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Abstract

Recent advances in Vision Transformers (ViT) and Stable Diffusion (SD) models
with their ability to capture rich semantic features of the image have been used for
image correspondence tasks on natural images. In this paper, we examine the ability
of a variety of pre-trained ViT (DINO, DINOv2, SAM, CLIP) and SD models,
trained exclusively on natural images, for solving the correspondence problems
on medical images. While many works have made a case for in-domain training,
we show that the models trained on natural images can offer good performance
on medical images across different modalities (CT,MR,Ultrasound) sourced from
various manufacturers, over multiple anatomical regions (brain, thorax, abdomen,
extremities), and on wide variety of tasks. Further, we leverage the correspondence
with respect to a template image to prompt a Segment Anything (SAM) model
to arrive at single shot segmentation, achieving dice range of 62%-90% across
tasks, using just one image as reference. We also show that our single-shot method
outperforms the recently proposed few-shot segmentation method - UniverSeg
(Dice range 47%-80%) on most of the semantic segmentation tasks(six out of
seven) across medical imaging modalities.

1 Introduction

Foundation models, both self-supervised (DINO [3] [9], Stable Diffusion [12] and supervised
(SAM [7], CLIP [11] have advanced the state of the art in Computer Vision. Most of these models
benefit from deriving knowledge from tens of millions of natural images and text data. But, there is a
hesitation in using these models on medical images due to the difference in acquisition physics and
reconstruction algorithms [8]. Consequently, these models undergo expensive fine-tuning on limited
relevant medical imaging data [5]. This study presents a methodology for one shot localization and
segmentation of regions of interest for medical images, leveraging the existing FMs and chaining
them as necessary (e.g. DINO with SAM) to obtain robust performance, without the need to perform
any kind of fine-tuning on medical imaging data. We also present a comprehensive evaluation of the
efficacy of various FMs (Dino V1/V2, Stable Diffusion, SAM, CLIP) on different datasets spanning
a variety of tasks across different anatomies from multiple modalities (CT, MR, U/S) with images
sourced from different manufacturers, and analyze their strengths and weaknesses. In addition, we
compare our methods with the state-of-the-art medical few shot segmentation method UniverSeg [2]
and demonstrate the superiority of the proposed approach on most of the segmentation tasks.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.



Figure 1: Proposed localization and segmentation framework: (a) Correspondence for a pixel marked
in template image is obtained by finding the most similar pixel in the target image - the most similar
pixel is obtained by interpolating the sub-image level features obtained through FM (b) For a given
set of positive and negative pixels marked in a template image - corresponding pixels are obtained on
target image and given as inputs to SAM to obtain segmentation.)

2 Literature Review

One of the earliest works using self-supervised learning (SSL) for automatic segmentation was
presented in DINO v1. The authors showed that the attention masks from various heads had
the ability to segregate semantic parts of an image but our experiments show a limited utility of
this approach for medical images 6.1.1. Authors in [6] showed that models trained using DINO
demonstrated emergence in their ability to extract patch level features for semantic segmentation.
We deduce that such an approach can be very effective for region correspondence tasks with user
interaction. Other works such as [1, 12, 14] demonstrate improvements in ability to obtain dense
image features and their enhancements using FMs for correspondence tasks.

Segment Anything Model (SAM) [7] is a “prompt”-able (points, box and text) semantic segmen-
tation model which we propose can be chained with the above mentioned dense feature based
methods.UniverSeg is a new entrant in FM based semantic segmentation, offering the capability
for few-shot segmentation using templates. We have compared our FM based correspondence-
segmentation pipeline with UniverSeg (one shot and five shot).

2.1 Contributions

The main contributions of this paper are (a) chaining of outputs from exising FMs for medical image
segmentation (b) ability for user to specify regions of interest(RoI) (c) comprehensive evaluation of
different FMs for twelve different medical tasks

3 Methods

In the following sections we present our localization and chained segmentation framework and detail
the methods to obtain dense features using the Foundation Models
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Figure 2: The results of chained approach (Feature based correspondence) followed by SAM based
segmentation are shown for different anatomies and modalities. The left column shows the template
images along with positive and negative prompts, while the right column shows predicted prompts
along with the SAM segmentation masks for different target images.

3.1 Localization Framework

For the localization followed(optionally) by the segmentation framework, we assume the presence of
a template image T on which we mark the key positive points set (prompts) T+ = {T+

i , i = 1, .., n}
and negative point set T− = {T−

i , i = 1, ..,m}. Positive point set denote the landmarks(for
localization) or points in the region of interest. Let I ∈ RP×Q be the target image on which
localization or segmentation is to be performed.

Corr(T+
i , I) = argmax

p,q
cosine_similarity(T feat

i , Ifeatp,q ) (1)

where, p = 1, ..P and q = 1, ..Q. Broadly, we used the following methodology for one-shot
localization: (a) First, the patch features are extracted and interpolated at pixel level from the template
image denoted as T feat

i , (b) correlation of features between template and target image is computed as
given by equation 1. Where, target image features at pixel location p, q are denoted by Ifeatp,q , (c) For
landmark correspondence, this is the endpoint, (d) For organ segmentation, we utilize the landmark
correspondence and any additional positive and negative prompts provided by user on template as a
prompt for Segment Anything model (SAM). This entire framework is outlined in fig 1.

3.2 Pre-trained FM models for feature extraction

We utilized the following vision transformer models for dense feature extraction purposes: DI-
NOv1 [3], DINOv2 [9], Segment Anything (SAM, ViT-H model) encoder [7] and Contrastive
Language–Image Pre-training (CLIP, ViT-B model) vision encoder [11]. For DINO, we used multiple
different model configurations as follows:(a)Overall size (SZ) of the model:small(s), base(b), large(l)
and gigantic(g)(b)Patch size (PS) used for image tokenization: 8, 14 and 16 (c)To facilitate easy
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reading, DINO models are abbreviated as : d[VERSION][SZ][PS] (d)For DINO, have following
configurations used in experiments : d1s8, d1s16, d1b8, d1b16, d2s14, d2b14, d2l14 and d2g14. For
feature extraction from diffusion models, we follow the method prescribed in [12] to derive image
features from diffusion model using the pretrained Stable Diffusion (SD) model v.2.1.

3.3 Patch descriptors using Foundation Models

Vision Transformers work by dividing an image into non-overlapping patches of a certain size. The
self-attention mechanism and the projection of tokens into key, query, value and token, allows us
to derive multiple embeddings for patches as well as for overall image (CLS token). Unlike [1],
where the “key embedding” is used for dense feature extraction, we find merit in using the “token
embedding” from the last transformer block as the patch feature descriptor. Specifically for d1s8,
d1s16, d1b8, d1b16, d2s14, d2b14 models, we use 11th layer tokens as the embeddings. For d2l14
and d2g14, we use the 23rd and the 39th layer token embeddings respectively. For SAM, we derive
the patch embeddings as the output of the encoder layer and for CLIP we utilize the patch embeddings
from the visual transformer model.

To improve the resolution of patch-level features, we adopted the method from [1], where the authors
modified the existing non-overlapping patch generation to create overlapping patches along with the
positional encodings of ViT to improve the spatial resolution. These are then interpolated to get the
pixel level features. In addition, the neighborhood log binning [1] is used to enrich each patch feature
with the descriptors from its context.

For deriving dense features using diffusion models, we follow the method prescribed in [12]. Diffusion
models are generative and progressively refine a noisy image into a high-quality one, simulating
the diffusion of information in a stochastic manner. The model is trained through a forward step,
to predict the noise in an image given the noisy image and time step t, which can be leveraged to
generate new images by iteratively refining noisy images. For the purpose of feature extraction,
the input to the network at time step t is constructed by introducing appropriate level of noise and
extracting the intermediate layer features as diffusion features(DIFT) [12]. This step is repeated
multiple times, to enhance the stability of the features, and results aggregated. We follow the default
hyper-parameters settings as designated in code repository corresponding to [12].

4 EXPERIMENTS AND RESULTS

In this section we examine the efficacy of variants of DINO [3], Dinov2 [9], SAM [7] and Stable
Diffusion [12] for various segmentation and localization tasks. We do not consider CLIP [11] for
these experiments since our initial experiments 6.1.3 to visually assess quality of dense features was
not as promising as the others. For segmentation tasks we also compare against the state-of-the-art
for few-shot segmentation [2]. For segmentation tasks, we also report the accuracy for supervised
models which were trained on existing annotated data for each task. The training was performed only
on the slices containing a significant presence of the organ of interest, since all other evaluation is
performed only on positive slices.

4.1 Data

We evaluate the proposed one-shot segmentation and localization pipeline on a variety of CT , MR
and ultrasound images using both in-house and publicly available datasets for a variety of tasks.
A summary of the datasets used along with the tasks and other details is provided in Table 1. A
description of the datasets follows.

Open-Source Datasets:

• CT Total Segmentator Dataset [13]: 1204 CT examinations and segmentations of 104
anatomical structures (27 organs, 59 bones, 10 muscles, 8 vessels). In this paper, we have
used data from three organs: urinary bladder (40 cases), spleen (69 cases) and liver (74) for
experiments.

• HaN Dataset [10]: Anonymized head and neck (HaN) images of 42 patients that underwent
both CT and T1-weighted MR imaging. Segmentations of 30 organs at risk for the CT
images.

4



Table 1: Dataset description

Dataset Name # Slices Modalities Target Task

TS:Urinary
Bladder

40 CT Segment urinary blad-
der

TS:Spleen 69 CT Segment spleen
TS:Liver 91 CT Segment liver
Kidney 50 MR (T2w coronal images) Segment Kidney
Shoulder 25 MR (Sagittal Localizer im-

ages)
Segment Shoulder

Knee Axial 283 MR (Axial Localizer im-
ages)

Localize landmarks

Knee Sagittal 283 MR (Sagittal Localizer im-
ages)

Localize Landmarks

Spine:Coccyx 182 MR (T1w sagittal images) Vertebrae labeling
Head Neck 42 CT (Head neck) Eyeball and optic

nerve localization
Kidney (US) 66 Ultrasound (Kidney) Kidney Segmentation
Gall Bladder
(US)

29 Ultrasound (Gall Bladder) Gall Bladder Segmen-
tation

Table 2: Normalized Euclidean distance(NED) 3
for various models and landmarks. If multiple
landmarks present in a anatomy (e.g. knee MRI),
these are averaged and reported. A value > 0.1 is
considered as worse performance, while value <
0.05 is considered acceptable for clinical usage.

Model MR
Coccyx

Knee
Axial

Head
Neck

Knee
Sagittal

d1b16 0.098 0.027 0.014 0.064
d1b8 0.114 0.024 0.008 0.060
d1s16 0.118 0.025 0.014 0.063
d1s8 0.122 0.023 0.008 0.056
d2b14 0.072 0.024 0.011 0.069
d2g14 0.052 0.024 0.010 0.062
d2l14 0.085 0.024 0.011 0.073
d2s14 0.107 0.024 0.012 0.064
SD 0.034 0.020 0.007 0.059
SAM 0.120 0.028 0.010 0.134

• MRI kidney dataset [4]: 50 patients with chronic kidney diseases. T2 weighted abdominal
MRI scans with kidney segmentation provided as ground-truth.

In-house datasets:

• MRI Shoulder dataset: MR SSFSE-localizer sagittal images from 25 subjects were used
for experiments.

• MRI Knee dataset: MR localizers from two vendors (238 from Vendor1 and 45 cases from
Vendor2) for knee landmark detection in axial and sagittal orientation. For sagittal image,
three landmarks are : a. Meniscus points b. Patella point and c. Patellar tendon insertion
point. For axial images, the three landmarks are: a. Patella surface b. posterior femoral
condyle and c. inner surface of the lateral femoral condyle.

• MRI Spine dataset: Sagittal T1 weighted images from 182 subjects collected from two
different clinical sites are used for spine vertebrae localization in lumbar and cervical stations.
One template image is chosen for both the stations and centroid of each vertebra is marked
to generate pixel level features.

• Ultrasound abdominal data: Appropriate Ultrasound cross-sections of routine evaluations
of the abdomen using a single vendor scanner from multiple clinical sites under an IRB
approved data sharing agreement, for gall-bladder and kidney segmentation, was used.

All evaluation was done using 2D slices for all the tasks. For landmark localization, a template image
with sample landmark location was used, while for segmentation tasks, the template image for each
of the tasks used positive and negative prompts inside and outside the region of interest (ROI) to
generate the pixel level features using different pre-trained foundation models.

Ground-truth (GT) marking For opensource datasets, GT provided by organizers was used as is.
For in-house datasets, GT was marked by a set of radiologists/ technicians/ clinicians and verified by
a Senior Radiologist using a dashboard.

4.2 Evaluation Metrics

Evaluation was done using different criteria for different tasks.For segmentation we assess the quality
of correspondence as well as final segmentation using SAM. For computing prompt accuracy i.e.
the accuracy of positive and negative prompts derived corresponding to that of template we use 2.
For eg. If all positive prompts are inside the region of interest , then accuracy is 100% for positive
prompts and vice-versa for negative prompts. Any positive prompts outside of ROI is considered as
mislabeled and quantified as reduction in accuracy as follows:

Acc+ =
1

n

n∑
i=1

1(Corr(T+
i , I) ∈ IM ) (2)

Where, IM is the ground truth segmentation mask. The accuracy for negative points can be computed
similarly. Dice overlap metric is used for estimating the quality of segmentation using the derived
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Table 3: Prompt accuracy 2 for a given ROI segmentation. An accuracy of 1 is desirable. The
accuracy is correlated to outcome Dice score.

Model Kidney (MR) TS: Liver Shoulder TS: Urinary Bladder TS: Spleen U S GB U S Kidney

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg

d1b16 0.863 1 0.972 0.916 0.840 1 0.725 1 0.652 0.818 0.577 0.9 0.696 0.863
d1b8 0.883 0.990 0.981 0.818 0.860 0.980 0.817 0.993 0.826 0.822 0.922 0.969 0.619 0.912
d1s16 0.816 0.990 0.951 0.913 0.830 1 0.676 1 0.690 0.822 0.534 0.922 0.692 0.85
d1s8 0.860 0.960 0.978 0.858 0.930 0.990 0.786 0.993 0.792 0.851 0.905 0.961 0.66 0.882
d2b14 0.920 0.930 0.940 0.967 0.820 0.990 0.658 0.993 0.661 0.840 0.913 0.956 0.69 0.918
d2g14 0.933 1 0.945 0.948 0.920 0.990 0.707 0.993 0.710 0.876 0.853 0.956 0.649 0.929
d2l14 0.910 0.980 0.936 0.955 0.860 1 0.701 0.993 0.734 0.822 0.87 0.974 0.642 0.92
d2s14 0.910 0.980 0.933 0.964 0.830 0.990 0.585 1 0.748 0.822 0.801 0.956 0.705 0.916
SD 0.916 0.990 0.981 0.903 0.840 0.970 0.743 0.987 0.608 0.865 0.922 0.978 0.564 0.91
SAM 0.806 0.930 0.928 0.909 0.240 0.870 0.585 0.914 0.618 0.847 0.715 0.969 0.512 0.727

Table 4: Mutiple correlation coefficient between positive and negative accuracy for predicted dice
across different models. The results indicate that as accuracy of prompts improve, the SAM based
segmentation task performance improves as well.

Segmentation tasks only Kidney TS: Liver Shoulder TS: Urinary Bladder TS: Spleen U/S GB U/S Kidney

Multiple correlation coefficient 0.92 0.67 0.99 0.95 0.67 0.95 0.98

prompts. For landmark correspondence task, normalized Euclidean distance (dist) between ground-
truth and predicted points is reported as given by equation 3.

Locerror(I) =
1

W

n∑
i=1

dist(Corr(T+
i , I), I+i ) (3)

4.3 Localization and segmentation results

Table 2, 3 and 5 along with Figures 4 and 2 summarize the metrics and performance for landmark
correspondence and organ segmentation with various models. Table 4 demonstrates that accurate
determination of positive and negative prompts is correlated to improvement in segmentation perfor-
mance from SAM across all models. We notice that in all cases, DINO v2 and stable diffusion-based
models perform best for these tasks with dice ranges of 0.62-0.90 and 0.57-0.88 respectively. DINO
V2 almost outperforms DINO V1 in all tasks which is mostly likely due to well curated data and
additional losses introduced in DINO V2 model. Moreover, from Table 2 and 5, we notice that there
is no single model which outperforms all other models across different tasks, rather we have to choose
the model optimal for the task at hand. In addition, a larger model does not necessarily provide the
best performance consistently (e.g. d2s14 outperforms d2g14 for spleen segmentation). Additionally,
we find that the models trained using self-supervised learning (DINO v2) perform better than their
supervised counterparts (SAM, CLIP) and the performance is at par with SD models. Furthermore, we
observe that for all segmentation tasks, except for Ultrasound kidney, the FM features combined with
SAM, using only a single template image, outperformed UniverSeg [2] by a significant margin for
both one shot and five shot segmentation - where the Universeg one-shot performance is significantly
worse for all tasks.

Figure 3: Segmentation performance comparison of the UniverSeg method with proposed methods.

This study has some shortcomings. Our approach is currently based on single slice, and it would be
interesting to see how does this scale to 3D volume segmentation. The current study is limited to
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Table 5: Dice metric reported for various segmentation tasks with various models. Acceptable dice
varies based on the end-application based on organ segmentation.

Model Kidney
(MR)

TS:
Liver

Shoulder TS: Urinary
Bladder

TS: Spleen U/S GB U/S
Kidney

d1b16 0.817 0.865 0.690 0.689 0.630 0.628 0.653
d1b8 0.828 0.867 0.677 0.717 0.702 0.723 0.596
d1s16 0.796 0.871 0.705 0.692 0.634 0.578 0.646
d1s8 0.814 0.864 0.682 0.724 0.675 0.731 0.605
d2b14 0.904 0.882 0.641 0.670 0.692 0.721 0.653
d2g14 0.891 0.885 0.744 0.689 0.681 0.738 0.624
d2l14 0.887 0.879 0.697 0.689 0.705 0.684 0.621
d2s14 0.883 0.872 0.671 0.666 0.740 0.693 0.657
SD 0.878 0.872 0.649 0.726 0.645 0.741 0.546
SAM 0.667 0.821 0.186 0.597 0.604 0.563 0.502
UniverSeg (1 shot) 0.465 0.621 0.321 0.184 0.150 0.364 0.395
UniverSeg (5 shot) 0.804 0.727 0.718 0.476 0.508 0.675 0.687

Supervised 0.918 0.917 0.792 0.867 0.891 0.895 0.848

only few organs interspersed over various modalities and the next step would be to do an exhaustive
evaluation over wider variety of cases expected in clinical practice (pathology, implants etc) in each
of these modalities.

Figure 4: The landmark localization with best performing models for each task is shown here. The
image on left of arrow is the template image with requested landmark. The images to the right are the
different target images across subjects with different orientations, size and anatomy coverage. Notice
reasonably good localization for various anatomical landmarks with a single foundation model based
single shot learning.

5 CONCLUSION

In this study, we have examined whether models such as Vision Transformers and Stable Diffusion
developed by the Computer Vision community extend to medical images. Over a variety of medical
imaging modalities, anatomical regions and tasks without the benefit of in-domain training, we
observe that such models can be indeed utilized for localization and segmentation tasks, provided
appropriate feature correlation metric can be designed. We demonstrated the efficacy of the proposed
chaining of correspondence with SAM, using a single exemplar, on twelve datasets spanning both
localization and segmentation tasks and established its superiority over other recent methods [2] in
the few shot realm.
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6 Supplementary Material

Figure 5: Results of co-lustering of pixel features from different models to understand efficacy of
pixel feature based methodology for localization of region of interest. CLIP features are blotchy and
don’t always capture the semantic similarities (Notice kidney region has different semantic labels) .
SAM – captures semantics well but gives many scattered similar regions which may not be similar
from ROI standpoint. DINO (d2s14) – was able to group similar regions well – e.g. all kidneys same
color – may not be at required level of granularity-e.g. other anatomies also colored pink in kidney
example. Stable Diffusion (SD) – able to group regions but also shows specificity to symmetricity of
image (note that kidney region left and kidney region right have different labels). Similarly in CT
liver case, notice symmetricity in labels.
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6.1 Additional Experiments and Results

In this section we present some more results from our experiments to understand and visualize the
efficacy of different model in deriving meaningful dense features, to explore the different ways in
which these dense features can be utilized for identifying RoI as well as the robustness of the various
models to changes in image poses.

Figure 6: (a) Attention maps from DINO for MR knee axial image (b) DINO attention maps for MR
kidney images

6.1.1 Attention based localization using DINO V1

Using attention maps from various attention heads from DINOv1 model (specifically the d1b8) to
identify regions of interest showed some interesting results for natural images [3]. Similar attention
head output was evaluated in MRI Knee Axial and MRI Kidney images to ascertain if they provide
good anatomical localization. Fig 6 shows the attention map from DINO v1(d1b8) model for heads
H1 and H2. We first note that the semantic region coverage of attention maps for medical images is
not as clean as for natural images (See [3], fig 4) . We notice that the first attention map (H1) for
both medical images in provides a rough segmentation of the knee femoral bone and the kidneys
respectively whereas the second attention map (H2) captures the region outside the organ of interest.
It might be possible to further heuristically cleanup these maps to obtain a rough region localization
maps. However, such a map will not provide us control on the region on interest (e.g fetch the
posterior end of femoral condyle) and hence we discarded this approach from further consideration.

6.1.2 Similarity based mask generation

We also explored similarity based mask generation as an alternative to the proposed method of
chaining the derivation of corresponding prompts using dense features with SAM for segmentation
tasks. In this approach we mark all the pixels in the target image whose similarity with any of the
template image positive prompt pixels is high i.e. pixels whose similarity is in the 80th percentile
among all target image pixels are considered. Samples of the results of such masks generated from
d2g14 are shown in fig 7. The choice of the model was based on visual examination of results
where d2g14 results look better for most cases. We observe that for images where the RoI are well
delineated the similarity mask is able to cover the RoI reasonably well and may be refined using
mask refinement algorithms. However, the method is heuristic in nature i.e. the setting of parameters
e.g. the similarity threshold limit needs careful consideration, and we are actively pursuing on
automatically determining this per task.

Figure 7: Similarity based masks using d2g for (a) MR Shoulder (b) CT Liver (c) MR Kidney

6.1.3 Clustering of pixel-level feature embeddings to verify semantic segmentation of similar
regions

We co-clustered the features (using k-means) on multiple target images and overlaid them on target
images. The quality of clustering was ascertained by visualizing the semantic regions to have similar
labels (i.e. colors) across the target images. This was evaluated on Total Segmentator Liver and MR
Kidney datasets.
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Figure 5 shows the semantic segmentation obtained by clustering target image features for various
models. Results indicate that this approach is feasible; especially with DINO, SAM, stable diffusion-
based and to some extent by CLIP models. However, the quality of clustering using CLIP seems
inferior to the other models and thus was not considered for further analysis.

6.1.4 Robustness of DINO and SD to image pose variations

We also evaluated the robustness of the two models (d2s14 and SD) to understand the impact of local
context in their performance. Accordingly, as an extreme example, the template was flipped along
left right or up-down and corresponding landmark provided. As seen in Figure 8, DINO v2(d2s14)
model was found to be more reliable to localize the landmark despite image orientation changes. This
is critical since in medical imaging image poses can be variable across scans and as such DINO v2
will be more appropriate.

Figure 8: The template image (left most image) was flipped, while some of target images were kept
intact or flipped to test robustness of two models. DINO (top row) was found to be more consistent in
localization of landmark, compared to stable diffusion (bottom row).
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