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Abstract

The recent work by Dong and Yang [2023] showed for misspecified sparse linear1

bandits, one can obtain an O (ϵ)-optimal policy using a polynomial number of2

samples when the sparsity is a constant, where ϵ is the misspecification error.3

This result is in sharp contrast to misspecified linear bandits without sparsity,4

which require an exponential number of samples to get the same guarantee. In5

order to study whether the analog result is possible in the reinforcement learning6

setting, we consider the following problem: assuming the optimal Q-function is a7

d-dimensional linear function with sparsity s and misspecification error ϵ, whether8

we can obtain an O (ϵ)-optimal policy using number of samples polynomially9

in the feature dimension d. We first demonstrate why the standard approach10

based on Bellman backup or the existing optimistic hypothesis class elimination11

approach such as OLIVE Jiang et al. [2017] achieves suboptimal guarantees for12

this problem. We then design a novel elimination-based algorithm to show one13

can obtain an O (Hϵ)-optimal policy with sample complexity polynomially in the14

feature dimension d and planning horizon H . Lastly, we complement our upper15

bound with an Ω̃ (Hϵ) suboptimality lower bound, giving a complete picture of16

this problem.17

1 Introduction18

Bandit and reinforcement learning (RL) problems in real-world applications, such as autonomous19

driving [Kiran et al., 2021], healthcare [Esteva et al., 2019], recommendation systems [Bouneffouf20

et al., 2012], and advertising [Schwartz et al., 2017], face challenges due to the vast state-action21

space. To tackle this, function approximation frameworks, such as using linear functions or neural22

networks, have been introduced to approximate the value functions or policies. However, real-world23

complexities often mean that function approximation is agnostic; the function class captures only an24

approximate version of the optimal value function, and the misspecification error remains unknown.25

A fundamental problem is understanding the impact of agnostic misspecification errors in RL.26

Prior works show even minor misspecifications can lead to exponential (in dimension) sample27

complexity in the linear bandit settings [Du et al., 2020, Lattimore et al., 2020] if the goal is to28

learn a policy within the misspecification error. That is, finding an O(ϵ)-optimal action necessitates29

at least Ω(exp(d)) queries (or samples) to the environment, where ϵ is the misspecification error.30

Recently, Dong and Yang [2023] demonstrated that by leveraging the sparsity structure of ground-31

truth parameters, one can overcome the exponential sample barrier in the linear bandit setting. They32

showed that with sparsity k in the ground-truth parameters, it is possible to learn an O(ϵ)-optimal33
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action with only O
(
(d/ϵ)

k
)

samples. In particular, when k is a constant, their algorithm achieves a34

polynomial sample complexity guarantee.35

A natural question is whether we can obtain a similar sample complexity guarantee in the RL setting.36

This question motivates us to consider a more general question:37

Given a that the Q∗ function is a d-dimensional linear function with sparsity k and misspecification38

error ϵ, can we learn an O (ϵ)-optimal policy using poly(d, 1/ϵ) samples, when k is a constant?39

It turns out that by studying this question, we obtain a series of surprising results which cannot be40

explained by existing RL theories.41

1.1 Our Contributions42

In this paper, we propose an RL algorithm that can handle linear function approximation with sparsity43

structures and misspecification errors. We also show that the suboptimality achieved by our algorithm44

is near-optimal, by proving information-theoretic hardness results. Here we give a more detailed45

description of our technical contributions.46

Our Assumption. Throughout this paper, we assume the RL algorithm has access to a feature map47

where, for each state-action pair (s, a), we have the feature ϕ(s, a) with ∥ϕ(s, a)∥ ≤ 1. We make the48

following assumption, which states that there exists a sequence of parameters θ∗ = (θ∗0 , . . . , θ
∗
H−1)49

where each θ∗h ∈ Sd−1 is k-sparse, that approximates the optimal Q-function up to an error of ϵ.50

Assumption 1. There exists θ∗ = (θ∗0 , . . . , θ
∗
H−1) where each θ∗h ∈ Sd−1 is k-sparse, such that51

|⟨ϕ(s, a), θ∗h⟩ −Q∗(s, a)| ≤ ϵ

for all h ∈ [H], all states s in level h, and all actions a in the action space.52

When H = 1, Assumption 1 is equivalent to the bandit setting in Dong and Yang [2023]. Note that53

we have a different optimal parameter θh for each level h ∈ [H].54

We can approximate θ∗ using an ϵ-net of the sphere Sk−1 and the set of all k-sized subset of [d].55

Therefore, when k is a constant, we may assume that each θ∗h lies in a set with size polynomial in d.56

Then, a natural idea is to enumerate all possible policies induced by the parameters in that finite set,57

and choose the one with the highest cumulative reward. However, although the number of parameter58

candidates in each individual level has polynomial size, the total number of induced policies would59

be exponential in H , and the sample complexity of such approach would also be exponential in H .60

The Level-by-level Approach. Note that when the horizon length H = 1, the problem under61

consideration is equivalent to a bandit problem, which can be solved by previous approaches [Dong62

and Yang, 2023]. For the RL setting, a natural idea is to first apply the bandit algorithm in Dong63

and Yang [2023] on the last level, and then apply the same bandit algorithm on the second last level64

based on previous results and Bellman-backups, and so on. However, we note that to employ such an65

approach, the bandit algorithm needs to provide a “for-all” guarantee, i.e., finding a parameter that66

approximates the rewards of all arms, instead of just finding a near-optimal arm. On the other hand,67

existing bandit algorithms will amplify the approximation error of the input parameters by a constant68

factor, in order to provide a for-all guarantee. Concretely, existing bandit algorithms can only find a69

parameter θ so that θ approximates the rewards of all arms by an error of 2ϵ. As we have H levels70

in the RL setting, the final error would be exponential in H , and therefore, such a level-by-level71

approach would result in a suboptimality that is exponential in H .72

One may ask if we can further improve existing bandit algorithms, so that we can find a parameter θ73

that approximates the rewards of all arms by an error of ϵ plus a statistical error that can be made74

arbitrarily small, instead of 2ϵ. The following theorem shows that this is information-theoretically75

impossible unless one pays a sample complexity proportional to the size of the action space.76

Theorem 1.1. Under Assumption 1 with d = k = 1, any bandit algorithm that returns an estimate77

r̂ such that |r̂(a) − r(a)| < 2ϵ for all arms a with probability at least 0.95 requires at least 0.9n78

samples, where n is the total number of arms.79

Therefore, amplifying the approximation error by a factor of 2 is not an artifact of existing bandit80

algorithms. Instead, it is information-theoretically impossible.81
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Geometric error amplification is a common issue in the design of RL algorithm with linear function82

approximation [Zanette et al., 2019, Weisz et al., 2021, Wang et al., 2020a, 2021a]. It is interesting83

(and also surprising) that such an issue arises even when the function class has sparsity structures.84

Optimistic Value Function Elimination. Another approach for the design of RL algorithm is based85

on optimistic value function elimination. Such an approach was proposed by Jiang et al. [2017] and86

was then generalized to broader settings [Sun et al., 2019, Du et al., 2021, Jin et al., 2021, Chen et al.,87

2022b]. At each iteration of the algorithm, we pick the value functions in the hypothesis class with88

maximized value. We then use the induced policy to collect a dataset, based on which we eliminate a89

bunch of value functions from the hypothesis class and proceed to the next iteration.90

When applied to our setting, existing algorithms and analysis achieve a suboptimality that depends91

on the size of the parameter class, which could be prohibitively large. Here, we use the result in Jiang92

et al. [2017] as an example. The suboptimality of their algorithm is H
√
Mϵ, where M is Bellman93

rank of the problem. For our setting, we can show that there exists an MDP instance and a feature94

map that satisfies Assumption 1, whose induced Bellman rank is large.95

Proposition 1.2. There exists an MDP instance M = (S,A, H, P, r) with |A| = 2, H = log d,96

|S| = d − 1, with d-dimensional feature map ϕ satisfying Assumption 1 with k = 1, such that its97

Bellman rank is d.98

Given Proposition 1.2, if one naïvely applies the algorithm in Jiang et al. [2017], the suboptimality99

would be O(H
√
dϵ) in our setting, which necessitates new algorithm and analysis. In Section 4, we100

design a new RL algorithm whose performance is summarized in the following theorem.101

Theorem 1.3. Under Assumption 1, with probability at least 1 − δ, Algorithm 1 returns a policy102

with suboptimality at most (4ϵstat + 2ϵnet + 2ϵ)H by taking O(kdkH3 · ln(dH/ϵnetδ) · ϵ−k
netϵ

−2
stat)103

samples.104

Here ϵstat is the statistical error. Compared to the existing approaches, Theorem 1.3 achieves a much105

stronger suboptimality guarantee. Later, we will also show that such a guarantee is near-optimal.106

Although based on the same idea of optimistic value function elimination, our proposed algorithm107

differs significantly from existing approaches [Jiang et al., 2017, Sun et al., 2019, Du et al., 2021,108

Jin et al., 2021, Chen et al., 2022b] to exploit the sparsity structure. While existing approaches109

based on optimistic value function elimination try to find a sequence of parameters that maximize the110

value of the initial states, our new algorithm selects a parameter that maximizes the empirical roll-in111

distribution at all levels. Also, existing algorithms eliminate a large set of parameters in each iteration,112

while we only eliminate the parameters selected during the current iteration in our algorithm.113

These two modifications are crucial for obtaining a smaller suboptimality guarantee, smaller sample114

complexity, and shorter running time. In existing algorithms, parameters at different levels are115

interdependent, i.e. the choice of parameter at level h affects the choice of parameter at level h+ 1.116

Our new algorithm simplifies this by maintaining a parameter set for each level, so each level operates117

independently. Further, we can falsify and eliminate any parameter showing large Bellman error118

at any level h, since otherwise we would have found another parameter with larger induced value119

function at level h + 1 to make the error small. Consequently, since we eliminate at least one120

parameter at each iteration, we obtain fewer iterations and enhanced sample complexity.121

The Hardness Result. One may wonder if the suboptimality guarantee can be further improved. In122

Section 3, we show that the suboptimality guarantee by Theorem 1.3 is near-optimal.123

We first consider a weaker setting where the algorithm is not allowed to take samples, and the function124

class contains a single sequence of functions. I.e., we are given a function Q̂ : S ×A → R, such that125

|Q̂(s, a)−Q∗(s, a)| ≤ ϵ for all (s, a) ∈ S ×A.126

We show that for this weaker setting, simply choosing the greedy policy with respect to Q̂, which127

achieves a suboptimality guarantee of O(Hϵ), is actually optimal. To prove this, we construct a hard128

instance based on binary tree. Roughly speaking, the optimal action for each level is chosen uniformly129

random from two actions a1 and a2. At all levels, the reward is ϵ if the optimal action is chosen,130

and os 0 otherwise. For this instance, there exists a fixed Q̂ that provides a good approximation to131

the optimal Q-function, regardless of the choice of the optimal actions. Therefore, Q̂ reveals no132

information about the optimal actions, and the suboptimality of the returned policy would be at least133

Ω(Hϵ). The formal construction and analysis and construction will be given in Section 3.1.134
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When the algorithm is allowed to take samples, we show that in order to achieve a suboptimality135

guarantee of H/Cϵ, any algorithm requires exp(Ω(C)) samples, even when Assumption 1 is satisfied136

with d = k = 1. Therefore, for RL algorithms with polynomial sample complexity, the suboptimality137

guarantee of Theorem 1.3 is tight up to log factors.138

To prove the above claim, we still consider the setting where d = k = 1, i.e., a good approximation to139

the Q-function is given to the algorithm. We also use a more complicated binary tree instance, where140

we divide all the H levels into H/C blocks, each containing C levels. For each block, only one141

state-action pair at the last level has a reward of ϵ, and all other state-action pairs in the block has a142

reward of 0. Therefore, the value of the optimal policy would be H/C · ϵ since there are H/C blocks143

in total. We further show that there is a fixed function Q̂, which provides a good approximation to the144

optimal Q-function universally for all instances under consideration.145

Since Q̂ reveals no information about the state-action pair with ϵ reward for all blocks, for an RL146

algorithm to return a policy with a non-zero value, it must search for a state-action pair with non-zero147

reward in a brute force manner, which inevitably incurs a sample complexity of exp(Ω(C)) since each148

block contains C levels and exp(Ω(C)) state-action pairs at the last level. The formal construction149

and analysis and construction will be given in Section 3.2.150

1.2 Related Work151

A series of studies have delved into MDPs that can be represented by linear functions of predetermined152

feature mappings, achieving sample complexity or regret that depends on the feature mapping’s153

dimension. This includes linear MDPs, studied in Jin et al. [2020], Wang et al. [2019], Neu and154

Pike-Burke [2020], where both transition probabilities and rewards are linear functions of feature155

mappings on state-action pairs. Zanette et al. [2020a,b] examines MDPs with low inherent Bellman156

error, indicating value functions that are almost linear with respect to these mappings. Another focus157

is on linear mixture MDPs [Modi et al., 2020, Jia et al., 2020, Ayoub et al., 2020, Zhou et al., 2021,158

Cai et al., 2020], characterized by transition probabilities that combine several basis kernels linearly.159

While these studies often assume known feature vectors, Agarwal et al. [2020] investigates a more160

challenging scenario where both features and parameters of the linear model are unknown.161

The literature has also witnessed a substantial surge of research in understanding how function general162

approximations can be applied efficiently in the reinforcement learning setting [Osband and Van Roy,163

2014, Sun et al., 2019, Ayoub et al., 2020, Wang et al., 2020b, Foster et al., 2021, Chen et al., 2022b,a,164

Zhong et al., 2022, Foster et al., 2023, Wagenmaker and Foster, 2023, Zhou and Gu, 2022, Jiang et al.,165

2017, Wang et al., 2020b, Du et al., 2021, Jin et al., 2021, Kong et al., 2021, Dann et al., 2021, Zhong166

et al., 2022, Liu et al., 2023, Agarwal et al., 2023]. To obtain good sample, error, or regret bounds,167

these approaches typically impose benign structures on values, models, or policies, along with benign168

misspecification. Amongst these works, Jiang et al. [2017] is particularly related to our work as their169

elimination-based algorithm, OLIVE, can be directly applied to our setting. However, as mentioned170

in Section 1.1, the suboptimality guarantee of their algorithm is significantly worse than our result.171

In another line of works, Du et al. [2020], Dong and Yang [2023], Lattimore et al. [2020] specifically172

focuses on understanding misspecification in bandit and RL scenarios. Du et al. [2020] illustrated173

that to find an O(ϵ)-optimal policy in reinforcement learning with ϵ-misspecified linear features,174

an agent must sample an exponential (in d) number of trajectories, applicable to both value-based175

and model-based learning. Relaxing this goal, Lattimore et al. [2020] indicated that poly(d/ϵ)176

samples could suffice to secure an O(ϵ
√
d)-optimal policy in a simulator model setting of RL, though177

achieving a policy with an error better than O(ϵ
√
d) would still require an exponential sample178

size. Recently, Dong and Yang [2023] introduced a solution, showing that incorporating structural179

information like sparsity in the bandit instance could address this issue, making it feasible to attain180

O(ϵ) with O((d/ϵ)k) sample complexity, which is acceptable when the sparsity k is small. Another181

recent independent work [Amortila et al., 2024] also obtains a suboptimality guarantee of O(Hϵ).182

However, their result depends on a coverability assumption and uses a different technique called183

disagreement-based regression (DBR), which is distinct from our assumption and techniques.184
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2 Preliminaries185

Throughout the paper, for a given positive integer n, we use [n] to denote the set {0, 1, 2, . . . , n− 1}.186

In addition, f(n) = O(g(n)) denotes that there exists a constant c > 0 such that |f(n)| ≤ c|g(n)|.187

f(n) = Ω(g(n)) denotes that there exists a constant c > 0 such that |f(n)| ≥ c|g(n)|.188

2.1 Reinforcement Learning189

Let M = {S,A, H, P, r} be a Markov Decision Process (MDP) where S is the state space, A is the190

action space, H ∈ Z+ is the planning horizon, P : S × A → ∆(S) is the transition kernel which191

takes a state-action pair as input and returns a distribution over states, r : S ×A → ∆([0, 1]) is the192

reward distribution. We assume
∑

h∈[H] rh ∈ [0, 1] almost surely. For simplicity, throughout this193

paper, we assume the initial state s0 is deterministic. To streamline our analysis, for each h ∈ [H],194

we use Sh ⊆ S to denote the set of states at level h, and assume Sh do not intersect with each other.195

A policy π : S → A chooses an action for each state, and may induce a trajectory denoted by196

(s0, a0, r0, . . . , sH−1, aH−1, rH−1), where sh+1 ∼ P (sh, ah), ah = π(sh), and rh ∼ r(sh, ah) for197

all h ∈ [H]. Given a policy π and h ∈ [H], for a state-action pair (s, a) ∈ Sh ×A, the Q-function198

and value function is defined as199

Qπ(s, a) = E

[
H−1∑
h′=h

r(sh′ , ah′)|sh = s, ah = a, π

]
, V π(s) = E

[
H−1∑
h′=h

r(sh′ , ah′)|sh = s, π

]
.

We use V π to denote the value of the policy π, i.e., V π = V π(s0). We use π∗ to denote the optimal200

policy. For simplicity, for a state s ∈ S, we define V ∗(s) = V π∗
(s), and for a state-action pair201

(s, a) ∈ S ×A, we define Q∗(s, a) = Qπ∗
(s, a). The suboptimality of a policy π is defined as the202

difference between the value of π and that of π∗, i.e. V ∗ − V π .203

For any sequence of k-sparse parameter θ = (θ0, . . . , θH−1), we define πθ to be the greedy strategy204

based on θ. In other words, for each h ∈ [H], for a state s ∈ Sh, πθ(s) = argmaxa∈A⟨ϕ(s, a), θh⟩.205

For each h ∈ [H], a parameter θh, and a state s ∈ Sh, we also write Vθh(s) = maxa∈A⟨ϕ(s, a), θh⟩.206

We will prove lower bounds for deterministic systems, i.e., MDPs with deterministic transition P and207

deterministic reward r. In this setting, P and r can be regarded as functions rather than distributions.208

Since deterministic systems can be considered as a special case for general stochastic MDPs, our209

lower bounds still hold for general MDPs.210

Interacting with an MDP. An RL algorithm takes the feature function ϕ and sparsity k as the211

input, and interacts with the underlying MDP by taking samples in the form of a trajectory. To212

be more specific, at each round, the RL algorithm decides a policy π and receives a trajectory213

(s0, a0, r0, . . . , sH−1, aH−1, rH−1) as feedback. Here one trajectory corresponds to H samples. We214

define the total number of samples required by an RL algorithm as its sample complexity. Our goal is215

to design an algorithm that returns a near-optimal policy while minimizing its sample complexity.216

The Bandits Setting. In this paper, we also consider the bandit setting, which is equivalent to an217

MDP with H = 1. Let A be the action space, and r : A → ∆([0, 1]) be the reward distribution.218

At round t, the algorithm chooses an action at ∈ A and receives a reward rt ∼ r(at). In this case,219

Assumption 1 asserts that there exists θ∗, such that |⟨ϕ(a), θ∗⟩ − E[r(a)]| ≤ ϵ for all a ∈ A.220

3 Hardness Results221

We prove our hardness results. In Section 3.1, we prove that the suboptimality of any RL algorithm222

is Ω(Hϵ) if the algorithm is not allowed to take samples. This serves as a warmup for the more223

complicated construction in Section 3.2, where we show that for any C satisfying 1 ≤ 2C ≤ H , any224

RL algorithm requires exp(Ω(C)) samples in order to achieve a suboptimality of Ω(H/C · ϵ).225

3.1 Warmup: Hardness Result for RL without Samples226

We prove that the suboptimality of any RL algorithm without sample is Ω(Hϵ). Specifically, we227

consider a setting where the feature ϕ is 1-dimensional and equal to the optimal Q-value with an228
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error of ϵ. This provides a simplified scenario where an approximate optimal Q-function is readily229

available to the algorithm. Theorem 3.1 suggests that even in such a simplified context, the best230

achievable suboptimality is O(Hϵ).231

Theorem 3.1. Given a MDP instance satisfying Assumption 1, the suboptimality of the policy232

returned by any RL algorithm is Ω(Hϵ) with a probability of 0.99 if the algorithm is not allowed233

to take samples. This holds even when the dimension and sparsity satisfies d = k = 1 and the234

underlying MDP is a deterministic system.235

The formal proof of Theorem 3.1 is given in Section A.1 of the Supplementary Material. Below we236

give the construction of the hard instance (illustration of the hard instance is given in Appendix A.1),237

together with an overview of the hardness proof.238

Our hardness result is based on a binary tree instance. There are H levels of states, and level239

h ∈ [H] contains 2h distinct states. Thus we have 2H − 1 states in total. We use s0, ..., s2H−2240

to denote all the states, where s0 is the unique state at level 0, and s1, s2 are the states at level 1,241

etc. Equivalently, Sh = {s2h−1, . . . , s2h+1−2}. The action space A contains two actions, a1 and242

a2. For each h ∈ [H − 1], a state si ∈ Sh, we have P (si, a1) = s2i+1 and P (si, a2) = s2i+2. For243

each h ∈ [H], there exists an action a∗h ∈ {a1, a2}, such that π∗(s) = a∗h for all s ∈ Sh. Based244

on a∗0, a
∗
1, . . . , a

∗
H−1, for a state s ∈ Sh, we define the reward function as r(s, a) = ϵ if a = a∗h245

and r(s, a) = 0 otherwise. The corresponding Q-function is Q∗(s, a) = (H − h)ϵ if a = a∗h and246

Q∗(s, a) = (H − h− 1)ϵ otherwise.247

Now we define the 1-dimensional feature function ϕ. For each h ∈ [H], for all (s, a) ∈ Sh × A,248

ϕ(s, a) = (H − h− 1)ϵ. Clearly, by taking θ∗ = 1, Assumption 1 is satisfied for our ϕ. This finishes249

the construction of our hard instance.250

Since the RL algorithm is not allowed to take samples, the only information that the algorithm receives251

is the feature function ϕ. However, ϕ is always the same no matter how we set a∗0, a
∗
1, . . . , a

∗
H−1,252

which means the RL algorithm can only output a fixed policy. On the other hand, if a∗h is drawn253

uniformly at random from {a1, a2}, for any fixed policy π, its expected suboptimality will be Hϵ/2,254

which proves Theorem 3.1. Our formal proof in Section A.1 of the Supplementary Material is based255

on Yao’s minimax principle in order to cope with randomized algorithms.256

3.2 Hardness Result for RL with Samples257

In this section, we show that for any 1 ≤ 2C ≤ H , any RL algorithm requires exp(Ω(C)) samples258

in order to achieve a suboptimality of Ω(H/C · ϵ).259

Theorem 3.2. Given a RL problem instance satisfying Assumption 1 with misspecification ϵ < 1/H260

and let C ∈ R such that 1 ≤ 2C ≤ H . Any algorithm that returns a policy with suboptimality less261

than H/(2C) · ϵ with probability at least 0.9 needs least 0.1 · C · 2C samples.262

In the remaining part of this section, we give an overview of the proof of Theorem 3.2. We first define263

the MULTI-INDEX-QUERY problem.264

Definition 1. (MULTI-INDEX-QUERY) In the m-INDQn problem, we have a sequence of m indices265

(i∗0, i
∗
1, . . . , i

∗
m−1) ∈ [n]m. In each round, the algorithm guesses a pair (j, i) ∈ [m]× [n] and queries266

whether i = i∗j . The goal is to output (j, i∗j ) for any j ∈ [m], using as few queries as possible.267

Definition 2. (δ-correct algorithm) For δ ∈ (0, 1), we say a randomized algorithm A is δ-correct for268

m-INDQn if for any i∗ = {i∗j}j∈[m], with probability at least 1− δ, A outputs (j, i∗j ) for some j.269

We first prove a query complexity lower bound for solving m-INDQn.270

Lemma 3.3. Any 0.1-correct algorithm that solves m-INDQn requires at least 0.9n queries.271

Our proof is based on Yao’s minimax principle [Yao, 1977]. See Section A.2 for the full proof.272

Now we give the construction of our hard instance, together with the high-level intuition of our273

hardness proof. For simplicity, here we assume C is an integer that divides H .274

The Hard Instance. Again, our hardness result is based on a binary tree instance. The state space,275

action space, and the transition kernel of our hard instance are exactly the same as the instance in276

Section 3.1. Moreover, similar to the instance in Section 3.1, for each h ∈ [H], there exists an action277

a∗h ∈ {a1, a2}, such that π∗(s) = a∗h for all s ∈ Sh.278

6
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· · · · · ·· · ·

𝑃∗(𝑠𝑖, 𝐶)

· · ·

𝑄∗= (𝐻/𝐶 − 𝑘)𝜀
 𝑎𝑘𝐶+2

∗ = 𝑎2 

𝑄∗ = (𝐻/𝐶 − 𝑘)𝜀
 𝑎𝑘𝐶+𝐶−1

∗ = 𝑎1 

𝑠2𝐶−1+2𝐶−1𝑖 𝑠2𝐶−2+2𝐶𝑖· · · · · ·

· · · · · ·
𝑟 = 𝜀

Figure 1: Illustration of the hard instance for Theorem 3.2.

To define the reward function r, we first define an operator P ∗, which can be seen as applying the279

transition kernel for multiple steps by following the optimal policy. For some q ∈ [H/C], a state s ∈280

SkC , and an integer c ∈ [C], define P ∗(s, c) = s if c = 0 and P ∗(s, c) = P (P ∗(s, c− 1), a∗qC+c−1)281

otherwise. The reward function r(s, a) is then defined to be ϵ if s = P ∗(s′, C − 1) for some282

s′ ∈ SqC where q ∈ [H/C] and a = a∗qC+C−1. For all other (s, a) ∈ S ×A, we define r(s, a) = 0.283

Accordingly, for each (q, c) ∈ [H/C]×[C], s ∈ SqC+c, and a ∈ A, we have Q∗(s, a) = (H/C−q)ϵ284

if s = P ∗(s′, c) for some s′ ∈ SqC and a = a∗qC+c. For all other (s, a) ∈ S × A, we have285

Q∗(s, a) = (H/C − q − 1)ϵ. This also implies that the value of the optimal policy is H/C · ϵ.286

We define the 1-dimensional feature function ϕ such that, for each (q, c) ∈ [H/C]× [C], s ∈ SqC+t287

and a ∈ A, ϕ(s, a) = (H/C − q)ϵ. Clearly, Assumption 1 is satisfied when taking θ∗ = 1. This288

finishes the construction of our hard instance. An illustration is given in Figure 1.289

The Lower Bound. Now we show that for our hard instance, if there is an RL algorithm that returns290

a policy with suboptimality less than H/C · ϵ, then there is an algorithm that solves m-INDQn with291

n = 2C and m = H/C. Therefore, the correctness of Theorem 3.2 is implied by Lemma 3.3.292

We first note that there exists a bijection between {a1, a2}C and [2C ]. We use g : [2C ] → {a1, a2}T293

to denote such a bijection. Given an instance of m-INDQn with n = 2C and m = H/C, for294

each q ∈ [H/C], we set (a∗qC , a
∗
qC+1, . . . , a

∗
(q+1)C−1) = g(i∗q), where (i∗0, i

∗
1, i

∗
2, . . . , i

∗
H/C−1) are295

the target indices in the instance of m-INDQn. Each time the RL algorithm samples a trajectory296

(s0, a0, r0, . . . , sH−1, aH−1, rH−1), we make H/C sequential queries (0, i0), (1, i1), . . . , (H/C −297

1, iH/C−1) to m-INDQn, where for each q ∈ [H/C], iq is the unique integer in [2C ] with g(iq) =298

(aqC , aqC+1, . . . , a(q+1)C−1). For each h ∈ [H], we have rh = ϵ if h = (q + 1)C − 1 and ik = i∗q299

for some k ∈ [H/C]. Otherwise, we have rh = 0.300

Suppose there is an RL algorithm that returns a policy π with suboptimality less than H/C · ϵ, and301

since the value of the optimal policy is H/C · ϵ, we must have rh = ϵ for some h ∈ [H] where302

(s0, a0, r0, . . . , sH−1, aH−1, rH−1) is the trajectory obtained by following the policy π. This implies303

the existence of q ∈ [H/C] with g(i∗q) = (aqC , aqC+1, . . . , a(q+1)C−1). Therefore, if there is an RL304

algorithm that returns a policy with suboptimality less than H/C · ϵ for our hard instance, then there305

is an algorithm for solving m-INDQn with n = 2C and m = H/C.306

Remark 1. Our construction is significantly different from Du et al. [2020]. Specifically, we split307

a binary tree with H levels into H/C blocks. For each block, we show that any algorithm must308

incur a sample complexity of 2C in order to find a policy with suboptimality less than ϵ. In order to309

show that the overall suboptimality of the RL algorithm is H/C · ϵ, we develop a reduction from an310

intermediate problem called MULTI-INDEX-QUERY to RL, which is different from the one used in311

Du et al. [2020].312
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4 Main Algorithm313

In this section, we present our main algorithm that achieves the guarantee in Theorem 1.3.

Algorithm 1 Elimination Algorithm for Finding the Optimal Hypotheses
1: Input: feature map ϕ, sparsity k, approximation error ϵ, statistical error ϵstat, ϵnet, failure rate δ
2: For each h ∈ [H], initialize Ph = P0

h = {θ : θM ∈ N k, |M| = k,M ⊆ [d]}, where N k is the
maximal ϵnet/2-separated subset of the Euclidean sphere Sk.

3: Calculate m = 16k ln((1+4/ϵnet)d)+16 ln(H/δ)
ϵ2stat

.
4: for iteration t = 0, 1, 2, . . . do
5: Choose θt0 = argmaxθ∈P0

Vθ(s0).
6: for h = 1, 2, . . . ,H − 1 do
7: Define a policy πt

h, where πt
h(s) = πθt

h′
(s) if s ∈ Sh′ with h′ < h, and arbitrary otherwise.

Collect m trajectories following πt
h as a dataset

Dt
h = {(si0, ai0, ri0, . . . , siH−1, a

i
H−1, r

i
H−1)}i∈[m].

8: Choose θth = argmaxθ∈Ph

∑
i∈[m] Vθ(s

i
h), where sih are from dataset Dt

h.
9: end for

10: Collect m trajectories following a policy πt = πθt as a dataset

Dt
H = {(si0, ai0, ri0, . . . , siH−1, a

i
H−1, r

i
H−1)}i∈[m].

11: For each h ∈ [H], calculate using dataset Dt
H :

Êt
h =

{
1
m

∑m
i=1

(
⟨ϕ(sih, aih), θth⟩ − rih − Vθt

h+1
(sih+1)

)
, if h ∈ [H − 1]

1
m

∑m
i=1

(
⟨ϕ(siH−1, a

i
H−1), θ

t
H−1⟩ − riH−1

)
, if h = H − 1.

12: if Êt
h ≤ 2ϵ+ 2ϵnet + 3ϵstat for each h ∈ [H − 1] , and Êt

H−1 ≤ ϵ+ ϵnet + ϵstat then
13: Terminate and output πθt .
14: else
15: Update Ph = Ph\{θth}, for all h ∈ [H − 1] satisfying Êt

h ≤ 2ϵ + 2ϵnet + 3ϵstat, or
h = H − 1 satisfying Êt

H−1 ≤ ϵ+ ϵnet + ϵstat.
16: end if
17: end for

314

Overview. Here we give an overview of the design of Algorithm 1. We remark that, by Assumption 1,315

each horizon h has a different optimal θh. Therefore, a brute-force algorithm would have a sample316

complexity with exponential dependency on H , while our algorithm has a polynomial dependency317

on H .318

First, we approximate all candidate parameter θ with a finite set by creating a maximal ϵnet/2-319

separated subset of the euclidean sphere Sk−1, denoted by N k, and a set of all k-sized subset of [d].320

Then, for each h ∈ [H], we maintain a set of parameter candidates Ph. Initially, Ph is set to be all321

parameters approximated by N k and k-sized subset of [d], i.e. P0
h = {θ : θM ∈ Sk, |M| = k,M ⊆322

[d]} where θM is the k-dimension sub-vector of θ with indices corresponding to M. The set P0
h is323

then finite for all h ∈ [H]: |P0
h| ≤ (1 + 4/ϵnet)

k ·
(
d
k

)
[Dong and Yang, 2023].324

During the execution of Algorithm 1, for all h ∈ [H], we eliminate parameter candidates θ from Ph325

if we are certain that θ ̸= θ̂∗h, where θ̂∗ = (θ̂∗0 , θ̂
∗
1 , . . . , θ̂

∗
H−1) is a sequence of parameters that is in326

P0
h and is closest to the θ∗ that satisfies Assumption 1, i.e. θ̂∗h = argminθ∈P0

h
∥θ∗h − θ∥. Therefore,327

in Algorithm 1, we only consider θ = (θ0, θ1, . . . , θH−1) if θh ∈ Ph for all h ∈ [H]. In the t-th328

iteration, we choose a parameter θt = (θt0, θ
t
1, . . . , θ

t
H−1) so that θth maximizes E[Vθt

h
(sh)] and329

θth ∈ Ph for all h ∈ [H]. We then collect m trajectories to form a dataset Dt
H by following the policy330
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induced by θt. Based on Dt
H , we calculate the empirical Bellman error Êt

h for each h ∈ [H], which331

is the empirical estimate of the average Bellman error defined as follows.332

Definition 3 (Average Bellman error). For a sequence of parameters θt = (θt0, θ
t
1, . . . , θ

t
H−1), the333

average Bellman error of θt is defined as Et
h = E[⟨ϕ(sh, ah), θth⟩ − r(sh, ah)− Vft

h+1
(sh+1)] when334

h ∈ [H − 1] and Et
H−1 = E[⟨ϕ(sH−1, aH−1), θ

t
H−1⟩ − r(sH−1, aH−1)] for level H − 1. Here,335

(s0, a0, r0, . . . , sH−1, aH−1, rH−1) is a trajectory obtained by following πθt .336

Intuitively, the Bellman error at level h measures the consistency of θth and θth+1 for the state-action337

distribution induced by πθt . In each iteration of Algorithm 1, we check if Êt
h is small for all h ∈ [H].338

If so, the algorithm terminates and returns the policy πθt . Otherwise, for all levels h ∈ [H] where Êt
h339

is large, we eliminate θth from Ph and proceed to the next iteration.340

Now we give the analysis of Algorithm 1.341

Sample Complexity. To bound the sample complexity of Algorithm 1, it suffices to give an upper342

bound on the number of iterations, since in each iteration, the number of trajectories sampled by the343

algorithm is simply H2 ·m = 16H2(k ln((1 + 4/ϵnet)d) + ln(H/δ))/(ϵ2stat). The following lemma344

gives an upper bound on the number of iterations of Algorithm 1. The proof is given by counting the345

number of parameters in the parameter space. The detailed proof is given in Appendix B.1.346

Lemma 4.1. For any MDP instance with horizon H and satisfying Assumption 1 with sparsity k,347

Algorithm 1 runs for at most (1 + 4/ϵnet)
k
(
d
k

)
H iterations.348

Remark 2. Previous works [Weisz et al., 2022, Wang et al., 2021b] show that even when the349

optimal Q-function is well-specified, any RL algorithm would require a sample size with exponential350

dependency on d or H . Note that this is equivalent to the case where the sparsity k = d and the351

approximation error ϵ = 0 in our setting. Therefore, in our misspecified setting, which is strictly352

harder, exponential dependency on k is unavoidable, unless we can accept an exponential dependency353

on H .354

Suboptimality of the Returned Policy. We now show that with probability at least 1 − δ, the355

suboptimality of the returned policy is at most (2ϵ + 2ϵnet + 4ϵstat)H . First, we define a high356

probability event E, which we will condition on in the remaining part of the analysis.357

Definition 4. Define E as the event that |Et
h − Êt

h| ≤ ϵstat and |Esh∼πt
h
Vθ(sh)−

∑
i∈[m] Vθ(s

i
h)| ≤358

ϵstat (where sih is from Dt
h) for all iterations t, horizon h ∈ [H], and parameter θ ∈ P0

h.359

Lemma 4.2. Event E holds with probability at least 1− δ.360

To prove Lemma 4.2, we first consider a fixed level h and iteration t. Since the empirical Bellmen361

error Êt
h is simply the empirical estimate of Et

h, and
∑

i∈[m] Vθ(s
i
h) is simply an empirical estimate362

of Esh∼πt
h
Vθ(sh), applying the Chernoff-Hoeffding inequality respectively would suffice. Moreover,363

the number of iterations has an upper bound given by Lemma 4.1. Therefore, Lemma 4.2 follows by364

applying a union bound over all h ∈ [H], t ∈ [(1 + 4/ϵnet)
k
(
d
k

)
H] and parameter θ ∈ P0

h.365

We next show that, conditioned on event E defined above, for the sequence of parameters θ∗ =366

(θ∗0 , θ
∗
1 , . . . , θ

∗
H−1) that satisfies Assumption 1, we never eliminate θ̂∗h from Ph, for all h ∈ [H].367

Lemma 4.3. Conditioned on event E defined in Definition 4, for a sequence of parameters368

(θ∗0 , θ
∗
1 , . . . , θ

∗
H−1) that satisfies Assumption 1, and their approximations θ̂∗h = argminθ∈P0

h
∥θ∗h−θ∥,369

during the execution of Algorithm 1, θ̂∗h is never eliminated from Ph for all h ∈ [H].370

To prove Lemma 4.3, the main observation is that, for h ∈ [H − 1] the average Bellman error371

induced by θ̂∗h and θth+1 = argmaxθ∈Ph+1
Esh+1

[Vθ(sh+1)] is always upper bounded by 2(ϵ+ ϵnet),372

regardless of the distribution of (sh, ah) (cf. Definition 3). Conditioned on event E, the empirical373

Bellman error induced by θ̂∗h and θth+1 is at most 2ϵ+2ϵnet+3ϵstat. Similarly, the empirical Bellman374

error induced by θ̂∗H−1 is at most ϵ + ϵnet + ϵstat. In Algorithm 1, we eliminate function θth only375

when the empirical Bellman error is larger than these (Line 15). Thus, θ̂∗h is never eliminated.376

We now show the suboptimality of the policy returned by Algorithm 1 is at most (2ϵ+2ϵnet+4ϵstat)H .377
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Lemma 4.4. For any MDP instance satisfying Assumption 1, conditioned on event E defined in378

Definition 4, Algorithm 1 returns a policy π satisfying V ∗ − V π ≤ (2ϵ+ 2ϵnet + 4ϵstat)H.379

To prove Lemma 4.4, we first recall the policy loss decomposition lemma (Lemma 1 in Jiang et al.380

[2017]), which states that for a policy induced by a sequence of parameters θ = (θ0, θ1, . . . , θH−1),381

Vθ0(s0)− V πθ is upper bounded by the summation of average Bellman error over all levels h ∈ [H].382

When Algorithm 1 terminates, the empirical Bellman error must be small for all h ∈ [H], and383

therefore, the average Bellman error is small by definition of the event E. Moreover, in Line 5 of384

Algorithm 1, we always choose a parameter θ that maximizes Vθ(s0). Since the sequence of functions385

θ̂∗ = (θ̂∗0 , θ̂
∗
1 , . . . , θ̂

∗
H−1) is never eliminated by Lemma 4.3, we must have Vθ0(s0) ≥ Vθ∗

0
(s0) ≥386

V ∗−ϵ−ϵnet, which gives an upper bound on the suboptimality of the policy returned by Algorithm 1.387

Combining Lemma 4.1, Lemma 4.2 and Lemma 4.4, we can prove Theorem 1.3.388

Remark 3. While Algorithm 1 assumes the sparsity constant k is known, it can be easily adapted389

to the setting where k is not known beforehand. For such a setting, we could enumerate k starting390

from k = 1, and use the following observations: 1) If the true k, say k∗, is larger than k, then391

running our algorithm with sparsity k will eliminate all the parameters in the parameter space Ph392

for some horizon h. 2) If for all h, there exists one parameter in Ph that has not been deleted, the393

we have identified k∗. The sample complexity of this process is asymptotically the same as running394

Algorithm 1 with known k, since the true k∗ dominates the sample complexity.395

Implications. We can think of the bandit setting as an MDP with H = 1 and derive the following.396

Corollary 4.5. For the bandit setting satisfying Assumption 1, Algorithm 1 returns an action â such397

that r(a∗)− r(â) ≤ 2ϵ+ 2ϵnet + 4ϵstat.398

Remark 4. Here we compare Corollary 4.5 with the result in Dong and Yang [2023]. Scrutinizing399

the analysis in Dong and Yang [2023], the suboptimality achieved by their algorithm is 4ϵ+ ϵstat,400

which is worse than our suboptimality guarantee. On the other hand, the algorithm in Dong and Yang401

[2023] also returns a parameter θ such that |⟨ϕ(a), θ⟩ − r(a)| ≤ 2ϵ+ ϵstat for all a ∈ A (which is402

the best possible according to Theorem 1.1), where our algorithm only returns a near-optimal action.403

5 Conclusion404

We studied RL problem where the optimal Q-functions can be approximated by linear function with405

constant sparsity k, up to an error of ϵ. We design a new algorithm with polynomial sample complexity,406

while the suboptimality of the returned policy is O(Hϵ), which is shown to be near-optimal by a407

information-theoretic hardness result.408

Although the suboptimality guarantee achieved by our algorithm is near-optimal, the sample com-409

plexity can be further improved. As an interesting future direction, it would be interesting to design410

an RL algorithm with the same suboptimality guarantee, while obtaininig tighter dependece on the411

horizon length H .412
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A Proofs in Section 3530

A.1 Proof of Theorem 3.1531

Figure 2: Illustration of the hard instance for Theorem 3.1.
Proof. Consider an input distribution where a∗h is drawn uniformly random from {a1, a2}. By Yao’s532

minimax principle, it suffices to consider the best deterministic algorithm, say A. Note that, since we533

have no sampling ability, a deterministic algorithm in this setting can be seen as a function that takes534

in feature function ϕ and returns a policy π. Also, for all instances supported by this distribution, their535

inputs ϕ are the same. Thus, the policy returned by A is fixed. Denote the policy as π, and denote the536

trajectory following π as (s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rh−1). The suboptimality of π can537

be written as538

V ∗ − V π =

H−1∑
h=0

ϵ · I[a∗h ̸= ah]

Since ah is fixed and a∗h is drawn uniformly random from {a1, a2}, I[a∗h ̸= ah] = 1 with probability539

1/2. Thus, (V ∗ − V π)/ϵ is a binomial random variable, or (V ∗ − V π)/ϵ ∼ B(H, 1/2). The540

expectation of (V ∗ − V π) is then Hϵ/2, and its variance is Hϵ2/4. Using Chebyshev inequality,541

with probability 0.99, we have542

V ∗ − V π ≥ 1

2
Hϵ− 5ϵ

√
H = Ω(Hϵ)

for sufficiently large H ≥ 100.543

A.2 Proof of Lemma 3.3544

Proof. Consider an input distribution where i∗ = (i∗0, i
∗
2, . . . , i

∗
m−1) is drawn uniformly random545

from [n]m. Let c(i∗, a) be the query complexity of running algorithm a to solve the problem with546

correct indices i∗. Assume there exists a 0.1-correct algorithm A for m-INDQn that queries less547

than 0.9n times in the worst case. Then, using Yao’s minimax principle, there exists a deterministic548

algorithm A′ with c(i∗,A′) < 0.9n for all i∗ ∈ [n]m, such that549

P[A′outputs (j, i∗j ) for some j ∈ [m]] ≥ 0.9.

We may assume that the sequence of queries made by A′ is fixed until it correctly guesses one of i∗j .550

This is because A′ is deterministic, and the responses A′ receives are the same (i.e. all guesses are551

incorrect) until it correctly queries (j, i∗j ) for some j. Let S = {s1, . . . , sk} be the sequence of first552

k guesses made by A′, and let IBAD ⊂ [n]m be a set of all possible i∗’s such that the guesses in S553

are all incorrect. Denote the number of guesses on INDQ(j)
n in S by nj , then nj’s are also fixed, and554 ∑

j∈[m] nj = k. The size of IBAD then satisfies555

|IBAD| = Πm−1
j=0 (n− nj) ≥ (n− k)nm−1
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Set k as the worst-case query complexity of A′. Then, for all i∗ ∈ IBAD, the output of A′ is incorrect.556

Since i∗ is drawn uniformly random from [n]m, the probability of A′ being incorrect is557

P[A′ is incorrect] =
|IBAD|
|[n]m|

≥ (n− k)nm−1

nm
>

(n− 0.9n)nm−1

nm
> 0.1,

where in the second to last inequality we used k < 0.9n.558

However, this contradicts with the fact that P[A′outputs (j, i∗j ) for some j ∈ [m]] ≥ 0.9. Thus, there559

does not exist a 0.1-correct algorithm that solves the problem with less than 0.9n queries in the worst560

case.561

A.3 Proof of Theorem 3.2562

Proof. First, we prove our claim based on the assumption that C is an integer that divides H . We can563

create the hard instance described in Section 3.2.564

We reduce the problem to H/C-INDQ2C . Assume there exists an algorithm A that takes less than 0.9·565

2C ·C samples, such that, with probability at least 0.9, it outputs a policy π with suboptimality V ∗ −566

V π < H/C · ϵ. By definition, at round i, A interacts with the MDP instance by following a trajectory567

(s0, a
i
0, r

i
0, ..., s

i
H−1, a

i
H−1, r

i
H−1). Based on A, we create an algorithm A′ for H/C-INDQ2C as568

follows. Consider A is querying the trajectory (s0, a
i
0, r

i
0, ..., s

i
H−1, a

i
H−1, r

i
H−1). For each q ∈569

{0, . . . ,H/C−1}, we can map (aiqC , . . . , a
i
(q+1)C−1) to an index in [2C ] using the bijection g. Thus,570

we make a sequence of H/C guesses, {(q, g(aiqC , . . . , ai(q+1)C−1))}
H/C−1
q=0 , to the H/C-INDQ2C .571

If the guess (q, g(aiqC , . . . , a
i
(q+1)C−1)) is correct for some q, A receives a reward of ϵ at level572

(q + 1)C − 1, i.e. ri(q+1)C−1 = r(si(q+1)C−1, a
i
(q+1)C−1) = ϵ. For all other state-action pairs in the573

trajectory, algorithm A receives zero reward. Since A takes less than 0.9 · 2C · C samples, it queries574

less than 0.9 ·2C ·C/H trajectories, corresponding 0.9 ·2C guesses to H/C-INDQ2C in total. Recall575

that A outputs a policy π with suboptimality V ∗ − V π < H/C · ϵ with probability at least 0.9. This576

means the sequence of guesses to H/C-INDQ2C made by π must have at least one of them being577

correct. Thus, A′ is a 0.1-correct algorithm that solves H/C-INDQ2C with less than 0.9 · 2C guesses.578

However, by Lemma 3.3, such an algorithm does not exist, so A does not exist. We conclude that579

any algorithm that returns a policy with suboptimality less than H/C · ϵ with probability at least 0.9580

needs to sample at least 0.9 · C · 2C times.581

Now we consider when C is not an integer that divides H . There are two cases. First, consider C as582

an integer that does not divide H . Let H ′ = ⌊H/C⌋ · C, then we can make the same construction583

as above for the first H ′ horizons, and set the reward as zero for all the state-action pairs in the584

remaining H −H ′ levels. Because the rewards are the same for levels H ′ through H − 1, different585

values of {πH′ , . . . , πH−1} do not make a difference to V π. Therefore, we only care about the586

first H ′ levels, so we can conclude from our above analysis that, any algorithm that returns a587

policy with suboptimality less than H ′/C · ϵ = ⌊H/C⌋ · ϵ with probability at least 0.9 needs to588

sample at least 0.9 · C · 2C times. For the second case, we consider when C is not an integer. Let589

C ′ = ⌊C⌋, we can apply our conclusion from the previous case. That is, any algorithm that returns a590

policy with suboptimality less than ⌊H/C ′⌋ · ϵ with probability at least 0.9 needs to sample at least591

0.9 · C ′ · 2C′
times. Since 2C ≤ H , we have ⌊H/C ′⌋ · ϵ ≥ ⌊H/C⌋ · ϵ ≥ Hϵ

2C . Also observing that592

0.9 · C ′ · 2C′ ≥ 0.1 · C · 2C , we finish the proof.593

B Proofs in Section 4594

B.1 Proof of Lemma 4.1595

Proof. In each iteration, we either output a policy or delete at least one function in Ph for some596

h ∈ [H − 1]. Since there are
∑

h∈[H−1]

(
|Sk| ×

(
d
k

))
≤ (1 + 4/ϵnet)

k
(
d
k

)
H functions in total597

initially, the algorithm is guaranteed to terminate within (1 + 4/ϵnet)
k
(
d
k

)
H iterations.598
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B.2 Proof of Lemma 4.2599

Lemma B.1 (Deviation bound for Eh). For fixed iteration t and horizon h ∈ [H], with probability at
least 1− δ′, we have

|Et
h − Êt

h| ≤ 4

√
ln 2− ln δ′

2m
.

Hence, we can set m > 16(ln 2−ln(δ′))
2ϵ2stat

to guarantee that |Et
h − Êt

h| < ϵstat600

Proof. Recall that the batch dataset Dt = {(ai0, ri0, si1, ..., aiH−1, r
i
H−1)}mi=1 is collected by playing601

policy πθt . We define Êt,i
h = ⟨ϕ(sih−1, a

i
h), θ

t
h⟩− r(sih, a

i
h)−Vθt

h+1
(sih+1), then Êt

h = 1
m

∑m
i=1 Ê

t,i
h .602

By definition of Et
h, it satisfies603

Et
h = E[Êt,i

h ].

Further, since ⟨ϕ(s, a), θt⟩ ∈ [−1, 1] and r(s, a) ∈ [0, 1] for any state-action pair (s, a), we have604

Êt,i
h ∈ [−3, 1]. Thus, using Chernoff-Hoeffding inequality, we get, with probability 1− δ′,605

|Et
h − Êt

h| =

∣∣∣∣∣ 1m
m∑
i=1

(
Êt,i
h − E[Êt

h]
)∣∣∣∣∣ ≤ 4

√
ln 2− ln δ′

2m
.

606

Lemma B.2 (Deviation bound for Esh∼πt
h
Vθ(sh)). For fixed iteration t, horizon h ∈ [H], and607

parameter θ ∈ Ph, with probability at least 1− δ′, we have608 ∣∣∣∣∣∣Esh∼πt
h
Vθ(sh)−

1

m

∑
i∈[m]

Vθ(s
i
h)

∣∣∣∣∣∣ ≤
√

ln 2− ln δ′

2m
.

Hence, we can set m > ln 2−ln(δ′)
2ϵ2stat

to guarantee that |Et
h − Êt

h| < ϵstat609

Proof. Recall that the batch dataset Dt
h = {(si0, ai0, ri0, . . . , sih−1, a

i
h−1, r

i
h−1, s

i
h)}mi=1 is collected610

by playing policy πt
h. By definition, it satisfies611

Esh∼πt
h
Vθ(sh) = EDt

h

 1

m

∑
i∈[m]

Vθ(s
i
h)

 .

Further, since Vθ(s) ∈ [0, 1] for any state s, using Chernoff-Hoeffding inequality, we have with612

probability 1− δ′,613 ∣∣∣∣∣∣Esh∼πt
h
Vθ(sh)−

1

m

∑
i∈[m]

Vθ(s
i
h)

∣∣∣∣∣∣ ≤
√

ln 2− ln δ′

2m
.

614

Proof. Define EE
t,h to be the event615

EE
t,h = {|Et

h − Êt
h| ≤ ϵstat},

then by Lemma B.1, P(EE
t,h) ≥ 1 − δ/(2(1 + 4/ϵnet)

2k
(
d
k

)2
H2) for all iterations t ∈ [(1 +616

4/ϵnet)
k
(
d
k

)
H] and horizon h ∈ [H].617

Define EV
t,h,θ to be the event618

EV
t,h,θ =


∣∣∣∣∣∣Esh∼πt

h
Vθ(sh)−

1

m

∑
i∈[m]

Vθ(s
i
h)

∣∣∣∣∣∣ ≤ ϵstat

 ,
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then by Lemma B.2, P(EV
t,h,f ) ≥ 1 − δ/(2(1 + 4/ϵnet)

2k
(
d
k

)2
H2) for all iterations t ∈ [(1 +619

4/ϵnet)
k
(
d
k

)
H], horizon h ∈ [H], and θ ∈ Ph.620

We can lower bound the probability of E by union bound621

P(E) ≥1−
∑
t

∑
h∈[H]

P(ĒE
t,h)−

∑
t

∑
h∈[H]

∑
θ∈Ph

P(ĒV
t,h,θ) ≥ 1− δ.

622

B.3 Proof of Lemma 4.3623

Proof. Let θ̂∗ = (θ̂∗0 , . . . , θ̂
∗
H−1) be the sequence of parameters such that, for each h ∈ [H], the624

non-zero sub-vector of θ̂∗h is in N k and is closest to the non-zero indices in θ∗. Then, since N k is625

ϵnet/2-maximal, we have by Assumption 1 that626

|⟨ϕ(s, a), θ̂∗h⟩ −Q∗(s, a)| ≤ |⟨ϕ(s, a), θ∗h⟩ −Q∗(s, a)|+ |⟨ϕ(s, a), θ̂∗h⟩ − ⟨ϕ(s, a), θ∗h⟩| ≤ ϵ+ ϵnet,

for all s in horizon h and action a ∈ A.627

At iteration t, algorithm 1 deletes θ̂∗h if and only if one of the following two cases happens: (1)628

h < H − 1, θth = θ̂∗h, and Êt
h > 2ϵ + 2ϵnet + 3ϵstat, (2) h = H − 1, θtH−1 = θ̂∗h+1 and629

Êt
H−1 > ϵ+ ϵnet + ϵstat.630

For any state-action pair (sh, ah) at level h where h ∈ [H − 1], we observe by definition that631

Q∗(sh, ah)− E[r(sh, ah)]− E[V ∗
h+1(sh+1)] = 0.

Thus, we can upper bound Et
h by632

Et
h =E[⟨ϕ(sh, ah), θ̂∗h⟩ − r(sh, ah)− Vθh+1

(sh+1)]

≤E[(Q∗(sh, ah) + ϵ+ ϵnet)− r(sh, ah)− Vθh+1
(sh+1)] (By Assumption 1)

Here, (s0, a0, r0, . . . , sh, ah, rh) is a trajectory following πθt , and sh+1 ∼ P (sh, ah).633

Recall that θth is chosen by taking the function that gives maximum empirical value at level h, so634

1

m

∑
i∈[m]

Vθt
h
(sih) ≥

1

m

∑
i∈[m]

Vθ̂∗
h
(sih),

where sih are taken from the dataset Dt
h. Moreover, we are conditioned under event E, so we have635

E[Vθ∗
h
(sh)]− E[Vθt

h
(sh)] ≤

 1

m

∑
i∈[m]

Vθt
h
(sih) + ϵstat]

−

 1

m

∑
i∈[m]

Vθ∗
h
(sih)− ϵstat

 ≤ 2ϵstat

for all h and t.636

For the first case, we consider h ∈ [H − 1]. We have637

Et
h ≤E[(Q∗(sh, ah) + ϵ+ ϵnet)− r(sh, ah)− Vθt

h+1
(sh+1)]

≤E[Q∗(sh, ah)− r(sh, ah)− (Vf∗
h+1

(sh+1)− 2ϵstat)] + ϵ+ ϵnet

=E[Q∗(sh, ah)− r(sh, ah)− f∗
h+1(sh+1, π

∗
h+1(sh+1))] + ϵ+ ϵnet + 2ϵstat

(since Vf∗
h+1

= maxa∈A f∗
h+1(sh+1, a))

≤E[Q∗(sh, ah)− r(sh, ah)− (Q∗(sh+1, π
∗
h+1(sh+1))− ϵ− ϵnet)] + ϵ+ ϵnet + 2ϵstat

(By Assumption 1)
=E[Q∗(sh, ah)− r(sh, ah)−Q∗(sh+1, π

∗
h(sh+1))] + 2ϵ+ 2ϵnet + 2ϵstat

=2ϵ+ 2ϵnet + 2ϵstat. (since Q∗(sh+1, π
∗
h+1(sh+1)) = V ∗

h+1(sh+1))

Given that we are conditioned under event E, Êt
h − Et

h ≤ ϵstat for all iteration t and all horizon h.638

Thus, Êt
h < 2ϵ+ 2ϵnet + 3ϵstat.639
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For the second case, we consider h = H − 2. We have640

Et
H−1 ≤ E[(r(sH−1, aH−1) + ϵ)− r(sH−1, aH−1)] = ϵ+ ϵnet,

because H − 1 is the last level.641

Again, given that we are conditioned under event E, we have Êt
H−1 − Et

H−1 ≤ ϵstat, so Êt
H−1 <642

Et
H−1 + ϵstat ≤ ϵ+ ϵnet + ϵstat.643

B.4 Proof of Lemma 4.4644

Proof. Algorithm 1 terminates and returns a policy at iteration t only if θt satisfies the conditions in645

line 6, and by Lemma 4.3, there always exists a nice sequence of functions {θ̂∗h}
H−1
h=0 that satisfies646

these conditions. Also, Lemma 4.1 indicates that the algorithm terminates within a finite number of647

iterations. Thus, algorithm 1 is guaranteed to terminate and return a policy.648

Let the output policy be πθt , i.e. Êt
h ≤ 2ϵ + 2ϵnet + 3ϵstat for all h ∈ [H − 2] and Êt

H−1 ≤649

ϵ+ ϵnet + ϵstat. The loss of this policy can be bounded by650

V ∗(s0)− V πθt (s0) =Q∗(s0, π
∗(s0))− V πθt (s0)

≤(⟨ϕ(s0, π∗(s0)), θ̂
∗
0⟩+ ϵ+ ϵnet)− V πθt (s0) (By Assumption 1)

≤(⟨ϕ(s0, πθt
0
(s0)), θ

t
0⟩+ ϵ+ ϵnet)− E[

H−1∑
h=0

r(sh, ah)]

(since θt0 is chosen by taking the maximum)

=ϵ+ ϵnet + E
[H−1∑

h=0

⟨ϕ(sh, ah), θth⟩ − r(sh, ah)− ⟨ϕ(sh+1, ah+1), θ
t
h+1⟩

]
(telescoping sum)

=ϵ+ ϵnet +

H−1∑
h=0

E
[
⟨ϕ(sh, ah), θth⟩ − r(sh, ah)− ⟨ϕ(sh+1, ah+1), θ

t
h+1⟩

]
(linearity of expectation)

=ϵ+ ϵnet +

H−1∑
h=0

Et
h ≤ ϵ+ ϵnet +

H−1∑
h=0

(Êt
h + ϵstat) ≤ (2ϵ+ 2ϵnet + 4ϵstat)H

651

C Additional Proofs652

C.1 Proof of Theorem 1.1653

Proof. We construct a hard instance as follows. For each a ∈ [n], define ϕ(a) = ϵ. Let θ∗ be randomly654

selected from {−1, 1}, and let a∗ is uniformly chosen from A. The reward r is deterministic and is655

defined as656

r(a) =

{
2θ∗ϵ if a = a∗

0 otherwise.

Therefore |r(a)− θ∗ · ϕ(a)| ≤ ϵ holds true for all actions a ∈ A.657

By Yao’s minimax principle, it suffices to consider deterministic algorithms. Let A be a deterministic658

algorithm that, by taking less than 0.9n samples, returns a r̂ with |r̂(a)− r(a)| < 2ϵ for all a ∈ A659

with probability at least 0.95. We can say the sequence of actions made by A is fixed until it receives660

a reward r(at) ̸= 0 at some round t. This is because A is deterministic, and the responses A receives661

are the same (i.e. all actions have reward 0) until it queries a∗. Let S = (a1, . . . , at) be the sequence662
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of actions made by A. Let ABAD ⊂ A be the set of actions that are not in S. We have663

P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A] =P[|r̂(a)− r(a)| < 2ϵ, ∀a ∈ A|a∗ ∈ ABAD]P[a∗ ∈ ABAD]

+ P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A|a∗ /∈ ABAD]P[a∗ /∈ ABAD]

<P[|r̂(a)− r(a)| < 2ϵ, ∀a ∈ A|a∗ ∈ ABAD]P[a∗ ∈ ABAD]

+ (1− P[a∗ ∈ ABAD])

Since t < 0.9n and a∗ is chosen uniformly random from A, the probability that a∗ ∈ ABAD is664

P[a∗ ∈ ABAD] =
|ABAD|
|A|

>
1− 0.9n

n
= 0.1.

When a∗ ∈ ABAD, the output of our deterministic algorithm must be fixed. We denote such output665

by r′. Consider a fixed a∗ ∈ ABAD, if we have |r′(a∗) − 2ϵ| < 2ϵ, then r′(a∗) ∈ (0, 4ϵ), and666

|r′(a∗)− (−2ϵ))| > 2ϵ. Similarly, if we have |r′(a∗)− (−2ϵ)| < 2ϵ, then |r′(a∗)− 2ϵ| > 2ϵ. Since667

θ∗ is chosen uniformly random in {−1, 1}, we know r(a∗) is chosen uniformly random in {−2ϵ, 2ϵ}.668

Thus,669

P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A|a∗ ∈ ABAD] ≤ P[|r̂(a∗)− r(a∗)| < 2ϵ|a∗ ∈ ABAD] = 0.5.

We have670

P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A] < 0.5 · P[a∗ ∈ ABAD] + (1− P[a∗ ∈ ABAD]) < 0.5 · 0.1 + 0.9 = 0.95.

However, by our assumption on algorithm A, we have P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A] > 0.95.671

D Bellman Rank672

The following definition of the general average Bellman error is helpful for our proofs in this section.673

Definition 5. Given any policy π : S → A, feature function ϕ : S × A → Rd and a sequence of674

parameters θ = (θ0, . . . , θH−1), the average Bellman error of θ under roll-in policy π at level h is675

defined as676

Eh(θ, π) = E[⟨ϕ(sh, ah), θh⟩ − rh −max
a∈A

⟨ϕ(sh+1, a), θh+1⟩].

Here, (s0, a0, r0, . . . , sh, ah, rh) is a trajectory by following π, and sh+1 ∼ P (sh, ah).677

Definition 6 (Bellman Rank). For a given MDP M, we say that our parameter space F = {θ ∈ Rd :678

θ is k-sparse, ∥θ∥2 = 1} has a Bellman rank of dimension d if, for all h ∈ [H], there exist functions679

Xh : F → Rd and Yh : F → Rd such that for all θ, θ′ ∈ F ,680

Eh(θ, πθ′) = ⟨Xh(θ), Yh(θ
′)⟩.

For each h ∈ [H], define Wh ∈ Rd×d as the Bellman error matrix at level h, where the i, j-th index681

of Wh is Eh(θi, πθj ). Then, the Bellman rank of F is the maximum among the rank of the matrices682

{Wh}h∈[H].683

We prove Proposition 1.2.684

Proof. We again construct a deterministic MDP instance with binary trees. For simplicity, we685

assume d is a power of 2, and we construct the instance with horizon H = log d. Thus, we have686

|S| = 2H − 1 = d− 1 states. We also assume the sparsity is k = 1, so the parameter space |F| = d.687

The rest details of state space, action space, and the transition kernel are exactly the same as in688

Section 3.1.689

The reward is defined as r(s, a1) = r(s, a2) = ϵ for s ∈ SH−1, and r(s, a) = 0 for all other690

state-action pairs. Correspondingly, the Q-function satisfies that Q∗(s, a) = ϵ for all (s, a) ∈ S ×A.691

For feature at horizon h ∈ [H], for j ≥ 2h+1, we define the j-th index of ϕ(s, a) as ϕ(s, a)[j] = jϵ for692

all (s, a) ∈ Sh ×A. For i ∈ [2h+1] and i is even, ϕ(s2h−1+i, a1)[i] = ϵ and ϕ(s2h−1+i, a2)[i] = 0.693

If i ∈ [2h+1] and i is odd, then ϕ(s2h−1+i, a1)[i] = 0 and ϕ(s2h−1+i, a2)[i] = ϵ. We also define694

ϕ(s, a)[i] = 0 for all other state-action pairs.695
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Notice that, for any h ∈ [H] and i ∈ [2h+1], we have can let θ be the one-hot vector with i-th index696

being 1, then |⟨ϕ(s, a), θ⟩ − Q∗(s, a)| ≤ ϵ for all (s, a) ∈ Sh × A, so our construction satisfies697

assumption 1.698

Clearly, for each pair (s, a) ∈ SH−1 ×A, we can find θ = (θ0, . . . , θH−1) such that the trajectory699

created by following πθ, denoted by (s0, a0, r0, . . . , sH−1, aH−1, rH−1), satisfies sH−1 = s and700

aH−1 = a.701

Consider two parameter candidates θ, θ′. Let (sH−1, aH−1) be the state and action at level H − 1702

when following πθ′ . Since we are considering deterministic MDP, we can calculate the Bellman error703

at level H − 1 as follows704

EH−1(θ, πθ′) =⟨ϕ(sH−1, aH−1), θH−1⟩ − r(sH−1, aH−1)−max
a∈A

⟨ϕ(sH , a), θH⟩

=⟨ϕ(sH−1, aH−1), θH−1⟩ − ϵ (since H − 1 is the last level)

=

{
0 , if θH−1 = θ′H−1

−ϵ , if θH−1 ̸= θ′H−1.

Here, the last equality holds because, for each θH−1, there is only one unique (s, a) ∈ SH−1 ×A705

such that ⟨ϕ(s, a), θH−1⟩ = ϵ.706

Thus, at level H − 1, a submatrix of the Bellman error matrix, W ∈ Rd×d, satisfies707

Wij = EH−1(θi, πθj ) =

{
0 , if i = j

−ϵ , otherwise.

In other words, W = ϵ(I − J) where I is the identity matrix and J is a d × d matrix with all 1s.708

Define matrix W ′ = 1
ϵ (I − 1/(n− 1)J), then we have709

WW ′ = (I − J)(I − 1

n− 1
J)

= I − 1

n− 1
J − J +

n

n− 1
J = I.

This means W ′ is the inverse matrix of W , and W is full rank. Thus, the Bellman rank is at least710

d.711
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