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Abstract

Deep neural networks are known to be vulnerable to well-designed adversarial
attacks. Although numerous defense strategies have been proposed, many are tai-
lored to specific attacks or tasks and often fail to generalize across diverse scenarios.
In this paper, we propose Tensor Network Purification (TNP), a novel model-free
optimization-based purification framework built upon a specially designed tensor
network decomposition algorithm. TNP depends neither on the pre-trained genera-
tive model nor the specific dataset, resulting in robust generalization across diverse
adversarial scenarios. To this end, the key challenge lies in relaxing Gaussian-noise
assumptions of classical decompositions and accommodating the unknown distri-
bution of adversarial perturbations. Unlike the low-rank representation of classical
decompositions, TNP aims to reconstruct the unobserved clean example from an
adversarial example. Specifically, TNP leverages progressive downsampling and
introduces a novel adversarial optimization objective to address the challenge of
minimizing reconstruction error but without inadvertently restoring adversarial
perturbations. Extensive experiments conducted on CIFAR-10, CIFAR-100, and
ImageNet demonstrate that our method generalizes effectively across various norm
threats, attack types, and tasks, providing a versatile and promising adversarial
purification technique.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success across a wide range of tasks.
However, DNNs have been shown to be vulnerable to adversarial examples (Szegedy et al.,[2014;
Goodfellow et al.,|2015)), which are generated by adding small, human-imperceptible perturbations to
natural images but completely incorrect the prediction results to DNNs with potentially disastrous
consequences. This inherent vulnerability of DNNs underscores the critical need for robust defense
mechanisms to mitigate adversarial attacks effectively.

Since then, numerous methods have been proposed to defend against adversarial examples. Notably,
adversarial training (AT, |Goodfellow et al., 2015) typically aims to retrain DNNs using specific
adversarial examples, achieving robustness to seen types of adversarial attacks but performing
poorly against unseen perturbations (Laidlaw et al.l 2021)). Another class of defense methods is
adversarial purification (AP, |Yoon et al.||[2021)), which leverages pre-trained generative models to
remove adversarial perturbations and demonstrates better generalization than AT against unseen
attacks (Nie et al., 2022} [Lin et al., 2024a). However, AP methods heavily rely on pre-trained models
tailored to specific datasets, limiting their transferability to different data distributions and tasks. As a
result, both mainstream techniques face generalization challenges: AT struggles with diverse norm
threats, and AP with task generalization, restricting their deployment to broader scenarios.
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To address these challenges, we propose a novel model-free optimization-based adversarial purifica-
tion framework built upon a coarse-to-fine tensor network decomposition, termed Tensor Network
Purification (TNP), which bridges the gap between low-rank tensor network representation with
Gaussian noise assumption and removal of adversarial perturbations with unknown distributions. As
a model-free optimization-based technique, tensor network (TN) depends neither on any pre-trained
generative model nor specific dataset (Oseledets, 2011; |Zhao et al., |2016)), enabling it to achieve
strong generalization across diverse adversarial scenarios. As a pre-processing step, TN can eliminate
potential adversarial perturbations for both clean and adversarial examples before feeding them
into the classifier (Yoon et al., 2021)), which also implies that TN can defend against adversarial
attacks without retraining the classifier model. Moreover, by acting directly on a single input without
fixed model parameters, TN is inherently more resistant to adversarial attacks, as discussed further
in Appendix [C] Consequently, benefiting from the aforementioned advantages, it is evident that
TN-based adversarial purification represents a highly promising direction, offering the transferability
to be effectively applied across diverse adversarial scenarios.

The existing TN methods are particularly favorable for image completion and denoising when
the corruption is sparse or follows a Gaussian distribution as long as it can be modeled explicitly.
However, the distribution of well-designed adversarial perturbations fundamentally differs from these
assumptions and often aligns with the intrinsic statistics of the data (Ilyas et al.,2019; |Allen-Zhu &
Li, [2022). Consequently, these perturbations behave more like genuine features than noise, making
them challenging to be modeled explicitly and prone to being inadvertently reconstructed. To address
this issue, we first explore the distribution changes of perturbations during the optimization process
and initially mitigate their impact through progressive downsampling. Building upon these insights,
we propose a coarse-to-fine TN incremental learning algorithm and introduce a novel adversarial
optimization objective to avoid overly constraining the reconstruction error, preventing inadvertently
restoring adversarial perturbations. Unlike classical TN methods applied to adversarial examples, our
coarse-to-fine TN method prevents naive low-rank representation of the input and encourages the
reconstructed examples to approximate the unobserved clean examples.

We empirically evaluate the performance of TNP by comparing it with AT and AP across attack
settings using multiple classifiers on CIFAR-10, CIFAR-100, and ImageNet. The results demonstrate
that TNP achieves robustness with strong generalization across diverse adversarial scenarios. Specif-
ically, TNP achieved a 26.45% improvement in average robust accuracy over AT across different
norm threats, a 9.39% improvement over AP across multiple attacks, and a 6.47% improvement over
AP across different datasets. Furthermore, in denoising tasks, TNP effectively removes adversarial
perturbations while preserving consistency between the reconstructed clean example and the recon-
structed adversarial example. These results collectively underscore the effectiveness and potential of
TNP. In summary, our contributions are as follows:

* We propose a model-free optimization-based technique based on tensor network representa-
tion, which requires neither a powerful generative model nor reliance on specific dataset
distributions, making it a general-purpose adversarial purification.

* Based on our analysis of the distribution changes of adversarial perturbations during op-
timization, we design a novel adversarial optimization objective for coarse-to-fine TN
representation learning to prevent the restoration of adversarial perturbations.

* We conduct extensive experiments on various datasets, demonstrating that our method
achieves state-of-the-art performance, especially exhibiting strong generalization across
diverse adversarial scenarios.

2 Related Works

Adversarial robustness To defend against adversarial attacks, researchers have developed various
techniques aimed at enhancing the robustness of DNNs. |Goodfellow et al.| (2015) propose AT
technique to defend against adversarial attacks by retraining classifiers with adversarial examples
(Wang et al.,[2019; [Tack et al.,2022). In contrast, AP methods (Shi et al.,[2021}; [Srinivasan et al.,[2021)
aim to purify adversarial examples before classification without retraining the classifier. Currently, the
most common AP methods (Nie et al.| 2022; Bai et al.,2024) rely on pre-trained generative models
as purifiers, which are trained on specific datasets and hard to generalize to data distributions outside
their training domain. |Lin et al.|(2024a)) propose applying AT (Zhang et al., 2019) technique to AP,
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optimizing the purifier to adapt to new data distributions, at the cost of substantial training costs.
Although TNP employs AP technique, it fundamentally differs from these works in that a model-free
optimization-based framework relying solely on the information of the single input example for AP,
without requiring any additional priors from pre-trained models and training costs.

Tensor network and TN-based defense methods Tensor network (TN) is a classical tool in signal
processing, with many successful applications in image completion and denoising (Kolda & Bader],
2009; |Cichocki et al., [2015). Compared to classical TN methods such as TT (Oseledets, [2011)
and TR (Zhao et al.l |2016), we employ the quantized technique (Khoromskij, 2011)) and develop
a coarse-to-fine strategy. Recent work (PuTT, [Loeschcke et al.| [2024)) also employs a coarse-to-
fine strategy, aiming to achieve better initialization for faster and more efficient TT decomposition
by minimizing the reconstruction error. In comparison, our method progresses from low to high
resolution, explicitly targeting perturbation removal and analyzing the impact of downsampling on
perturbations. Furthermore, we propose a novel optimization objective that goes beyond simply
minimizing the reconstruction error, focusing instead on preventing the restoration of perturbations.

With the growing concern over adversarial robustness, a line of work has attempted to leverage TNs
as robust denoisers to defend against adversarial attacks. In particular, Yang et al.|(2019)) reconstruct
images and retrain classifiers to adapt to the new reconstructed distribution. |[Entezari & Papalexakis
(2022) analyze vanilla TNs and show their effectiveness in removing high-frequency perturbations.
Additionally, (Bhattarai et al., [2023) extend the application of TNs beyond data to include classifiers,
a concept similar to the approaches of (Rudkiewicz et al., 2024} [Phan et al., 2023)). Furthermore,
(Song et al.}2024) employ training-free techniques while incorporating ground truth information to
defend against adversarial attacks. However, the aforementioned methods rely on additional prior or
are limited to specific attacks. In this paper, we aim to achieve robustness solely by optimizing TNs
themselves, establishing them as a plug-and-play and promising adversarial purification technique.

3 Backgrounds

Notations Throughout the paper, we denote scalars, vectors, matrices, and tensors as lowercase
letters, bold lowercase letters, bold capital letters, and calligraphic bold capital letters, e.g., =, x,
X and X, respectively. A D-order tensor is an D-dimensional array, e.g., a vector is a Ist-order
tensor and a matrix is a 2nd-order tensor. For a D-order tensor X € R{1**Ip we denote its
(i1,...,ip)-th entry as z;, where i = (i1, ...,7p). Following the conventions in deep learning, we
treat images as vectors, e.g., input example z;,,, clean example z;,,, adversarial example x4, and
reconstructed example y.

Tensor network decomposition Given a D-order tensor X € R71%-*Ip tensor network decom-
position factorizes X into D smaller latent components by using some predefined tensor contraction
rules. Among tensor network decompositions, Tensor Train (TT) decomposition (Oseledets, 2011) en-
joys both quasi-optimal approximation as well as the high compression rate of large and complex data
tensors. In particular, a D-order tensor X € R'1*-*10 has the TT format as z; = A} A? ... AP |
where A‘Z-id € R"-1%7d for d € [D] and iq € [I4]. Then, (1,r1,...,74-1,1) is the TT rank of X.
For simplicity, we denote X = TT(A",. .., A”). When each dimension I, of X’ is large, quantized
tensor train (QTT, [Khoromskijl, [2011)) becomes highly efficient, which splits each dimension in
powers of two. For example, a 2 x 2 image can be rearranged into a more expressive and balanced
D-order tensor. For brevity, hereafter, a oD « oD image x p shall be called a resolution D image,
whose quantized tensor is X p = Q(zp). QTT core denotes the core tensor after decomposition.

4 Method

Tensor network (TN) is a classical tool in signal processing, with many successful applications in
image completion and denoising. By leveraging the /5-norm as the primary optimization criterion,
which aligns well with the statistical properties of a normal distribution, these methods (Phan et al.,
2020; |Loeschcke et al.,2024) have demonstrated strong capabilities in removing Gaussian noise.

However, the distribution of well-designed adversarial perturbations is essentially different from
Gaussian noise and cannot be modeled explicitly (Ilyas et al.l 2019} |Allen-Zhu & Li}2022)), which
challenges the conventional assumptions of TN-based denoising methods, leading to ineffectiveness
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Figure 1: Compare the adversarial perturbations in the downsampled images. (a) The distribution
changes of adversarial perturbations during downsampling process. (b) The KL divergence between
the adversarial perturbations and the Gaussian distributions with the same sample mean and variance.

on adversarial purification for 4, . To minimize the 10ss ||Z44, — TN(Z 44y )||2, TN decompositions
fit all feature components of x4, , including the adversarial perturbations. However, in the presence of
adversarial attacks, we aim to restore unobserved z;,, from the input 4, that is: TN(Z44y) = Zein
rather than z,4,. Based on the above analysis, it is crucial to overcome two challenges in designing
an effective TN method: Q1. How can we transform the non-specific adversarial perturbations into a
form amenable to TN modeling? Q2. How can we avoid overly constraining the reconstruction error
from inadvertently restoring those perturbations?

For Q1, we explore how adversarial perturbations behave under downsampling with average pooling.
Intuitively, the central limit theorem suggests that as an image is progressively downsampled, aggre-
gated perturbations begin to resemble a normal distribution. Thus, even an /5-based penalty becomes
effective in suppressing the perturbations at coarse resolution.

However, while this insight helps suppress perturbations at lower resolutions, there remains the
challenge of reconstructing the original resolution image. When upsampling and further optimizing
using ||Zqdy — TN(Z 440 ) ||2, the perturbations will still be restored. This connects with 02, for which
we design a new optimization objective.

4.1 Downsampling using average pooling

An intuitive explanation for why downsampling aids in perturbation removal can be derived from
the Central Limit Theorem (CLT, |Grzenda & Zieba, 2008). When an image is downsampled by
average pooling, the random components (e.g., pixel-level noise or minor adversarial perturbations)
within those pooling patches are aggregated. We hypothesize that, given an adversarial example
44y, downsampling the 4, from its original resolution D to a lower resolution D — 1 will smooth
out the perturbations. As the downsampling process progresses further, the distribution of the
aggregated perturbations in the coarse resolution image xp_; is expected to converge toward a
normal distribution, as illustrated in Figure[Th. More results are shown in Appendix [G]

To investigate this hypothesis in real datasets, we measure the KL divergence between the histograms
of adversarial perturbations and the Gaussian distributions with the same sample mean and variance
across 512 images from ImageNet. As shown in Figure[Ip, the distribution of those perturbations
progressively aligns with that of Gaussian noise as the downsampling process progresses. Conse-
quently, even classical TN methods can effectively remove or mitigate adversarial perturbations at
coarse resolution. Additionally, we further compare the influence of different downsampling methods
to underscore the advantages of average pooling, as discussed in Appendix [A]

4.2 Tensor network purification

Building upon our downsampling-based intuition, we design a coarse-to-fine purification pipeline
by extending PuTT (Loeschcke et al.,|2024), which employs progressive downsampling for better
initialization of QTT cores. The workflow of tensor network purification (TNP) for classification
tasks is illustrated in Figure [2| where the quantized X = Q(z), TT decomposition X ~ Y =

TT(A', ..., AP), and reconstruction y = Q' () processes are depicted.
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Figure 2: Illustration of tensor network purification.

178 Initially, the 2D 9D input example & p (potentially adversarial example x4, or clean example x;,,),
179 whose quantized version is a D-order tensor X p, is first downsampled to a resolution D — [ example
180 Zp_y, corresponding to a (D — [)-order tensor X p_;. The QTT cores of X p_; are optimized
181 by PuTT via backpropagation within a standard reconstruction error ||£p_; — yp—;||2. Once the
182 approximation of X' p_; is stabilized, the prolongation operator P p_;1 is applied to the QTT format
183 of Xp_y, producing a (D — [ + 1)-order tensor Pp_; 11X p_;. Additionally, we define the linear
184 function P4(-) acts on the image level, with the effect of upsampling from resolution d — 1 to d,
185 details in Appendix This serves as an initialization to find the optimal QTT cores of X p_ ;41
186 and reconstructed downsampled example yp—_;.

187 Next, the input example z p is once again downsampled to a resolution D — [ 4+ 1 example £p_;41.
188 At this stage, the QTT cores of X' p_; 1 are optimized using the adversarial optimization objective
189 within a novel loss function as shown in Eq. . Similarly, once the approximation of X p_;41
190 stabilizes, the upsampling operation is performed. This process is repeated iteratively until reaching
o1 the QTT approximation Y p of the original resolution X 1.

192 Finally, TNP can purify potential adversarial examples (x.;,, or £,4,) before feeding them into
198 classifier f, e.g., f(TNP(zcn)) = f(TNP(Za4v)) = gt, where gt is the ground truth label. As a
194 plug-and-play module, TNP requires no modification to f and can be integrated with any classifier.

195 4.3 Adversarial optimization process

196 Following the coarse-to-fine process, despite the downsampling with average pooling and subsequent
197 PuTT at lower resolutions can mitigate adversarial perturbations, the other challenge arises upon
198 reconstructing the image at the original resolution, where minimizing the standard reconstruction
199 error will inevitably restore the adversarial perturbations.

200 Unlike traditional reconstruction, in the context of adversarial attacks, we can only observe the
201 adversarial example x4, While the goal is to reconstruct a “clean” y closing to the unobserved clean
202 example z;,. To bridge the gap between x4, and .;,,, We propose a new optimization objective that
203 introduces an auxiliary variable §. Moreover, we leverage the previously reconstructed downsampled
204 example as a crucial prior to guide the approximation toward ., .

205 Here, we outline the optimization procedure for z 4, which corresponds to the gray box in Figure 2]
206 Formally, given the resolution d example x4, we attempt to obtain the reconstructed example y; by
207 performing gradient descent on optimization loss functions of

Linp(Ta,Ya,04) = [|Ta — (Ya + 07)|l2 + [[Pa(ya—1) — yall2,
s.t. 87 = arg Hmﬁmx Lodv(Ya + 4,24), )
208 where d € [D — [+ 1, D] and 7 is a scale hyperparameter.

200 The auxiliary variable 6 is determined through an inner maximization process that utilizes a non-
210 convex loss function L,4,. We employ a perceptual metric, structural similarity index measure
211 (SSIM, Hore & Ziou, 2010), as L4, to explore more potential solutions and better handle complex
212 perturbation patterns. While 6™ does not exactly represent the true adversarial perturbation, bounding
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||| < 1 can partially ensure that the misalignment between y and x,4,, remains controlled, effectively
ensuring that y does not simply collapse into the adversarial example g,

However, precisely because " does not represent the true perturbation, minimizing ||, — (ya+85)]|2
may not yield the desired clean example. To address this limitation, we introduce a second loss
term ||Pg(y4—1) — yall2, which serves as a crucial “prior”. Specifically, we utilize the reconstructed
downsampled example y;—1 as an additional constraint to aid in approximating the z;,,. Building
upon the observations in Figure[T] we start from the resolution D — [ example 2 p_; that is optimized
by PuTT, and then perform upsampling to the higher resolution to produce a clean-leaning reference,
which acts to nudge y toward a less perturbed distribution. Although we never have direct access to
the true clean example x;,,, our loss provides an effective surrogate prior and guides the optimization
process. The detailed algorithm of our adversarial optimization process is shown in Algorithm|[I]

S Experiments

In this section, we conduct comprehensive experiments on multiple datasets across various settings.
The classification results demonstrate that TNP achieves robustness with strong generalization. We
further investigate the removal of adversarial perturbations using tensor network decompositions and
find that only TNP effectively removes the perturbations while preserving consistency between clean
and adversarial examples. These results collectively highlight the effectiveness and potential of TNP.

5.1 Experimental setup

Datasets and model architectures We conduct extensive experiments on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009) and ImageNet (Deng et al.,|2009) to empirically validate the effectiveness of
the proposed methods against adversarial attacks. For classification tasks, we utilize the pre-trained
ResNet (He et al.,2016) and WideResNet (Zagoruyko & Komodakis, 2016) models.

Adversarial attacks We evaluate our method against AutoAttack (Croce & Hein, |2020), a widely
used benchmark that integrates both white-box and black-box attacks. Additionally, following the
guidance of [Lee & Kiml(2023)), we utilize PGD (Madry et al.| [2018) with EOT (Athalye et al., 2018b)
for a more comprehensive evaluation. Considering the potential robustness overestimation caused by
obfuscated gradients of the purifier model, we utilize BPDA (Athalye et al., [2018a)) as an adaptive
attack with the knowledge of both purifier and classifier, following the setting by [Yang et al.|(2019);
Lin et al.| (2024a)). Further implementation details and discussion are provided in Appendix

Compared methods We conduct experiments on the common benchmark and compare the ro-
bustness of our method with those listed in RobustBench (Croce et al., [2021). We evaluate the
generalization of existing defense methods, including AT methods (Gowal et al., 2020} [2021}; |[Laidlaw
et al., 2021} Dolatabadi et al., [2022; Pang et al., 2022) and AP methods, with particular attention
to diffusion-based AP (Yoon et al.| 2021} Nie et al.l 2022} [Lee & Kim| [2023}; [Lin et al., [2024D)).
Furthermore, we include comparisons with Tensor Train (TT, |Oseledets| 2011)), Tensor Ring (TR,
Zhao et al., 2016)), quantized technique (Khoromskij, 2011) and PuTT (Loeschcke et al., 2024)).

Due to the high computational cost of evaluating methods with multiple attacks, following the
guidance of |Nie et al.| (2022), we randomly select 512 images from the test set for robust evaluation.
All experiments presented in the paper are conducted by NVIDIA RTX A5000 with 24GB GPU
memory, CUDA v11.7, and cuDNN v8.5.0 in PyTorch v1.13.11. More details in Appendix D]

5.2 Robustness comparison on RobustBench

In this section, we evaluate our method for defending against AutoAttack and compare it with the
methods under all adversarial settings listed in RobustBench (Croce et al.,|2021). Tables to E]present
the performance of various defense methods against I, (€ = 8/255) and 5 (¢ = 0.5) threats. Overall,
the highest robust accuracy achievable by our method is generally on par with existing methods
without using extra data (the dataset introduced by |Carmon et al.|(2019)). Specifically, compared
to the second-best method, our method improves the robust accuracy by 1.67% on CIFAR-100, by
1.84% on ImageNet, and the average robust accuracy by 0.36% on CIFAR-10.

Due to the overfitting of WideResNet-28-10 trained on the limited data available in CIFAR-10, we
observe that the results with standard classifier (Ours) struggle to reach state-of-the-art performance,
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Table 1: Standard and robust accuracy against
AutoAttack [, threat (¢ = 8/255) on CIFAR-10.
("the methods use additional synthetic images.)

Defense method Extra Standard Robust

data Acc. Acc.

Gowal et al.| (2020) N 89.48 62.70
Baietal[(2023) v 9523  68.06
Chen & Lee(2024) X 86.10 58.09
Cui et al.[(2024) x T 92.16 67.73
Nie et al.|(2022) X 89.02 70.64
Zhang et al.[(2024) X 90.04 73.05
Lin et al.[(2024a) X 90.62 72.85
Ours X 82.23 55.27

Ours* X 91.99 72.85

Table 4: Standard and robust accuracy against
AutoAttack [, threat (¢ = 4/255) on ImageNet.

Defense method Extra Standard Robust

data Acc. Acc.

Salman et al.[(2020)  x 64.02 37.89
Bar et al.[(2021)) X 67.38 35.51
Nie et al.| (2022) X 67.79 40.93
Bai et al.| (2024)) X 70.41 41.70
Chen & Lee|(2024) X 68.76 40.60
Ours X 65.43 42.77

Table 2: Standard and robust accuracy against
AutoAttack [, threat (¢ = 0.5) on CIFAR-10.

Defense method Extra Standard Robust

data  Acc. Acc.

Augustin et al.| (2020) V' 9223 77.93
Gowal et al.|(2020) v 94.74 80.53
Wang et al.|[ (2023 xF 95.16 83.68
Rebuffi et al[(2021) T 91.79 78.32
Ding et al.| (2019) X 88.02 67.77
Nie et al.[(2022]) X 91.03  78.58
Ours X 82.23 68.16

Ours* X 91.99 79.49

Table 3: Standard and robust accuracy against
AutoAttack [, (e = 8/255) on CIFAR-100.

Defense method Extra Standard Robust

data  Acc. Acc.

Hendrycks et al.|(2019) Vv 59.23 28.42
Debenedettr et al.| (2023) v 70.76  35.08
Cui et al.| (2024) xt 7385 39.18
Wang et al. (2023) xt 7522 4267
Pang et al.| (2022 X 63.66 31.08
Jia et al.[(2022) X 67.31 3191
Ours X 62.30 44.34

consistent with findings from |Chen & Lee|(2024). To further improve robust accuracy, most AT
methods incorporate additional synthetic data to train a robust classifier. Following this, we conduct
experiments with the robust classifier (Ours™), which utilizes an additional 20M synthetic images in
training (Cui et al.} 2024])). This leads to a significant improvement in robust accuracy on CIFAR-10.
Moreover, compared to the used robust classifier (Cui et al.,|2024)), our method further improves the
robust accuracy by 5.12%. These results are consistent across multiple datasets and norm threats,
confirming the effectiveness of our method and its potential for defending against adversarial attacks.

5.3 Generalization comparison across various adversarial scenarios

As previously highlighted, the existing defense methods are often criticized for their lack of gen-
eralization across different norm threats, attacks, and datasets. In the following, we evaluate the
performance of our method under various adversarial settings to demonstrate its robust generalization.

Table 5: Standard accuracy and robust accuracy
against AutoAttack [, (¢ = 8/255) and I3 (¢ =

1.0) threats on CIFAR-10 with ResNet-50.

Type  Defense method SA M
AAl AA L
Standard Training 94.8 0.0 0.0
Training with [, 86.8 49.0 19.2
AT Training with Iy 85.0 395 478
Laidlaw et al.[(2021) 824 30.2 349
Dolatabadi et al.[(2022) 83.2 40.0 33.9
AP Nie et al.|(2022) 88.2 70.0 70.9
Lin et al.[(20244) 89.1 712 734
Ours 88.3 732 67.0

Results analysis on different norm threats
TableE] shows that AT methods (Laidlaw et al.}
20215 [Dolatabadi et al., 2022) are limited in
defending against unseen attacks and can only
effectively be against the specific attacks they
are trained on. An intuitive idea is to apply AT
across all norm threats or develop more gen-
eral constraints to obtain a robust model. How-
ever, training such a model is challenging due to
the inherent differences among various attacks.
In contrast, AP methods (Nie et al.| 2022} |[Lin
et al.| [2024a) exhibit strong generalization, ef-
fectively defending against unseen attacks. The
results demonstrate that our method also pos-
sesses strong generalization capabilities against
unseen attacks, achieving performance close to
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Table 6: Standard accuracy (SA) and robust accuracy (RA) against
AutoAttack I, (¢ = 8/255) on CIFAR-10 and CIFAR-100. The
pre-trained generative model used in AP is trained on CIFAR-10.

70

60

CIFAR-10 CIFAR-100 Avg.

SA RA SA RA SA RA
Standard 94.78 0.00 81.86 0.00 88.32  0.00

30| | ATmethods AP methods Qs

: — AT 92.16 67.73 73.85 39.18 83.01 53.46
. . AP 89.02 70.64 38.09 3379 63.56 52.22
Figure 3: Comparison of robust  Qurg* 9199 7285 7148 44.53 81.74 58.69
accuracy against multiple attacks.

~—§— PGD+EOT
—4— AutoAttack

50

Method

40

the AP methods while significantly outperforming the existing AT methods. Specifically, compared
to the best AT method, our method improves average robust accuracy by 26.45%.

Results analysis on multiple attacks Figure [3|shows the comparison of robust accuracy against
PGD+EOT and AutoAttack with [, (¢ = 8/255) threat on CIFAR-10 with WideResNet-28-10.
When facing different attacks within the same threat, AT methods 2020, 2021} [Pang

et all 2022)) exhibit better generalization than AP methods (Yoon et al., 2021; Nie et al., 2022; Lee &

Kim, [2023). Typically, robustness evaluation is based on the worst-case results of the robust accuracy.
Under this criterion, our method outperforms all AT and AP methods. Specifically, compared to the
best AP method, our method improves average robust accuracy by 9.39%.

Results analysis on different datasets Table [ shows the generalization of the methods across
different datasets. As previously highlighted, the existing AP methods typically rely on specific
datasets. For AP method, when a pre-trained generative model trained on CIFAR-10 is applied to
adversarial robustness evaluation on CIFAR-100, both standard accuracy and robust accuracy drop
significantly. This occurs because the pre-trained generative model can only generate the data it has
learned. Although the input examples originate from CIFAR-100, the generative model attempts to
output one of the ten classes from CIFAR-10, severely distorting the semantic information of the
input examples and leading to low classification accuracy. In contrast, our method exhibits strong
generalization across different datasets, achieving comparable robust performance on CIFAR-100 as
on CIFAR-10. Specifically, compared to the AP method [2022), our method improves the
average robust accuracy by 6.47%.

Unlike existing methods, TNP employs an optimization-based strategy that operates solely on the
given input, without relying on prior knowledge learned from large-scale training datasets or strong
assumptions about attacks, thereby retaining strong generalization across various scenarios.

5.4 Denoising tasks
In this section, we evaluate the effectiveness of our method on non-classification tasks through visual
comparisons and various quantitative metrics.

Ablation study Figure f] shows the comparison of visualizations on ImageNet. The top row in
(a) displays the input clean example (CE), and its corresponding reconstructed clean examples (rec.
CE) generated by traditional /5 loss ||z — y||2 and our proposed loss function, while (b) displays the

nn’'n il

Input image Traditional £; loss ~ Ours, w/o “prior” Ours Input image Traditional £, loss ~ Ours, w/o “prior” Ours

(a) Clean example (b) Adversarial example

Figure 4: Comparison of visualizations. The original input image and corresponding reconstructed
image (top), along with the error maps (bottom) for the clean example and the adversarial example.
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Table 7: Comparisons on CIFAR-10. The rec. CEs are expected to closely match the CEs, whereas
the rec. AEs should remain sufficiently different from the AEs to avoid restoring perturbations.

Defense CLN: CEs & rec.CEs ADV: AEs & rec.AEs REC: rec.CEs & rec.AEs
method Acc. NRMSE SSIM PSNR Acc. NRMSE SSIM PSNR NRMSE SSIM PSNR
Standard 94.78 - - - 0.00 - - - - - -

TT  87.30 0.0507 0.9526 31.14 36.13 0.0650 0.8977 28.99 0.0267 0.9790 39.10
TR 9434 0.0171 0.9938 40.58 0.98 0.0464 0.9210 31.91 0.0322 0.9598 35.51
QTT 84.57 0.0613 0.9253 29.49 51.56 0.0724 0.8808 28.06 0.0233 0.9855 39.88
QTR 83.40 0.0613 0.9254 29.49 49.41 0.0724 0.8785 28.06 0.0231 0.9853 39.96
PuTT 80.86 0.0626 0.9261 29.32 44.14 0.0742 0.8787 27.84 0.0311 0.9770 38.03

Ours 82.23 0.0644 0.9203 29.06 55.27 0.0748 0.8707 27.77 0.0218 0.9863 40.37

reconstructed adversarial examples (rec. AE) for the input adversarial example (AE). Additionally,
we create error maps to highlight differences, which (a) between the rec. CEs and the input CEs, and
(b) between the rec. AEs and the rec. CEs, as shown at the bottom of Figure ] The results indicate
that while our method does not match the classical TN methods in reconstructing CEs, it significantly
outperforms them in removing adversarial perturbations from AEs.

Specifically, when processing CEs, the rec. examples generated by traditional ¢5 loss are almost
identical to the original ones, whereas our method is slightly less effective in restoring some details.
However, when processing AEs, the rec. examples from traditional {5 loss remain consistent with the
original ones, leading to the preservation of adversarial perturbations, as highlighted in Figure dp. In
contrast, our method better removes those perturbations, ensuring that the rec. AEs and the rec. CEs
retain similar information. Moreover, we evaluate the necessity of the second term in Eq. (II[) which
serves as a surrogate prior constraint to optimize the reconstructed examples toward the clean data
distribution. As observed, removing this constraint eliminates prior information from the optimization
process, increasing the likelihood of significant deviation in the wrong direction.

Quantitative results analysis Table|/|shows the quantitative results of the denoising task for AEs
and CEs, with detailed descriptions of evaluation metrics provided in Appendix[D.2] We compare our
method with existing tensor network decompositions, including TT, TR, QTT, QTR, and PuTT. While
our method does not achieve the best denoising performance on clean examples, it still maintains
classification performance well, achieving 82.23% standard accuracy with vanilla WideResNet-28-10.
More importantly, our method outperforms others in the next two columns. Specifically, when
processing AEs, our method yields the highest NRMSE and the lowest SSIM and PSNR, achieving
the highest robust accuracy. This outcome is expected, as our goal is to ensure that the rec. AEs differ
from the original AEs (i.e., lower SSIM and PSNR, and higher NRMSE in the “ADV” column) while
rec. AEs closely resembling the rec. CEs (i.e., higher SSIM and PSNR, and lower NRMSE in the
“REC” column). These results align well with the visual observations in Figure ] and consistently
demonstrate the effectiveness of our method, highlighting its potential in adversarial scenarios.

Limitations and future works We identify several open problems related to TNP: (1) Although
TNP is a training-free technique, it incurs additional optimization costs during inference, which poses
challenges for deployment in low-latency scenarios, see more discussion in Appendices[E.T|and [E.2]
(2) As a model-free optimization-based technique, TNP is inherently more resistant to adaptive
attacks, see more discussion in Appendix[C] Accordingly, developing more advanced optimization
strategies and adaptive attack strategies specifically tailored to TNP remains a valuable direction for
future research. We hope that our work will motivate further exploration of these challenges.

6 Conclusion

In this paper, we propose a novel model-free optimization-based adversarial purification (AP) built
upon a specially designed tensor network decomposition. Extensive experiments on CIFAR-10,
CIFAR-100, and ImageNet demonstrate that our method (TNP) achieves state-of-the-art performance
with strong generalization across diverse scenarios. Additionally, we further identify several open
challenges related to TNP, and believe that continued exploration of TN-based purification remains
an exciting research direction for developing a plug-and-play and effective AP technique.
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Appendix

A Influence of different sampling methods

To support our hypothesis of using the average pooling, we test it with stride sampling, which selects
pixels with constant strides. In principle, the stride sampling would not change the distribution of
perturbations. Therefore, it serves as a baseline to compare the influence of distributions.

We test four types of noise distributions: (1) Gaussian N(0, 0.3%), (2) Mixture of Gaussian (MoG),
0.5-N(—1.0,0.5%) +0.5- N(1.0,0.52), (3) Beta distribution, Beta(0.5,0.5) — 0.5, and (4) Uniform
distribution, Uniform(—0.5, 0.5). For MoG, Beta and uniform noises, we scale them to have the same
signal-to-noise ratio with the Gaussian distribution. We add the noises on the Girl image
with resolution 1024 x 1024. First, we show the noise distributions in Figure[5] As can
be seen, the Avg Pooling strategy transforms the non-Gaussian noises into Gaussian-like noises, while
the Stride sampling would not. Second, we run the PuTT algorithm with different sampling methods
for 100 times. The violin plot of denoising results are shown in Figure[6] In Gaussian distribution,
the Stride sampling is better than AvgPooling. While for non-Gaussian noises, the AvgPooling is
more robust and better than Stride. The denoising results indicate that the average pooling can handle
different types of noises, which is consistent with our hypothesis. However, as we introduced, this
might not be enough, since we need to deal with the original image and noises in the final stage.

(a) MoG with Avg Pooling (b) MoG with Stride Sampling

(c) Beta with Avg Pooling (d) Beta with Stride Sampling
A A A N
(e) Uniform with Avg Pooling (f) Uniform with Stride Sampling

Figure 5: Histogram figures of noises under different sampling methods.
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(a) PSNR (b) SSIM
Figure 6: Violin plot of denoising results using different sampling methods. (a) PSNR results. (b)
SSIM results.
B Tensor network decomposition

B.1 Matrix Product Operators
A matrix product operator (MPO) (McCulloch}, 2008}, [Hubig et al., 2017) is the TN representation of

a linear operator acting on a TT format, which makes it highly efficient to handle large operators.
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Namely, a linear operator A : RI1X--xIp s R/1X--xJp  Namely, if Y = AX, then each entry of
Y is given as

Il ID
_ 1 2 D 1 y2 D
Y= E , E , Aj i Ay AS i X0 X5, X

11=1 ip=1

B.2 Prolongation Operator

This work uses a specific MPO, known as the prolongation operator P, (Lubasch et al., 2018)), to
upsample a QTT format of an image from resolution d — 1 to d.

. . . d . .
Consider a one-dimensional vector £; € R?". The matrix Pya_,94+1 upsamples &, to 4,1 by linear
interpolation between adjacent points. For example, for d = 2,

1 0 0 0
05 05 0 0

0 1 0 0
p.._|0 0505 0
4-8=10 0 1 0
0 0 05 05

0 0 0 1

0 0 0 05

The matrix Pya_,54+1 can be written as an MPO P 4 1 entry-wise

P

_ pl d
Pjv,.codasit,e.iatr — le,z'l "'de,id igg

The entries are given explicitly (Lubasch et al.l 2018)) as

Pll,l(la 1) = Pl2,2(13 1) = P121(132) = Pll,2(232) = 17VZ € [d]
P{T(1) =1,P3(1) = P$T(2) = 0.5,

and other entries are zero.

The prolongation operator described above applies to the QTT format of one-dimensional vectors.
In general, this operator is the tensor product of the one-dimensional operators on each dimension:
'Pf) = P4 @ P4 for 2-dimensions (images) and Pﬁf’) = P4 ® P4 ® Py for 3-dimensions (3D
objects). For simplicity, since this work concerns only images, the superscript is omitted, denoting
the prolongation operator as P.

Ultimately, for a resolution d image 4, and X ; = Q(z4), the upsampled image is resolution d + 1,
given as Py(z4) = Q1 (P4X4), where the linear function Py(-) acts on the image level.

B.3 Recap of PuTT

A 2P x 2D image, denoted as  p, can be quantized in to a Dth order tensor X p = Q(zp). Firstly, zp
is downsampled by average pooling to £ p_;, correspondingly possesing a quantization X' p_;. Then,
D — [ QTT cores of X p_; can be optimized by backpropagation, returning Y p_;. The QTT cores of
next resolution X p_; 41 can be optimized similarly, initialized by the prologation Pp_;1+1(yp—1).
Repeat the process until the original resolution. (Loeschcke et al.,[2024) demonstrates impressive
reconstruction capability of PuTT thanks to the QTT structure and coarse-to-fine approach. The
pseudocode is given in Algorithm 2]
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Algorithm 2 PuTT (Loeschcke et al., [2024)

Input: Image « p, number of iterations T, upsampling iterations (¢1,. .., ;).
Output: TT reconstruction yp = PuTT(zp).
d+ D —1,x5+ AvgPool(zp),X 4 + Q(zq)
fort =1—Tdo
ift € (tl, . ,tl) then
d<—d+1
x4 < AvgPool(zp)
Xd — Q(.’Bd)
end if
Loss £ + MSE(Yy — X,)
Update QTT cores Y4 by backpropagation
end for
returnyp = Q' (Vp)

However, while PuTT aims to obtain better initialization by downsampling for better optimization and
reconstruction, it does not account for adversarial examples or analyze the impact of downsampling
on perturbations. Additionally, PuTT also minimizes the reconstruction loss on the input image,
which inevitably results in the reconstruction of the perturbations. In contrast, we focus on the
perturbations and propose a new optimization process introduced in the next section, aiming to
reconstruct clean examples.

C Implementation details of adversarial attacks

We evaluate our method of defending against AutoAttack (Croce & Heinl 2020) and compare with
the state-of-the-art methods as listed RobustBench benchmark (https://robustbench.github.io). For a
comprehensive evaluation, we conduct experiments under all adversarial attack settings. Specifically,
we set € = 8/255 and € = 0.5/1.0 for AutoAttack ;s and AutoAttack [ threats on CIFAR-10. On
CIFAR-100, we set € = 8/255 for AutoAttack li,s. On ImageNet, we set € = 4/255 for AutoAttack
lint. We evaluate our method of defending against PGD+EOT (Madry et al., |2018; |Athalye et al.,
2018b) and present the comparisons of AT methods, AP methods, and our method. Following the
guidelines of (Lee & Kim) [2023), we set € = 8/255 for PGD+EOT ;¢ threats on CIFAR-10, where
the update iterations of PGD is 200 with 20 EOT samples.

Considering the potential robustness overestimation (Athalye et al.l 2018a) caused by obfuscated
gradients of purifier model, we utilize BPDA as an adaptive attack (Tramer et al., [2020; [Croce et al.,
2022)), following the setting by (Yang et al.|[2019; |Lin et al.| |2024al), which treats the purification step
as an identity mapping during the backward pass, effectively bypassing its effect when computing
gradients. In all experiments, the attacker has knowledge of both the purifier (TNP) and the classifier
(Cls). The target of the attack is a new model F, ie., F(z) = Cls(TNP(z)). The reason we
chose BPDA is that the existing full gradient attacks are not applicable in TN-based AP due to the
memory explosion issues associated with attacking TN optimization. In contrast to diffusion-based
AP, TN is a model-free technique that does not rely on a fixed model or any parameters for gradient
computation. Additionally, the iterative process in TN is a gradual optimization procedure, rather
than the fixed inference iterations employed in diffusion-based methods, resulting in surrogate attacks
that are difficult to apply to TN-based AP. Therefore, we empirically validated the effectiveness of
our method through the existing adaptive attacks, e.g., BPDA.

Remark: Unlike conventional AP methods that rely on a specific trained model for purification, TNP
is a model-free technique without any parameters or the static network architecture for gradient
computation, which is an inference-time optimization strategy. Additionally, the iterative process in
TNP is a dynamic, gradual optimization procedure, in contrast to the fixed-step inference in DiffPure.
This dynamic nature further hinders the applicability of the gradient checkpointing technique, as
there is no static computational graph or predetermined set of parameters to track and store during
intermediate steps. In other words, there is no well-defined checkpoint for storing intermediate
gradients, thus the gradient checkpointing technique cannot be directly applied to TNP. This is also
an inherent advantage of TN-based AP, which significantly increases the difficulty of developing
adaptive attacks against TNP. Our paper is the first work to introduce a model-free optimization based
method. We look forward that, building on the foundation established in this work, future research
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will explore adaptive attack strategies specifically tailored to TN-based AP, thereby advancing and
refining the defense mechanisms of TN-based AP methods.

D More details of experimental settings

D.1 Implementation details of our method

For CIFAR-10, CIFAR-100 with resolution 32 x 32 and ImageNet with resolution 224 x 224, we
first upsample them into resolution 22 x 2P image xp. Based on the initial experimental results,
weset D =8,1 =1, a = 0.1, inital 3 = 0.008 and N = 1 for the following experiments. For the
scale hyperparameter 7, we set n = 0.1 in all our experiments without knowing the specific attack
norm. Since adversarial perturbations are very small, a fixed n = 0.1 already exceeds the scale of
most attacks. Moreover, choosing a larger 7 can introduce excessive noise, leading to lower-quality
reconstructions. Based on our preliminary experiments, 7 = 0.1 offers a suitable balance and thus
serves as our default setting. The table results presented in the paper are conducted under these
hyperparameters. This trick creates a large enough image to downsample until the perturbations are
well mixed into Gaussian noise. Furthermore, without this initial step, the semantic information can
become almost indistinguishable after several downsampling steps, especially for low-resolution
images. For example, if a 32 x 32 image is reduced with the factor of 8, the resolution 4 x 4 image is
of poor quality. Additionally, to more clearly observe the denoising effects in visualization results, we
upsample the images to resolution D = 11 with &« = 0.05, 7 = 0.1 and N = 3 for the experiments in
Figure [} and comparisons in different downsampled images in Figure[I] The code will be available
upon acceptance, with more details provided in the configuration files.

D.2 Implementation details of evaluation metrics

We evaluate the performance of defense methods using multiple metrics: Standard accuracy and
robust accuracy (Szegedy et al.l 2014) on classification tasks. For denoising tasks, we measure the
Normalized Root Mean Squared Error (NRMSE, Botchkarev, 2018]), Structural Similarity Index
Measure (SSIM, Hore & Ziou,[2010), Peak Signal-to-Noise Ratio (PSNR) metrics between a reference
image x and its reconstruction y, where pixel values are in [0, 1].

Normalized Root Mean Squared Error

- (r: —uy:)2

(E41P NI

Structural Similarity Index Measure
(2/%.“1/ + Cl)(20my + 02)

SSIM(z,y) = ,
(z.9) (12 4 p2 + Ch)(02 + 02 + Cs)

where: (1, and 1, are the mean pixel values of images z and y. o2 and og are the variances of £ and
Y. 04y is the covariance between z and y. C; and Cy are small constants to stabilize the division.

Peak Signal-to-Noise Ratio

1
PSNR(z,y) = 101ogy, (MSE(a:y)> '

NRMSE, SSIM and PSNR evaluate reconstructed image quality from error, structural-similarity,
and signal-to-noise perspectives, making them particularly suitable and comprehensive for assessing
reconstruction performance. In traditional denoising and reconstruction tasks, generally a lower
NRMSE, a higher SSIM, and a higher PSNR generally indicate better performance.

E Comparison

E.1 Adversarial defense methods

In the development of adversarial defense methods, with the emergence of adversarial attacks, numer-
ous methods have been proposed, including adversarial training (AT) and adversarial purification

17



651
652
653

654
655
656
657
658
659

660

662
663
664

665
666
667
668
669

670
671
672
673
674
675
676
677

679
680

Table 8: Comparison of defenses with vanilla model on CIFAR-10 (negative impacts are marked
in red and positive impacts are marked in green). #: Using pre-trained generative model. Unseen
datasets: Applying the model trained on CIFAR-10 to CIFAR-100 evaluation.

Defense Clean Adv. Unseen Unseen Training Inference
method examples examples attacks datasets costs costs
Vanilla model ~ ~95% ~0% ~0%  ~82% | ~0% 0 ~0
Expectation ~ ™ ™~ =/t 0 ~0
AT H T N/A W/ ~0
AP I n N/A M t
TNP (ours) | 1 1/ 0 1

(AP). As research in this area progresses, researchers have gradually moved beyond defenses tai-
lored to specific attacks and begun developing more general defense techniques that enhance model
robustness and generalization against unseen attacks and datasets.

As mentioned before, AT predominantly consists of retraining the model on a finite set of adversarial
examples, thereby conferring robustness primarily against those known perturbations. However, this
process closely resembles a form of overfitting: the classifier becomes highly specialized to the attack
patterns learned during training, at the expense of its performance on clean examples. As a result,
standard accuracy typically degrades, and the robustness to withstand previously unseen attacks
remains severely limited, as shown in Table@

Another class of defense methods is AP, which leverages pre-trained generative models trained on
clean examples, thus can effectively defend against all types of attacks. However, AP is constrained
by the specific dataset used during training, making it difficult to transfer effectively to new tasks or
data distributions. As shown in Table[6} when applying the diffusion model trained on CIFAR-10 to
CIFAR-100 evaluation, the standard accuracy dropped by 35.76% compared with AT.

Therefore, both mainstream defense methods face significant generalization challenges. To address
this, one possible solution is to re-train the robust classifier to defend against new attacks or train a
new generator on new datasets. However, such strategies incur substantial computational overhead
and training costs, making them impractical for deployment in adversarial environments characterized
by continuously emerging attacks, as summarized in Table[8]

To tackle these challenges with the framework of AT and AP, we propose a novel defense technique
based on tensor network representation, which eliminates the need for training a powerful generative
model or relying on specific dataset distributions, making it a general-purpose adversarial purification.
In the experiments, TNP has shown great advantages in these challenges: 26.45% improvement
in average robust accuracy over AT across different norm threats; 9.39% improvement over AP
across multiple attacks; 6.47% improvement over AP across different datasets. Remarkably, TNP
achieves these benefits with zero additional training cost, offering an efficient solution for adversarial
purification.

E.2 Inference time cost

Table 9: Comparison of inference time.

Methods CIFAR-10 CIFAR-100 ImageNet  Avg.
AT 0.002 s 0.002 s 0.005 s 0.003 s

DM-based AP (Nie et al.,[2022) 1.49 s 1.50s 5.11s 2.70 s
AGDM (Lin et al.,[2024b) 1.73 s 1.75 s 5.52s 3.00s
TNP (Ours) 2.45s 2.44 s 3.13s 2.67s

Table E] shows the inference time of different methods on CIFAR-10, CIFAR-100, and ImageNet,
which is measured on a single image. We leverage the parallelization to further improve the computa-
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tional efficiency of TNP and conducted experiments on a single A5S000 GPU. Specifically, AP method
purifies CIFAR data at a resolution of 32 x 32 and ImageNet data at 256 X 256, whereas our method
operates at a resolution of 256 x 256 across all datasets, which inevitably increases inference cost on
CIFAR-10 and CIFAR-100. In a comparison at the same resolution of ImageNet, the diffusion-based
AP method require 5.11 seconds, whereas our method only takes 3.13 seconds. Although this over-
head is already lower than that of diffusion-based AP methods, it still lacks sufficient flexibility in
real-world applications. We leave the study of integrating our TN-based AP technique with more
advanced and faster optimization strategies for future research.

E.3 Zero-shot adversarial defense

AT and AP methods depend heavily on external training dataset, overlooking the potential internal
priors in the input itself. Among adversarial defense techniques, untrained neural networks such
as deep image prior (DIP, [Ulyanov et al., 2018) and masked autoencoder (MAE, He et al., [2022])
have been utilized to avoid the need of extra training data (Dai et al., 2020, 2022; Lyu et al., |[2023)).
However, although such deep learning models achieve high-quality reconstruction results, they
have been shown to be susceptible to revive also the adversarial noise. This section compares two
representative untrained models DIP and MAE.

Table 10: Comparison with untrained networks against AutoAttack [, (¢ = 8/255) on CIFAR-10.

Defense method Acc. NRMSE SSIM PSNR
Clean examples

DIP 90.43  0.0464 09565 32.13

MAE 88.28 0.0847 0.8842 26.90

Ours 82.23  0.0644 0.9203 29.06
Adversarial examples

DIP 38.28  0.0451 0.9467 32.53

MAE 1.56 0.0914 0.8472 26.24

Ours 55.27 0.0748 0.8707 27.77

Table shows that although DIP and MAE have achieved remarkable standard accuracy and
reconstruction quality, they deteriorate significantly under attack.

E.4 More experiments

To ensure a fair and consistent comparison, we consider employing a robust classifier for diffusion-
based AP method in Table[I1]

Table 11: Standard accuracy and robust accuracy on CIFAR-10.

Standard Robust
Defense method ‘Acc. Acc.

Strandard Training 94.78 0.00
Adversarial Training 92.16 67.73

DiffPure 89.02 70.64
DiffPure + AT 90.76 71.68
Ours + AT 91.99 72.85

Using a robust classifier on CIFAR-10 for diffusion-based AP leads to a slight improvement in robust
accuracy. Meanwhile, our method with AT consistently maintains state-of-the-art performance.

Recently, |Lee & Kim|(2023) conducted a thorough investigation and proposed a robust evaluation
guideline using PGD+EOT. To undertake a more comprehensive evaluation, we further evaluate
our method following the guidelines in this part. Table [12] shows the results on CIFAR-10, and
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Table 12: Standard accuracy and robust accuracy against PGD+EOT (I, € = 8/255) on CIFAR-10.

Standard Robust
Type Defense method Acc. Acc.

(Pang et al.| [2022) 88.62 64.95
Adv. Training (Gowal et al.[[2020) 88.54 65.93
(Gowal et al., [2021) 87.51 66.01

(Yoon et al.,[2021) 85.66 33.48

(Nie et al.||12022) 91.41 46.84

DM-based AP (LCee & Kim,[2023) 90.16  55.82
(L1in et al.[|2024b) 90.42 64.06

Ours* 91.99  72.07

the observations are basically consistent with the existing experiments, supporting our method as a
powerful defense technique and more effective than existing AT or AP methods.

F More discussion

As we all know, the adversarial challenge of attack and defense is endless. This contradiction arises
from the fundamental difference between adversarial attacks and defenses. Attacks are inherently
destructive, whereas defenses are protective. This adversarial relationship places the attacker in an
active position, while the defender remains passive. As a result, attackers can continually explore
new attack strategies against a fixed model to degrade its predictive performance, ultimately leading
to the failure of conventional defenses. The introduction of TNP has the potential to address this
issue. As a model-free technique, TNP generates tensor representations solely based on the input
information. These representations dynamically change with each input, preventing attackers from
exploiting a fixed model to generate effective adversarial examples. This defensive mechanism allows
TNP to maintain a more proactive stance in the ongoing competition between adversarial attacks and
defenses.

G Histogram, kernel density estimation results, and visualization
Figure [7| shows the histogram and kernel density estimation of adversarial perturbations on 10

images. The distribution of those perturbations progressively aligns with that of Gaussian noise as
the downsampling process progresses.
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Clean examples

Figure 8: Clean examples (Top), adversarial examples (Middle) and reconstructed examples (Bottom)
of CIFAR-10.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper has accurately stated the generalization challenges in adversarial
tasks and the corresponding technical issues in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper has included a "Limitations" section in the main body and provided
further related discussions in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper. The code will be available upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code will be available upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specify all the experiment details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments presented in the paper are conducted by NVIDIA RTX A5000
with 24GB GPU memory, CUDA v11.7 and cuDNN v8.5.0 in PyTorch v1.13.11.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We aim to enhance the generalization against emerging attacks, which has a
positive societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited and properly respected the existing assets in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: N/A.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: N/A.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: N/A.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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1087 16. Declaration of LLLM usage

1038 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1039 non-standard component of the core methods in this research? Note that if the LLM is used
1040 only for writing, editing, or formatting purposes and does not impact the core methodology,
1041 scientific rigorousness, or originality of the research, declaration is not required.

1042 Answer: [NA]

1043 Justification: N/A.

1044 Guidelines:

1045 * The answer NA means that the core method development in this research does not
1046 involve LLMs as any important, original, or non-standard components.

1047 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1048 for what should or should not be described.
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