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Abstract

The recent work by Dong and Yang [2023] showed for misspecified sparse linear
bandits, one can obtain an O (ϵ)-optimal policy using a polynomial number of
samples when the sparsity is a constant, where ϵ is the misspecification error.
This result is in sharp contrast to misspecified linear bandits without sparsity,
which require an exponential number of samples to get the same guarantee. In
order to study whether the analog result is possible in the reinforcement learning
setting, we consider the following problem: assuming the optimal Q-function is a
d-dimensional linear function with sparsity s and misspecification error ϵ, whether
we can obtain an O (ϵ)-optimal policy using number of samples polynomially
in the feature dimension d. We first demonstrate why the standard approach
based on Bellman backup or the existing optimistic hypothesis class elimination
approach such as OLIVE Jiang et al. [2017] achieves suboptimal guarantees for
this problem. We then design a novel elimination-based algorithm to show one
can obtain an O (Hϵ)-optimal policy with sample complexity polynomially in the
feature dimension d and planning horizon H . Lastly, we complement our upper
bound with an Ω̃ (Hϵ) suboptimality lower bound, giving a complete picture of
this problem.

1 Introduction

Bandit and reinforcement learning (RL) problems in real-world applications, such as autonomous
driving [Kiran et al., 2021], healthcare [Esteva et al., 2019], recommendation systems [Bouneffouf
et al., 2012], and advertising [Schwartz et al., 2017], face challenges due to the vast state-action
space. To tackle this, function approximation frameworks, such as using linear functions or neural
networks, have been introduced to approximate the value functions or policies. However, real-world
complexities often mean that function approximation is agnostic; the function class captures only an
approximate version of the optimal value function, and the misspecification error remains unknown.
A fundamental problem is understanding the impact of agnostic misspecification errors in RL.

Prior works show even minor misspecifications can lead to exponential (in dimension) sample
complexity in the linear bandit settings [Du et al., 2020, Lattimore et al., 2020] if the goal is to
learn a policy within the misspecification error. That is, finding an O(ϵ)-optimal action necessitates
at least Ω(exp(d)) queries (or samples) to the environment, where ϵ is the misspecification error.
Recently, Dong and Yang [2023] demonstrated that by leveraging the sparsity structure of ground-
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truth parameters, one can overcome the exponential sample barrier in the linear bandit setting. They
showed that with sparsity k in the ground-truth parameters, it is possible to learn an O(ϵ)-optimal
action with only O

(
(d/ϵ)

k
)

samples. In particular, when k is a constant, their algorithm achieves a
polynomial sample complexity guarantee.

A natural question is whether we can obtain a similar sample complexity guarantee in the RL setting.
This question motivates us to consider a more general question:

Given a that the Q∗ function is a d-dimensional linear function with sparsity k and misspecification
error ϵ, can we learn an O (ϵ)-optimal policy using poly(d, 1/ϵ) samples, when k is a constant?1

It turns out that by studying this question, we obtain a series of surprising results which cannot be
explained by existing RL theories.

1.1 Our Contributions

In this paper, we propose an RL algorithm that can handle linear function approximation with sparsity
structures and misspecification errors. We also show that the suboptimality achieved by our algorithm
is near-optimal, by proving information-theoretic hardness results. Here we give a more detailed
description of our technical contributions.

Our Assumption. Throughout this paper, we assume the RL algorithm has access to a feature map
where, for each state-action pair (s, a), we have the feature ϕ(s, a) with ∥ϕ(s, a)∥ ≤ 1. We make the
following assumption, which states that there exists a sequence of parameters θ∗ = (θ∗0 , . . . , θ

∗
H−1)

where each θ∗h ∈ Sd−1 is k-sparse, that approximates the optimal Q-function up to an error of ϵ.

Assumption 1. There exists θ∗ = (θ∗0 , . . . , θ
∗
H−1) where each θ∗h ∈ Sd−1 is k-sparse, such that

|⟨ϕ(s, a), θ∗h⟩ −Q∗(s, a)| ≤ ϵ

for all h ∈ [H], all states s in level h, and all actions a in the action space.

When H = 1, Assumption 1 is equivalent to the bandit setting in Dong and Yang [2023]. Note that
we have a different optimal parameter θh for each level h ∈ [H].

We can approximate θ∗ using an ϵ-net of the sphere Sk−1 and the set of all k-sized subset of [d].
Therefore, when k is a constant, we may assume that each θ∗h lies in a set with size polynomial in d.
Then, a natural idea is to enumerate all possible policies induced by the parameters in that finite set,
and choose the one with the highest cumulative reward. However, although the number of parameter
candidates in each individual level has polynomial size, the total number of induced policies would
be exponential in H , and the sample complexity of such approach would also be exponential in H .

The Level-by-level Approach. Note that when the horizon length H = 1, the problem under
consideration is equivalent to a bandit problem, which can be solved by previous approaches [Dong
and Yang, 2023]. For the RL setting, a natural idea is to first apply the bandit algorithm in Dong
and Yang [2023] on the last level, and then apply the same bandit algorithm on the second last level
based on previous results and Bellman-backups, and so on. However, we note that to employ such an
approach, the bandit algorithm needs to provide a “for-all” guarantee, i.e., finding a parameter that
approximates the rewards of all arms, instead of just finding a near-optimal arm. On the other hand,
existing bandit algorithms will amplify the approximation error of the input parameters by a constant
factor, in order to provide a for-all guarantee. Concretely, existing bandit algorithms can only find a
parameter θ so that θ approximates the rewards of all arms by an error of 2ϵ. As we have H levels
in the RL setting, the final error would be exponential in H , and therefore, such a level-by-level
approach would result in a suboptimality that is exponential in H .

One may ask if we can further improve existing bandit algorithms, so that we can find a parameter θ
that approximates the rewards of all arms by an error of ϵ plus a statistical error that can be made
arbitrarily small, instead of 2ϵ. The following theorem shows that this is information-theoretically
impossible unless one pays a sample complexity proportional to the size of the action space.

1Strictly speaking, as will be demonstrated in this paper, the best one can do is an O (ϵH)-optimal policy
where H is the horizon length.
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Theorem 1.1. Under Assumption 1 with d = k = 1, any bandit algorithm that returns an estimate
r̂ such that |r̂(a) − r(a)| < 2ϵ for all arms a with probability at least 0.95 requires at least 0.9n
samples, where n is the total number of arms.

Therefore, amplifying the approximation error by a factor of 2 is not an artifact of existing bandit
algorithms. Instead, it is information-theoretically impossible.

Geometric error amplification is a common issue in the design of RL algorithm with linear function
approximation [Zanette et al., 2019, Weisz et al., 2021, Wang et al., 2020a, 2021a]. It is interesting
(and also surprising) that such an issue arises even when the function class has sparsity structures.

Optimistic Value Function Elimination. Another approach for the design of RL algorithm is based
on optimistic value function elimination. Such an approach was proposed by Jiang et al. [2017] and
was then generalized to broader settings [Sun et al., 2019, Du et al., 2021, Jin et al., 2021, Chen et al.,
2022b]. At each iteration of the algorithm, we pick the value functions in the hypothesis class with
maximized value. We then use the induced policy to collect a dataset, based on which we eliminate a
bunch of value functions from the hypothesis class and proceed to the next iteration.

When applied to our setting, existing algorithms and analysis achieve a suboptimality that depends
on the size of the parameter class, which could be prohibitively large. Here, we use the result in Jiang
et al. [2017] as an example. The suboptimality of their algorithm is H

√
Mϵ, where M is Bellman

rank of the problem. For our setting, we can show that there exists an MDP instance and a feature
map that satisfies Assumption 1, whose induced Bellman rank is large.
Proposition 1.2. There exists an MDP instance M = (S,A, H, P, r) with |A| = 2, H = log d,
|S| = d − 1, with d-dimensional feature map ϕ satisfying Assumption 1 with k = 1, such that its
Bellman rank is d.

Given Proposition 1.2, if one naïvely applies the algorithm in Jiang et al. [2017], the suboptimality
would be O(H

√
dϵ) in our setting, which necessitates new algorithm and analysis. In Section 4, we

design a new RL algorithm whose performance is summarized in the following theorem.
Theorem 1.3. Under Assumption 1, with probability at least 1 − δ, Algorithm 1 returns a policy
with suboptimality at most (4ϵstat + 2ϵnet + 2ϵ)H by taking O(kdkH3 · ln(dH/ϵnetδ) · ϵ−k

netϵ
−2
stat)

samples.

Here ϵstat is the statistical error. Compared to the existing approaches, Theorem 1.3 achieves a much
stronger suboptimality guarantee. Later, we will also show that such a guarantee is near-optimal.

Although based on the same idea of optimistic value function elimination, our proposed algorithm
differs significantly from existing approaches [Jiang et al., 2017, Sun et al., 2019, Du et al., 2021,
Jin et al., 2021, Chen et al., 2022b] to exploit the sparsity structure. While existing approaches
based on optimistic value function elimination try to find a sequence of parameters that maximize the
value of the initial states, our new algorithm selects a parameter that maximizes the empirical roll-in
distribution at all levels. Also, existing algorithms eliminate a large set of parameters in each iteration,
while we only eliminate the parameters selected during the current iteration in our algorithm.

These two modifications are crucial for obtaining a smaller suboptimality guarantee, smaller sample
complexity, and shorter running time. In existing algorithms, parameters at different levels are
interdependent, i.e. the choice of parameter at level h affects the choice of parameter at level h+ 1.
Our new algorithm simplifies this by maintaining a parameter set for each level, so each level operates
independently. Further, we can falsify and eliminate any parameter showing large Bellman error
at any level h, since otherwise we would have found another parameter with larger induced value
function at level h + 1 to make the error small. Consequently, since we eliminate at least one
parameter at each iteration, we obtain fewer iterations and enhanced sample complexity.

The Hardness Result. One may wonder if the suboptimality guarantee can be further improved. In
Section 3, we show that the suboptimality guarantee by Theorem 1.3 is near-optimal.

We first consider a weaker setting where the algorithm is not allowed to take samples, and the function
class contains a single sequence of functions. I.e., we are given a function Q̂ : S ×A → R, such that
|Q̂(s, a)−Q∗(s, a)| ≤ ϵ for all (s, a) ∈ S ×A.

We show that for this weaker setting, simply choosing the greedy policy with respect to Q̂, which
achieves a suboptimality guarantee of O(Hϵ), is actually optimal. To prove this, we construct a hard
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instance based on binary tree. Roughly speaking, the optimal action for each level is chosen uniformly
random from two actions a1 and a2. At all levels, the reward is ϵ if the optimal action is chosen,
and os 0 otherwise. For this instance, there exists a fixed Q̂ that provides a good approximation to
the optimal Q-function, regardless of the choice of the optimal actions. Therefore, Q̂ reveals no
information about the optimal actions, and the suboptimality of the returned policy would be at least
Ω(Hϵ). The formal construction and analysis and construction will be given in Section 3.1.

When the algorithm is allowed to take samples, we show that in order to achieve a suboptimality
guarantee of H/Cϵ, any algorithm requires exp(Ω(C)) samples, even when Assumption 1 is satisfied
with d = k = 1. Therefore, for RL algorithms with polynomial sample complexity, the suboptimality
guarantee of Theorem 1.3 is tight up to log factors.

To prove the above claim, we still consider the setting where d = k = 1, i.e., a good approximation to
the Q-function is given to the algorithm. We also use a more complicated binary tree instance, where
we divide all the H levels into H/C blocks, each containing C levels. For each block, only one
state-action pair at the last level has a reward of ϵ, and all other state-action pairs in the block has a
reward of 0. Therefore, the value of the optimal policy would be H/C · ϵ since there are H/C blocks
in total. We further show that there is a fixed function Q̂, which provides a good approximation to the
optimal Q-function universally for all instances under consideration.

Since Q̂ reveals no information about the state-action pair with ϵ reward for all blocks, for an RL
algorithm to return a policy with a non-zero value, it must search for a state-action pair with non-zero
reward in a brute force manner, which inevitably incurs a sample complexity of exp(Ω(C)) since each
block contains C levels and exp(Ω(C)) state-action pairs at the last level. The formal construction
and analysis and construction will be given in Section 3.2.

1.2 Related Work

A series of studies have delved into MDPs that can be represented by linear functions of predetermined
feature mappings, achieving sample complexity or regret that depends on the feature mapping’s
dimension. This includes linear MDPs, studied in Jin et al. [2020], Wang et al. [2019], Neu and
Pike-Burke [2020], where both transition probabilities and rewards are linear functions of feature
mappings on state-action pairs. Zanette et al. [2020a,b] examines MDPs with low inherent Bellman
error, indicating value functions that are almost linear with respect to these mappings. Another focus
is on linear mixture MDPs [Modi et al., 2020, Jia et al., 2020, Ayoub et al., 2020, Zhou et al., 2021,
Cai et al., 2020], characterized by transition probabilities that combine several basis kernels linearly.
While these studies often assume known feature vectors, Agarwal et al. [2020] investigates a more
challenging scenario where both features and parameters of the linear model are unknown.

The literature has also witnessed a substantial surge of research in understanding how function general
approximations can be applied efficiently in the reinforcement learning setting [Osband and Van Roy,
2014, Sun et al., 2019, Ayoub et al., 2020, Wang et al., 2020b, Foster et al., 2021, Chen et al., 2022b,a,
Zhong et al., 2022, Foster et al., 2023, Wagenmaker and Foster, 2023, Zhou and Gu, 2022, Jiang et al.,
2017, Wang et al., 2020b, Du et al., 2021, Jin et al., 2021, Kong et al., 2021, Dann et al., 2021, Zhong
et al., 2022, Liu et al., 2023, Agarwal et al., 2023]. To obtain good sample, error, or regret bounds,
these approaches typically impose benign structures on values, models, or policies, along with benign
misspecification. Amongst these works, Jiang et al. [2017] is particularly related to our work as their
elimination-based algorithm, OLIVE, can be directly applied to our setting. However, as mentioned
in Section 1.1, the suboptimality guarantee of their algorithm is significantly worse than our result.

In another line of works, Du et al. [2020], Dong and Yang [2023], Lattimore et al. [2020] specifically
focuses on understanding misspecification in bandit and RL scenarios. Du et al. [2020] illustrated
that to find an O(ϵ)-optimal policy in reinforcement learning with ϵ-misspecified linear features,
an agent must sample an exponential (in d) number of trajectories, applicable to both value-based
and model-based learning. Relaxing this goal, Lattimore et al. [2020] indicated that poly(d/ϵ)
samples could suffice to secure an O(ϵ

√
d)-optimal policy in a simulator model setting of RL, though

achieving a policy with an error better than O(ϵ
√
d) would still require an exponential sample

size. Recently, Dong and Yang [2023] introduced a solution, showing that incorporating structural
information like sparsity in the bandit instance could address this issue, making it feasible to attain
O(ϵ) with O((d/ϵ)k) sample complexity, which is acceptable when the sparsity k is small. Another
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recent independent work [Amortila et al., 2024] also obtains a suboptimality guarantee of O(Hϵ).
However, their result depends on a coverability assumption and uses a different technique called
disagreement-based regression (DBR), which is distinct from our assumption and techniques.

2 Preliminaries

Throughout the paper, for a given positive integer n, we use [n] to denote the set {0, 1, 2, . . . , n− 1}.
In addition, f(n) = O(g(n)) denotes that there exists a constant c > 0 such that |f(n)| ≤ c|g(n)|.
f(n) = Ω(g(n)) denotes that there exists a constant c > 0 such that |f(n)| ≥ c|g(n)|. For a set S,
∆(S) represents the set of all probability distributions defined over S.

2.1 Reinforcement Learning

Let M = {S,A, H, P, r} be a Markov Decision Process (MDP) where S is the state space, A is the
action space, H ∈ Z+ is the planning horizon, P : S × A → ∆(S) is the transition kernel which
takes a state-action pair as input and returns a distribution over states, r : S ×A → ∆([0, 1]) is the
reward distribution. We assume

∑
h∈[H] rh ∈ [0, 1] almost surely. For simplicity, throughout this

paper, we assume the initial state s0 is deterministic. To streamline our analysis, for each h ∈ [H],
we use Sh ⊆ S to denote the set of states at level h, and assume Sh do not intersect with each other.

A policy π : S → A chooses an action for each state, and may induce a trajectory denoted by
(s0, a0, r0, . . . , sH−1, aH−1, rH−1), where sh+1 ∼ P (sh, ah), ah = π(sh), and rh ∼ r(sh, ah) for
all h ∈ [H]. Given a policy π and h ∈ [H], for a state-action pair (s, a) ∈ Sh ×A, the Q-function
and value function is defined as

Qπ(s, a) = E

[
H−1∑
h′=h

r(sh′ , ah′)|sh = s, ah = a, π

]
, V π(s) = E

[
H−1∑
h′=h

r(sh′ , ah′)|sh = s, π

]
.

We use V π to denote the value of the policy π, i.e., V π = V π(s0). We use π∗ to denote the optimal
policy. For simplicity, for a state s ∈ S, we define V ∗(s) = V π∗

(s), and for a state-action pair
(s, a) ∈ S ×A, we define Q∗(s, a) = Qπ∗

(s, a). The suboptimality of a policy π is defined as the
difference between the value of π and that of π∗, i.e. V ∗ − V π .

For any sequence of k-sparse parameter θ = (θ0, . . . , θH−1), we define πθ to be the greedy strategy
based on θ. In other words, for each h ∈ [H], for a state s ∈ Sh, πθ(s) = argmaxa∈A⟨ϕ(s, a), θh⟩.
For each h ∈ [H], a parameter θh, and a state s ∈ Sh, we also write Vθh(s) = maxa∈A⟨ϕ(s, a), θh⟩.
We will prove lower bounds for deterministic systems, i.e., MDPs with deterministic transition P and
deterministic reward r. In this setting, P and r can be regarded as functions rather than distributions.
Since deterministic systems can be considered as a special case for general stochastic MDPs, our
lower bounds still hold for general MDPs.

Interacting with an MDP. An RL algorithm takes the feature function ϕ and sparsity k as the
input, and interacts with the underlying MDP by taking samples in the form of a trajectory. To
be more specific, at each round, the RL algorithm decides a policy π and receives a trajectory
(s0, a0, r0, . . . , sH−1, aH−1, rH−1) as feedback. Here one trajectory corresponds to H samples. We
define the total number of samples required by an RL algorithm as its sample complexity. Our goal is
to design an algorithm that returns a near-optimal policy while minimizing its sample complexity.

The Bandits Setting. In this paper, we also consider the bandit setting, which is equivalent to an
MDP with H = 1. Let A be the action space, and r : A → ∆([0, 1]) be the reward distribution.
At round t, the algorithm chooses an action at ∈ A and receives a reward rt ∼ r(at). In this case,
Assumption 1 asserts that there exists θ∗, such that |⟨ϕ(a), θ∗⟩ − E[r(a)]| ≤ ϵ for all a ∈ A.

3 Hardness Results

We prove our hardness results. In Section 3.1, we prove that the suboptimality of any RL algorithm
is Ω(Hϵ) if the algorithm is not allowed to take samples. This serves as a warmup for the more
complicated construction in Section 3.2, where we show that for any C satisfying 1 ≤ 2C ≤ H , any
RL algorithm requires exp(Ω(C)) samples in order to achieve a suboptimality of Ω(H/C · ϵ).
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3.1 Warmup: Hardness Result for RL without Samples

We prove that the suboptimality of any RL algorithm without sample is Ω(Hϵ). Specifically, we
consider a setting where the feature ϕ is 1-dimensional and equal to the optimal Q-value with an
error of ϵ. This provides a simplified scenario where an approximate optimal Q-function is readily
available to the algorithm. Theorem 3.1 suggests that even in such a simplified context, the best
achievable suboptimality is O(Hϵ).
Theorem 3.1. Given a MDP instance satisfying Assumption 1, the suboptimality of the policy
returned by any RL algorithm is Ω(Hϵ) with a probability of 0.99 if the algorithm is not allowed
to take samples. This holds even when the dimension and sparsity satisfies d = k = 1 and the
underlying MDP is a deterministic system.

The formal proof of Theorem 3.1 is given in Section A.1 of the Supplementary Material. Below we
give the construction of the hard instance (illustration of the hard instance is given in Appendix A.1),
together with an overview of the hardness proof.

Our hardness result is based on a binary tree instance. There are H levels of states, and level
h ∈ [H] contains 2h distinct states. Thus we have 2H − 1 states in total. We use s0, ..., s2H−2

to denote all the states, where s0 is the unique state at level 0, and s1, s2 are the states at level 1,
etc. Equivalently, Sh = {s2h−1, . . . , s2h+1−2}. The action space A contains two actions, a1 and
a2. For each h ∈ [H − 1], a state si ∈ Sh, we have P (si, a1) = s2i+1 and P (si, a2) = s2i+2. For
each h ∈ [H], there exists an action a∗h ∈ {a1, a2}, such that π∗(s) = a∗h for all s ∈ Sh. Based
on a∗0, a

∗
1, . . . , a

∗
H−1, for a state s ∈ Sh, we define the reward function as r(s, a) = ϵ if a = a∗h

and r(s, a) = 0 otherwise. The corresponding Q-function is Q∗(s, a) = (H − h)ϵ if a = a∗h and
Q∗(s, a) = (H − h− 1)ϵ otherwise.

Now we define the 1-dimensional feature function ϕ. For each h ∈ [H], for all (s, a) ∈ Sh × A,
ϕ(s, a) = (H − h− 1)ϵ. Clearly, by taking θ∗ = 1, Assumption 1 is satisfied for our ϕ. This finishes
the construction of our hard instance.

Since the RL algorithm is not allowed to take samples, the only information that the algorithm receives
is the feature function ϕ. However, ϕ is always the same no matter how we set a∗0, a

∗
1, . . . , a

∗
H−1,

which means the RL algorithm can only output a fixed policy. On the other hand, if a∗h is drawn
uniformly at random from {a1, a2}, for any fixed policy π, its expected suboptimality will be Hϵ/2,
which proves Theorem 3.1. Our formal proof in Section A.1 of the Supplementary Material is based
on Yao’s minimax principle in order to cope with randomized algorithms.

3.2 Hardness Result for RL with Samples

In this section, we show that for any 1 ≤ 2C ≤ H , any RL algorithm requires exp(Ω(C)) samples
in order to achieve a suboptimality of Ω(H/C · ϵ).
Theorem 3.2. Given a RL problem instance satisfying Assumption 1 with misspecification ϵ < 1/H
and let C ∈ R such that 1 ≤ 2C ≤ H . Any algorithm that returns a policy with suboptimality less
than H/(2C) · ϵ with probability at least 0.9 needs least 0.1 · C · 2C samples.

In the remaining part of this section, we give an overview of the proof of Theorem 3.2. We first define
the MULTI-INDEX-QUERY problem.
Definition 1. (MULTI-INDEX-QUERY) In the m-INDQn problem, we have a sequence of m indices
(i∗0, i

∗
1, . . . , i

∗
m−1) ∈ [n]m. In each round, the algorithm guesses a pair (j, i) ∈ [m]× [n] and queries

whether i = i∗j . The goal is to output (j, i∗j ) for any j ∈ [m], using as few queries as possible.

Definition 2. (δ-correct algorithm) For δ ∈ (0, 1), we say a randomized algorithm A is δ-correct for
m-INDQn if for any i∗ = {i∗j}j∈[m], with probability at least 1− δ, A outputs (j, i∗j ) for some j.

We first prove a query complexity lower bound for solving m-INDQn.
Lemma 3.3. Any 0.1-correct algorithm that solves m-INDQn requires at least 0.9n queries.

Our proof is based on Yao’s minimax principle [Yao, 1977]. See Section A.2 for the full proof.

Now we give the construction of our hard instance, together with the high-level intuition of our
hardness proof. For simplicity, here we assume C is an integer that divides H .
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𝑠2𝑖+2 = 𝑃∗(𝑠𝑖, 1)

𝑃∗(𝑠𝑖, 2)

𝑠1       𝑠2

𝑠0

· · · · · ·

ℎ = 0

ℎ = 1

ℎ = 𝐻 − 1

· · ·

𝑠2𝐶−1   · · · 𝑠2𝐶+1−2

𝑠22𝐶−1 · · · 𝑠22𝐶+1−2

𝑠2 𝑘+1 𝐶−1

· · · · · ·

· · · · · ·

𝑠2H−1−1

ℎ = 𝐶

ℎ = 2𝐶

ℎ = 𝑘𝐶

ℎ = 𝑘 + 1 𝐶

𝑠2𝑘𝐶−1 𝑠2𝑘𝐶+1−2

· · · · · ·

𝑠2 𝑘+1 𝐶+1−2

𝑠2𝐻−2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

𝑠2𝑖+1

𝑠𝑖 = 𝑃∗ (𝑠𝑖, 0)ℎ = 𝑘𝐶

ℎ = 𝑘𝐶 + 1

ℎ = 𝑘𝐶 + 2

ℎ = 𝑘 + 1 𝐶

· · ·

𝑄∗= (𝐻/𝐶 − 𝑘)𝜀
 𝑎𝑘𝐶

∗ = 𝑎2

𝑄∗ = (𝐻/𝐶 − 𝑘)𝜀
 𝑎𝑘𝐶+1

∗ = 𝑎1 

· · · · · ·· · ·

𝑃∗(𝑠𝑖, 𝐶)

· · ·

𝑄∗= (𝐻/𝐶 − 𝑘)𝜀
 𝑎𝑘𝐶+2

∗ = 𝑎2 

𝑄∗ = (𝐻/𝐶 − 𝑘)𝜀
 𝑎𝑘𝐶+𝐶−1

∗ = 𝑎1 

𝑠2𝐶−1+2𝐶−1𝑖 𝑠2𝐶−2+2𝐶𝑖· · · · · ·

· · · · · ·
𝑟 = 𝜀

Figure 1: Illustration of the hard instance for Theorem 3.2.

The Hard Instance. Again, our hardness result is based on a binary tree instance. The state space,
action space, and the transition kernel of our hard instance are exactly the same as the instance in
Section 3.1. Moreover, similar to the instance in Section 3.1, for each h ∈ [H], there exists an action
a∗h ∈ {a1, a2}, such that π∗(s) = a∗h for all s ∈ Sh.

To define the reward function r, we first define an operator P ∗, which can be seen as applying the
transition kernel for multiple steps by following the optimal policy. For some q ∈ [H/C], a state s ∈
SkC , and an integer c ∈ [C], define P ∗(s, c) = s if c = 0 and P ∗(s, c) = P (P ∗(s, c− 1), a∗qC+c−1)

otherwise. The reward function r(s, a) is then defined to be ϵ if s = P ∗(s′, C − 1) for some
s′ ∈ SqC where q ∈ [H/C] and a = a∗qC+C−1. For all other (s, a) ∈ S ×A, we define r(s, a) = 0.
Accordingly, for each (q, c) ∈ [H/C]×[C], s ∈ SqC+c, and a ∈ A, we have Q∗(s, a) = (H/C−q)ϵ
if s = P ∗(s′, c) for some s′ ∈ SqC and a = a∗qC+c. For all other (s, a) ∈ S × A, we have
Q∗(s, a) = (H/C − q − 1)ϵ. This also implies that the value of the optimal policy is H/C · ϵ.
We define the 1-dimensional feature function ϕ such that, for each (q, c) ∈ [H/C]× [C], s ∈ SqC+t

and a ∈ A, ϕ(s, a) = (H/C − q)ϵ. Clearly, Assumption 1 is satisfied when taking θ∗ = 1. This
finishes the construction of our hard instance. An illustration is given in Figure 1.

The Lower Bound. Now we show that for our hard instance, if there is an RL algorithm that returns
a policy with suboptimality less than H/C · ϵ, then there is an algorithm that solves m-INDQn with
n = 2C and m = H/C. Therefore, the correctness of Theorem 3.2 is implied by Lemma 3.3.

We first note that there exists a bijection between {a1, a2}C and [2C ]. We use g : [2C ] → {a1, a2}T
to denote such a bijection. Given an instance of m-INDQn with n = 2C and m = H/C, for
each q ∈ [H/C], we set (a∗qC , a

∗
qC+1, . . . , a

∗
(q+1)C−1) = g(i∗q), where (i∗0, i

∗
1, i

∗
2, . . . , i

∗
H/C−1) are

the target indices in the instance of m-INDQn. Each time the RL algorithm samples a trajectory
(s0, a0, r0, . . . , sH−1, aH−1, rH−1), we make H/C sequential queries (0, i0), (1, i1), . . . , (H/C −
1, iH/C−1) to m-INDQn, where for each q ∈ [H/C], iq is the unique integer in [2C ] with g(iq) =
(aqC , aqC+1, . . . , a(q+1)C−1). For each h ∈ [H], we have rh = ϵ if h = (q + 1)C − 1 and ik = i∗q
for some k ∈ [H/C]. Otherwise, we have rh = 0.

Suppose there is an RL algorithm that returns a policy π with suboptimality less than H/C · ϵ, and
since the value of the optimal policy is H/C · ϵ, we must have rh = ϵ for some h ∈ [H] where
(s0, a0, r0, . . . , sH−1, aH−1, rH−1) is the trajectory obtained by following the policy π. This implies
the existence of q ∈ [H/C] with g(i∗q) = (aqC , aqC+1, . . . , a(q+1)C−1). Therefore, if there is an RL
algorithm that returns a policy with suboptimality less than H/C · ϵ for our hard instance, then there
is an algorithm for solving m-INDQn with n = 2C and m = H/C.

Remark 1. Our construction is significantly different from Du et al. [2020]. Specifically, we split
a binary tree with H levels into H/C blocks. For each block, we show that any algorithm must
incur a sample complexity of 2C in order to find a policy with suboptimality less than ϵ. In order to
show that the overall suboptimality of the RL algorithm is H/C · ϵ, we develop a reduction from an
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intermediate problem called MULTI-INDEX-QUERY to RL, which is different from the one used in
Du et al. [2020].

4 Main Algorithm

In this section, we present our main algorithm that achieves the guarantee in Theorem 1.3.

Algorithm 1 Elimination Algorithm for Finding the Optimal Hypotheses
1: Input: feature map ϕ, sparsity k, approximation error ϵ, statistical error ϵstat, ϵnet, failure rate δ
2: For each h ∈ [H], initialize Ph = P0

h = {θ : θM ∈ N k, |M| = k,M ⊆ [d]}, where N k is the
maximal ϵnet/2-separated subset of the Euclidean sphere Sk.

3: Calculate m = 16k ln((1+4/ϵnet)d)+16 ln(H/δ)
ϵ2stat

.
4: for iteration t = 0, 1, 2, . . . do
5: Choose θt0 = argmaxθ∈P0

Vθ(s0).
6: for h = 1, 2, . . . ,H − 1 do
7: Define a policy πt

h, where πt
h(s) = πθt

h′
(s) if s ∈ Sh′ with h′ < h, and arbitrary otherwise.

Collect m trajectories following πt
h as a dataset

Dt
h = {(si0, ai0, ri0, . . . , siH−1, a

i
H−1, r

i
H−1)}i∈[m].

8: Choose θth = argmaxθ∈Ph

∑
i∈[m] Vθ(s

i
h), where sih are from dataset Dt

h.
9: end for

10: Collect m trajectories following a policy πt = πθt as a dataset

Dt
H = {(si0, ai0, ri0, . . . , siH−1, a

i
H−1, r

i
H−1)}i∈[m].

11: For each h ∈ [H], calculate using dataset Dt
H :

Êt
h =

{
1
m

∑m
i=1

(
⟨ϕ(sih, aih), θth⟩ − rih − Vθt

h+1
(sih+1)

)
, if h ∈ [H − 1]

1
m

∑m
i=1

(
⟨ϕ(siH−1, a

i
H−1), θ

t
H−1⟩ − riH−1

)
, if h = H − 1.

12: if Êt
h ≤ 2ϵ+ 2ϵnet + 3ϵstat for each h ∈ [H − 1] , and Êt

H−1 ≤ ϵ+ ϵnet + ϵstat then
13: Terminate and output πθt .
14: else
15: Update Ph = Ph\{θth}, for all h ∈ [H−1] satisfying Êt

h>2ϵ+2ϵnet+3ϵstat, or h = H−1

satisfying Êt
H−1>ϵ+ ϵnet + ϵstat.

16: end if
17: end for

Overview. Here we give an overview of the design of Algorithm 1. We remark that, by Assumption 1,
each horizon h has a different optimal θh. Therefore, a brute-force algorithm would have a sample
complexity with exponential dependency on H , while our algorithm has a polynomial dependency
on H .

First, we approximate all candidate parameter θ with a finite set by creating a maximal ϵnet/2-
separated subset of the euclidean sphere Sk−1, denoted by N k, and a set of all k-sized subset of [d].
Then, for each h ∈ [H], we maintain a set of parameter candidates Ph. Initially, Ph is set to be all
parameters approximated by N k and k-sized subset of [d], i.e. P0

h = {θ : θM ∈ Sk, |M| = k,M ⊆
[d]} where θM is the k-dimension sub-vector of θ with indices corresponding to M. The set P0

h is
then finite for all h ∈ [H]: |P0

h| ≤ (1 + 4/ϵnet)
k ·

(
d
k

)
[Dong and Yang, 2023].

During the execution of Algorithm 1, for all h ∈ [H], we eliminate parameter candidates θ from Ph

if we are certain that θ ̸= θ̂∗h, where θ̂∗ = (θ̂∗0 , θ̂
∗
1 , . . . , θ̂

∗
H−1) is a sequence of parameters that is in

P0
h and is closest to the θ∗ that satisfies Assumption 1, i.e. θ̂∗h = argminθ∈P0

h
∥θ∗h − θ∥. Therefore,

in Algorithm 1, we only consider θ = (θ0, θ1, . . . , θH−1) if θh ∈ Ph for all h ∈ [H]. In the t-th
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iteration, we choose a parameter θt = (θt0, θ
t
1, . . . , θ

t
H−1) so that θth maximizes E[Vθt

h
(sh)] and

θth ∈ Ph for all h ∈ [H]. We then collect m trajectories to form a dataset Dt
H by following the policy

induced by θt. Based on Dt
H , we calculate the empirical Bellman error Êt

h for each h ∈ [H], which
is the empirical estimate of the average Bellman error defined as follows.
Definition 3 (Average Bellman error). For a sequence of parameters θt = (θt0, θ

t
1, . . . , θ

t
H−1), the

average Bellman error of θt is defined as Et
h = E[⟨ϕ(sh, ah), θth⟩ − r(sh, ah)− Vft

h+1
(sh+1)] when

h ∈ [H − 1] and Et
H−1 = E[⟨ϕ(sH−1, aH−1), θ

t
H−1⟩ − r(sH−1, aH−1)] for level H − 1. Here,

(s0, a0, r0, . . . , sH−1, aH−1, rH−1) is a trajectory obtained by following πθt .

Intuitively, the Bellman error at level h measures the consistency of θth and θth+1 for the state-action
distribution induced by πθt . In each iteration of Algorithm 1, we check if Êt

h is small for all h ∈ [H].
If so, the algorithm terminates and returns the policy πθt . Otherwise, for all levels h ∈ [H] where Êt

h
is large, we eliminate θth from Ph and proceed to the next iteration.

Now we give the analysis of Algorithm 1.

Sample Complexity. To bound the sample complexity of Algorithm 1, it suffices to give an upper
bound on the number of iterations, since in each iteration, the number of trajectories sampled by
the algorithm is simply Hm = 16H(k ln((1 + 4/ϵnet)d) + ln(H/δ))/(ϵ2stat). The following lemma
gives an upper bound on the number of iterations of Algorithm 1. The proof is given by counting the
number of parameters in the parameter space. The detailed proof is given in Appendix B.1.
Lemma 4.1. For any MDP instance with horizon H and satisfying Assumption 1 with sparsity k,
Algorithm 1 runs for at most (1 + 4/ϵnet)

k
(
d
k

)
H iterations.

Remark 2. Previous works [Weisz et al., 2022, Wang et al., 2021b] show that even when the
optimal Q-function is well-specified, any RL algorithm would require a sample size with exponential
dependency on d or H . Note that this is equivalent to the case where the sparsity k = d and the
approximation error ϵ = 0 in our setting. Therefore, in our misspecified setting, which is strictly
harder, exponential dependency on k is unavoidable, unless we can accept an exponential dependency
on H .

Suboptimality of the Returned Policy. We now show that with probability at least 1 − δ, the
suboptimality of the returned policy is at most (2ϵ + 2ϵnet + 4ϵstat)H . First, we define a high
probability event E, which we will condition on in the remaining part of the analysis.

Definition 4. Define E as the event that |Et
h − Êt

h| ≤ ϵstat and |Esh∼πt
h
Vθ(sh)−

∑
i∈[m] Vθ(s

i
h)| ≤

ϵstat (where sih is from Dt
h) for all iterations t, horizon h ∈ [H], and parameter θ ∈ P0

h.
Lemma 4.2. Event E holds with probability at least 1− δ.

To prove Lemma 4.2, we first consider a fixed level h and iteration t. Since the empirical Bellmen
error Êt

h is simply the empirical estimate of Et
h, and

∑
i∈[m] Vθ(s

i
h) is simply an empirical estimate

of Esh∼πt
h
Vθ(sh), applying the Chernoff-Hoeffding inequality respectively would suffice. Moreover,

the number of iterations has an upper bound given by Lemma 4.1. Therefore, Lemma 4.2 follows by
applying a union bound over all h ∈ [H], t ∈ [(1 + 4/ϵnet)

k
(
d
k

)
H] and parameter θ ∈ P0

h.

We next show that, conditioned on event E defined above, for the sequence of parameters θ∗ =

(θ∗0 , θ
∗
1 , . . . , θ

∗
H−1) that satisfies Assumption 1, we never eliminate θ̂∗h from Ph, for all h ∈ [H].

Lemma 4.3. Conditioned on event E defined in Definition 4, for a sequence of parameters
(θ∗0 , θ

∗
1 , . . . , θ

∗
H−1) that satisfies Assumption 1, and their approximations θ̂∗h = argminθ∈P0

h
∥θ∗h−θ∥,

during the execution of Algorithm 1, θ̂∗h is never eliminated from Ph for all h ∈ [H].

To prove Lemma 4.3, the main observation is that, for h ∈ [H − 1] the average Bellman error
induced by θ̂∗h and θth+1 = argmaxθ∈Ph+1

Esh+1
[Vθ(sh+1)] is always upper bounded by 2(ϵ+ ϵnet),

regardless of the distribution of (sh, ah) (cf. Definition 3). Conditioned on event E, the empirical
Bellman error induced by θ̂∗h and θth+1 is at most 2ϵ+2ϵnet+3ϵstat. Similarly, the empirical Bellman
error induced by θ̂∗H−1 is at most ϵ + ϵnet + ϵstat. In Algorithm 1, we eliminate function θth only
when the empirical Bellman error is larger than these (Line 15). Thus, θ̂∗h is never eliminated.
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We now show the suboptimality of the policy returned by Algorithm 1 is at most (2ϵ+2ϵnet+4ϵstat)H .

Lemma 4.4. For any MDP instance satisfying Assumption 1, conditioned on event E defined in
Definition 4, Algorithm 1 returns a policy π satisfying V ∗ − V π ≤ (2ϵ+ 2ϵnet + 4ϵstat)H.

To prove Lemma 4.4, we first recall the policy loss decomposition lemma (Lemma 1 in Jiang et al.
[2017]), which states that for a policy induced by a sequence of parameters θ = (θ0, θ1, . . . , θH−1),
Vθ0(s0)− V πθ is upper bounded by the summation of average Bellman error over all levels h ∈ [H].
When Algorithm 1 terminates, the empirical Bellman error must be small for all h ∈ [H], and
therefore, the average Bellman error is small by definition of the event E. Moreover, in Line 5 of
Algorithm 1, we always choose a parameter θ that maximizes Vθ(s0). Since the sequence of functions
θ̂∗ = (θ̂∗0 , θ̂

∗
1 , . . . , θ̂

∗
H−1) is never eliminated by Lemma 4.3, we must have Vθ0(s0) ≥ Vθ∗

0
(s0) ≥

V ∗−ϵ−ϵnet, which gives an upper bound on the suboptimality of the policy returned by Algorithm 1.
Combining Lemma 4.1, Lemma 4.2 and Lemma 4.4, we can prove Theorem 1.3.

Remark 3. While Algorithm 1 assumes the sparsity constant k is known, it can be easily adapted
to the setting where k is not known beforehand. For such a setting, we could enumerate k starting
from k = 1, and use the following observations: 1) If the true k, say k∗, is larger than k, then
running our algorithm with sparsity k will eliminate all the parameters in the parameter space Ph

for some horizon h. 2) If for all h, there exists one parameter in Ph that has not been deleted, the
we have identified k∗. The sample complexity of this process is asymptotically the same as running
Algorithm 1 with known k, since the true k∗ dominates the sample complexity.

Implications. We can think of the bandit setting as an MDP with H = 1 and derive the following.

Corollary 4.5. For the bandit setting satisfying Assumption 1, Algorithm 1 returns an action â such
that r(a∗)− r(â) ≤ 2ϵ+ 2ϵnet + 4ϵstat.

Remark 4. Here we compare Corollary 4.5 with the result in Dong and Yang [2023]. Scrutinizing
the analysis in Dong and Yang [2023], the suboptimality achieved by their algorithm is 4ϵ+ ϵstat,
which is worse than our suboptimality guarantee. On the other hand, the algorithm in Dong and Yang
[2023] also returns a parameter θ such that |⟨ϕ(a), θ⟩ − r(a)| ≤ 2ϵ+ ϵstat for all a ∈ A (which is
the best possible according to Theorem 1.1), where our algorithm only returns a near-optimal action.

5 Conclusion

We studied the RL problem where the optimal Q-functions can be approximated by a linear function
with constant sparsity k, up to an error of ϵ. We design a new algorithm with polynomial sample
complexity, while the suboptimality of the returned policy is O(Hϵ), which is shown to be near-
optimal by an information-theoretic hardness result.

While our algorithm achieves near-optimal suboptimality, future work could focus on improving its
sample efficiency, particularly by reducing the dependence on the horizon length H or eliminating
the exponential dependency on ϵnet.

Future work could also consider achieving the H/C · ϵ versus exp(C) trade-off in the upper bounds,
similar to Theorem 3.2. For deterministic transition, we could segment the horizon into blocks
and conduct exhaustive exploration within them. For stochastic transitions, importance sampling
techniques, such as those of Kearns et al. [1999], could be explored.
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A Proofs in Section 3

A.1 Proof of Theorem 3.1

Figure 2: Illustration of the hard instance for Theorem 3.1.
Proof. Consider an input distribution where a∗h is drawn uniformly random from {a1, a2}. By Yao’s
minimax principle, it suffices to consider the best deterministic algorithm, say A. Note that, since we
have no sampling ability, a deterministic algorithm in this setting can be seen as a function that takes
in feature function ϕ and returns a policy π. Also, for all instances supported by this distribution, their
inputs ϕ are the same. Thus, the policy returned by A is fixed. Denote the policy as π, and denote the
trajectory following π as (s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rh−1). The suboptimality of π can
be written as

V ∗ − V π =

H−1∑
h=0

ϵ · I[a∗h ̸= ah]

Since ah is fixed and a∗h is drawn uniformly random from {a1, a2}, I[a∗h ̸= ah] = 1 with probability
1/2. Thus, (V ∗ − V π)/ϵ is a binomial random variable, or (V ∗ − V π)/ϵ ∼ B(H, 1/2). The
expectation of (V ∗ − V π) is then Hϵ/2, and its variance is Hϵ2/4. Using Chebyshev inequality,
with probability 0.99, we have

V ∗ − V π ≥ 1

2
Hϵ− 5ϵ

√
H = Ω(Hϵ)

for sufficiently large H ≥ 100.

A.2 Proof of Lemma 3.3

Proof. Consider an input distribution where i∗ = (i∗0, i
∗
2, . . . , i

∗
m−1) is drawn uniformly random

from [n]m. Let c(i∗, a) be the query complexity of running algorithm a to solve the problem with
correct indices i∗. Assume there exists a 0.1-correct algorithm A for m-INDQn that queries less
than 0.9n times in the worst case. Then, using Yao’s minimax principle, there exists a deterministic
algorithm A′ with c(i∗,A′) < 0.9n for all i∗ ∈ [n]m, such that

P[A′outputs (j, i∗j ) for some j ∈ [m]] ≥ 0.9.

We may assume that the sequence of queries made by A′ is fixed until it correctly guesses one of i∗j .
This is because A′ is deterministic, and the responses A′ receives are the same (i.e. all guesses are
incorrect) until it correctly queries (j, i∗j ) for some j. Let S = {s1, . . . , sk} be the sequence of first
k guesses made by A′, and let IBAD ⊂ [n]m be a set of all possible i∗’s such that the guesses in S

are all incorrect. Denote the number of guesses on INDQ(j)
n in S by nj , then nj’s are also fixed, and∑

j∈[m] nj = k. The size of IBAD then satisfies

|IBAD| = Πm−1
j=0 (n− nj) ≥ (n− k)nm−1
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Set k as the worst-case query complexity of A′. Then, for all i∗ ∈ IBAD, the output of A′ is incorrect.
Since i∗ is drawn uniformly random from [n]m, the probability of A′ being incorrect is

P[A′ is incorrect] =
|IBAD|
|[n]m|

≥ (n− k)nm−1

nm
>

(n− 0.9n)nm−1

nm
> 0.1,

where in the second to last inequality we used k < 0.9n.

However, this contradicts with the fact that P[A′outputs (j, i∗j ) for some j ∈ [m]] ≥ 0.9. Thus, there
does not exist a 0.1-correct algorithm that solves the problem with less than 0.9n queries in the worst
case.

A.3 Proof of Theorem 3.2

Proof. First, we prove our claim based on the assumption that C is an integer that divides H . We can
create the hard instance described in Section 3.2.

We reduce the problem to H/C-INDQ2C . Assume there exists an algorithm A that takes less than 0.9·
2C ·C samples, such that, with probability at least 0.9, it outputs a policy π with suboptimality V ∗ −
V π < H/C · ϵ. By definition, at round i, A interacts with the MDP instance by following a trajectory
(s0, a

i
0, r

i
0, ..., s

i
H−1, a

i
H−1, r

i
H−1). Based on A, we create an algorithm A′ for H/C-INDQ2C as

follows. Consider A is querying the trajectory (s0, a
i
0, r

i
0, ..., s

i
H−1, a

i
H−1, r

i
H−1). For each q ∈

{0, . . . ,H/C−1}, we can map (aiqC , . . . , a
i
(q+1)C−1) to an index in [2C ] using the bijection g. Thus,

we make a sequence of H/C guesses, {(q, g(aiqC , . . . , ai(q+1)C−1))}
H/C−1
q=0 , to the H/C-INDQ2C .

If the guess (q, g(aiqC , . . . , a
i
(q+1)C−1)) is correct for some q, A receives a reward of ϵ at level

(q + 1)C − 1, i.e. ri(q+1)C−1 = r(si(q+1)C−1, a
i
(q+1)C−1) = ϵ. For all other state-action pairs in the

trajectory, algorithm A receives zero reward. Since A takes less than 0.9 · 2C · C samples, it queries
less than 0.9 ·2C ·C/H trajectories, corresponding 0.9 ·2C guesses to H/C-INDQ2C in total. Recall
that A outputs a policy π with suboptimality V ∗ − V π < H/C · ϵ with probability at least 0.9. This
means the sequence of guesses to H/C-INDQ2C made by π must have at least one of them being
correct. Thus, A′ is a 0.1-correct algorithm that solves H/C-INDQ2C with less than 0.9 · 2C guesses.
However, by Lemma 3.3, such an algorithm does not exist, so A does not exist. We conclude that
any algorithm that returns a policy with suboptimality less than H/C · ϵ with probability at least 0.9
needs to sample at least 0.9 · C · 2C times.

Now we consider when C is not an integer that divides H . There are two cases. First, consider C as
an integer that does not divide H . Let H ′ = ⌊H/C⌋ · C, then we can make the same construction
as above for the first H ′ horizons, and set the reward as zero for all the state-action pairs in the
remaining H −H ′ levels. Because the rewards are the same for levels H ′ through H − 1, different
values of {πH′ , . . . , πH−1} do not make a difference to V π. Therefore, we only care about the
first H ′ levels, so we can conclude from our above analysis that, any algorithm that returns a
policy with suboptimality less than H ′/C · ϵ = ⌊H/C⌋ · ϵ with probability at least 0.9 needs to
sample at least 0.9 · C · 2C times. For the second case, we consider when C is not an integer. Let
C ′ = ⌊C⌋, we can apply our conclusion from the previous case. That is, any algorithm that returns a
policy with suboptimality less than ⌊H/C ′⌋ · ϵ with probability at least 0.9 needs to sample at least
0.9 · C ′ · 2C′

times. Since 2C ≤ H , we have ⌊H/C ′⌋ · ϵ ≥ ⌊H/C⌋ · ϵ ≥ Hϵ
2C . Also observing that

0.9 · C ′ · 2C′ ≥ 0.1 · C · 2C , we finish the proof.

B Proofs in Section 4

B.1 Proof of Lemma 4.1

Proof. In each iteration, we either output a policy or delete at least one function in Ph for some
h ∈ [H − 1]. Since there are

∑
h∈[H−1]

(
|Sk| ×

(
d
k

))
≤ (1 + 4/ϵnet)

k
(
d
k

)
H functions in total

initially, the algorithm is guaranteed to terminate within (1 + 4/ϵnet)
k
(
d
k

)
H iterations.
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B.2 Proof of Lemma 4.2

Lemma B.1 (Deviation bound for Eh). For fixed iteration t and horizon h ∈ [H], with probability at
least 1− δ′, we have

|Et
h − Êt

h| ≤ 4

√
ln 2− ln δ′

2m
.

Hence, we can set m > 16(ln 2−ln(δ′))
2ϵ2stat

to guarantee that |Et
h − Êt

h| < ϵstat

Proof. Recall that the batch dataset Dt = {(ai0, ri0, si1, ..., aiH−1, r
i
H−1)}mi=1 is collected by playing

policy πθt . We define Êt,i
h = ⟨ϕ(sih−1, a

i
h), θ

t
h⟩− r(sih, a

i
h)−Vθt

h+1
(sih+1), then Êt

h = 1
m

∑m
i=1 Ê

t,i
h .

By definition of Et
h, it satisfies

Et
h = E[Êt,i

h ].

Further, since ⟨ϕ(s, a), θt⟩ ∈ [−1, 1] and r(s, a) ∈ [0, 1] for any state-action pair (s, a), we have
Êt,i
h ∈ [−3, 1]. Thus, using Chernoff-Hoeffding inequality, we get, with probability 1− δ′,

|Et
h − Êt

h| =

∣∣∣∣∣ 1m
m∑
i=1

(
Êt,i
h − E[Êt

h]
)∣∣∣∣∣ ≤ 4

√
ln 2− ln δ′

2m
.

Lemma B.2 (Deviation bound for Esh∼πt
h
Vθ(sh)). For fixed iteration t, horizon h ∈ [H], and

parameter θ ∈ Ph, with probability at least 1− δ′, we have∣∣∣∣∣∣Esh∼πt
h
Vθ(sh)−

1

m

∑
i∈[m]

Vθ(s
i
h)

∣∣∣∣∣∣ ≤
√

ln 2− ln δ′

2m
.

Hence, we can set m > ln 2−ln(δ′)
2ϵ2stat

to guarantee that |Et
h − Êt

h| < ϵstat

Proof. Recall that the batch dataset Dt
h = {(si0, ai0, ri0, . . . , sih−1, a

i
h−1, r

i
h−1, s

i
h)}mi=1 is collected

by playing policy πt
h. By definition, it satisfies

Esh∼πt
h
Vθ(sh) = EDt

h

 1

m

∑
i∈[m]

Vθ(s
i
h)

 .

Further, since Vθ(s) ∈ [0, 1] for any state s, using Chernoff-Hoeffding inequality, we have with
probability 1− δ′, ∣∣∣∣∣∣Esh∼πt

h
Vθ(sh)−

1

m

∑
i∈[m]

Vθ(s
i
h)

∣∣∣∣∣∣ ≤
√

ln 2− ln δ′

2m
.

Proof. Define EE
t,h to be the event

EE
t,h = {|Et

h − Êt
h| ≤ ϵstat},

then by Lemma B.1, P(EE
t,h) ≥ 1 − δ/(2(1 + 4/ϵnet)

2k
(
d
k

)2
H2) for all iterations t ∈ [(1 +

4/ϵnet)
k
(
d
k

)
H] and horizon h ∈ [H].

Define EV
t,h,θ to be the event

EV
t,h,θ =


∣∣∣∣∣∣Esh∼πt

h
Vθ(sh)−

1

m

∑
i∈[m]

Vθ(s
i
h)

∣∣∣∣∣∣ ≤ ϵstat

 ,
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then by Lemma B.2, P(EV
t,h,f ) ≥ 1 − δ/(2(1 + 4/ϵnet)

2k
(
d
k

)2
H2) for all iterations t ∈ [(1 +

4/ϵnet)
k
(
d
k

)
H], horizon h ∈ [H], and θ ∈ Ph.

We can lower bound the probability of E by union bound

P(E) ≥1−
∑
t

∑
h∈[H]

P(ĒE
t,h)−

∑
t

∑
h∈[H]

∑
θ∈Ph

P(ĒV
t,h,θ) ≥ 1− δ.

B.3 Proof of Lemma 4.3

Proof. Let θ̂∗ = (θ̂∗0 , . . . , θ̂
∗
H−1) be the sequence of parameters such that, for each h ∈ [H], the

non-zero sub-vector of θ̂∗h is in N k and is closest to the non-zero indices in θ∗. Then, since N k is
ϵnet/2-maximal, we have by Assumption 1 that

|⟨ϕ(s, a), θ̂∗h⟩ −Q∗(s, a)| ≤ |⟨ϕ(s, a), θ∗h⟩ −Q∗(s, a)|+ |⟨ϕ(s, a), θ̂∗h⟩ − ⟨ϕ(s, a), θ∗h⟩| ≤ ϵ+ ϵnet,

for all s in horizon h and action a ∈ A.

At iteration t, algorithm 1 deletes θ̂∗h if and only if one of the following two cases happens: (1)
h < H − 1, θth = θ̂∗h, and Êt

h > 2ϵ + 2ϵnet + 3ϵstat, (2) h = H − 1, θtH−1 = θ̂∗h+1 and
Êt
H−1 > ϵ+ ϵnet + ϵstat.

For any state-action pair (sh, ah) at level h where h ∈ [H − 1], we observe by definition that

Q∗(sh, ah)− E[r(sh, ah)]− E[V ∗
h+1(sh+1)] = 0.

Thus, we can upper bound Et
h by

Et
h =E[⟨ϕ(sh, ah), θ̂∗h⟩ − r(sh, ah)− Vθh+1

(sh+1)]

≤E[(Q∗(sh, ah) + ϵ+ ϵnet)− r(sh, ah)− Vθh+1
(sh+1)] (By Assumption 1)

Here, (s0, a0, r0, . . . , sh, ah, rh) is a trajectory following πθt , and sh+1 ∼ P (sh, ah).

Recall that θth is chosen by taking the function that gives maximum empirical value at level h, so

1

m

∑
i∈[m]

Vθt
h
(sih) ≥

1

m

∑
i∈[m]

Vθ̂∗
h
(sih),

where sih are taken from the dataset Dt
h. Moreover, we are conditioned under event E, so we have

E[Vθ∗
h
(sh)]− E[Vθt

h
(sh)] ≤

 1

m

∑
i∈[m]

Vθt
h
(sih) + ϵstat]

−

 1

m

∑
i∈[m]

Vθ∗
h
(sih)− ϵstat

 ≤ 2ϵstat

for all h and t.

For the first case, we consider h ∈ [H − 1]. We have

Et
h ≤E[(Q∗(sh, ah) + ϵ+ ϵnet)− r(sh, ah)− Vθt

h+1
(sh+1)]

≤E[Q∗(sh, ah)− r(sh, ah)− (Vf∗
h+1

(sh+1)− 2ϵstat)] + ϵ+ ϵnet

=E[Q∗(sh, ah)− r(sh, ah)− f∗
h+1(sh+1, π

∗
h+1(sh+1))] + ϵ+ ϵnet + 2ϵstat

(since Vf∗
h+1

= maxa∈A f∗
h+1(sh+1, a))

≤E[Q∗(sh, ah)− r(sh, ah)− (Q∗(sh+1, π
∗
h+1(sh+1))− ϵ− ϵnet)] + ϵ+ ϵnet + 2ϵstat

(By Assumption 1)
=E[Q∗(sh, ah)− r(sh, ah)−Q∗(sh+1, π

∗
h(sh+1))] + 2ϵ+ 2ϵnet + 2ϵstat

=2ϵ+ 2ϵnet + 2ϵstat. (since Q∗(sh+1, π
∗
h+1(sh+1)) = V ∗

h+1(sh+1))

Given that we are conditioned under event E, Êt
h − Et

h ≤ ϵstat for all iteration t and all horizon h.
Thus, Êt

h < 2ϵ+ 2ϵnet + 3ϵstat.
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For the second case, we consider h = H − 2. We have

Et
H−1 ≤ E[(r(sH−1, aH−1) + ϵ)− r(sH−1, aH−1)] = ϵ+ ϵnet,

because H − 1 is the last level.

Again, given that we are conditioned under event E, we have Êt
H−1 − Et

H−1 ≤ ϵstat, so Êt
H−1 <

Et
H−1 + ϵstat ≤ ϵ+ ϵnet + ϵstat.

B.4 Proof of Lemma 4.4

Proof. Algorithm 1 terminates and returns a policy at iteration t only if θt satisfies the conditions in
line 6, and by Lemma 4.3, there always exists a nice sequence of functions {θ̂∗h}

H−1
h=0 that satisfies

these conditions. Also, Lemma 4.1 indicates that the algorithm terminates within a finite number of
iterations. Thus, algorithm 1 is guaranteed to terminate and return a policy.

Let the output policy be πθt , i.e. Êt
h ≤ 2ϵ + 2ϵnet + 3ϵstat for all h ∈ [H − 2] and Êt

H−1 ≤
ϵ+ ϵnet + ϵstat. The loss of this policy can be bounded by

V ∗(s0)− V πθt (s0) =Q∗(s0, π
∗(s0))− V πθt (s0)

≤(⟨ϕ(s0, π∗(s0)), θ̂
∗
0⟩+ ϵ+ ϵnet)− V πθt (s0) (By Assumption 1)

≤(⟨ϕ(s0, πθt
0
(s0)), θ

t
0⟩+ ϵ+ ϵnet)− E[

H−1∑
h=0

r(sh, ah)]

(since θt0 is chosen by taking the maximum)

=ϵ+ ϵnet + E
[H−1∑

h=0

⟨ϕ(sh, ah), θth⟩ − r(sh, ah)− ⟨ϕ(sh+1, ah+1), θ
t
h+1⟩

]
(telescoping sum)

=ϵ+ ϵnet +

H−1∑
h=0

E
[
⟨ϕ(sh, ah), θth⟩ − r(sh, ah)− ⟨ϕ(sh+1, ah+1), θ

t
h+1⟩

]
(linearity of expectation)

=ϵ+ ϵnet +

H−1∑
h=0

Et
h ≤ ϵ+ ϵnet +

H−1∑
h=0

(Êt
h + ϵstat) ≤ (2ϵ+ 2ϵnet + 4ϵstat)H

C Additional Proofs

C.1 Proof of Theorem 1.1

Proof. We construct a hard instance as follows. For each a ∈ [n], define ϕ(a) = ϵ. Let θ∗ be randomly
selected from {−1, 1}, and let a∗ is uniformly chosen from A. The reward r is deterministic and is
defined as

r(a) =

{
2θ∗ϵ if a = a∗

0 otherwise.

Therefore |r(a)− θ∗ · ϕ(a)| ≤ ϵ holds true for all actions a ∈ A.

By Yao’s minimax principle, it suffices to consider deterministic algorithms. Let A be a deterministic
algorithm that, by taking less than 0.9n samples, returns a r̂ with |r̂(a)− r(a)| < 2ϵ for all a ∈ A
with probability at least 0.95. We can say the sequence of actions made by A is fixed until it receives
a reward r(at) ̸= 0 at some round t. This is because A is deterministic, and the responses A receives
are the same (i.e. all actions have reward 0) until it queries a∗. Let S = (a1, . . . , at) be the sequence
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of actions made by A. Let ABAD ⊂ A be the set of actions that are not in S. We have

P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A] =P[|r̂(a)− r(a)| < 2ϵ, ∀a ∈ A|a∗ ∈ ABAD]P[a∗ ∈ ABAD]

+ P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A|a∗ /∈ ABAD]P[a∗ /∈ ABAD]

<P[|r̂(a)− r(a)| < 2ϵ, ∀a ∈ A|a∗ ∈ ABAD]P[a∗ ∈ ABAD]

+ (1− P[a∗ ∈ ABAD])

Since t < 0.9n and a∗ is chosen uniformly random from A, the probability that a∗ ∈ ABAD is

P[a∗ ∈ ABAD] =
|ABAD|
|A|

>
1− 0.9n

n
= 0.1.

When a∗ ∈ ABAD, the output of our deterministic algorithm must be fixed. We denote such output
by r′. Consider a fixed a∗ ∈ ABAD, if we have |r′(a∗) − 2ϵ| < 2ϵ, then r′(a∗) ∈ (0, 4ϵ), and
|r′(a∗)− (−2ϵ))| > 2ϵ. Similarly, if we have |r′(a∗)− (−2ϵ)| < 2ϵ, then |r′(a∗)− 2ϵ| > 2ϵ. Since
θ∗ is chosen uniformly random in {−1, 1}, we know r(a∗) is chosen uniformly random in {−2ϵ, 2ϵ}.
Thus,

P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A|a∗ ∈ ABAD] ≤ P[|r̂(a∗)− r(a∗)| < 2ϵ|a∗ ∈ ABAD] = 0.5.

We have

P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A] < 0.5 · P[a∗ ∈ ABAD] + (1− P[a∗ ∈ ABAD]) < 0.5 · 0.1 + 0.9 = 0.95.

However, by our assumption on algorithm A, we have P[|r̂(a)− r(a)| < 2ϵ,∀a ∈ A] > 0.95.

D Bellman Rank

The following definition of the general average Bellman error is helpful for our proofs in this section.
Definition 5. Given any policy π : S → A, feature function ϕ : S × A → Rd and a sequence of
parameters θ = (θ0, . . . , θH−1), the average Bellman error of θ under roll-in policy π at level h is
defined as

Eh(θ, π) = E[⟨ϕ(sh, ah), θh⟩ − rh −max
a∈A

⟨ϕ(sh+1, a), θh+1⟩].

Here, (s0, a0, r0, . . . , sh, ah, rh) is a trajectory by following π, and sh+1 ∼ P (sh, ah).

Definition 6 (Bellman Rank). For a given MDP M, we say that our parameter space F = {θ ∈ Rd :
θ is k-sparse, ∥θ∥2 = 1} has a Bellman rank of dimension d if, for all h ∈ [H], there exist functions
Xh : F → Rd and Yh : F → Rd such that for all θ, θ′ ∈ F ,

Eh(θ, πθ′) = ⟨Xh(θ), Yh(θ
′)⟩.

For each h ∈ [H], define Wh ∈ Rd×d as the Bellman error matrix at level h, where the i, j-th index
of Wh is Eh(θi, πθj ). Then, the Bellman rank of F is the maximum among the rank of the matrices
{Wh}h∈[H].

We prove Proposition 1.2.

Proof. We again construct a deterministic MDP instance with binary trees. For simplicity, we
assume d is a power of 2, and we construct the instance with horizon H = log d. Thus, we have
|S| = 2H − 1 = d− 1 states. We also assume the sparsity is k = 1, so the parameter space |F| = d.
The rest details of state space, action space, and the transition kernel are exactly the same as in
Section 3.1.

The reward is defined as r(s, a1) = r(s, a2) = ϵ for s ∈ SH−1, and r(s, a) = 0 for all other
state-action pairs. Correspondingly, the Q-function satisfies that Q∗(s, a) = ϵ for all (s, a) ∈ S ×A.

For feature at horizon h ∈ [H], for j ≥ 2h+1, we define the j-th index of ϕ(s, a) as ϕ(s, a)[j] = jϵ for
all (s, a) ∈ Sh ×A. For i ∈ [2h+1] and i is even, ϕ(s2h−1+i, a1)[i] = ϵ and ϕ(s2h−1+i, a2)[i] = 0.
If i ∈ [2h+1] and i is odd, then ϕ(s2h−1+i, a1)[i] = 0 and ϕ(s2h−1+i, a2)[i] = ϵ. We also define
ϕ(s, a)[i] = 0 for all other state-action pairs.
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Notice that, for any h ∈ [H] and i ∈ [2h+1], we have can let θ be the one-hot vector with i-th index
being 1, then |⟨ϕ(s, a), θ⟩ − Q∗(s, a)| ≤ ϵ for all (s, a) ∈ Sh × A, so our construction satisfies
assumption 1.

Clearly, for each pair (s, a) ∈ SH−1 ×A, we can find θ = (θ0, . . . , θH−1) such that the trajectory
created by following πθ, denoted by (s0, a0, r0, . . . , sH−1, aH−1, rH−1), satisfies sH−1 = s and
aH−1 = a.

Consider two parameter candidates θ, θ′. Let (sH−1, aH−1) be the state and action at level H − 1
when following πθ′ . Since we are considering deterministic MDP, we can calculate the Bellman error
at level H − 1 as follows

EH−1(θ, πθ′) =⟨ϕ(sH−1, aH−1), θH−1⟩ − r(sH−1, aH−1)−max
a∈A

⟨ϕ(sH , a), θH⟩

=⟨ϕ(sH−1, aH−1), θH−1⟩ − ϵ (since H − 1 is the last level)

=

{
0 , if θH−1 = θ′H−1

−ϵ , if θH−1 ̸= θ′H−1.

Here, the last equality holds because, for each θH−1, there is only one unique (s, a) ∈ SH−1 ×A
such that ⟨ϕ(s, a), θH−1⟩ = ϵ.

Thus, at level H − 1, a submatrix of the Bellman error matrix, W ∈ Rd×d, satisfies

Wij = EH−1(θi, πθj ) =

{
0 , if i = j

−ϵ , otherwise.

In other words, W = ϵ(I − J) where I is the identity matrix and J is a d × d matrix with all 1s.
Define matrix W ′ = 1

ϵ (I − 1/(n− 1)J), then we have

WW ′ = (I − J)(I − 1

n− 1
J)

= I − 1

n− 1
J − J +

n

n− 1
J = I.

This means W ′ is the inverse matrix of W , and W is full rank. Thus, the Bellman rank is at least
d.
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