, expanding the first681

term inside the exp,682

∥y −X⊺(ŵ + t)∥2

2σ2
=

∥X⊺ŵ − y∥2 + ∥X⊺t∥2 + 2t⊺X(X⊺ŵ − y)

2σ2
.

Using Taylor’s expansion for the second term inside exp, and using the fact that ∇rf(ŵ) = 0 for683

r > 2:684

f(ŵ + t) = f(ŵ) + t⊺∇f(ŵ) +
t⊺∇2f(ŵ)t

2
.

We can now combine the above two equations with 6 to give us:685

∥y −X⊺(ŵ + t)∥2

2σ2
+ f(ŵ + t) =

∥X⊺ŵ − y∥2 + ∥X⊺t∥2

2σ2

+ f(ŵ) +
t⊺∇2f(ŵ)t

2
.
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Going back to Equation 7, we can simplify using the above results as follows:686

E [w∗|X, y] = ŵ + exp

(
∥X⊺ŵ − y∥2

2σ2
+ f(ŵ)

)∫
Rd

t exp

(
−∥X⊺t∥2

2σ2
− t⊺∇2f(ŵ)t

2

)
dt

= ŵ.

Where the last step follows from the symmetry of the integral around 0.687

The following Corollary which is a direct consequence of the above theorem states that the optimal688

re-centered ridge regression parameters result in the Bayesian estimator. Thus, finding the optimal689

ridge regression parameter can be equivalently thought of as a g-modeling Empirical Bayes approach.690

Corollary F.2.1. Given a prior on w∗ ∼ Z exp
{(

−∥w∗−µ∗∥
2ω2

)}
, for ω ∈ R, ŵ(λ,µ) = wBayes =691

E [w∗|X, y] for λ = σ2/ω2, µ = µ∗. Thus for appropriately chosen parameters, the re-centered692

ridge estimator corresponds to the Bayes estimator.693

Remark. Note that since Theorem F.2 is valid for more general cases than just a Gaussian prior, we694

can derive similar results for other estimators that respect the form of the prior. For example, elastic695

net estimators when the prior is a mixture of a Gaussian and a Laplace distribution.696

G Background697

In this section we cover some commonly known results on concentration of random numbers, as well698

as a common tool from learning theory, Rademacher Complexity.699

We begin with Hoeffding’s inequality, which shows that the mean of random variables concentrates700

exponentially fast around their mean.701

Theorem G.1 (Hoeffding’s inequality Wasserman [2010]). For random numbers X1, . . . , XN sam-702

pled i.i.d., denote XN =
∑

Xi

N and E [Xi] = µ. The following hold given that Xi ∈ [0, C]:703

1.

Pr
(
|XN − µ| ≥ t

)
≤ 2 exp

{(
−2Nt2

C2

)}
2.

Pr
(
XN − µ ≥ t

)
≤ exp

{(
−2Nt2

C2

)}
3. With probability ≥ 1− δ,704

XN ≤ µ+ C

√
ln 1/δ

2N

The following is used frequently in Rademacher complexity analyses, and shows that the value of a705

multi-variate function is concentrated around its expected value with a high probability.706

Theorem G.2 (McDiarmid’s Inequality Shalev-Shwartz and Ben-David [2014]). Given i.i.d. variables707

X1, . . . , XN , such that Xi ∈ R∀i ∈ [N ], and a function f : RN → R such that:708

|f(x1, . . . , xN )− f(x1, . . . , xk−1, x
′
k, xk+1, . . . xN )| ≤ Lk.

That is, changing the kth element arbitrarily changes the value of the function by at most Lk. The709

following inequality holds:710

Pr(|f(X1, . . . , XN )− EX1,...,XN
[f(X1, . . . , XN )] | ≥ t) ≤ 2 exp

{(
−2t2∑

L2
k

)}
.
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Corollary G.2.1. Given functions li(λ, s), i ∈ [N ] that take a parameter λ and an input s such that711

li(λ, s) ≤ C∀λ, s, i. For a set S = {Si : i ∈ [N ]} of N inputs, we define l(λ, S) = 1
N

∑
li(λ, S(i))712

as the average over N inputs. If all inputs in S are i.i.d., then with probability ≥ 1− δ,713

sup
λ
(ES′ [l(λ, S′)]− l(λ, S)) ≤ ES

[
sup
λ
(ES′ [l(λ, S′)]− l(λ, S))

]
+ C

√
2 ln(2/δ)

N

≤ ES,S′

[
sup
λ
(l(λ, S′)− l(λ, S))

]
+ C

√
2 ln(2/δ)

N

Proof. Note that supλ(ES′ [l(λ, S′)]− l(λ, S)) is a function of N i.i.d. variables by definition. Here714

S′ is a “ghost sample" introduced to calculate expectation as is commonly done in literature. Further,715

changing one of these variables changes the function by at most 2C/N . The statement follows from716

Theorem G.2 by equating f with supλ(ES′ [l(λ, S′)]− l(λ, S)) and Lk = 2C/N .717

The sample covariance matrix, Σ̂n = n−1XX⊺ and its inverse Σ̂−1
n are quantities that occur718

frequently in analyses of ridge regression. Below we give results from Mourtada [2022], that allow719

us to bound the expected value of the inverse of the smallest singular value of Σ̂n in terms of the720

distribution of the samples.721

Theorem G.3 (Corollary 4 in Mourtada [2022]). Consider the sample covariance matrix Σ̂n =722

n−1
∑

XX⊺, where X ∈ Rd×n. Assume that X is sampled from a distribution such that E [xx⊺] =723

Id. Further assume that there exist constants C ≥ 1, α ∈ (0, 1] such that for any hyperplane H in724

Rd,725

Pr(dist(X,H) ≤ t) ≤ (Ct)α ∀t > 0.

Then, for n ≥ max(6d/α, 12/α) and 1 ≤ q ≤ αn/12,726

E
[
|max(1, λmin(Σ̂n)

−1)|q
]1/q

≤ 21/qC ′,

where C ′ = 3C4e1+9/α.727

Theorem G.4 (Proposition 5 in Mourtada [2022]). If the entries x(1), . . . , x(d) are independent and728

have density bounded by C0, and E [xx⊺] = Id, then for any hyperplane H in Rd,729

Pr(dist(X,H) ≤ t) ≤ (Ct)α ∀t > 0,

for α = 1, C = 2
√
2C0.730

G.1 Rademacher Complexity731

In this section we will discuss Rademacher Complexity, which is a common tool from learning theory,732

and some important results used in our analysis.733

Definition 5 (Empirical Rademacher Complexity). The Empirical Rademacher complexity of a734

function l for given inputs x1, . . . , xn is given as:735

R = Eσ

[
1

n

∑
σil(xi)

]
,

where σi are Rademacher random variables (i.e., they take values in {+1,−1} with equal probability).736

The following is another popular result used to compute Empirical Rademacher Complexity of a737

fixed set of variables.738

Theorem G.5 (Khintchine’s Inequality [Hitczenko and Kwapień, 1994]). For Rademacher random739

variables σt and real numbers xt, we have that740

Eσ

[∣∣∣∑σtxt
∣∣∣] ≤ (∑ |xt|2

)1/2
.
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H A generalization of the Contraction Lemma741

The Contraction Lemma (Lemma H.1.1) is a popular result used to simplify Rademacher complexity742

computations using the L-Lipschitzness of the loss function l. Below we present a more general743

result using a generalized version of Lipschitzness.744

Definition 6 (Lipschitzness in another function). A function l : Z → R is said to be Lipschitz in745

another function g : Z → R if:746

l(a)− l(b) ≤ L|g(a)− g(b)|∀a, b ∈ Z.

Theorem H.1. Consider a class of functions F ⊆ {f : Rm → Z} and two functions l, g : Z → R747

for some domain Z such that l is L-Lipschitz in g. That is, l(a)− l(b) ≤ L|g(a)− g(b)| ∀a, b ∈ Z .748

We have the following bound on the empirical Rademacher complexity of {l ◦ f : f ∈ F} for given749

inputs x1, . . . , xn:750

R = Eσ

[
sup
f∈F

1

n

∑
σil(f(xi))

]
≤ LEσ

[
sup
f∈F

1

n

∑
σig(f(xi))

]
.

Proof.

nR = Eσ

[
sup
f∈F

∑
σil(f(xi))

]
= Eσ

sup
f∈F

(σ1l(f(x1)) +
∑
i ̸=1

σil(f(xi)))


=

1

2
Eσ2,...,σn

sup
f∈F

(l(f(x1)) +
∑
i̸=1

σil(f(xi))) + sup
f∈F

(−l(f(x1)) +
∑
i ̸=1

σil(f(xi)))


=

1

2
Eσ2,...,σn

 sup
f,f ′∈F

(l(f(x1))− l(f ′(x1)) +
∑
i ̸=1

σil(f(xi)) +
∑
i ̸=1

σil(f
′(xi)))


≤ 1

2
Eσ2,...,σn

 sup
f,f ′∈F

(L|g(f(x1))− g(f ′(x1))|+
∑
i ̸=1

σil(f(xi)) +
∑
i ̸=1

σil(f
′(xi)))

 . (8)

In the last step we use the given expression, l(a)− l(b) ≤ L|g(a)− g(b)| ∀a, b ∈ Z . Note that we751

can now drop the absolute value surrounding g(f(x1))− g(f ′(x1)) so that:752

nR ≤ 1

2
Eσ2,...,σn

 sup
f,f ′∈F

(L(g(f(x1))− g(f ′(x1))) +
∑
i ̸=1

σil(f(xi)) +
∑
i ̸=1

σil(f
′(xi)))

 . (9)

This is trivial if the sup operator picks f, f ′ such that g(f(x1)) ≥ g(f ′(x1)) in Equation 8. If on753

the other hand the sup operator picked f, f ′ such that g(f(x1)) < g(f ′(x1)) in Equation 8, it can754

swap them in Equation 9, resulting in the same value as replacing f and f ′ in the summation over755

i ̸= 1 does not change the expression. We can thus reduce this back to a Rademacher complexity756

computation as follows:757

nR ≤ Eσ

sup
f
(σ1Lg(f(x1)) +

∑
i̸=1

σil(f(xi)))

 . (10)

Proceeding similarly for all i ̸= 1, we get the desired result.758

Corollary H.1.1 (Contraction Lemma Shalev-Shwartz and Ben-David [2014]). Let l : R → R be759

a Lipschitz function, that is, l(a) − l(b) ≤ L|a − b| ∀a, b ∈ R. Let F be a class of functions760

F ⊆ {f : Rm → R} that map into the domain of l. We have that the empirical Rademacher761

complexity of {l ◦ f : f ∈ F} for given inputs x1, . . . , xn is upper bounded as:762

R = Eσ

[
sup
f∈F

1

n

∑
σil(f(xi))

]
≤ LEσ

[
sup
f∈F

1

n

∑
σif(xi)

]
.
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Proof. Follows from Theorem H.1 by replacing g with the identity function.763

Lipschitzness is a common assumption made for proving generalization bounds in literature. Lip-764

schitzness usually follows from boundedness of the loss function, as we instantiate below for the765

squared loss.766

Proposition H.2. For a squared loss function l(yp, yt) = (yp − yt)
2, boundedness implies Lipschitz-767

ness. That is, given that l(x⊺
vŵλ, yv) ≤ C,∀xv, yv, X, y,768

|l(x⊺
vw1, yv)− l(x⊺

vw2, yv)| ≤ 2
√
C|x⊺

vw1 − x⊺
vw2|.

Proof.

|l(x⊺
vw1, yv)− l(x⊺

vw2, yv)| = |x⊺
vw1 − x⊺

vw2||x⊺
vw1 − yv + x⊺

vw2 − yv|
≤ 2

√
C|x⊺

vw1 − x⊺
vw2|.

Since |x⊺
vw1 − yv| ≤

√
C.769

I Proofs for tuning Ridge Regression770

We start this Section by some definitions we will need for the proof. We will use the following771

elaborate definition of a problem instance (which sufficiently identifies a unique problem instance but772

not vice-versa).773

S̃ = {(Xt, f t, ϵt, Xt
v, ϵ

t
v) : X ∈ Rd×n, Xt

v ∈ Rd×nv , ϵt ∈ En, ϵtv ∈ Env}.

This allows to define elaborate ordered set of training and validation examples as:774

S̃tr = {(Xt, f t, ϵt) : X ∈ Rd×n, ϵt ∈ En}, (11)

and,775

S̃val = {(Xt
v, ϵ

t
v) : X

t
v ∈ Rd×nv , ϵtv ∈ Env}, (12)

Note that S̃tr ×ew S̃val = S̃, where ×ew takes the entry-wise composition of the ordered sets.776

Equivalent to the definition of the empirical validation loss we have:777

l̃v(λ, S̃) =
1

T

∑
t

1

nv

∑
i

l(Xt(i)⊺
v ŵt

λ(X
t, f t(Xt, ϵt)), f t(Xt

v, ϵ
t
v)).

Note that l̃v(λ, S̃) = lv(λ, S) as l̃v uses the elaborate form to find y, yv to compute empirical778

validation loss as in lv. Further, ES [lv(λ, S)] = ES̃

[
l̃v(λ, S̃)

]
. We will also be interested in the779

empirical expected validation loss, which for yt(i)v = f(X
⊺t(i)
v , ϵ

t(i)
v ) is given as:780

lev(λ, S̃val) =
1

nvT

∑
t,i

EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]
= ES̃′

tr

[
l̃v(λ, S̃′

tr ×ew S̃val)
]
. (13)

Thus for a given S̃val, lev computes the expected validation loss over all possible sampling of training781

data.782

In the well-specified linear case, we will overload the notation as follows. We will define the elaborate783

set of problem instances as:784

S̃ = {(Xt, fw∗t , ϵt, Xt
v, ϵ

t
v) : X ∈ Rd×n, Xt

v ∈ Rd×nv , w∗t ∈ Rd, ϵt ∈ Rn, ϵtv ∈ Rnv}.

This allows to define elaborate set of training and validation examples as:785

S̃tr = {(Xt, fw∗t , ϵt) : X ∈ Rd×n, w∗t ∈ Rd, ϵt ∈ Rn},

and,786

S̃val = {(Xt
v, ϵ

t
v) : X

t
v ∈ Rd×nv , ϵtv ∈ Rnv},
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Note again, that S̃tr ×ew S̃val = S̃. Empirical validation loss can be re-written as:787

l̃v(λ, S̃) =
1

T

∑
t

1

nv

∑
i

l(Xt(i)⊺
v ŵt

λ(X
t, Xt⊺w∗t + ϵt), Xt(i)⊺

v w∗t + ϵt(i)v ).

We present and prove the main lemmas used for proving Theorem C.1 below. We first start by upper-788

bounding the generalization error in terms of two different Rademacher complexities: Rademacher789

complexity of validation loss with fixed validation data and Rademacher complexity of expected790

validation loss over choice of training data.791

Lemma I.1. Given a bounded validation loss function, that is, given that l(x⊺
vŵλ, yv) ≤792

C,∀xv, yv, X, y, λ. For any problem instance S as defined in Equation 1, with probability at793

least 1− δ,794

sup
λ

lv(λ)− lv(λ, S) ≤ 2Eσ,S̃tr

sup
λ

1

T

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )


+ 2Eσ,S̃val

sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]
+ 2C

√
2 ln(4/δ)

T
.

Where y
t(i)
v = f t(X

⊺t(i)
v , ϵ

t(i)
v ), and σt and σt(i) are i.i.d. Rademacher variables.795

Proof.

sup
λ

lv(λ)− lv(λ, S) = sup
λ
(lv(λ)− lev(λ, S̃val) + lev(λ, S̃val)− lv(λ, S))

≤ sup
λ
(lv(λ)− lev(λ, S̃val)) + sup

λ
(lev(λ, S̃val)− lv(λ, S)). (14)

Note that lv(λ) is the expected value of lev(λ, S̃val) over sampling of S̃val, whereas lev(λ, S̃val) is796

the average over nvT samples of the form xv, ϵv , where the (tnv + i)th sample for t ∈ [T ], i ∈ [nv]797

becomes the ith validation example for the tth task. Thus, by replacing each li in Corollary G.2.1 with798

lev(λ, S̃val) we get that with probability ≥ 1− δ,799

sup
λ
(lv(λ)−lev(λ, S̃val)) ≤ ES̃val,S̃′

val

[
sup
λ
(lev(λ, S̃′

val)− lev(λ, S̃val))

]
+C

√
2 ln(4/δ)

nvT
. (15)

Similarly, for a fixed S̃val we can view lv(λ, S) as an average over T samples of training data. And800

we can view lev(λ, S̃val) as the expected value of lv(λ, S) over the sampling of S̃tr. Thus we can801

replace each li(λ, .) in Corollary G.2.1 with l̃v(λ, .× S̃i
val), where S̃i

val is the ith instance S̃val, to802

obtain that with probability ≥ 1− δ/2,803

sup
λ
(lev(λ, S̃val)− lv(λ, S)) ≤ ES̃tr,S̃′

tr

[
sup
λ

l̃v(λ, S̃′
tr × S̃val)− l̃v(λ, S̃tr × S̃val)

]
+ C

√
2 ln(4/δ)

T
. (16)

In order to upper bound the unknown term in Equation 15, we note that we can arbitrarily swap the804

(tnv + i)th validation instances between S̃val and S̃′
val without changing the expectation. In fact,805

we can do this for all (t, i) ∈ R ⊆ [T ]× [nv] for any arbitrary set R. This allows us to reduce the806

term to a Rademacher complexity. We show this below where we denote y
t(i)
v = f(X

⊺t(i)
v , ϵ

t(i)
v ) and807

y
′t(i)
v = f(X

′⊺t(i)
v , ϵ

′t(i)
v ):808
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ES̃val,S̃′
val

[
sup
λ

lev(λ, S̃′
val)− lev(λ, S̃val)

]

= ES̃val,S̃′
val

sup
λ

1

nvT

∑
t,i

EX,f,ϵ

[
l(X ′t(i)⊺

v ŵλ, y
t(i)
v )

]
− 1

nvT

∑
t,i

EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
′t(i)
v )

]
= ES̃val,S̃′

val

[
sup
λ

1

nvT

∑
t,i/∈R

EX,f,ϵ

[
l(X ′t(i)⊺

v ŵλ, y
t(i)
v )

]
+

1

nvT

∑
t,i∈R

EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
′t(i)
v )

]
− 1

nvT

∑
t,i/∈R

EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
′t(i)
v )

]
− 1

nvT

∑
t,i∈R

EX,f,ϵ

[
l(X ′t(i)⊺

v ŵλ, y
t(i)
v )

]]

= 2Eσ,S̃val

sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

] . (17)

The equality in the second last step holds because of symmetry due to expectation. In the last equation809

we introduce Rademachar variables for each value of t and i. Thus we are able to upper bound the810

unknown term in Equation 15 by the Rademacher complexity of the class of functions defined as the811

expected value of validation error over sampling of training tasks, across different values of λ.812

Similarly, in Equation 16 we note that we can arbitrarily swap the tth training instances between813

S̃tr and S̃′
tr without changing the expectation. In fact, we can do this for all t ∈ R ⊆ [T ] for any814

arbitrary set R. This allows us to reduce the term to a Rademacher complexity. We show this below815

where we denote y
t(i)
v = f t(X

⊺t(i)
v , ϵ

t(i)
v ) and y

′t(i)
v = f t(X

′⊺t(i)
v , ϵ

′t(i)
v ).816

ES̃tr,S̃′
tr

[
sup
λ

lv(λ, S̃′
tr × S̃val)− lv(λ, S̃tr × S̃val)

]
= ES̃tr,S̃′

tr

[
sup
λ

1

T

∑
t

1

nv

∑
i

l(Xt(i)⊺
v ŵ′t

λ , y
t(i)
v )− 1

T

∑
t

1

nv

∑
i

l(Xt(i)⊺
v ŵt

λ, y
′t(i)
v )

]

= ES̃tr,S̃′
tr

[
sup
λ

1

nvT

∑
t/∈R

∑
i

l(Xt(i)⊺
v ŵ′t

λ , y
t(i)
v ) +

1

nvT

∑
t∈R

∑
i

l(Xt(i)⊺
v ŵt

λ, y
′t(i)
v )

− 1

nvT

∑
t/∈R

∑
i

l(Xt(i)⊺
v ŵt

λ, y
′t(i)
v )− 1

nvT

∑
t∈R

∑
i

l(Xt(i)⊺
v ŵ′t

λ , y
t(i)
v )

]

= 2Eσ,S̃tr

sup
λ

1

nvT

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

 . (18)

Similar to before, the equality in the second last step holds because of symmetry due to expectation.817

In the last step, we introduce Rademachar variables for each value of t. Thus we are able to upper818

bound the unknown term in Equation 16 by the Rademacher complexity of the class of functions819

defined as the empirical validation loss given fixed validation set, across different values of λ.820

Since Equations 15 and 16 hold with probability ≥ 1−δ/2 each, both equations hold with probability821

≥ 1− δ by a union bound. We get the desired result by combining equations 14, 15, 16, 17, 18, and822

further noting that C
√

2 ln(4/δ)
T ≥ C

√
2 ln(4/δ)

nvT
.823

In the following we give an upper bound on the expectation with respect to sampling of the validation824

set, of the Rademacher complexity of the expected value of validation error over sampling of training825

tasks in terms of distribution of the outputs y.826

Lemma I.2. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C,827

and S̃val as defined in Equation 12 we get that (where we denote y
t(i)
v = f(x

t(i)
v , ϵ

t(i)
v ) and σt(i) are828
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i.i.d. Rademacher variables):829

Eσ,S̃val

[
sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]]

≤ L√
nvT

√
Exv [∥xv∥2]EX,y

[
∥y∥/

√
V (XX⊺)

]
.

Proof. We define R as below and use Lipschitzness to upper bound it as a simpler Rademacher830

complexity term:831

R =
1

nvT
Eσ

[
sup
λ

∑
t

∑
i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]]

≤ L

nvT
Eσ,X,f,ϵ

[
sup
λ

∑
t

∑
i

σt(i)Xt(i)⊺
v ŵλ

]

=
L

nvT
Eσ,X,f,ϵ

[
sup
λ

(∑
t

∑
i

σt(i)Xt(i)
v

)⊺

ŵλ

]

≤ L

nvT
Eσ,X,f,ϵ

[
sup
λ

∥
∑
t

∑
i

σt(i)Xt(i)
v ∥∥ŵλ∥

]
(Cauchy-Schwartz inequality)

=
L

nvT
Eσ

∥∑
t,i

σt(i)Xt(i)
v ∥

EX,f,ϵ

[
sup
λ

∥ŵλ∥
]

To bound the first Rademacher term in the product, we proceed as follows:832

Eσ

∥∑
t,i

σt(i)Xt(i)
v ∥

 ≤

√√√√√Eσ

∥∑
t,i

σt(i)X
t(i)
v ∥2



=

√√√√√Eσ

∑
t,i

∥Xt(i)
v ∥2 +

∑
(t1,i1 )̸=(t2,i2)

σt1(i1)σt2(i2)X
t2(i2)⊺
v X

t1(i1)
v


=

√∑
t,i

∥Xt(i)
v ∥2.

Taking an expectation over validation set we find that,833

ES̃val

√∑
t,i

∥Xt(i)
v ∥2

 ≤

√√√√√ES̃val

∑
t,i

∥Xt(i)
v ∥2


=
√

nvT
√
Exv

[∥xv∥2]. (19)

Since each validation example is sampled i.i.d.834

It remains to upper bound the second term, which is EX,f,ϵ [supλ ∥ŵλ∥]. Note that, if the singular835

values of X are s1, . . . , sd, then the singular values of (XX⊺ + λI)−1X are si
s2i+λ

respectively for836

each i. Using the fact that
∣∣∣ si
s2i+λ

∣∣∣ ≤ 1/|si| if si ̸= 0, we obtain the following upper bound on ∥ŵλ∥:837

ŵλ = (XX⊺ + λI)−1Xy

=⇒ ∥ŵλ∥2 ≤ ∥(XX⊺ + λI)−1X∥2∞∥y∥2 (definition of ∞-norm)

≤ ∥(XX⊺)−1X∥2∞∥y∥2

= ∥y∥2/V (XX⊺) (since eigenvalues of XX⊺ are s21, . . . , s
2
d). (20)
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Remember that V (M) as the smallest non-zero singular value of M . This allows us to write,838

EX,f,ϵ

[
sup
λ

∥ŵλ∥
]
≤ E

[
∥y∥/

√
V (XX⊺)

]
.

Combining these inequalities yields the desired result.839

We now show an upper bound on the expected Rademacher complexity of validation loss given fixed840

validation data in terms of the distribution of inputs x.841

Lemma I.3. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C,842

and S̃val as defined in Equation 12, the following holds with probability at least 1 − δ (where we843

denote y
t(i)
v = f t(x

t(i)
v , ϵ

t(i)
v ), and σt are i.i.d. Rademacher variables):844

Eσ,S̃tr

[
sup
λ

1

nvT

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

]
≤ MLΛT

D√
T

E [∥xv∥] +
MLbvΛ

T
D√

nvT

√
log(T/δ)

2
.

where M2 = max ∥Xy∥2, b2v = max ∥xv∥2 and ΛT
D = EX [maxt 1/V (XtXt⊺)].845

Proof. We first note that Lipschitzness of the loss function implies Lipschitzness of the sum of the846

loss function over different examples:847

l(x⊺
vŵ1, yv)− l(x⊺

vŵ2, yv) ≤ L|x⊺
vŵ1 − x⊺

vŵ2|

=⇒
∑
i

l(Xt(i)⊺
v ŵλ1

, yt(i)v )− l(Xt(i)⊺
v ŵλ2

, yt(i)v ) ≤ L
∑
i

|Xt(i)⊺
v (ŵλ1

− ŵλ2
)|

Using Lipschitzness (Theorem H.1):848

Eσ,S̃tr

sup
λ

1

nvT

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

 ≤ L

nvT
Eσ,S̃tr

[
sup
λ

∑
t

σt(
∑
i

Xt(i)⊺
v ŵt

λ)

]
. (21)

In order to derive a tight upper bound on the above Rademacher complexity, we introduce a new849

technique, where we argue lipschitzness of x⊺
vŵλ in another function as follows.850

If the SVD of X = U1PU⊺
2 , define 1P as a diagonal matrix such that (1P )ii = 1[Pii ̸= 0]. So,851

X = U11PU
⊺
1 X . We can use this to argue Lipschitzness of x⊺

vŵλ:852

x⊺
vŵλ1 − x⊺

vŵλ2 = x⊺
v((XX⊺ + λ1I)

−1 − (XX⊺ + λ2I)
−1)Xy

= x⊺
v((XX⊺ + λ1I)

−1 − (XX⊺ + λ2I)
−1)U11PU

⊺
1 Xy

≤ ∥x⊺
v((XX⊺ + λ1I)

−1 − (XX⊺ + λ2I)
−1)U11PU

⊺
1 ∥∥Xy∥

≤ ∥x⊺
v∥∥((XX⊺ + λ1I)

−1 − (XX⊺ + λ2I)
−1)U11PU

⊺
1 ∥∞∥Xy∥.

Now we see that the SVD of (XX⊺+λI)−1 is U1MU⊺
1 for some positive-definite diagonal matrix M .853

The non-zero singular values of ((XX⊺ + λ1I)
−1 − (XX⊺ + λ2I)

−1)U11PU
⊺
1 are λ2−λ1

(ei+λ1)(ei+λ2)
854

if ei are the non-zero eigenvalues of XX⊺. Remember that V (XX⊺) is the smallest non-0 eigen-855

value of XX⊺, and define V T = mint V (XtXt⊺) to see that ∥((XX⊺ + λ1I)
−1 − (XX⊺ +856

λ2I)
−1)U11PU

⊺
1 ∥∞ = 1

V (XX⊺)+λ1
− 1

V (XX⊺)+λ2
. Thus,857

x⊺
vŵλ1

− x⊺
vŵλ2

≤ ∥x⊺
v∥∥((XX⊺ + λ1I)

−1 − (XX⊺ + λ2I)
−1)U11PU

⊺
1 ∥∞∥Xy∥

= ∥xv∥
∣∣∣∣ 1

V (XX⊺) + λ1
− 1

V (XX⊺) + λ2

∣∣∣∣ ∥Xy∥

≤ ∥xv∥
∣∣∣∣ 1

V T + λ1
− 1

V T + λ2

∣∣∣∣ ∥Xy∥. (22)
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This shows the Lipschitzness of x⊺
vŵλ in terms of 1

V T+λ
in line with Definition 6. Using this858

Lipschitzness (Theorem H.1) in Equation 21,859

Eσ,S̃tr

[
sup
λ

1

nvT

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

]
≤ L

nvT
Eσ,S̃tr

[
sup
λ

∑
t

σt

(∑
i

Xt(i)⊺
v ŵt

λ

)]

≤ L

nvT
Eσ,S̃tr

[
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V T + λ

]
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nvT
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1

V T + λ

) ∣∣∣∣∣∑
t

σt

(∑
i

∥Xt(i)
v ∥∥Xtyt∥

)∣∣∣∣∣
]

=
L

nvT
ES̃tr

[(
sup
λ

1

V T + λ

)
Eσ

[∣∣∣∣∣∑
t

σt

(∑
i

∥Xt(i)
v ∥∥Xtyt∥

)∣∣∣∣∣
]]

≤ L

nvT
ES̃tr


√∑

t(
∑

i ∥X
t(i)
v ∥)2∥Xtyt∥2

V T

 .

We use Khintchine’s inequality (Theorem G.5) and set λ = 0 in the last step. To get the desired860

result we need to simplify the numerator. We note that for any t ∈ [T ], with probability ≥ 1− δ by861

Hoeffding inequality (Theorem G.1),862

∑
i

∥Xt(i)
v ∥ ≤ nvE [∥xv∥] + bv

√
nv log(1/δ)

2
.

By a union bound over all tasks, we get that for all tasks t ∈ [T ], with probability ≥ 1− δ863

∑
i

∥Xt(i)
v ∥ ≤ nvE [∥xv∥] + bv

√
nv log(T/δ)

2

=⇒

(∑
i

∥Xt(i)
v ∥

)2

≤

(
nvE [∥xv∥] + bv

√
nv log(T/δ)

2

)2

.

We sum the above over all tasks and note from definition that ∥Xtyt∥2 ≤ M2 to get,864

∑
t

(∑
i

∥Xt(i)
v ∥

)2

∥Xtyt∥2 ≤ TM2

(
nvE [∥xv∥] + bv

√
nv log(T/δ)

2

)2

=⇒

√√√√∑
t

(∑
i

∥Xt(i)
v ∥

)2

∥Xtyt∥2 ≤ nv

√
TME [∥xv∥] + bvM

√
nvT log(T/δ)

2
.

This gives the desired result.865

Below we present an additional lemma that is tighter than Lemma I.2 for the well-specified case. We866

then restate and prove Theorem C.2 using this lemma.867

Lemma I.4. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C,868

S̃val as defined in Equation 12, the following holds for well-specified linear tasks (where we denote869

y
t(i)
v = f t(x

t(i)
v , ϵ

t(i)
v ), and σt(i) are i.i.d. Rademacher variables):870

Eσ,S̃val

[
sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]]
≤

L√
nvT

√
Exv

[∥xv∥2]E
[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
. (23)
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Proof. We will proceed similarly to Lemma I.2 till Equation 19. We now need to upper bound871

EX,f,ϵ [supλ ∥ŵλ∥] using the well-specified assumption. If we denote y = X⊺w∗ + ϵ, we see that,872

ŵλ = (XX⊺ + λI)−1Xy

= (XX⊺ + λI)−1(XX⊺w∗ +Xϵ)

= (XX⊺ + λI)−1XX⊺w∗ + (XX⊺ + λI)−1Xϵ

=⇒ ∥ŵλ∥ ≤ ∥(XX⊺ + λI)−1XX⊺w∗∥+ ∥(XX⊺ + λI)−1Xϵ∥
≤ ∥(XX⊺ + λI)−1XX⊺∥∞∥w∗∥+ ∥(XX⊺ + λI)−1X∥∞∥ϵ∥

=⇒ sup
λ

∥ŵλ∥ ≤ ∥w∗∥+ ∥ϵ∥/
√
V (XX⊺)

=⇒ EX,w∗,ϵ

[
sup
λ

∥ŵλ∥
]
≤ E

[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
.

Where in the second last step, we set λ → 0 using the fact that the eigenvalues of (XX⊺+λI)−1XX⊺873

are λi

λi+λ and the singular values of (XX⊺ + λI)−1X are
√
λi

λi+λ if the eigenvalues of XX⊺ are λi874

respectively.875

Proceeding through the the rest of the steps similarly to Lemma I.2, we obtain the desired result.876

Theorem I.5 (Proof of Theorem C.2). Given a loss function that satisfies Assumptions 1 and 2 in877

Section C, and tasks that are well-specified linear maps, the expected validation loss error using the878

ERM estimator defined in Equation 2 is bounded with probability ≥ 1− δ as:879

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

E [∥xv∥] +
2L√
nvT

√
Exv

[∥xv∥2]E
[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 5C

√
ln(16/δ)

2T
.

Here M2 = max ∥Xy∥2, b2v = max ∥xv∥2 ΛT
D = E [maxt 1/V (XtXt⊺)].880

Proof. Proceeding similarly to Theorem C.1,881

lv(λERM )− lv(λ
∗) ≤ sup

λ
(lv(λ)− lv(λ, S)) + C

√
ln(1/δ)

2T

with probability at least 1− δ. Using Lemma I.1 again, we break the first error term into error induced882

from a finite sampling of validation examples, and error induced from finite sampling of training data883

to get that with probability ≥ 1− δ:884

sup
λ

lv(λ)− lv(λ, S) ≤ 2Eσ,S̃tr

sup
λ

1

T

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )


+ 2Eσ,S̃val

sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]
+ 2C

√
2 ln(4/δ)

T
.

In Lemma I.3, we see that
∑

i l(X
t(i)⊺
v ŵt

λ, y
t(i)
v ) is Lipschitz in 1

V T+λ
for fixed y

t(i)
v . Here V T =885

mint V (XtXt⊺) and V (.) is the smallest non-zero eigenvalue of the matrix. We use this Lipschitzness886

to bound the first term with probability ≥ 1− δ as:887

Eσ,S̃tr

[
sup
λ

1

nvT

∑
t,i

σtl(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

]
≤ MLΛT

D√
T

E [∥xv∥] +
MLbvΛ

T
D√

nvT

√
log(T/δ)

2
.
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Lemma I.4 uses Lipschitzness of the loss function to upper bound the second term with probability888

≥ 1− δ as:889

Eσ,S̃val

[
sup
λ

1

nvT

∑
t,i

σt(i)EX,f,ϵ

[
l(Xt(i)⊺

v ŵλ, y
t(i)
v )

]]
≤

L√
nvT

√
Exv

[∥xv∥2]E
[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
.

We now replace δ by δ/4 in the 4 probabilistic bounds above so that the following holds with890

probability at least 1− δ:891

lv(λERM )− lv(λ
∗) ≤

2MLΛT
D√

T
Exv

[∥xv∥] +
2L√
nvT

√
Exv

[∥xv∥2]E
[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 2C

√
2 ln(16/δ)

T
+ C

√
ln(4/δ)

2T
.

To get the desired result, we note that C
√

ln(4/δ)
2T ≤ C/2

√
2 ln(16/δ)

T .892

J Proof of Proposition C.3893

Proposition J.1 (Proof of Proposition C.3). Consider the expected validation error using an ERM894

estimator for the ridge parameter as defined in Equation 2. Assume further that all tasks are well-895

specified such that all inputs x are sampled from isotropic distributions with independent entries896

and bounded density. Concretely, assume that each entry in the input x is sampled independently897

from a zero-mean distribution with density bounded by C0 such that E [xx⊺] = Σ = σ2
x/dId. We898

further restrict the covariance matrices of both x,w∗ to have constant trace as d increases. So,899

tr(Σ) = σ2
x = const and tr(E [w∗w∗⊺]) = σ2

w = const. If n ≥ 6d, the generalization error bound900

given in Theorem C.2 is O
(

1√
T
(T 2/d +

√
log(T/δ))

)
.901

Proof. To instantiate the bound in Theorem C.2, we want to use Theorem G.3, and make the following902

manipulations to fit their assumptions. Consider the random variable x′ = (
√
d/σx)x. The covariance903

matrix of x′ is E [x′x′⊺] = Id, and each entry is independent with density bounded by C0. We can904

thus use Proposition G.4 to satisfy the assumptions of Theorem G.3 for α = 1, C = 2
√
2C0 = O(1).905

Thus, if n ≥ max(6d/α, 12/α) = max(6d, 12) and 1 ≤ q ≤ αn/12 = n/12,906

E
[
|max(1, λmin(Σ̂

′
n)

−1)|q
]1/q

≤ 21/qC ′,

where C ′ = O(1) and Σ̂′
n = n−1X ′X ′⊺ is the sample covariance matrix of x′. Now, since907

λmin(Σ̂
′
n)

−1 ≤ max(1, λmin(Σ̂
′
n)

−1),908

E
[
λmin(Σ̂

′
n)

−q
]1/q

≤ E
[
|max(1, λmin(Σ̂

′
n)

−1)|q
]1/q

=⇒ E
[
nqλmin(X

′X ′⊺)−1
]1/q

= O(1)

=⇒ E
[
d−qλmin(XX⊺)−q

]1/q
= O(1/n)

=⇒ E
[
λmin(XX⊺)−q

]1/q
= O(d/n)

=⇒ E
[

1

V (XX⊺)q

]1/q
= O(d/n).
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Now, for any sequence of i.i.d. random variables Z1, . . . , ZN , if E [Zq]
1/q ≤ C for q ≥ 1, then909

E [max(Z1, . . . , ZN )] = E [max(Z1, . . . , ZN )]
q/q

≤ E [max(Z1, . . . , ZN )q]
1/q (Jensen’s inequality)

≤ (E [NZq])1/q

= N1/qC.

Thus, since E
[

1
V (XX⊺)q

]1/q
= O(d/n) =⇒ ΛT

D = E [maxt(1/V (XtXt⊺))] = O
(
d
nT

1/q
)
. This910

holds if n ≥ max(6d, 12) and q ≤ n/12. We substitute q = d/2 to get ΛT
D = O

(
d
nT

2/d
)

911

The bound given in Theorem C.2 is reproduced as follows:912

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

E [∥xv∥] +
2L√
nvT

√
Exv

[∥xv∥2]E
[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
+

2MLbvΛ
T
D√

nvT

√
log(4T/δ)

2
+ 5C

√
ln(16/δ)

2T
.

For the second term,913

EX,w∗,ϵ

[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
≤
√

E [∥w∗∥2] +
√
E [∥ϵ∥2]O(d/n)

=
√

E [tr(w∗w∗⊺)] +O(
√

d/n) = σw +O(
√

d/n). (24)

If we substitute n ≥ 6d, we get that ΛT
D = O(T 2/d), and EX,w∗,ϵ

[
∥w∗∥+ ∥ϵ∥/

√
V (XX⊺)

]
=914

O(1). Further, all terms involving δ are O(log(T/δ)), using which we can rewrite the bound as:915

lv(λERM )− lv(λ
∗) ≤ O

(
T 2/d

√
T

+
1√
T

+

√
log(T/δ)

T
)

)

≤ O

(
1√
T

(
T 2/d +

√
log(T/δ)

))
.

Note that we used the fact that E [∥xv∥] ≤
√
E [∥xv∥2] =

√
E [tr(Σ)] = O(1).916

K Proofs for tuning LASSO917

We first present relevant properties of LASSO solutions from prior work. Let (X, y) with X =918

[x1, . . . , xd] ∈ Rd×m and y ∈ Rm denote a (training) dataset consisting of m labeled examples with919

d features. LASSO is given by the following optimization problem.920

min
w∈Rd

∥X⊺w − y∥22 + λ1||w||1,

where λ1 ∈ [Λ,Λ] ⊂ R+ is the L1 regularization penalty. We will use the following well-known921

facts about the solution of the LASSO optimization problem Fuchs [2005], Tibshirani [2013] which922

follow from the Karush-Kuhn-Tucker (KKT) optimality conditions.923

Lemma K.1 (KKT Optimality Conditions for LASSO). w∗ ∈ argminw∈Rd ∥X⊺w − y∥22+λ1||w||1924

iff for all j ∈ [d],925

xj(X
⊺w∗ − y) = λ1sign(w

∗), if w∗
j ̸= 0,

|xj(X
⊺w∗ − y)| ≤ λ1, otherwise.

926

Here xj(X
⊺w∗ − y) is the correlation of the the j-th covariate with the residual X⊺w∗ − y. This927

motivates the definition of equicorrelation sets of covariates. For S = {s1, . . . , sk} ⊆ [d], let928

XS = [xs1 , . . . , xsk ].929
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Definition 7 (Equicorrelation sets, Tibshirani [2013]). Let w∗ ∈ argminw∈Rd ∥X⊺w − y∥22 +930

λ1||w||1. The equicorrelation set corresponding to w∗, E = {j ∈ [d] | |xj(X
⊺w∗ − y)| = λ1}, is931

simply the set of covariates with maximum absolute correlation. We also define the equicorrelation932

sign vector for w∗ as s = sign(XE(X
⊺w∗ − y)).933

The characterization of the LASSO solution in Lemma K.1 can be restated more concisely using the934

equicorrelation sets and sign vectors as935

XE(X
⊺
Ew

∗
E − y) = λ1s.

A necessary and sufficient condition for the uniqueness of the LASSO solution is that XE is full rank936

for all equicorrelation sets E Tibshirani [2013] (see Balcan et al. [2022] for a sufficient condition in937

terms of general position).938

Assumption 3. For each task, XE is full rank for each E ⊆ [d].939

Under this assumption, the unique solution to LASSO satisfies the following closed form within a940

fixed piece.941

Lemma K.2 (Tibshirani [2013], Lemma 3). Let E , s be the equicorrelation set and sign vector942

respectively (Definition 7). Suppose Assumption 3 holds for X . Then for any y and λ1 > 0, the943

LASSO solution is unique and is given by944

w∗
E = (XEX

⊺
E )

−1(XEy + λ1s), w
∗
[d]\E = 0.

945

While the above piecewise closed-form solution for LASSO involves similar terms to the ridge946

closed-form solution, there are some crucial differences. First, the λ1 dependence is linear within947

each piece. In addition, it is known that the optimal solution w∗
E is continuous in λ1 (even at the piece948

boundaries) [Mairal and Yu, 2012]. Second, the slope and intercept for each linear piece depend on949

the submatrix XE instead of the full matrix X .950

K.1 Rademacher complexity lemmas for LASSO951

We will now present appropriate modifications of the lemmas for ridge regression above and use the952

above properties of LASSO solutions to establish bounds on the generalization error for tuning the L1953

regularization coefficient. The following Lemma is the analogue of Lemma I.3 for L1 regularization.954

Lemma K.3. Consider the problem of tuning the LASSO regularization coefficient λ1. Given a955

validation loss function that satisfies Assumptions 1 and 2 given in Section C and S̃tr as defined956

in Equation 11 the following holds (where we denote y
t(i)
v = f t(x

t(i)
v , ϵ

t(i)
v ), and σt are i.i.d.957

Rademacher variables):958

Eσ,S̃tr
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v )⊺ŵt
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√
dExv

[∥xv∥]√
T

+
LΛΛ̃T

D

√
dbv√

nvT

√
log T

δ

2
,

where b2v = max ∥xv∥2 and Λ̃T
D = ES̃tr

[
maxE,t

1
V (XEX

⊺
E )

]
.959

Proof. Using Lipschitzness (Corollary H.1.1), as argued in the proof of Lemma I.3:960

Eσ,S̃tr

 sup
λ∈[Λ,Λ]

1

nvT

∑
t,i

σtl((xt(i)
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[
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λ∈[Λ,Λ]

∑
t

σt
∑
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(xt(i)
v )⊺ŵt

λ

]
.

Let ΛE,s denote the set of values of λ ∈ [Λ,Λ] for which the equicorrelation set and sign vectors are961

E , s respectively (Definition 7). We can rewrite the above as962

L

nvT
Eσ,S̃tr

[
sup

λ∈[Λ,Λ]

∑
t

σt
∑
i

(xt(i)
v )⊺ŵt

λ

]
=

L

nvT
Eσ,S̃tr

[
max
E,s

sup
λ∈ΛE,s

∑
t

σt
∑
i

(xt(i)
v )⊺ŵt

λ

]
.
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We next use Lemma K.2 and Hölder’s inequality to show Lipschitzness of x⊺
vŵλ in λ for a fixed E , s:963

x⊺
vŵλa

− x⊺
vŵλb

= (xv)
⊺
E((XEX

⊺
E )

−1(XEy + λas)− (XEX
⊺
E )

−1(XEy + λbs))

= (xv)
⊺
E((XEX

⊺
E )

−1s)(λa − λb)

≤ ∥(xv)
⊺
E∥∥(XEX

⊺
E )

−1s∥|λa − λb|
≤ ∥xv∥∥(XEX

⊺
E )

−1s∥|λa − λb|.

We note that the above piecewise-Lipschitzness within a fixed piece corresponding to a fixed E , s964

also implies a global Lipschitzness in terms of the worst-case piece, by using the fact that ŵλ1
is965

continuous in λ1 [Mairal and Yu, 2012]. Indeed, for any pair of λ1 values λ, λ′, the (signed) average966

slope of the slope between them has magnitude no more than the largest slope in any single fixed967

piece corresponding to the E , s that maximize ∥(XEX
⊺
E )

−1s∥.968

We can use this Lipschitzness (Theorem H.1) in above to get969

Eσ,S̃tr
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i

(xt(i)
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λ

]
(25)
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≤ ΛES̃tr
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∥(Xt
EX
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v ∥
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We use Khintchine’s inequality, Hölder’s inequality, and ||s|| ≤
√
d in the above steps. Substituting970

ES̃tr

[
maxt,E ∥(Xt

EX
t⊺
E )−1∥

]
=: Λ̃T

D, and simplifying the last term as in the proof of Lemma I.3, we971

get the desired bound.972

The following lemma is the LASSO analogue to Lemma I.2 for Ridge regularization.973

Lemma K.4. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C,974

and S̃val as defined in Equation 12, the following holds with probability at least 1 − δ (where we975

denote y
t(i)
v = f(x

t(i)
v , ϵ

t(i)
v ) and σt(i) are i.i.d. Rademacher variables):976
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σt(i)EX,y

[
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(
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V (XEX
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√
d

V (XEX
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E )

)]
.

Proof. We follow the arguments in the proof of Lemma I.2. The main change is when giving the977

bound on ∥ŵλ∥.978
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For a fixed E , s (Definition 7), we have by Lemma K.2,979

∥ŵλ∥ = ∥(XEX
⊺
E )

−1(XEy + λ1s)∥
≤ ∥(XEX

⊺
E )

−1XEy∥+ λ1∥(XEX
⊺
E )

−1s∥ (triangle inequality)

≤ ∥y∥√
V (XEX

⊺
E )

+ Λ
∥s∥

V (XEX
⊺
E )
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V (XEX

⊺
E )

+ Λ

√
d

V (XEX
⊺
E )

. (26)

Recall that here V (M) denotes the smallest non-zero singular value of M . This implies,980

EX,y

[
sup
λ

∥ŵλ∥
]
≤ EX,y

[
max
E

(
∥y∥√

V (XEX
⊺
E )

+ Λ

√
d

V (XEX
⊺
E )

)]
. (27)

981

L Proofs for Tuning the Elastic Net982

We further extend the analysis for LASSO in Appendix K to the Elastic Net which involves simulta-983

neous tuning of L1 and L2 penalties. We use the same notation as in Appendix K. The Elastic Net is984

given by the following optimization problem.985

min
w∈Rd

∥X⊺w − y∥22 + λ1||w||1 + λ2||w||22,

where λ1 ∈ [Λ1,Λ1] ⊂ R+ and λ2 ∈ [Λ2,∞) ⊂ R+. We will use the following generalization of986

Lemma K.2.987

Lemma L.1 (Balcan et al. [2022], Lemma C.1). Suppose Assumption 3 holds for X . Then for any y988

and λ1, λ2 > 0, the Elastic Net solution is unique and is given by989

w∗
E = (XEX

⊺
E + λ2I|E|)

−1(XEy + λ1s), w
∗
[d]\E = 0,

for some E ⊆ [d] and s ∈ {−1, 1}|E|.990

We now extend the LASSO lemmas from Appendix K to the Elastic Net. The following is a991

straightforward extension of Lemma K.3 and gives an upper bound on the expectation with respect to992

sampling of the training set, of the Rademacher complexity of the average empirical validation loss,993

across different values of λ1, λ2.994

Lemma L.2. Consider the problem of tuning the Elastic Net regularization coefficients λ = (λ1, λ2).995

Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C and S̃tr as996

defined in Equation 11, the following holds (where we denote y
t(i)
v = f(x

t(i)
v , ϵ

t(i)
v ) and σt are i.i.d.997

Rademacher variables):998

Eσ,S̃tr

[
sup

λ1∈[Λ1,Λ1]
λ2∈[Λ2,∞)

1

nvT

∑
t,i

σtl((xt(i)
v )⊺ŵt

λ, y
t(i)
v )

]
≤

LΛ1

√
d√

T

Exv
[∥xv∥] + bv

√
log(T/δ)

2nv

EX

[
max
t,E

1

V (Xt
EX

t⊺
E ) + Λ2

]
.

Proof. The proof follows the same arguments as in the proof of Lemma K.3, but using Lemma L.1999

and that λ2 ≥ Λ2.1000

The following lemma is the Elastic Net analogue to Lemmas M.4 and K.4. We give an upper bound1001

on the expectation with respect to sampling of the validation set, of the Rademacher complexity of1002

the average expected validation loss (w.r.t. sampling of the training set), across different values of1003

λ1, λ2.1004
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Lemma L.3. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C,1005

and S̃val as defined in Equation 12, the following holds with probability at least 1 − δ (where we1006

denote y
t(i)
v = f(x

t(i)
v , ϵ

t(i)
v ) and σt(i) are i.i.d. Rademacher variables):1007

Eσ,S̃val

 sup
λ1∈[Λ1,Λ1]
λ2∈[Λ2,∞)

1

nvT

∑
t,i

σt(i)EX,y

[
l(xt(i)⊺

v ŵt
λ, y

t(i)
v )

]
≤

L
√
Exv

[∥xv∥2]√
nvT

EX,y

[
max
E

(
∥y∥
√

V ∗(XEX
⊺
E )

V ∗(XEX
⊺
E ) + Λ2

+
Λ1

√
d

V (XEX
⊺
E ) + Λ2

)]
.

Here V ∗(M) is the non-zero singular value of M that maximizes
√

σi(M)

σi(M)+Λ2
.1008

Proof. We adapt the arguments in the proof of Lemma K.4.1009

For a fixed E , s (Definition 7), we have by Lemma K.2,1010

∥ŵλ∥ = ∥(XEX
⊺
E + λ2I)

−1(XEy + λ1s)∥
≤ ∥(XEX

⊺
E + λ2I)

−1XEy∥+ λ1∥(XEX
⊺
E + λ2I)

−1s∥ (triangle inequality)

≤ max
i

∥y∥
√
σi(XEX

⊺
E )

σi(XEX
⊺
E ) + Λ2

+ Λ1
∥s∥

V (XEX
⊺
E ) + Λ2

≤
∥y∥
√
V ∗(XEX

⊺
E )

V ∗(XEX
⊺
E ) + Λ2

+
Λ1

√
d

V (XEX
⊺
E ) + Λ2

. (28)

Recall that here V ∗(M) denotes the non-zero singular value of M that maximizes
√

σi(M)

σi(M)+Λ2
. This1011

implies,1012

EX,y

[
sup
λ

∥ŵλ∥
]
≤ EX,y

[
max
E

(
∥y∥
√

V ∗(XEX
⊺
E )

V ∗(XEX
⊺
E ) + Λ2

+
Λ1

√
d

V (XEX
⊺
E ) + Λ2

)]
. (29)

1013

L.1 Constructing Gramian matrices with lower bounded smallest eigenvalue1014

Here we present a helper lemma for constructing an illustrative example distribution where our1015

distribution-dependent bounds lead to improved generalization guarantees over prior work. We will1016

need the following standard Theorem that gives a lower bound on the smallest singular value of a1017

sub-Gaussian matrix.1018

Theorem L.4 (Vershynin 2018). Let A be a d × n random matrix with independent, mean zero,1019

subgaussian with variance proxy K2, and isotropic columns Ai. Then for any t ≥ 0 the smallest1020

singular value of A satisfies,1021

σmin(A) ≥
√
n− CK2(

√
d+ t),

with probability at least 1− 2 exp
(
−t2

)
, where C is an absolute constant.1022

To construct our example for the Elastic Net, we need to extend this result to all sub-matrices and1023

all tasks. Roughly speaking, in the following lemma, we establish a uniform high-probability lower1024

bound on the smallest singular value of sub-Gaussian submatrices for all tasks.1025

Lemma L.5. Let At ∈ Rd×n be i.i.d. random matrices for each t ∈ [T ], with independent, mean-zero,1026

isotropic, sub-Gaussian columns with variance proxy K2. Then there exist constants C,C ′ depending1027

only on K, such that the following holds: if n ≥ C
(
d+ log T

δ

)
, then with probability at least 1− δ,1028

min
E⊆[d]
t∈[T ]

σmin(A
t
E) ≥

√
C ′n.
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Equivalently,1029

min
E⊆[d]
t∈[T ]

λmin(A
t
E(A

t
E)

⊺) ≥ C ′n.

Proof. For a fixed subset E ⊆ [d] of size |E| = s and fixed t ∈ [T ], note that the matrix At
E has1030

independent, isotropic, sub-Gaussian rows. By standard results (e.g., Vershynin [2018], Theorem1031

4.6.1 in the 2nd Edition), there exist constants c0, C0 such that1032

Pr
[
σmin(A

t
E) ≤

√
n− C0

√
s− r

]
≤ exp

(
−4c0r

2
)
, ∀r ≥ 0.

Set r =
√
n/2 to get1033

Pr

[
σmin(A

t
E) ≤

√
n

2
− C0

√
s

]
≤ exp(−c0n).

We now do a union bound over subsets E and the tasks t. There are 2d subsets of [d] and T tasks.1034

Applying a union bound, we get the probability of failure1035

Pr

[
∃E ⊆ [d], t ∈ [T ] | σmin(AE) ≤

√
n

2
− C0

√
|E|
]
≤ 2d · T · exp(−c0n)

≤ exp (−c0(n− c1d− c2 log T )) ,

for constants c1, c2. Choose n ≥ c1d+ c2 log T + 1
c0

log 1
δ , to make this probability at most δ. Thus,1036

with probability at least 1− δ, we have for all E, t1037

min
E⊆[d]
t∈[T ]

σmin(A
t
E) ≥

√
n

2
− C0

√
d.

Choosing n ≥ C(d+ log T
δ ) with a sufficiently large constant C completes the proof.1038

L.2 Proof of Proposition D.31039

Finally, we show an example where our bounds improve over the distribution independent bounds1040

from prior work [Balcan et al., 2023].1041

Proposition L.6. Consider the expected validation error of an ERM estimator for the Elastic Net1042

hyperparameters over the range λ1 ∈ [Λ1,Λ1], λ2 ∈ [Λ2,∞). Assume further that all tasks are1043

well-specified such that all inputs x are sampled from sub-Gaussian distributions with independent1044

entries. Concretely, assume that each entry in the input x is sampled independently from a zero-mean1045

sub-Gaussian distribution such that E [xx⊺] = Σ = (σ2
x/d)Id. We further restrict the covariance1046

matrices of both x,w∗ to have constant trace as d increases. So, tr(Σ) = σ2
x = const and1047

tr(E [w∗w∗⊺]) = σ2
w = const. For sufficiently large n ≥ Ω

(
d+ log T

Λ2

)
, the generalization error1048

bound given in Theorem D.2 is Õ
(
1/

√
nT
)

, where the soft-O notation suppresses dependence on1049

quantities apart from T, n and d.1050

Proof. The generalization error bound in Theorem D.2 is1051

lv(λERM )− lv(λ
∗) =

Õ

(
LΛΛ̃T

D

√
d√

T
+

L√
nvT

EX,y

[
max
E

(
∥y∥
√

V ∗(XEX
⊺
E )

V ∗(XEX
⊺
E ) + Λ2

+
Λ1

√
d

V (XEX
⊺
E ) + Λ2

)])
.
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Define Gt,E := Xt
EX

t⊺
E . We have,

∥(Xt
EX

t⊺
E + Λ2I)

−1∥ =
1

Λ2 + λmin(Gt,E)
.

Now by Lemma L.5, if n = Ω(d+ log(T/δ)) with probability at least 1− δ,1052

max
E,t

∥(Xt
EX

t⊺
E + Λ2I)

−1∥ ≤ 1

Λ2 + Cn
.

Setting δ =
Λ2

n , we get that for n = Ω
(
d+ log T

Λ2

)
,1053

Λ̃T
D = EX

[
max
t,E

∥(Xt
EX

t⊺
E + Λ2I)

−1∥
]
≤ 1

Λ2 + Cn
+

Λ2

n
· 1

Λ2

= O

(
1

n

)
.

A similar argument shows that1054

EX,y

[
max
E

(
∥y∥
√

V ∗(XEX
⊺
E )

V ∗(XEX
⊺
E ) + Λ2

+
Λ1

√
d

V (XEX
⊺
E ) + Λ2

)]

= O

(
1√
n
+

Λ
√
d

n

)
Therefore,1055

lv(λERM )− lv(λ
∗) = O

(
LΛ

√
d√

T
· 1
n
+

L

nvT
· Λ√

n

)
= O

(
LΛ√
nT

)
.

1056

M Alternative Bounds Based on Prior Work1057

In this section, we present an alternative to Theorem C.1 that uses previous techniques like the1058

ones used in Maurer et al. [2016]. In particular, Maurer et al. [2016] address learning optimal1059

representations from multiple tasks. They give generalization error bounds using Rademacher1060

complexities by dividing the error into an error induced from learning imperfect representations1061

and from imperfect learning given a representation. This section proceeds similarly, by dividing the1062

generalization error into an error induced from imperfect estimation of expected validation error (due1063

to finiteness of validation data), and error from imperfect estimation of λ due to finiteness of the1064

number of tasks.1065

The main distinction of this section from the proof of Theorem C.1 is the difference in the decompo-1066

sition of error in Lemmas M.2 and I.1. While the decomposition in Lemma M.2 is more intuitive1067

and similar to a decomposition done in Maurer et al. [2016], the decomposition in I.1 led to an1068

asymptotically tighter analysis.1069

Before we state the main theorem, we start with an overloaded definition of the empirical expected1070

validation loss which takes S̃tr as input:1071

lev(λ, S̃tr) =
1

T

∑
t

Ext
v,ϵ

t
v

[
l(xt⊺

v ŵt
λ, y

t
v)
]

= ES̃′
val

[
l̃v(λ, S̃tr ×ew S̃′

val)
]
. (30)

Where ytv = f t(xt
v, ϵ

t
v). Thus for a given S̃tr, lev computes the expectation of the empirical validation1072

loss over all possible sampling of the validation data. We state the main theorem of this section below.1073

Theorem M.1. Given a loss function that satisfies Assumptions 1 and 2 above, the expected validation1074

loss error using the ERM estimator defined in Equation 2 is bounded with probability ≥ 1− δ as:1075

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

Exv [∥xv∥] +
2L
√
nv

√
Exv [∥xv∥2]

√
EX,y [∥y∥2/V (XX⊺)]

+
2LM̃

√
nv

4
√
T

√
Exv

[∥xv∥2]
4

√
ln(4/δ)

2
+ 5C

√
ln(16/δ)

2T
.
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Here M2 = max ∥Xy∥2, M̃2 = max ∥y∥2/V (XX⊺), ΛT
D = E [maxt 1/V (XtXt⊺)].1076

Proof. The proof proceeds similar to the proof for Theorem C.1. We write lv(λERM )− lv(λ
∗) =1077

lv(λERM )− lv(λERM , S)+ lv(λERM , S)− lv(λ
∗, S)+ lv(λ

∗, S)− lv(λ
∗). We note, as usual, that1078

lv(λERM , S)− lv(λ
∗, S) ≤ 0 and lv(λ

∗, S)− lv(λ
∗) is bounded by a Hoeffding bound (Theorem1079

G.1). Notably, with probability ≥ 1− δ,1080

lv(λ
∗, S)− lv(λ

∗) ≤ C

√
ln(1/δ)

2T
.

It remains to bound lv(λERM ) − lv(λERM , S) ≤ supλ lv(λ) − lv(λ, S). We observe that this is1081

error between the empirical loss, and expected loss over sampling of validation examples and tasks.1082

We break this error into error induced from a finite sampling of validation examples, and error from a1083

finite sampling of tasks in Lemma M.2. We get that with probability ≥ 1− δ:1084

sup
λ

lv(λ)−lv(λ, S) ≤ 2Eσ,(Xt,ft,ϵt∀t)

[
sup
λ

1

T

∑
t

σtExv,ϵv

[
l(x⊺

vŵ
t
λ, yv)

]]

+ 2Eσ,(Xt
v,ϵ

t
v∀t)

sup
λ

1

nvT

∑
t,i

σt(i)l(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

+ 2C

√
2 ln(4/δ)

T
. (31)

In Lemma M.3, we show that Eϵv [l(x
⊺
vŵ

t
λ, yv)] is Lipschitz in 1

V (XtXt⊺)+λ with Lipschitz constant1085

∥Xtyt∥∥xv∥ for fixed yv . We use this Lipschitzness to bound the first term as:1086

Eσ,(Xt,ft,ϵt∀t)

[
sup
λ

1

T

∑
t

σtExv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]]

≤ MLΛT
D√

T
.

We can use Lipschitzness of the loss function in the second term of Equation 31 to get1087

Eσ,(Xt
v,ϵ

t
v∀t)

sup
λ

1

nvT

∑
t,i

σt(i)l(Xt(i)⊺
v ŵt

λ, y
t(i)
v )

 ≤ L

nvT
Eσ,(Xt

v,ϵ
t
v∀t)

sup
λ

∑
t,i

σt(i)Xt(i)⊺
v ŵt

λ

 .

This term can be viewed as a trace product between validation examples and a matrix of predictions1088

ŵt
λ. We use this in Lemma M.4 to show that with probability ≥ 1− δ:1089

Eσ,(Xt
v,ϵ

t
v∀t)

sup
λ

1

nvT

∑
t,i

σt(i)l(xt(i)⊺
v ŵt

λ, y
t(i)
v )

 ≤

L
√
nv

√
Exv

[∥xv∥2]
√
EX,y [∥y∥2/V (XX⊺)] +

LM̃
4
√
n2
vT

√
Exv

[∥xv∥2]
4

√
ln(1/δ)

2
.

We can now replace δ by δ/4 in the three probabilistic bounds above so that the following holds with1090

probability at least 1− δ:1091

lv(λERM )− lv(λ
∗) ≤ 2MLΛT

D√
T

Exv
[∥xv∥] +

2L
√
nv

√
Exv

[∥xv∥2]
√
EX,y [∥y∥2/V (XX⊺)]

+
2LM̃
4
√

n2
vT

√
Exv

[∥xv∥2]
4

√
ln(4/δ)

2

+ 2C

√
2 ln(16/δ)

T
+ C

√
ln(4/δ)

2T
.

To get the desired result, we note that C
√

ln(4/δ)
2T ≤ C/2

√
2 ln(16/δ)

T .1092

Below we present and prove the main Lemmas used in the above theorem. We first start by upper-1093

bounding the generalization error in terms of two different Rademacher complexities: Rademacher1094

complexity of validation loss with fixed training data and Rademacher complexity of expected1095

validation loss over choice of validation data.1096

37



Lemma M.2. Given a bounded validation loss function, that is, given that l(x⊺
vŵλ(X, y), yv) ≤1097

C,∀xv, yv, X, y, λ. For any problem instance S as defined in Equation 1, with probability at least1098

1− δ,1099

sup
λ
(lv(λ)− lv(λ, S)) ≤ 2Eσ,S̃tr

[
sup
λ

1

T

∑
t

σtExv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]]

+ 2Eσ,S̃val

sup
λ

1

nvT

∑
t,i

σt(i)l(Xt(i)⊺
v ŵt

λ, y
t(i)
v )


+ 2C

√
2 ln(4/δ)

T
.

Where ytv = f t(x⊺
v , ϵv), y

t(i)
v = f t(X

⊺t(i)
v , ϵ

t(i)
v ).1100

Proof. We begin by breaking the generalization error into error induced from a finite sampling of1101

tasks, and error from a finite sampling of validation examples. This is similar to the approach of1102

Maurer et al. [2016], where the authors break the generalization error into error induced from learning1103

a representation, and error from learning given a representation.1104

sup
λ
(lv(λ)− lv(λ, S)) = sup

λ
(lv(λ)− lev(λ, S̃tr) + lev(λ, S̃tr)− lv(λ, S))

≤ sup
λ
(lv(λ)− lev(λ, S̃tr)) + sup

λ
(lev(λ, S̃tr)− lv(λ, S)). (32)

Note that lv(λ) is the expected value of lev(λ, S̃tr) over sampling of S̃tr, whereas lev(λ, S̃tr) is1105

the average over T samples of training data. We can use Corollary G.2.1 by replacing each li by1106

lev(λ, S̃tr) to get that with probability ≥ 1− δ/2,1107

sup
λ
(lv(λ)− lev(λ, S̃tr)) ≤ ES̃tr,S̃′

tr

[
sup
λ
(lev(λ, S̃tr)− lev(λ, S̃′

tr))

]
+ C

√
2 ln(4/δ)

T
. (33)

Again note that, for a fixed S̃tr, we can view lv(λ, S) as an average over nvT i.i.d. samples of the1108

form xv, ϵv, where the (tnv + i)th sample for t ∈ [T ], i ∈ [nv] becomes the ith validation example1109

for the tth task. We can then view lev(λ, S̃tr) as the expected value of lv(λ, S) over the sampling of1110

S̃val. Thus, replacing each li in Corollary G.2.1 by lv(λ, S), we get that with probability ≥ 1− δ/2,1111

sup
λ
(lev(λ, S̃tr)−lv(λ, S)) ≤

ES̃val,S̃′
val

[
sup
λ
(l̃v(λ, S̃tr ×ew S̃′

val)− l̃v(λ, S̃tr ×ew S̃val))

]
+ C

√
2 ln(4/δ)

nvT
.

(34)

In order to upper bound the unknown term in Equation 33, we note that we can arbitrarily swap the1112

ith training instances between S̃tr and S̃′
tr without changing the expectation. In fact, we can do1113

this for all i ∈ R ⊆ [T ] for any arbitrary set R. This allows us to reduce the term to a Rademacher1114
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complexity. We show this below where we denote ytv = f t(x⊺
v , ϵv):1115

ES̃tr,S̃′
tr

[
sup
λ

lev(λ,S̃′
tr)− lev(λ, S̃tr)

]
= ES̃tr,S̃′

tr

[
sup
λ

1

T

∑
t

Exv,ϵv

[
l(x⊺

vŵ
′t
λ , y

′t
v )
]
− 1

T

∑
t

Exv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]]

= ES̃tr,S̃′
tr

[
sup
λ

1

T

∑
t∈R

Exv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]
+

1

T

∑
t/∈R

Exv,ϵv

[
l(x⊺

vŵ
′t
λ , y

′t
v )
]

− 1

T

∑
t/∈R

Exv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]
− 1

T

∑
t∈R

Exv,ϵv

[
l(x⊺

vŵ
′t
λ , y

′t
v )
]]

= 2Eσ,S̃tr

[
sup
λ

1

T

∑
t

σtExv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]]

. (35)

In the last step we introduce rademachar variables for each task.1116

Similarly, in Equation 34, we note that we can arbitrarily swap the (tnv + i)th validation instances1117

between S̃val and S̃′
val without changing the expectation. In fact, we can do this for all (t, i) ∈ R ⊆1118

[T ] × [nv] for any arbitrary set R. This allows us to reduce the term to a Rademacher complexity.1119

We show this below where we denote y
t(i)
v = f t(X

⊺t(i)
v , ϵ

t(i)
v ) and y

′t(i)
v = f t(X

′⊺t(i)
v , ϵ

′t(i)
v ):1120

ES̃val,S̃′
val

[
sup
λ
(lv(λ, S̃tr ×ew S̃val)− lv(λ, S̃tr ×ew S̃′

val))

]
= ES̃val,S̃′

val

[
sup
λ

1

T

∑
t

1

nv

∑
i

l(Xt(i)⊺
v ŵt

λ, y
t(i)
v )− 1

T

∑
t

1

nv

∑
i

l(X ′t(i)⊺
v ŵt

λ, y
′t(i)
v )

]

= ES̃val,S̃′
val
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 . (36)

In the last step, we introduce rademachar variables for each value of (t, i).1121

Since Equations 33 and 34 hold with probability ≥ 1−δ/2 each, both equations hold with probability1122

≥ 1− δ by a union bound. We get the desired result by combining Equations 32, 33, 34, 35, 36 and1123

further noting that C
√

2 ln(4/δ)
T ≥ C

√
2 ln(4/δ)

nvT
.1124

In the following we give an upper bound on the expectation with respect to sampling of the training set,1125

of the Rademacher complexity of the expected value of validation error over sampling of validation1126

tasks in terms of the distribution of inputs x.1127

Lemma M.3. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section1128

C and S̃tr as defined in Equation 11, the following holds with probability at least 1− δ (where we1129

denote ytv = f t(xv, ϵv)):1130

Eσ,S̃tr

[
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1

T

∑
t

σtExv,ϵv

[
l(x⊺

vŵ
t
λ, y

t
v)
]]

≤ MLΛT
D√

T
(37)

where M2 = max ∥Xy∥2 and ΛT
D = EX [maxt 1/V (XtXt⊺)].1131
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Proof. We proceed with the proof much similar to Lemma I.3. We first note that if yv = f(xv, ϵv)1132

for a deterministic function f , Lipschitzness of the loss function implies Lipschitzness in expectation1133

over ϵv:1134

l(x⊺
vŵ1, yv)− l(x⊺

vŵ2, yv) ≤ L|x⊺
vŵ1 − x⊺

vŵ2|
=⇒ Eϵv [l(x

⊺
vŵ1, yv)− l(x⊺

vŵ2, yv)] ≤ L|x⊺
vŵ1 − x⊺

vŵ2|.
Using Lipschitzness (Corollary H.1.1):1135
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[
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t
v)
]]
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T
Eσ,S̃tr,xv

[
sup
λ

∑
t

σtx⊺
vŵ

t
λ

]
. (38)

This expression is similar to a one-sample variant of the Rademacher complexity in Lemma M.4 as1136

well as that in Pontil and Maurer [2013]. However, we cannot use the techniques used there since that1137

would result in a constant upper bound. We instead use Equation 22 and Theorem H.1 to conclude1138

that,1139
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T
Eσ,S̃tr,xv

[
sup
λ

∑
t

σtx⊺
vŵ
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∥Xtyt∥2
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]
.

We use Khintchine’s inequality (Theorem G.5) and set λ = 0 in the last step. To get the desired result,1140

we note from assumption that M2 = max ∥Xy∥2 =⇒
√∑

∥Xtyt∥2 ≤ M
√
T . Thus,1141
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Exv

[∥xv∥]

1142

We now show an upper bound on the expected Rademacher complexity of validation loss given fixed1143

training data in terms of the distribution of outputs y.1144

Lemma M.4. Given a validation loss function that satisfies Assumptions 1 and 2 given in Section C,1145

and S̃val as defined in Equation 12, the following holds with probability at least 1 − δ (where we1146

denote y
t(i)
v = f t(x

t(i)
v , ϵ

t(i)
v )):1147
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Here M̃2 = max ∥y∥2/V (XX⊺).1148
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Proof. We define R as below and use Lipschitzness to upper bound it as a simpler Rademacher1149

complexity term:1150

R =
1

nvT
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]
.

To compute the above quantity, we use a manipulation similar to one in Pontil and Maurer [2013].1151

We define two matrices Xσ ∈ RT×d and Wλ ∈ Rd×T : the t-th row of Xσ is defined as Xσ(t)
=1152 ∑

i σ
t(i)x
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v and the t-th column of Wλ is defined as W (t)
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λ . By this definition we see that,1153
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Note that ES̃val
[R] corresponds to the left hand side in the statement of the Lemma.1154
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To compute ∥Wλ∥2:1155
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It remains to compute bounds on E
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]
. Using Hoeffding inequality (Theorem G.1),1156
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λ∥2 ≤ M̃2∀t, λ, we can say the following with probability ≥ 1− δ:1157
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This gives us that with probability ≥ 1− δ,1158
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Finally, note that from Equation 20,1159

∥ŵλ∥2 ≤ ∥y∥2/V (XX⊺),

where we defined V (.) as the smallest non-0 singular value of the matrix. Thus,1160
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and,1161

max ∥ŵλ∥2 ≤ max ∥y∥2/V (XX⊺).

So that M̃2 = max ∥y∥2/V (XX⊺) satisfies ∥ŵt
λ∥2 ≤ M̃2∀t, λ.1162

Combining Equations 39, 40, 41 and 42,1163
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