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Abstract

Deep neural networks are known to be vulnerable to well-designed adversarial1

attacks. Although numerous defense strategies have been proposed, many are tai-2

lored to specific attacks or tasks and often fail to generalize across diverse scenarios.3

In this paper, we propose Tensor Network Purification (TNP), a novel model-free4

optimization-based purification framework built upon a specially designed tensor5

network decomposition algorithm. TNP depends neither on the pre-trained genera-6

tive model nor the specific dataset, resulting in robust generalization across diverse7

adversarial scenarios. To this end, the key challenge lies in relaxing Gaussian-noise8

assumptions of classical decompositions and accommodating the unknown distri-9

bution of adversarial perturbations. Unlike the low-rank representation of classical10

decompositions, TNP aims to reconstruct the unobserved clean example from an11

adversarial example. Specifically, TNP leverages progressive downsampling and12

introduces a novel adversarial optimization objective to address the challenge of13

minimizing reconstruction error but without inadvertently restoring adversarial14

perturbations. Extensive experiments conducted on CIFAR-10, CIFAR-100, and15

ImageNet demonstrate that our method generalizes effectively across various norm16

threats, attack types, and tasks, providing a versatile and promising adversarial17

purification technique.18

1 Introduction19

Deep neural networks (DNNs) have achieved remarkable success across a wide range of tasks.20

However, DNNs have been shown to be vulnerable to adversarial examples (Szegedy et al., 2014;21

Goodfellow et al., 2015), which are generated by adding small, human-imperceptible perturbations to22

natural images but completely incorrect the prediction results to DNNs with potentially disastrous23

consequences. This inherent vulnerability of DNNs underscores the critical need for robust defense24

mechanisms to mitigate adversarial attacks effectively.25

Since then, numerous methods have been proposed to defend against adversarial examples. Notably,26

adversarial training (AT, Goodfellow et al., 2015) typically aims to retrain DNNs using specific27

adversarial examples, achieving robustness to seen types of adversarial attacks but performing28

poorly against unseen perturbations (Laidlaw et al., 2021). Another class of defense methods is29

adversarial purification (AP, Yoon et al., 2021), which leverages pre-trained generative models to30

remove adversarial perturbations and demonstrates better generalization than AT against unseen31

attacks (Nie et al., 2022; Lin et al., 2024a). However, AP methods heavily rely on pre-trained models32

tailored to specific datasets, limiting their transferability to different data distributions and tasks. As a33

result, both mainstream techniques face generalization challenges: AT struggles with diverse norm34

threats, and AP with task generalization, restricting their deployment to broader scenarios.35
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To address these challenges, we propose a novel model-free optimization-based adversarial purifica-36

tion framework built upon a coarse-to-fine tensor network decomposition, termed Tensor Network37

Purification (TNP), which bridges the gap between low-rank tensor network representation with38

Gaussian noise assumption and removal of adversarial perturbations with unknown distributions. As39

a model-free optimization-based technique, tensor network (TN) depends neither on any pre-trained40

generative model nor specific dataset (Oseledets, 2011; Zhao et al., 2016), enabling it to achieve41

strong generalization across diverse adversarial scenarios. As a pre-processing step, TN can eliminate42

potential adversarial perturbations for both clean and adversarial examples before feeding them43

into the classifier (Yoon et al., 2021), which also implies that TN can defend against adversarial44

attacks without retraining the classifier model. Moreover, by acting directly on a single input without45

fixed model parameters, TN is inherently more resistant to adversarial attacks, as discussed further46

in Appendix C. Consequently, benefiting from the aforementioned advantages, it is evident that47

TN-based adversarial purification represents a highly promising direction, offering the transferability48

to be effectively applied across diverse adversarial scenarios.49

The existing TN methods are particularly favorable for image completion and denoising when50

the corruption is sparse or follows a Gaussian distribution as long as it can be modeled explicitly.51

However, the distribution of well-designed adversarial perturbations fundamentally differs from these52

assumptions and often aligns with the intrinsic statistics of the data (Ilyas et al., 2019; Allen-Zhu &53

Li, 2022). Consequently, these perturbations behave more like genuine features than noise, making54

them challenging to be modeled explicitly and prone to being inadvertently reconstructed. To address55

this issue, we first explore the distribution changes of perturbations during the optimization process56

and initially mitigate their impact through progressive downsampling. Building upon these insights,57

we propose a coarse-to-fine TN incremental learning algorithm and introduce a novel adversarial58

optimization objective to avoid overly constraining the reconstruction error, preventing inadvertently59

restoring adversarial perturbations. Unlike classical TN methods applied to adversarial examples, our60

coarse-to-fine TN method prevents naive low-rank representation of the input and encourages the61

reconstructed examples to approximate the unobserved clean examples.62

We empirically evaluate the performance of TNP by comparing it with AT and AP across attack63

settings using multiple classifiers on CIFAR-10, CIFAR-100, and ImageNet. The results demonstrate64

that TNP achieves robustness with strong generalization across diverse adversarial scenarios. Specif-65

ically, TNP achieved a 26.45% improvement in average robust accuracy over AT across different66

norm threats, a 9.39% improvement over AP across multiple attacks, and a 6.47% improvement over67

AP across different datasets. Furthermore, in denoising tasks, TNP effectively removes adversarial68

perturbations while preserving consistency between the reconstructed clean example and the recon-69

structed adversarial example. These results collectively underscore the effectiveness and potential of70

TNP. In summary, our contributions are as follows:71

• We propose a model-free optimization-based technique based on tensor network representa-72

tion, which requires neither a powerful generative model nor reliance on specific dataset73

distributions, making it a general-purpose adversarial purification.74

• Based on our analysis of the distribution changes of adversarial perturbations during op-75

timization, we design a novel adversarial optimization objective for coarse-to-fine TN76

representation learning to prevent the restoration of adversarial perturbations.77

• We conduct extensive experiments on various datasets, demonstrating that our method78

achieves state-of-the-art performance, especially exhibiting strong generalization across79

diverse adversarial scenarios.80

2 Related Works81

Adversarial robustness To defend against adversarial attacks, researchers have developed various82

techniques aimed at enhancing the robustness of DNNs. Goodfellow et al. (2015) propose AT83

technique to defend against adversarial attacks by retraining classifiers with adversarial examples84

(Wang et al., 2019; Tack et al., 2022). In contrast, AP methods (Shi et al., 2021; Srinivasan et al., 2021)85

aim to purify adversarial examples before classification without retraining the classifier. Currently, the86

most common AP methods (Nie et al., 2022; Bai et al., 2024) rely on pre-trained generative models87

as purifiers, which are trained on specific datasets and hard to generalize to data distributions outside88

their training domain. Lin et al. (2024a) propose applying AT (Zhang et al., 2019) technique to AP,89
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optimizing the purifier to adapt to new data distributions, at the cost of substantial training costs.90

Although TNP employs AP technique, it fundamentally differs from these works in that a model-free91

optimization-based framework relying solely on the information of the single input example for AP,92

without requiring any additional priors from pre-trained models and training costs.93

Tensor network and TN-based defense methods Tensor network (TN) is a classical tool in signal94

processing, with many successful applications in image completion and denoising (Kolda & Bader,95

2009; Cichocki et al., 2015). Compared to classical TN methods such as TT (Oseledets, 2011)96

and TR (Zhao et al., 2016), we employ the quantized technique (Khoromskij, 2011) and develop97

a coarse-to-fine strategy. Recent work (PuTT, Loeschcke et al., 2024) also employs a coarse-to-98

fine strategy, aiming to achieve better initialization for faster and more efficient TT decomposition99

by minimizing the reconstruction error. In comparison, our method progresses from low to high100

resolution, explicitly targeting perturbation removal and analyzing the impact of downsampling on101

perturbations. Furthermore, we propose a novel optimization objective that goes beyond simply102

minimizing the reconstruction error, focusing instead on preventing the restoration of perturbations.103

With the growing concern over adversarial robustness, a line of work has attempted to leverage TNs104

as robust denoisers to defend against adversarial attacks. In particular, Yang et al. (2019) reconstruct105

images and retrain classifiers to adapt to the new reconstructed distribution. Entezari & Papalexakis106

(2022) analyze vanilla TNs and show their effectiveness in removing high-frequency perturbations.107

Additionally, (Bhattarai et al., 2023) extend the application of TNs beyond data to include classifiers,108

a concept similar to the approaches of (Rudkiewicz et al., 2024; Phan et al., 2023). Furthermore,109

(Song et al., 2024) employ training-free techniques while incorporating ground truth information to110

defend against adversarial attacks. However, the aforementioned methods rely on additional prior or111

are limited to specific attacks. In this paper, we aim to achieve robustness solely by optimizing TNs112

themselves, establishing them as a plug-and-play and promising adversarial purification technique.113

3 Backgrounds114

Notations Throughout the paper, we denote scalars, vectors, matrices, and tensors as lowercase115

letters, bold lowercase letters, bold capital letters, and calligraphic bold capital letters, e.g., x, xxx,116

XXX and XXX , respectively. A D-order tensor is an D-dimensional array, e.g., a vector is a 1st-order117

tensor and a matrix is a 2nd-order tensor. For a D-order tensor XXX ∈ RI1×···×ID , we denote its118

(i1, . . . , iD)-th entry as xi, where i = (i1, . . . , iD). Following the conventions in deep learning, we119

treat images as vectors, e.g., input example xxxin, clean example xxxcln, adversarial example xxxadv and120

reconstructed example yyy.121

Tensor network decomposition Given a D-order tensorXXX ∈ RI1×...×ID , tensor network decom-122

position factorizesXXX into D smaller latent components by using some predefined tensor contraction123

rules. Among tensor network decompositions, Tensor Train (TT) decomposition (Oseledets, 2011) en-124

joys both quasi-optimal approximation as well as the high compression rate of large and complex data125

tensors. In particular, a D-order tensorXXX ∈ RI1×...×ID has the TT format as xi = AAA1
i1
AAA2

i2
. . .AAAD

iD
,126

where AAAd
id
∈ Rrd−1×rd , for d ∈ [D] and id ∈ [Id]. Then, (1, r1, . . . , rd−1, 1) is the TT rank of XXX .127

For simplicity, we denoteXXX = TT(AAA1, . . . ,AAAD). When each dimension Id ofXXX is large, quantized128

tensor train (QTT, Khoromskij, 2011) becomes highly efficient, which splits each dimension in129

powers of two. For example, a 2D×2D image can be rearranged into a more expressive and balanced130

D-order tensor. For brevity, hereafter, a 2D × 2D image xxxD shall be called a resolution D image,131

whose quantized tensor isXXXD = Q(xxxD). QTT core denotes the core tensor after decomposition.132

4 Method133

Tensor network (TN) is a classical tool in signal processing, with many successful applications in134

image completion and denoising. By leveraging the ℓ2-norm as the primary optimization criterion,135

which aligns well with the statistical properties of a normal distribution, these methods (Phan et al.,136

2020; Loeschcke et al., 2024) have demonstrated strong capabilities in removing Gaussian noise.137

However, the distribution of well-designed adversarial perturbations is essentially different from138

Gaussian noise and cannot be modeled explicitly (Ilyas et al., 2019; Allen-Zhu & Li, 2022), which139

challenges the conventional assumptions of TN-based denoising methods, leading to ineffectiveness140
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Figure 1: Compare the adversarial perturbations in the downsampled images. (a) The distribution
changes of adversarial perturbations during downsampling process. (b) The KL divergence between
the adversarial perturbations and the Gaussian distributions with the same sample mean and variance.

on adversarial purification for xxxadv . To minimize the loss ∥xxxadv − TN(xxxadv)∥2, TN decompositions141

fit all feature components ofxxxadv , including the adversarial perturbations. However, in the presence of142

adversarial attacks, we aim to restore unobserved xxxcln from the input xxxadv , that is: TN(xxxadv) ≈ xxxcln143

rather than xxxadv . Based on the above analysis, it is crucial to overcome two challenges in designing144

an effective TN method: Q1. How can we transform the non-specific adversarial perturbations into a145

form amenable to TN modeling? Q2. How can we avoid overly constraining the reconstruction error146

from inadvertently restoring those perturbations?147

For Q1, we explore how adversarial perturbations behave under downsampling with average pooling.148

Intuitively, the central limit theorem suggests that as an image is progressively downsampled, aggre-149

gated perturbations begin to resemble a normal distribution. Thus, even an ℓ2-based penalty becomes150

effective in suppressing the perturbations at coarse resolution.151

However, while this insight helps suppress perturbations at lower resolutions, there remains the152

challenge of reconstructing the original resolution image. When upsampling and further optimizing153

using ∥xxxadv − TN(xxxadv)∥2, the perturbations will still be restored. This connects with Q2, for which154

we design a new optimization objective.155

4.1 Downsampling using average pooling156

An intuitive explanation for why downsampling aids in perturbation removal can be derived from157

the Central Limit Theorem (CLT, Grzenda & Zieba, 2008). When an image is downsampled by158

average pooling, the random components (e.g., pixel-level noise or minor adversarial perturbations)159

within those pooling patches are aggregated. We hypothesize that, given an adversarial example160

xxxadv , downsampling the xxxadv from its original resolution D to a lower resolution D − 1 will smooth161

out the perturbations. As the downsampling process progresses further, the distribution of the162

aggregated perturbations in the coarse resolution image xxxD−l is expected to converge toward a163

normal distribution, as illustrated in Figure 1a. More results are shown in Appendix G.164

To investigate this hypothesis in real datasets, we measure the KL divergence between the histograms165

of adversarial perturbations and the Gaussian distributions with the same sample mean and variance166

across 512 images from ImageNet. As shown in Figure 1b, the distribution of those perturbations167

progressively aligns with that of Gaussian noise as the downsampling process progresses. Conse-168

quently, even classical TN methods can effectively remove or mitigate adversarial perturbations at169

coarse resolution. Additionally, we further compare the influence of different downsampling methods170

to underscore the advantages of average pooling, as discussed in Appendix A.171

4.2 Tensor network purification172

Building upon our downsampling-based intuition, we design a coarse-to-fine purification pipeline173

by extending PuTT (Loeschcke et al., 2024), which employs progressive downsampling for better174

initialization of QTT cores. The workflow of tensor network purification (TNP) for classification175

tasks is illustrated in Figure 2, where the quantized XXX = Q(xxx), TT decomposition XXX ≈ YYY =176

TT(AAA1, . . . ,AAAD), and reconstruction yyy = Q−1(YYY) processes are depicted.177
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Algorithm 1 Adversarial optimization process.

Input: Example xxxd, number of iterations T ,
steps N , scale α and η, learning rate β
Initialize yyyd ← Pd(yyyd−1), δd ← 000
for t = 1, 2, . . . , T do

for n = 1, 2, . . . , N do
ℓ← Ladv(yyyd + δd,xxxd)
δd ← clip(δd + αsign(∇yyyd

ℓ),−η, η)
δ∗d ← clip(yyyd + δd, 0, 1)− yyyd
Gradient descent based on Eq. (1):
yyyd ← yyyd − β∇yyyd

Ltnp(xxxd, yyyd, δ
∗
d)

return yyyd
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Figure 2: Illustration of tensor network purification.

Initially, the 2D×2D input example xxxD (potentially adversarial example xxxadv or clean example xxxcln),178

whose quantized version is a D-order tensorXXXD, is first downsampled to a resolution D− l example179

xxxD−l, corresponding to a (D − l)-order tensor XXXD−l. The QTT cores of XXXD−l are optimized180

by PuTT via backpropagation within a standard reconstruction error ||xxxD−l − yyyD−l||2. Once the181

approximation ofXXXD−l is stabilized, the prolongation operatorPPPD−l+1 is applied to the QTT format182

of XXXD−l, producing a (D − l + 1)-order tensor PPPD−l+1XXXD−l. Additionally, we define the linear183

function Pd(·) acts on the image level, with the effect of upsampling from resolution d − 1 to d,184

details in Appendix B.2. This serves as an initialization to find the optimal QTT cores ofXXXD−l+1185

and reconstructed downsampled example yyyD−l.186

Next, the input example xxxD is once again downsampled to a resolution D − l + 1 example xxxD−l+1.187

At this stage, the QTT cores ofXXXD−l+1 are optimized using the adversarial optimization objective188

within a novel loss function as shown in Eq. (1). Similarly, once the approximation of XXXD−l+1189

stabilizes, the upsampling operation is performed. This process is repeated iteratively until reaching190

the QTT approximation YYYD of the original resolutionXXXD.191

Finally, TNP can purify potential adversarial examples (xxxcln or xxxadv) before feeding them into192

classifier f , e.g., f(TNP(xxxcln)) = f(TNP(xxxadv)) = gt, where gt is the ground truth label. As a193

plug-and-play module, TNP requires no modification to f and can be integrated with any classifier.194

4.3 Adversarial optimization process195

Following the coarse-to-fine process, despite the downsampling with average pooling and subsequent196

PuTT at lower resolutions can mitigate adversarial perturbations, the other challenge arises upon197

reconstructing the image at the original resolution, where minimizing the standard reconstruction198

error will inevitably restore the adversarial perturbations.199

Unlike traditional reconstruction, in the context of adversarial attacks, we can only observe the200

adversarial example xxxadv , while the goal is to reconstruct a “clean” yyy closing to the unobserved clean201

examplexxxcln. To bridge the gap betweenxxxadv andxxxcln, we propose a new optimization objective that202

introduces an auxiliary variable δ. Moreover, we leverage the previously reconstructed downsampled203

example as a crucial prior to guide the approximation toward xxxcln.204

Here, we outline the optimization procedure for xxxd, which corresponds to the gray box in Figure 2.205

Formally, given the resolution d example xxxd, we attempt to obtain the reconstructed example yyyd by206

performing gradient descent on optimization loss functions of207

Ltnp(xxxd, yyyd, δ
∗
d) = ||xxxd − (yyyd + δ∗d)||2 + ||Pd(yyyd−1)− yyyd||2,

s.t. δ∗d = arg max
∥δd∥<η

Ladv(yyyd + δd,xxxd),
(1)

where d ∈ [D − l + 1, D] and η is a scale hyperparameter.208

The auxiliary variable δ∗ is determined through an inner maximization process that utilizes a non-209

convex loss function Ladv. We employ a perceptual metric, structural similarity index measure210

(SSIM, Hore & Ziou, 2010), as Ladv to explore more potential solutions and better handle complex211

perturbation patterns. While δ∗ does not exactly represent the true adversarial perturbation, bounding212
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∥δ∥ < η can partially ensure that the misalignment between yyy andxxxadv remains controlled, effectively213

ensuring that yyy does not simply collapse into the adversarial example xxxadv .214

However, precisely because δ∗ does not represent the true perturbation, minimizing ||xxxd−(yyyd+δ∗d)||2215

may not yield the desired clean example. To address this limitation, we introduce a second loss216

term ||Pd(yyyd−1)− yyyd||2, which serves as a crucial “prior”. Specifically, we utilize the reconstructed217

downsampled example yyyd−1 as an additional constraint to aid in approximating the xxxcln. Building218

upon the observations in Figure 1, we start from the resolution D− l example xxxD−l that is optimized219

by PuTT, and then perform upsampling to the higher resolution to produce a clean-leaning reference,220

which acts to nudge yyy toward a less perturbed distribution. Although we never have direct access to221

the true clean example xxxcln, our loss provides an effective surrogate prior and guides the optimization222

process. The detailed algorithm of our adversarial optimization process is shown in Algorithm 1.223

5 Experiments224

In this section, we conduct comprehensive experiments on multiple datasets across various settings.225

The classification results demonstrate that TNP achieves robustness with strong generalization. We226

further investigate the removal of adversarial perturbations using tensor network decompositions and227

find that only TNP effectively removes the perturbations while preserving consistency between clean228

and adversarial examples. These results collectively highlight the effectiveness and potential of TNP.229

5.1 Experimental setup230

Datasets and model architectures We conduct extensive experiments on CIFAR-10, CIFAR-100231

(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) to empirically validate the effectiveness of232

the proposed methods against adversarial attacks. For classification tasks, we utilize the pre-trained233

ResNet (He et al., 2016) and WideResNet (Zagoruyko & Komodakis, 2016) models.234

Adversarial attacks We evaluate our method against AutoAttack (Croce & Hein, 2020), a widely235

used benchmark that integrates both white-box and black-box attacks. Additionally, following the236

guidance of Lee & Kim (2023), we utilize PGD (Madry et al., 2018) with EOT (Athalye et al., 2018b)237

for a more comprehensive evaluation. Considering the potential robustness overestimation caused by238

obfuscated gradients of the purifier model, we utilize BPDA (Athalye et al., 2018a) as an adaptive239

attack with the knowledge of both purifier and classifier, following the setting by Yang et al. (2019);240

Lin et al. (2024a). Further implementation details and discussion are provided in Appendix C.241

Compared methods We conduct experiments on the common benchmark and compare the ro-242

bustness of our method with those listed in RobustBench (Croce et al., 2021). We evaluate the243

generalization of existing defense methods, including AT methods (Gowal et al., 2020, 2021; Laidlaw244

et al., 2021; Dolatabadi et al., 2022; Pang et al., 2022) and AP methods, with particular attention245

to diffusion-based AP (Yoon et al., 2021; Nie et al., 2022; Lee & Kim, 2023; Lin et al., 2024b).246

Furthermore, we include comparisons with Tensor Train (TT, Oseledets, 2011), Tensor Ring (TR,247

Zhao et al., 2016), quantized technique (Khoromskij, 2011) and PuTT (Loeschcke et al., 2024).248

Due to the high computational cost of evaluating methods with multiple attacks, following the249

guidance of Nie et al. (2022), we randomly select 512 images from the test set for robust evaluation.250

All experiments presented in the paper are conducted by NVIDIA RTX A5000 with 24GB GPU251

memory, CUDA v11.7, and cuDNN v8.5.0 in PyTorch v1.13.11. More details in Appendix D.252

5.2 Robustness comparison on RobustBench253

In this section, we evaluate our method for defending against AutoAttack and compare it with the254

methods under all adversarial settings listed in RobustBench (Croce et al., 2021). Tables 1 to 4 present255

the performance of various defense methods against l∞ (ϵ = 8/255) and l2 (ϵ = 0.5) threats. Overall,256

the highest robust accuracy achievable by our method is generally on par with existing methods257

without using extra data (the dataset introduced by Carmon et al. (2019)). Specifically, compared258

to the second-best method, our method improves the robust accuracy by 1.67% on CIFAR-100, by259

1.84% on ImageNet, and the average robust accuracy by 0.36% on CIFAR-10.260

Due to the overfitting of WideResNet-28-10 trained on the limited data available in CIFAR-10, we261

observe that the results with standard classifier (Ours) struggle to reach state-of-the-art performance,262
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Table 1: Standard and robust accuracy against
AutoAttack l∞ threat (ϵ = 8/255) on CIFAR-10.
(†the methods use additional synthetic images.)

Defense method Extra Standard Robust
data Acc. Acc.

Gowal et al. (2020) ✓ 89.48 62.70
Bai et al. (2023) ✓† 95.23 68.06

Chen & Lee (2024) × 86.10 58.09
Cui et al. (2024) ×† 92.16 67.73
Nie et al. (2022) × 89.02 70.64

Zhang et al. (2024) × 90.04 73.05
Lin et al. (2024a) × 90.62 72.85

Ours × 82.23 55.27
Ours∗ × 91.99 72.85

Table 4: Standard and robust accuracy against
AutoAttack l∞ threat (ϵ = 4/255) on ImageNet.

Defense method Extra Standard Robust
data Acc. Acc.

Salman et al. (2020) × 64.02 37.89
Bai et al. (2021) × 67.38 35.51
Nie et al. (2022) × 67.79 40.93
Bai et al. (2024) × 70.41 41.70

Chen & Lee (2024) × 68.76 40.60
Ours × 65.43 42.77

Table 2: Standard and robust accuracy against
AutoAttack l2 threat (ϵ = 0.5) on CIFAR-10.

Defense method Extra Standard Robust
data Acc. Acc.

Augustin et al. (2020) ✓ 92.23 77.93
Gowal et al. (2020) ✓ 94.74 80.53

Wang et al. (2023) ×† 95.16 83.68
Rebuffi et al. (2021) ×† 91.79 78.32
Ding et al. (2019) × 88.02 67.77
Nie et al. (2022) × 91.03 78.58

Ours × 82.23 68.16
Ours∗ × 91.99 79.49

Table 3: Standard and robust accuracy against
AutoAttack l∞ (ϵ = 8/255) on CIFAR-100.

Defense method Extra Standard Robust
data Acc. Acc.

Hendrycks et al. (2019) ✓ 59.23 28.42
Debenedetti et al. (2023) ✓ 70.76 35.08

Cui et al. (2024) ×† 73.85 39.18
Wang et al. (2023) ×† 75.22 42.67
Pang et al. (2022) × 63.66 31.08
Jia et al. (2022) × 67.31 31.91

Ours × 62.30 44.34

consistent with findings from Chen & Lee (2024). To further improve robust accuracy, most AT263

methods incorporate additional synthetic data to train a robust classifier. Following this, we conduct264

experiments with the robust classifier (Ours∗), which utilizes an additional 20M synthetic images in265

training (Cui et al., 2024). This leads to a significant improvement in robust accuracy on CIFAR-10.266

Moreover, compared to the used robust classifier (Cui et al., 2024), our method further improves the267

robust accuracy by 5.12%. These results are consistent across multiple datasets and norm threats,268

confirming the effectiveness of our method and its potential for defending against adversarial attacks.269

5.3 Generalization comparison across various adversarial scenarios270

As previously highlighted, the existing defense methods are often criticized for their lack of gen-271

eralization across different norm threats, attacks, and datasets. In the following, we evaluate the272

performance of our method under various adversarial settings to demonstrate its robust generalization.273

Table 5: Standard accuracy and robust accuracy
against AutoAttack l∞ (ϵ = 8/255) and l2 (ϵ =
1.0) threats on CIFAR-10 with ResNet-50.

Type Defense method SA Robust Acc.
AA l∞ AA l2

Standard Training 94.8 0.0 0.0

AT
Training with l∞ 86.8 49.0 19.2
Training with l2 85.0 39.5 47.8

Laidlaw et al. (2021) 82.4 30.2 34.9
Dolatabadi et al. (2022) 83.2 40.0 33.9

AP Nie et al. (2022) 88.2 70.0 70.9
Lin et al. (2024a) 89.1 71.2 73.4

Ours 88.3 73.2 67.0

Results analysis on different norm threats274

Table 5 shows that AT methods (Laidlaw et al.,275

2021; Dolatabadi et al., 2022) are limited in276

defending against unseen attacks and can only277

effectively be against the specific attacks they278

are trained on. An intuitive idea is to apply AT279

across all norm threats or develop more gen-280

eral constraints to obtain a robust model. How-281

ever, training such a model is challenging due to282

the inherent differences among various attacks.283

In contrast, AP methods (Nie et al., 2022; Lin284

et al., 2024a) exhibit strong generalization, ef-285

fectively defending against unseen attacks. The286

results demonstrate that our method also pos-287

sesses strong generalization capabilities against288

unseen attacks, achieving performance close to289
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AT methods AP methods Ours*

Acc.

Figure 3: Comparison of robust
accuracy against multiple attacks.

Table 6: Standard accuracy (SA) and robust accuracy (RA) against
AutoAttack l∞ (ϵ = 8/255) on CIFAR-10 and CIFAR-100. The
pre-trained generative model used in AP is trained on CIFAR-10.

Method CIFAR-10 CIFAR-100 Avg.
SA RA SA RA SA RA

Standard 94.78 0.00 81.86 0.00 88.32 0.00
AT 92.16 67.73 73.85 39.18 83.01 53.46
AP 89.02 70.64 38.09 33.79 63.56 52.22

Ours∗ 91.99 72.85 71.48 44.53 81.74 58.69

the AP methods while significantly outperforming the existing AT methods. Specifically, compared290

to the best AT method, our method improves average robust accuracy by 26.45%.291

Results analysis on multiple attacks Figure 3 shows the comparison of robust accuracy against292

PGD+EOT and AutoAttack with l∞ (ϵ = 8/255) threat on CIFAR-10 with WideResNet-28-10.293

When facing different attacks within the same threat, AT methods (Gowal et al., 2020, 2021; Pang294

et al., 2022) exhibit better generalization than AP methods (Yoon et al., 2021; Nie et al., 2022; Lee &295

Kim, 2023). Typically, robustness evaluation is based on the worst-case results of the robust accuracy.296

Under this criterion, our method outperforms all AT and AP methods. Specifically, compared to the297

best AP method, our method improves average robust accuracy by 9.39%.298

Results analysis on different datasets Table 6 shows the generalization of the methods across299

different datasets. As previously highlighted, the existing AP methods typically rely on specific300

datasets. For AP method, when a pre-trained generative model trained on CIFAR-10 is applied to301

adversarial robustness evaluation on CIFAR-100, both standard accuracy and robust accuracy drop302

significantly. This occurs because the pre-trained generative model can only generate the data it has303

learned. Although the input examples originate from CIFAR-100, the generative model attempts to304

output one of the ten classes from CIFAR-10, severely distorting the semantic information of the305

input examples and leading to low classification accuracy. In contrast, our method exhibits strong306

generalization across different datasets, achieving comparable robust performance on CIFAR-100 as307

on CIFAR-10. Specifically, compared to the AP method (Nie et al., 2022), our method improves the308

average robust accuracy by 6.47%.309

Unlike existing methods, TNP employs an optimization-based strategy that operates solely on the310

given input, without relying on prior knowledge learned from large-scale training datasets or strong311

assumptions about attacks, thereby retaining strong generalization across various scenarios.312

5.4 Denoising tasks313

In this section, we evaluate the effectiveness of our method on non-classification tasks through visual314

comparisons and various quantitative metrics.315

Ablation study Figure 4 shows the comparison of visualizations on ImageNet. The top row in316

(a) displays the input clean example (CE), and its corresponding reconstructed clean examples (rec.317

CE) generated by traditional ℓ2 loss ||xxx− yyy||2 and our proposed loss function, while (b) displays the318

(a) Clean example

Input image Traditional ℓ! loss Ours

(b) Adversarial example

Input image Traditional ℓ! loss Ours, w/o “prior” OursOurs, w/o “prior”

Figure 4: Comparison of visualizations. The original input image and corresponding reconstructed
image (top), along with the error maps (bottom) for the clean example and the adversarial example.
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Table 7: Comparisons on CIFAR-10. The rec. CEs are expected to closely match the CEs, whereas
the rec. AEs should remain sufficiently different from the AEs to avoid restoring perturbations.

Defense CLN: CEs & rec.CEs ADV: AEs & rec.AEs REC: rec.CEs & rec.AEs
method Acc. NRMSE SSIM PSNR Acc. NRMSE SSIM PSNR NRMSE SSIM PSNR

Standard 94.78 - - - 0.00 - - - - - -

TT 87.30 0.0507 0.9526 31.14 36.13 0.0650 0.8977 28.99 0.0267 0.9790 39.10
TR 94.34 0.0171 0.9938 40.58 0.98 0.0464 0.9210 31.91 0.0322 0.9598 35.51

QTT 84.57 0.0613 0.9253 29.49 51.56 0.0724 0.8808 28.06 0.0233 0.9855 39.88
QTR 83.40 0.0613 0.9254 29.49 49.41 0.0724 0.8785 28.06 0.0231 0.9853 39.96
PuTT 80.86 0.0626 0.9261 29.32 44.14 0.0742 0.8787 27.84 0.0311 0.9770 38.03

Ours 82.23 0.0644 0.9203 29.06 55.27 0.0748 0.8707 27.77 0.0218 0.9863 40.37

reconstructed adversarial examples (rec. AE) for the input adversarial example (AE). Additionally,319

we create error maps to highlight differences, which (a) between the rec. CEs and the input CEs, and320

(b) between the rec. AEs and the rec. CEs, as shown at the bottom of Figure 4. The results indicate321

that while our method does not match the classical TN methods in reconstructing CEs, it significantly322

outperforms them in removing adversarial perturbations from AEs.323

Specifically, when processing CEs, the rec. examples generated by traditional ℓ2 loss are almost324

identical to the original ones, whereas our method is slightly less effective in restoring some details.325

However, when processing AEs, the rec. examples from traditional ℓ2 loss remain consistent with the326

original ones, leading to the preservation of adversarial perturbations, as highlighted in Figure 4b. In327

contrast, our method better removes those perturbations, ensuring that the rec. AEs and the rec. CEs328

retain similar information. Moreover, we evaluate the necessity of the second term in Eq. (1), which329

serves as a surrogate prior constraint to optimize the reconstructed examples toward the clean data330

distribution. As observed, removing this constraint eliminates prior information from the optimization331

process, increasing the likelihood of significant deviation in the wrong direction.332

Quantitative results analysis Table 7 shows the quantitative results of the denoising task for AEs333

and CEs, with detailed descriptions of evaluation metrics provided in Appendix D.2. We compare our334

method with existing tensor network decompositions, including TT, TR, QTT, QTR, and PuTT. While335

our method does not achieve the best denoising performance on clean examples, it still maintains336

classification performance well, achieving 82.23% standard accuracy with vanilla WideResNet-28-10.337

More importantly, our method outperforms others in the next two columns. Specifically, when338

processing AEs, our method yields the highest NRMSE and the lowest SSIM and PSNR, achieving339

the highest robust accuracy. This outcome is expected, as our goal is to ensure that the rec. AEs differ340

from the original AEs (i.e., lower SSIM and PSNR, and higher NRMSE in the “ADV” column) while341

rec. AEs closely resembling the rec. CEs (i.e., higher SSIM and PSNR, and lower NRMSE in the342

“REC” column). These results align well with the visual observations in Figure 4 and consistently343

demonstrate the effectiveness of our method, highlighting its potential in adversarial scenarios.344

Limitations and future works We identify several open problems related to TNP: (1) Although345

TNP is a training-free technique, it incurs additional optimization costs during inference, which poses346

challenges for deployment in low-latency scenarios, see more discussion in Appendices E.1 and E.2.347

(2) As a model-free optimization-based technique, TNP is inherently more resistant to adaptive348

attacks, see more discussion in Appendix C. Accordingly, developing more advanced optimization349

strategies and adaptive attack strategies specifically tailored to TNP remains a valuable direction for350

future research. We hope that our work will motivate further exploration of these challenges.351

6 Conclusion352

In this paper, we propose a novel model-free optimization-based adversarial purification (AP) built353

upon a specially designed tensor network decomposition. Extensive experiments on CIFAR-10,354

CIFAR-100, and ImageNet demonstrate that our method (TNP) achieves state-of-the-art performance355

with strong generalization across diverse scenarios. Additionally, we further identify several open356

challenges related to TNP, and believe that continued exploration of TN–based purification remains357

an exciting research direction for developing a plug-and-play and effective AP technique.358
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Appendix526

A Influence of different sampling methods527

To support our hypothesis of using the average pooling, we test it with stride sampling, which selects528

pixels with constant strides. In principle, the stride sampling would not change the distribution of529

perturbations. Therefore, it serves as a baseline to compare the influence of distributions.530

We test four types of noise distributions: (1) Gaussian N (0, 0.32), (2) Mixture of Gaussian (MoG),531

0.5 ·N (−1.0, 0.52)+0.5 ·N (1.0, 0.52), (3) Beta distribution, Beta(0.5, 0.5)− 0.5, and (4) Uniform532

distribution, Uniform(−0.5, 0.5). For MoG, Beta and uniform noises, we scale them to have the same533

signal-to-noise ratio with the Gaussian distribution. We add the noises on the Girl image (Loeschcke534

et al., 2024) with resolution 1024× 1024. First, we show the noise distributions in Figure 5. As can535

be seen, the Avg Pooling strategy transforms the non-Gaussian noises into Gaussian-like noises, while536

the Stride sampling would not. Second, we run the PuTT algorithm with different sampling methods537

for 100 times. The violin plot of denoising results are shown in Figure 6. In Gaussian distribution,538

the Stride sampling is better than AvgPooling. While for non-Gaussian noises, the AvgPooling is539

more robust and better than Stride. The denoising results indicate that the average pooling can handle540

different types of noises, which is consistent with our hypothesis. However, as we introduced, this541

might not be enough, since we need to deal with the original image and noises in the final stage.542

(a) MoG with Avg Pooling (b) MoG with Stride Sampling

(c) Beta with Avg Pooling (d) Beta with Stride Sampling

(e) Uniform with Avg Pooling (f) Uniform with Stride Sampling

Figure 5: Histogram figures of noises under different sampling methods.

(a) PSNR (b) SSIM

Figure 6: Violin plot of denoising results using different sampling methods. (a) PSNR results. (b)
SSIM results.

B Tensor network decomposition543

B.1 Matrix Product Operators544

A matrix product operator (MPO) (McCulloch, 2008; Hubig et al., 2017) is the TN representation of545

a linear operator acting on a TT format, which makes it highly efficient to handle large operators.546
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Namely, a linear operatorAAA : RI1×...×ID → RJ1×...×JD . Namely, if YYY =AAAXXX , then each entry of547

YYY is given as548

yi =

I1∑
i1=1

· · ·
ID∑

iD=1

AAA1
j1,i1AAA

2
j2,i2 . . .AAA

D
jD,iDXXX

1
i1XXX

2
i2 . . .XXX

D
iD ,

B.2 Prolongation Operator549

This work uses a specific MPO, known as the prolongation operator PPPd (Lubasch et al., 2018), to550

upsample a QTT format of an image from resolution d− 1 to d.551

Consider a one-dimensional vector xxxd ∈ R2d . The matrix PPP 2d→2d+1 upsamples xxxd to xxxd+1 by linear552

interpolation between adjacent points. For example, for d = 2,553

PPP 4→8 =



1 0 0 0
0.5 0.5 0 0
0 1 0 0
0 0.5 0.5 0
0 0 1 0
0 0 0.5 0.5
0 0 0 1
0 0 0 0.5


The matrix PPP 2d→2d+1 can be written as an MPOPPPd+1 entry-wise554

pj1,...,jd,i1,...,id+1
= PPP 1

j1,i1 . . .PPP
d
jd,id

PPP d+1
id+1

.

The entries are given explicitly (Lubasch et al., 2018) as555

PPP l
1,1(1, 1) = PPP l

2,2(1, 1) = PPP l
2,1(1, 2) = PPP l

1,2(2, 2) = 1,∀l ∈ [d]

PPP d+1
1 (1) = 1 ,PPP d+1

2 (1) = PPP d+1
2 (2) = 0.5 ,

and other entries are zero.556

The prolongation operator described above applies to the QTT format of one-dimensional vectors.557

In general, this operator is the tensor product of the one-dimensional operators on each dimension:558

PPP(2)
d = PPPd ⊗ PPPd for 2-dimensions (images) and PPP(3)

d = PPPd ⊗ PPPd ⊗ PPPd for 3-dimensions (3D559

objects). For simplicity, since this work concerns only images, the superscript is omitted, denoting560

the prolongation operator asPPPd.561

Ultimately, for a resolution d image xxxd, andXXX d = Q(xxxd), the upsampled image is resolution d+ 1,562

given as Pd(xxxd) = Q−1(PPPdXXX d), where the linear function Pd(·) acts on the image level.563

B.3 Recap of PuTT564

A 2D×2D image, denoted asxxxD, can be quantized in to a Dth order tensorXXXD = Q(xxxD). Firstly,xxxD565

is downsampled by average pooling to xxxD−l, correspondingly possesing a quantizationXXXD−l. Then,566

D− l QTT cores of XD−l can be optimized by backpropagation, returningYYYD−l. The QTT cores of567

next resolutionXXXD−l+1 can be optimized similarly, initialized by the prologationPPPD−l+1(yyyD−l).568

Repeat the process until the original resolution. (Loeschcke et al., 2024) demonstrates impressive569

reconstruction capability of PuTT thanks to the QTT structure and coarse-to-fine approach. The570

pseudocode is given in Algorithm 2.571
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Algorithm 2 PuTT (Loeschcke et al., 2024)

Input: Image xxxD, number of iterations T , upsampling iterations (t1, . . . , tl).
Output: TT reconstruction yyyD = PuTT(xxxD).
d← D − l ,xxxd ← AvgPool(xxxD) ,XXX d ← Q(xxxd)
for t = 1→ T do

if t ∈ (t1, . . . , tl) then
d← d+ 1
xxxd ← AvgPool(xxxD)
XXX d ← Q(xxxd)

end if
Loss ℓ← MSE(YYYd −XXX d)
Update QTT cores YYYd by backpropagation

end for
return yyyD = Q−1(YYYD)

However, while PuTT aims to obtain better initialization by downsampling for better optimization and572

reconstruction, it does not account for adversarial examples or analyze the impact of downsampling573

on perturbations. Additionally, PuTT also minimizes the reconstruction loss on the input image,574

which inevitably results in the reconstruction of the perturbations. In contrast, we focus on the575

perturbations and propose a new optimization process introduced in the next section, aiming to576

reconstruct clean examples.577

C Implementation details of adversarial attacks578

We evaluate our method of defending against AutoAttack (Croce & Hein, 2020) and compare with579

the state-of-the-art methods as listed RobustBench benchmark (https://robustbench.github.io). For a580

comprehensive evaluation, we conduct experiments under all adversarial attack settings. Specifically,581

we set ϵ = 8/255 and ϵ = 0.5/1.0 for AutoAttack linf and AutoAttack l2 threats on CIFAR-10. On582

CIFAR-100, we set ϵ = 8/255 for AutoAttack linf . On ImageNet, we set ϵ = 4/255 for AutoAttack583

linf . We evaluate our method of defending against PGD+EOT (Madry et al., 2018; Athalye et al.,584

2018b) and present the comparisons of AT methods, AP methods, and our method. Following the585

guidelines of (Lee & Kim, 2023), we set ϵ = 8/255 for PGD+EOT linf threats on CIFAR-10, where586

the update iterations of PGD is 200 with 20 EOT samples.587

Considering the potential robustness overestimation (Athalye et al., 2018a) caused by obfuscated588

gradients of purifier model, we utilize BPDA as an adaptive attack (Tramer et al., 2020; Croce et al.,589

2022), following the setting by (Yang et al., 2019; Lin et al., 2024a), which treats the purification step590

as an identity mapping during the backward pass, effectively bypassing its effect when computing591

gradients. In all experiments, the attacker has knowledge of both the purifier (TNP) and the classifier592

(Cls). The target of the attack is a new model F , i.e., F (x) = Cls(TNP (x)). The reason we593

chose BPDA is that the existing full gradient attacks are not applicable in TN-based AP due to the594

memory explosion issues associated with attacking TN optimization. In contrast to diffusion-based595

AP, TN is a model-free technique that does not rely on a fixed model or any parameters for gradient596

computation. Additionally, the iterative process in TN is a gradual optimization procedure, rather597

than the fixed inference iterations employed in diffusion-based methods, resulting in surrogate attacks598

that are difficult to apply to TN-based AP. Therefore, we empirically validated the effectiveness of599

our method through the existing adaptive attacks, e.g., BPDA.600

Remark: Unlike conventional AP methods that rely on a specific trained model for purification, TNP601

is a model-free technique without any parameters or the static network architecture for gradient602

computation, which is an inference-time optimization strategy. Additionally, the iterative process in603

TNP is a dynamic, gradual optimization procedure, in contrast to the fixed-step inference in DiffPure.604

This dynamic nature further hinders the applicability of the gradient checkpointing technique, as605

there is no static computational graph or predetermined set of parameters to track and store during606

intermediate steps. In other words, there is no well-defined checkpoint for storing intermediate607

gradients, thus the gradient checkpointing technique cannot be directly applied to TNP. This is also608

an inherent advantage of TN-based AP, which significantly increases the difficulty of developing609

adaptive attacks against TNP. Our paper is the first work to introduce a model-free optimization based610

method. We look forward that, building on the foundation established in this work, future research611
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will explore adaptive attack strategies specifically tailored to TN-based AP, thereby advancing and612

refining the defense mechanisms of TN-based AP methods.613

D More details of experimental settings614

D.1 Implementation details of our method615

For CIFAR-10, CIFAR-100 with resolution 32× 32 and ImageNet with resolution 224× 224, we616

first upsample them into resolution 2D × 2D image xD. Based on the initial experimental results,617

we set D = 8, l = 1, α = 0.1, inital β = 0.008 and N = 1 for the following experiments. For the618

scale hyperparameter η, we set η = 0.1 in all our experiments without knowing the specific attack619

norm. Since adversarial perturbations are very small, a fixed η = 0.1 already exceeds the scale of620

most attacks. Moreover, choosing a larger η can introduce excessive noise, leading to lower-quality621

reconstructions. Based on our preliminary experiments, η = 0.1 offers a suitable balance and thus622

serves as our default setting. The table results presented in the paper are conducted under these623

hyperparameters. This trick creates a large enough image to downsample until the perturbations are624

well mixed into Gaussian noise. Furthermore, without this initial step, the semantic information can625

become almost indistinguishable after several downsampling steps, especially for low-resolution626

images. For example, if a 32× 32 image is reduced with the factor of 8, the resolution 4× 4 image is627

of poor quality. Additionally, to more clearly observe the denoising effects in visualization results, we628

upsample the images to resolution D = 11 with α = 0.05, η = 0.1 and N = 3 for the experiments in629

Figure 4, and comparisons in different downsampled images in Figure 1. The code will be available630

upon acceptance, with more details provided in the configuration files.631

D.2 Implementation details of evaluation metrics632

We evaluate the performance of defense methods using multiple metrics: Standard accuracy and633

robust accuracy (Szegedy et al., 2014) on classification tasks. For denoising tasks, we measure the634

Normalized Root Mean Squared Error (NRMSE, Botchkarev, 2018), Structural Similarity Index635

Measure (SSIM, Hore & Ziou, 2010), Peak Signal-to-Noise Ratio (PSNR) metrics between a reference636

image xxx and its reconstruction yyy, where pixel values are in [0, 1].637

Normalized Root Mean Squared Error638

NRMSE(xxx,yyy) =
∥xxx− yyy∥2
∥xxx∥2

=

√∑
i(xxxi − yyyi)2√∑

i xxx
2
i

.

Structural Similarity Index Measure639

SSIM(xxx,yyy) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

where: µx and µy are the mean pixel values of images xxx and yyy. σ2
x and σ2

y are the variances of xxx and640

yyy. σxy is the covariance between xxx and yyy. C1 and C2 are small constants to stabilize the division.641

Peak Signal-to-Noise Ratio642

PSNR(xxx,yyy) = 10 log10

(
1

MSE(xxx,yyy)

)
.

NRMSE, SSIM and PSNR evaluate reconstructed image quality from error, structural-similarity,643

and signal-to-noise perspectives, making them particularly suitable and comprehensive for assessing644

reconstruction performance. In traditional denoising and reconstruction tasks, generally a lower645

NRMSE, a higher SSIM, and a higher PSNR generally indicate better performance.646

E Comparison647

E.1 Adversarial defense methods648

In the development of adversarial defense methods, with the emergence of adversarial attacks, numer-649

ous methods have been proposed, including adversarial training (AT) and adversarial purification650
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Table 8: Comparison of defenses with vanilla model on CIFAR-10 (negative impacts are marked
in red and positive impacts are marked in green). #: Using pre-trained generative model. Unseen
datasets: Applying the model trained on CIFAR-10 to CIFAR-100 evaluation.

Defense Clean Adv. Unseen Unseen Training Inference
method examples examples attacks datasets costs costs

Vanilla model ∼95% ∼0% ∼0% ∼82% / ∼0% 0 ∼0

Expectation ≈ ↑↑ ↑↑ = / ↑↑ 0 ∼0

AT ↓↓ ↑↑↑ N/A ↓↓/↑↑↑ ↑↑ ∼0

AP# ↓ ↑↑ ↑↑ N/A ↑↑↑ ↑↑
TNP (ours) ↓ ↑↑ ↑↑ ↓/↑↑ 0 ↑↑

(AP). As research in this area progresses, researchers have gradually moved beyond defenses tai-651

lored to specific attacks and begun developing more general defense techniques that enhance model652

robustness and generalization against unseen attacks and datasets.653

As mentioned before, AT predominantly consists of retraining the model on a finite set of adversarial654

examples, thereby conferring robustness primarily against those known perturbations. However, this655

process closely resembles a form of overfitting: the classifier becomes highly specialized to the attack656

patterns learned during training, at the expense of its performance on clean examples. As a result,657

standard accuracy typically degrades, and the robustness to withstand previously unseen attacks658

remains severely limited, as shown in Table 5.659

Another class of defense methods is AP, which leverages pre-trained generative models trained on660

clean examples, thus can effectively defend against all types of attacks. However, AP is constrained661

by the specific dataset used during training, making it difficult to transfer effectively to new tasks or662

data distributions. As shown in Table 6, when applying the diffusion model trained on CIFAR-10 to663

CIFAR-100 evaluation, the standard accuracy dropped by 35.76% compared with AT.664

Therefore, both mainstream defense methods face significant generalization challenges. To address665

this, one possible solution is to re-train the robust classifier to defend against new attacks or train a666

new generator on new datasets. However, such strategies incur substantial computational overhead667

and training costs, making them impractical for deployment in adversarial environments characterized668

by continuously emerging attacks, as summarized in Table 8.669

To tackle these challenges with the framework of AT and AP, we propose a novel defense technique670

based on tensor network representation, which eliminates the need for training a powerful generative671

model or relying on specific dataset distributions, making it a general-purpose adversarial purification.672

In the experiments, TNP has shown great advantages in these challenges: 26.45% improvement673

in average robust accuracy over AT across different norm threats; 9.39% improvement over AP674

across multiple attacks; 6.47% improvement over AP across different datasets. Remarkably, TNP675

achieves these benefits with zero additional training cost, offering an efficient solution for adversarial676

purification.677

E.2 Inference time cost678

Table 9: Comparison of inference time.

Methods CIFAR-10 CIFAR-100 ImageNet Avg.
AT 0.002 s 0.002 s 0.005 s 0.003 s

DM-based AP (Nie et al., 2022) 1.49 s 1.50 s 5.11 s 2.70 s
AGDM (Lin et al., 2024b) 1.73 s 1.75 s 5.52 s 3.00 s

TNP (Ours) 2.45 s 2.44 s 3.13 s 2.67 s

Table 9 shows the inference time of different methods on CIFAR-10, CIFAR-100, and ImageNet,679

which is measured on a single image. We leverage the parallelization to further improve the computa-680
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tional efficiency of TNP and conducted experiments on a single A5000 GPU. Specifically, AP method681

purifies CIFAR data at a resolution of 32× 32 and ImageNet data at 256× 256, whereas our method682

operates at a resolution of 256× 256 across all datasets, which inevitably increases inference cost on683

CIFAR-10 and CIFAR-100. In a comparison at the same resolution of ImageNet, the diffusion-based684

AP method require 5.11 seconds, whereas our method only takes 3.13 seconds. Although this over-685

head is already lower than that of diffusion-based AP methods, it still lacks sufficient flexibility in686

real-world applications. We leave the study of integrating our TN-based AP technique with more687

advanced and faster optimization strategies for future research.688

E.3 Zero-shot adversarial defense689

AT and AP methods depend heavily on external training dataset, overlooking the potential internal690

priors in the input itself. Among adversarial defense techniques, untrained neural networks such691

as deep image prior (DIP, Ulyanov et al., 2018) and masked autoencoder (MAE, He et al., 2022)692

have been utilized to avoid the need of extra training data (Dai et al., 2020, 2022; Lyu et al., 2023).693

However, although such deep learning models achieve high-quality reconstruction results, they694

have been shown to be susceptible to revive also the adversarial noise. This section compares two695

representative untrained models DIP and MAE.696

Table 10: Comparison with untrained networks against AutoAttack l∞ (ϵ = 8/255) on CIFAR-10.

Defense method Acc. NRMSE SSIM PSNR
Clean examples

DIP 90.43 0.0464 0.9565 32.13
MAE 88.28 0.0847 0.8842 26.90
Ours 82.23 0.0644 0.9203 29.06

Adversarial examples
DIP 38.28 0.0451 0.9467 32.53

MAE 1.56 0.0914 0.8472 26.24
Ours 55.27 0.0748 0.8707 27.77

Table 10 shows that although DIP and MAE have achieved remarkable standard accuracy and697

reconstruction quality, they deteriorate significantly under attack.698

E.4 More experiments699

To ensure a fair and consistent comparison, we consider employing a robust classifier for diffusion-700

based AP method in Table 11.701

Table 11: Standard accuracy and robust accuracy on CIFAR-10.

Defense method Standard Robust
Acc. Acc.

Strandard Training 94.78 0.00
Adversarial Training 92.16 67.73

DiffPure 89.02 70.64
DiffPure + AT 90.76 71.68

Ours + AT 91.99 72.85

Using a robust classifier on CIFAR-10 for diffusion-based AP leads to a slight improvement in robust702

accuracy. Meanwhile, our method with AT consistently maintains state-of-the-art performance.703

Recently, Lee & Kim (2023) conducted a thorough investigation and proposed a robust evaluation704

guideline using PGD+EOT. To undertake a more comprehensive evaluation, we further evaluate705

our method following the guidelines in this part. Table 12 shows the results on CIFAR-10, and706
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Table 12: Standard accuracy and robust accuracy against PGD+EOT (l∞, ϵ = 8/255) on CIFAR-10.

Type Defense method Standard Robust
Acc. Acc.

Adv. Training
(Pang et al., 2022) 88.62 64.95

(Gowal et al., 2020) 88.54 65.93
(Gowal et al., 2021) 87.51 66.01

DM-based AP

(Yoon et al., 2021) 85.66 33.48
(Nie et al., 2022) 91.41 46.84

(Lee & Kim, 2023) 90.16 55.82
(Lin et al., 2024b) 90.42 64.06

Ours∗ 91.99 72.07

the observations are basically consistent with the existing experiments, supporting our method as a707

powerful defense technique and more effective than existing AT or AP methods.708

F More discussion709

As we all know, the adversarial challenge of attack and defense is endless. This contradiction arises710

from the fundamental difference between adversarial attacks and defenses. Attacks are inherently711

destructive, whereas defenses are protective. This adversarial relationship places the attacker in an712

active position, while the defender remains passive. As a result, attackers can continually explore713

new attack strategies against a fixed model to degrade its predictive performance, ultimately leading714

to the failure of conventional defenses. The introduction of TNP has the potential to address this715

issue. As a model-free technique, TNP generates tensor representations solely based on the input716

information. These representations dynamically change with each input, preventing attackers from717

exploiting a fixed model to generate effective adversarial examples. This defensive mechanism allows718

TNP to maintain a more proactive stance in the ongoing competition between adversarial attacks and719

defenses.720

G Histogram, kernel density estimation results, and visualization721

Figure 7 shows the histogram and kernel density estimation of adversarial perturbations on 10722

images. The distribution of those perturbations progressively aligns with that of Gaussian noise as723

the downsampling process progresses.724
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Figure 7: The histogram and kernel density estimation of adversarial perturbations in the downsampled
images.
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Clean examples

Adversarial examples

Reconstructed examples

Figure 8: Clean examples (Top), adversarial examples (Middle) and reconstructed examples (Bottom)
of CIFAR-10.
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NeurIPS Paper Checklist725

1. Claims726

Question: Do the main claims made in the abstract and introduction accurately reflect the727

paper’s contributions and scope?728

Answer: [Yes]729

Justification: The paper has accurately stated the generalization challenges in adversarial730

tasks and the corresponding technical issues in the abstract and introduction.731

Guidelines:732

• The answer NA means that the abstract and introduction do not include the claims733

made in the paper.734

• The abstract and/or introduction should clearly state the claims made, including the735

contributions made in the paper and important assumptions and limitations. A No or736

NA answer to this question will not be perceived well by the reviewers.737

• The claims made should match theoretical and experimental results, and reflect how738

much the results can be expected to generalize to other settings.739

• It is fine to include aspirational goals as motivation as long as it is clear that these goals740

are not attained by the paper.741

2. Limitations742

Question: Does the paper discuss the limitations of the work performed by the authors?743

Answer: [Yes]744

Justification: The paper has included a "Limitations" section in the main body and provided745

further related discussions in the Appendix.746

Guidelines:747

• The answer NA means that the paper has no limitation while the answer No means that748

the paper has limitations, but those are not discussed in the paper.749

• The authors are encouraged to create a separate "Limitations" section in their paper.750

• The paper should point out any strong assumptions and how robust the results are to751

violations of these assumptions (e.g., independence assumptions, noiseless settings,752

model well-specification, asymptotic approximations only holding locally). The authors753

should reflect on how these assumptions might be violated in practice and what the754

implications would be.755

• The authors should reflect on the scope of the claims made, e.g., if the approach was756

only tested on a few datasets or with a few runs. In general, empirical results often757

depend on implicit assumptions, which should be articulated.758

• The authors should reflect on the factors that influence the performance of the approach.759

For example, a facial recognition algorithm may perform poorly when image resolution760

is low or images are taken in low lighting. Or a speech-to-text system might not be761

used reliably to provide closed captions for online lectures because it fails to handle762

technical jargon.763

• The authors should discuss the computational efficiency of the proposed algorithms764

and how they scale with dataset size.765

• If applicable, the authors should discuss possible limitations of their approach to766

address problems of privacy and fairness.767

• While the authors might fear that complete honesty about limitations might be used by768

reviewers as grounds for rejection, a worse outcome might be that reviewers discover769

limitations that aren’t acknowledged in the paper. The authors should use their best770

judgment and recognize that individual actions in favor of transparency play an impor-771

tant role in developing norms that preserve the integrity of the community. Reviewers772

will be specifically instructed to not penalize honesty concerning limitations.773

3. Theory assumptions and proofs774

Question: For each theoretical result, does the paper provide the full set of assumptions and775

a complete (and correct) proof?776
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Answer: [NA]777

Justification: The paper does not include theoretical results.778

Guidelines:779

• The answer NA means that the paper does not include theoretical results.780

• All the theorems, formulas, and proofs in the paper should be numbered and cross-781

referenced.782

• All assumptions should be clearly stated or referenced in the statement of any theorems.783

• The proofs can either appear in the main paper or the supplemental material, but if784

they appear in the supplemental material, the authors are encouraged to provide a short785

proof sketch to provide intuition.786

• Inversely, any informal proof provided in the core of the paper should be complemented787

by formal proofs provided in appendix or supplemental material.788

• Theorems and Lemmas that the proof relies upon should be properly referenced.789

4. Experimental result reproducibility790

Question: Does the paper fully disclose all the information needed to reproduce the main ex-791

perimental results of the paper to the extent that it affects the main claims and/or conclusions792

of the paper (regardless of whether the code and data are provided or not)?793

Answer: [Yes]794

Justification: The paper fully disclose all the information needed to reproduce the main795

experimental results of the paper. The code will be available upon acceptance.796

Guidelines:797

• The answer NA means that the paper does not include experiments.798

• If the paper includes experiments, a No answer to this question will not be perceived799

well by the reviewers: Making the paper reproducible is important, regardless of800

whether the code and data are provided or not.801

• If the contribution is a dataset and/or model, the authors should describe the steps taken802

to make their results reproducible or verifiable.803

• Depending on the contribution, reproducibility can be accomplished in various ways.804

For example, if the contribution is a novel architecture, describing the architecture fully805

might suffice, or if the contribution is a specific model and empirical evaluation, it may806

be necessary to either make it possible for others to replicate the model with the same807

dataset, or provide access to the model. In general. releasing code and data is often808

one good way to accomplish this, but reproducibility can also be provided via detailed809

instructions for how to replicate the results, access to a hosted model (e.g., in the case810

of a large language model), releasing of a model checkpoint, or other means that are811

appropriate to the research performed.812

• While NeurIPS does not require releasing code, the conference does require all submis-813

sions to provide some reasonable avenue for reproducibility, which may depend on the814

nature of the contribution. For example815

(a) If the contribution is primarily a new algorithm, the paper should make it clear how816

to reproduce that algorithm.817

(b) If the contribution is primarily a new model architecture, the paper should describe818

the architecture clearly and fully.819

(c) If the contribution is a new model (e.g., a large language model), then there should820

either be a way to access this model for reproducing the results or a way to reproduce821

the model (e.g., with an open-source dataset or instructions for how to construct822

the dataset).823

(d) We recognize that reproducibility may be tricky in some cases, in which case824

authors are welcome to describe the particular way they provide for reproducibility.825

In the case of closed-source models, it may be that access to the model is limited in826

some way (e.g., to registered users), but it should be possible for other researchers827

to have some path to reproducing or verifying the results.828

5. Open access to data and code829
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Question: Does the paper provide open access to the data and code, with sufficient instruc-830

tions to faithfully reproduce the main experimental results, as described in supplemental831

material?832

Answer: [Yes]833

Justification: The code will be available upon acceptance.834

Guidelines:835

• The answer NA means that paper does not include experiments requiring code.836

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/837

public/guides/CodeSubmissionPolicy) for more details.838

• While we encourage the release of code and data, we understand that this might not be839

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not840

including code, unless this is central to the contribution (e.g., for a new open-source841

benchmark).842

• The instructions should contain the exact command and environment needed to run to843

reproduce the results. See the NeurIPS code and data submission guidelines (https:844

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.845

• The authors should provide instructions on data access and preparation, including how846

to access the raw data, preprocessed data, intermediate data, and generated data, etc.847

• The authors should provide scripts to reproduce all experimental results for the new848

proposed method and baselines. If only a subset of experiments are reproducible, they849

should state which ones are omitted from the script and why.850

• At submission time, to preserve anonymity, the authors should release anonymized851

versions (if applicable).852

• Providing as much information as possible in supplemental material (appended to the853

paper) is recommended, but including URLs to data and code is permitted.854

6. Experimental setting/details855

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-856

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the857

results?858

Answer: [Yes]859

Justification: The paper specify all the experiment details.860

Guidelines:861

• The answer NA means that the paper does not include experiments.862

• The experimental setting should be presented in the core of the paper to a level of detail863

that is necessary to appreciate the results and make sense of them.864

• The full details can be provided either with the code, in appendix, or as supplemental865

material.866

7. Experiment statistical significance867

Question: Does the paper report error bars suitably and correctly defined or other appropriate868

information about the statistical significance of the experiments?869

Answer: [NA]870

Justification: N/A.871

Guidelines:872

• The answer NA means that the paper does not include experiments.873

• The authors should answer "Yes" if the results are accompanied by error bars, confi-874

dence intervals, or statistical significance tests, at least for the experiments that support875

the main claims of the paper.876

• The factors of variability that the error bars are capturing should be clearly stated (for877

example, train/test split, initialization, random drawing of some parameter, or overall878

run with given experimental conditions).879

• The method for calculating the error bars should be explained (closed form formula,880

call to a library function, bootstrap, etc.)881
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• The assumptions made should be given (e.g., Normally distributed errors).882

• It should be clear whether the error bar is the standard deviation or the standard error883

of the mean.884

• It is OK to report 1-sigma error bars, but one should state it. The authors should885

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis886

of Normality of errors is not verified.887

• For asymmetric distributions, the authors should be careful not to show in tables or888

figures symmetric error bars that would yield results that are out of range (e.g. negative889

error rates).890

• If error bars are reported in tables or plots, The authors should explain in the text how891

they were calculated and reference the corresponding figures or tables in the text.892

8. Experiments compute resources893

Question: For each experiment, does the paper provide sufficient information on the com-894

puter resources (type of compute workers, memory, time of execution) needed to reproduce895

the experiments?896

Answer: [Yes]897

Justification: All experiments presented in the paper are conducted by NVIDIA RTX A5000898

with 24GB GPU memory, CUDA v11.7 and cuDNN v8.5.0 in PyTorch v1.13.11.899

Guidelines:900

• The answer NA means that the paper does not include experiments.901

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,902

or cloud provider, including relevant memory and storage.903

• The paper should provide the amount of compute required for each of the individual904

experimental runs as well as estimate the total compute.905

• The paper should disclose whether the full research project required more compute906

than the experiments reported in the paper (e.g., preliminary or failed experiments that907

didn’t make it into the paper).908

9. Code of ethics909

Question: Does the research conducted in the paper conform, in every respect, with the910

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?911

Answer: [Yes]912

Justification: The research conducted in the paper conforms with the NeurIPS Code of913

Ethics.914

Guidelines:915

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.916

• If the authors answer No, they should explain the special circumstances that require a917

deviation from the Code of Ethics.918

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-919

eration due to laws or regulations in their jurisdiction).920

10. Broader impacts921

Question: Does the paper discuss both potential positive societal impacts and negative922

societal impacts of the work performed?923

Answer: [Yes]924

Justification: We aim to enhance the generalization against emerging attacks, which has a925

positive societal impacts.926

Guidelines:927

• The answer NA means that there is no societal impact of the work performed.928

• If the authors answer NA or No, they should explain why their work has no societal929

impact or why the paper does not address societal impact.930
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• Examples of negative societal impacts include potential malicious or unintended uses931

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations932

(e.g., deployment of technologies that could make decisions that unfairly impact specific933

groups), privacy considerations, and security considerations.934

• The conference expects that many papers will be foundational research and not tied935

to particular applications, let alone deployments. However, if there is a direct path to936

any negative applications, the authors should point it out. For example, it is legitimate937

to point out that an improvement in the quality of generative models could be used to938

generate deepfakes for disinformation. On the other hand, it is not needed to point out939

that a generic algorithm for optimizing neural networks could enable people to train940

models that generate Deepfakes faster.941

• The authors should consider possible harms that could arise when the technology is942

being used as intended and functioning correctly, harms that could arise when the943

technology is being used as intended but gives incorrect results, and harms following944

from (intentional or unintentional) misuse of the technology.945

• If there are negative societal impacts, the authors could also discuss possible mitigation946

strategies (e.g., gated release of models, providing defenses in addition to attacks,947

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from948

feedback over time, improving the efficiency and accessibility of ML).949

11. Safeguards950

Question: Does the paper describe safeguards that have been put in place for responsible951

release of data or models that have a high risk for misuse (e.g., pretrained language models,952

image generators, or scraped datasets)?953

Answer: [NA]954

Justification: N/A.955

Guidelines:956

• The answer NA means that the paper poses no such risks.957

• Released models that have a high risk for misuse or dual-use should be released with958

necessary safeguards to allow for controlled use of the model, for example by requiring959

that users adhere to usage guidelines or restrictions to access the model or implementing960

safety filters.961

• Datasets that have been scraped from the Internet could pose safety risks. The authors962

should describe how they avoided releasing unsafe images.963

• We recognize that providing effective safeguards is challenging, and many papers do964

not require this, but we encourage authors to take this into account and make a best965

faith effort.966

12. Licenses for existing assets967

Question: Are the creators or original owners of assets (e.g., code, data, models), used in968

the paper, properly credited and are the license and terms of use explicitly mentioned and969

properly respected?970

Answer: [Yes]971

Justification: We have cited and properly respected the existing assets in the paper.972

Guidelines:973

• The answer NA means that the paper does not use existing assets.974

• The authors should cite the original paper that produced the code package or dataset.975

• The authors should state which version of the asset is used and, if possible, include a976

URL.977

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.978

• For scraped data from a particular source (e.g., website), the copyright and terms of979

service of that source should be provided.980

• If assets are released, the license, copyright information, and terms of use in the981

package should be provided. For popular datasets, paperswithcode.com/datasets982

has curated licenses for some datasets. Their licensing guide can help determine the983

license of a dataset.984
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• For existing datasets that are re-packaged, both the original license and the license of985

the derived asset (if it has changed) should be provided.986

• If this information is not available online, the authors are encouraged to reach out to987

the asset’s creators.988

13. New assets989

Question: Are new assets introduced in the paper well documented and is the documentation990

provided alongside the assets?991

Answer: [NA]992

Justification: N/A.993

Guidelines:994

• The answer NA means that the paper does not release new assets.995

• Researchers should communicate the details of the dataset/code/model as part of their996

submissions via structured templates. This includes details about training, license,997

limitations, etc.998

• The paper should discuss whether and how consent was obtained from people whose999

asset is used.1000

• At submission time, remember to anonymize your assets (if applicable). You can either1001

create an anonymized URL or include an anonymized zip file.1002

14. Crowdsourcing and research with human subjects1003

Question: For crowdsourcing experiments and research with human subjects, does the paper1004

include the full text of instructions given to participants and screenshots, if applicable, as1005

well as details about compensation (if any)?1006

Answer: [NA]1007

Justification: N/A.1008

Guidelines:1009

• The answer NA means that the paper does not involve crowdsourcing nor research with1010

human subjects.1011

• Including this information in the supplemental material is fine, but if the main contribu-1012

tion of the paper involves human subjects, then as much detail as possible should be1013

included in the main paper.1014

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1015

or other labor should be paid at least the minimum wage in the country of the data1016

collector.1017

15. Institutional review board (IRB) approvals or equivalent for research with human1018

subjects1019

Question: Does the paper describe potential risks incurred by study participants, whether1020

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1021

approvals (or an equivalent approval/review based on the requirements of your country or1022

institution) were obtained?1023

Answer: [NA]1024

Justification: N/A.1025

Guidelines:1026

• The answer NA means that the paper does not involve crowdsourcing nor research with1027

human subjects.1028

• Depending on the country in which research is conducted, IRB approval (or equivalent)1029

may be required for any human subjects research. If you obtained IRB approval, you1030

should clearly state this in the paper.1031

• We recognize that the procedures for this may vary significantly between institutions1032

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1033

guidelines for their institution.1034

• For initial submissions, do not include any information that would break anonymity (if1035

applicable), such as the institution conducting the review.1036
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16. Declaration of LLM usage1037

Question: Does the paper describe the usage of LLMs if it is an important, original, or1038

non-standard component of the core methods in this research? Note that if the LLM is used1039

only for writing, editing, or formatting purposes and does not impact the core methodology,1040

scientific rigorousness, or originality of the research, declaration is not required.1041

Answer: [NA]1042

Justification: N/A.1043

Guidelines:1044

• The answer NA means that the core method development in this research does not1045

involve LLMs as any important, original, or non-standard components.1046

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1047

for what should or should not be described.1048
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