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Abstract

Inference with Large Language Models001
(LLMs) is costly and often dominates the life-002
cycle cost of LLM-based services. Neural Ar-003
chitecture Search (NAS) can automatically find004
architectures optimizing the trade-offs between005
accuracy and inference cost. However, NAS006
for LLM architectures is computationally pro-007
hibitive. We apply the recently proposed Lite-008
TransformerSearch (Javaheripi et al., 2022) al-009
gorithm to reduce the inference latency of a010
GPT-2 based Text Prediction system by 25%011
without compromising its accuracy. In the pro-012
cess, we discover some new constraints that013
apply on the optimal neural architectures, and014
are, therefore, useful in practice to further re-015
duce the computational cost of NAS.016

1 Introduction017

LLMs have achieved state-of-the-art results in mul-018

tiple domains and tasks (Zhao et al., 2023), but019

scalable deployment can be hampered by the high020

computational costs, large memory footprint and021

high inference latency (Amodei et al., 2020). Vari-022

ous methods have been proposed to mitigate these023

issues (Dao et al., 2022; Ling et al., 2023; Liang024

et al., 2021) that optimize a trained model. Neural025

Architecture Search (NAS) automates the discov-026

ery of optimal architectures for given tasks and027

hardware. NAS can explore complex architecture028

spaces considering predefined objectives and lever-029

aging prior knowledge or human expertise, and has030

been successfully applied to various classes of neu-031

ral networks (Elsken et al., 2019). Lately, NAS is032

gaining traction for improving Transformer-based033

architectures that balances accuracy and efficiency034

(Chitty-Venkata et al., 2022).035

Performance estimation is crucial in NAS, but036

the conventional method, fully training candidate037

architectures, is extremely challenging for LLMs038

due to high computational costs. For example,039

training and ranking 1200 TransformerXL candi- 040

dates takes about 19K GPU hours, (Javaheripi et al., 041

2022). Multiple methods have been proposed to 042

reduce computational needs in performance estima- 043

tion, including weight sharing and one shot meth- 044

ods (Xie et al., 2023). A recent promising devel- 045

opment in this space is the LiteTransformerSearch 046

(LTS) algorithm (Javaheripi et al., 2022) that pro- 047

poses a zero-cost proxy. 048

In this paper, we present a case study of using 049

LTS to reduce the latency of a real-world com- 050

mercial web-scale text prediction system. Text 051

prediction enhances typing efficiency by offering 052

real-time, context-dependent word and phrase sug- 053

gestions while a user is typing (Vashishtha et al., 054

2023; Chen et al., 2019; Garay-Vitoria and Abas- 055

cal, 2006). Our system uses GPT-2 style auto- 056

regressive transformer for inference. Using LTS, 057

we reduced the latency by 25% while maintaining 058

prediction quality. In the process, we also discov- 059

ered a set of constraints on the parameters of the 060

architecture, which helped us further limiting the 061

search space and reducing the computational cost. 062

2 Related Work 063

The origins of NAS can be traced back to the 1980s, 064

when genetic algorithm-based methods were in 065

fashion (Schaffer et al., 1992). In the early 2000s, 066

the concept of NEAT (Neuro Evolution of Aug- 067

menting Topologies) (Stanley and Miikkulainen, 068

2002) was proposed, which involves the artificial 069

evolution of neural networks using crossover of 070

different network topologies. However, these meth- 071

ods were not able to achieve the performance of 072

hand-crafted architectures at that time. 073

Around 2015, NAS architectures started to ap- 074

proach or surpass the performance of human- 075

designed network architectures specifically for 076

CNNs. This triggered industry wide efforts to uti- 077

lize NAS for discovering better neural architectures 078
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and led to the development of several frameworks,079

notably Microsoft ArchAI (Arc, 2022), Microsoft080

NNI (Microsoft, 2021), and Keras AutoML(Jin081

et al., 2023). Multiple benchmarking studies were082

performed (Ying et al., 2019; Tu et al., 2022; Chitty-083

Venkata et al., 2023) that evaluated NAS methods084

on various tasks.085

NAS techniques were also utilized for Trans-086

former architecture (Vaswani et al., 2017), Evolved087

Transformer (So et al., 2019) being one of the first088

applications. Evolved Transformer achieves the089

same quality (BLEU score) with half the FLOPs.090

Liu et al. (2022) proposed Efficient Transformers091

having mixed attention search space that helped092

discover architectures and select appropriate atten-093

tion mechanism to maintain comparable accuracy094

to the standard Transformer while significantly im-095

proving inference latency. See Chitty-Venkata et al.096

(2022) for a survey of NAS methods applied to097

transformers.098

While effective in discovering better network099

configurations for transformers, NAS has high com-100

putational cost for performance evaluation. To ad-101

dress this issue, many efficient methods have been102

proposed that can approximate the performance103

without fully training the architectures in every104

iteration. See Xie et al. (2023) for a comprehen-105

sive survey. Efficient performance evaluation is106

especially important for transformer architectures,107

as they have much higher training cost than other108

neural architectures. LTS (Javaheripi et al., 2022)109

presents a specialized training-free NAS for effi-110

cient language models, using the number of de-111

coder parameters in auto-regressive Transformers112

as a proxy for task performance. This enables zero-113

shot performance estimation leading to fast archi-114

tecture search.115

3 Problem Formulation116

The overall objective of our work is to employ NAS117

to find an architecture that when trained with data118

D and training algorithm A, produces a model that119

has similar accuracy (or functional performance)120

but significantly reduced latency (or inference cost)121

with respect to an existing model that was also122

trained similarly. This latter architecture/model123

will be referred to as the baseline model.1124

1Since, data D and training algorithm A (including train-
ing hyperparameters) as well as the inference hardware are
assumed to be fixed for a given NAS setup, conceptually, there
is a one-to-one mapping between the architectures and the
models (subject to minor stochastic variations).

Figure 1: Evolution of the Pareto Frontier with the
Search iterations. The last (yellow) line shows the final
frontier, denoting the trade-off between the performance
and model latency.

3.1 Baseline Model 125

The baseline model is a 12-layer GPT-2 style trans- 126

former (Radford et al., 2019) based text predictor 127

with 204M parameters. Pretraining used 300B to- 128

kens from Pile (Gao et al., 2020) with next-word 129

prediction task and evaluation was done on LAM- 130

BADA (Paperno et al., 2016). The finetuning and 131

evaluation were respectively done on a custom sen- 132

tence completion and held-out datasets. To deter- 133

mine if a prediction should be displayed and to 134

limit generation length, a stopping logic based on 135

log probabilities was applied, tuned using various 136

performance metrics (Chen et al., 2019). The final 137

model’s functional performance was assessed on 138

a user-generated test set. The model’s inference 139

latency was optimized using ONNX Runtime (de- 140

velopers, 2021), a cross-platform machine-learning 141

accelerator for transformer models. 142

3.2 Objectives and Constraints 143

Our main optimization criterion is minimization 144

of inference latency of the model, subject to the 145

constraint that the prediction quality is not com- 146

promised. Inference Latency is the time taken to 147

generate a prediction. Prompt Latency, PL, is the 148

time taken by model to generate the first token and 149

Token Latency, TL, is the average time to generate 150

the subsequent tokens. 151

The latency per character is given by 152

latency_char(n) = (PL+ (n− 1) ∗ TL)/n for 153

comparison. To remove any outliers, we use the 154

95th percentile latency, (P95 latency_char), the 155

time in which 95% of the inferences are completed. 156

Prediction Quality: The metrics used are: Pre- 157

training PPL: Perplexity on LAMBADA. Finetun- 158

ing PPL: Perplexity on the test set of the finetuning 159
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Figure 2: Our Optimization pipeline.

data. Trigger rate: The fraction of inputs for which160

a prediction is generated. Average Saved Char-161

acters (ASC) is the average number of characters162

accepted per prediction given. Average Extra Char-163

acters (AEC) is the average number of characters164

rejected per prediction. A higher ASC signals time165

saved by a user and hence a useful prediction while166

a higher AEC means a higher cognitive load.167

4 Approach168

We use the approach from LTS to optimize our169

model, given the constraints and optimization crite-170

ria. Fig 2 shows a schematic of the method which171

is described below.172

4.1 Optimization Process173

We defined the NAS search space as follows: (we174

use the notation {pmin, . . . , pmax|step_size} to175

show the ranges used): nlayer ∈ {6, . . . , 18|1},176

dmodel ∈ {512, . . . , 2048|64}, dinner ∈177

{1024, . . . , 8192|64} and nhead ∈ {4, 8, 16, 32}.178

These parameter ranges contain values of the base-179

line model (See Table: 1) and allow for variation.180

As suggested by LTS, we use the number of de-181

coder parameters as the proxy for performance,182

and set minimization of model latency as the opti-183

mization objective. Both metrics can be calculated184

without expensive model training. Number of de-185

coder parameters varied between 120M and 180M186

as the baseline had 151M decoder parameters.187

LTS performs an evolutionary search on candi-188

date architectures to extract better models from the189

search space over multiple iterations. Since the190

metrics tend not to be correlated, the search ends191

up with a Pareto-Frontier (looking like Figure: 1)192

Figure 3: Architectures from the Pareto-frontiers are
shown as green points. The red points represent ar-
chitectures chosen for training and evaluation. The
dinner/dmodel = 2 plane is shown in blue. Points in
front of the plane are good architectures.

from which one can choose a specific configuration 193

for training and further optimization. We chose a 194

candidate with slightly more decoder parameters 195

than the baseline as it would ensure better perfor- 196

mance. Increasing this parameter count any further 197

would also increase the model latency. 198

The selected configuration can be pretrained and 199

evaluated similarly to the baseline as described in 200

Sec 3.1. The various evaluations help verify the 201

performance of the candidates as per Fig 2. If 202

no candidate model performs acceptably, we go 203

back to the architecture search and re-run it with 204

additional constraints and heuristics. 205

5 Experiments and Results 206

Our initial search yielded a 7 layer, 260M parame- 207

ter candidate (C1) with 156M decoder parameters 208

and a 35% reduction in per token latency. However, 209

after pretraining, this model performed worse than 210

the original model on LAMBADA. It was observed 211

that ratio of dinner to dmodel significantly affects 212

quality as the configurations having smaller dinner 213

than dmodel might hamper learning of important 214

features in the intermediate layers. Therefore, the 215

search was performed again with the constraint that 216

dinner/dmodel ≥ 2 (see Fig 3 for illustration). 217

Fig 1 shows the Pareto-frontier for the run with 218

10 iterations. The evolution of the Pareto frontier 219

can be seen with the yellow points being the final 220

frontier. The frontier did not change much with 221

further iterations. Two configurations, C2 and C3, 222

were chosen from the frontier and their metrics 223

are presented in Table 1. In addition, we create 224
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Prompt Per token Decoder Total
Model dinner dmodel nhead nlayer latency latency params params

baseline 4096 1024 16 12 47.58 11.78 151M 204M
C1 1664 1984 4 7 47.15↓ 0.90% 7.61↓ 35.40% 156M 260M
C2 3712 1856 4 6 46.62↓ 2.02% 6.58↓ 44.14% 165M 262M
C3 6016 1280 4 7 41.16↓ 13.16% 7.28↓ 40.32% 153M 220M

Table 1: Configurations for the baseline and the candidate models along with their measured latencies (in ms). The
candidates were chosen such that their decoder parameters are more than those of the baseline.

prompt token
Model PPL Acc latency latency

baseline 15.77 0.4363 47.58 11.78
C1 21.86 0.3835 47.15 7.61
C2 19.61 0.4052 46.62 6.58
C3-h4 19.27 0.4058 41.16 7.28
C3-h8 17.05 0.4231 41.76 7.31
C3-h16 15.83 0.4438 44.85 7.56

Table 2: Perplexity, Accuracy and Latency (in ms) of
the candidates on LAMBADA dataset after pretraining.

two more variants of each configuration by setting225

the value of nhead to 8 (-h8) and 16 (-h16). This226

heuristic is based on the observation that increasing227

the number of attention heads increases the model228

performance with very little increase in latency.229

The pretraining performances of these 6 archi-230

tectures are shown in Table 2 along with prompt231

and token latency. The training was done on 64232

A100 40GB GPUs and took 26 hours each. C2-h4233

and C2-h8 models substantially underperformed,234

and were not chosen for any further optimization235

(hence not reported in Table 2). After pretrain-236

ing, the candidate having lowest LAMBADA ppl,237

C3-h16, was finetuned on the custom dataset. On238

another custom dev set, we finetuned certain thresh-239

olds to ensure trigger rate and character saving rate240

equal to that of the baseline model. For the deploy-241

ment, the model was converted from PyTorch to242

ONNX format and compute graph optimized by243

OnnxRuntime to further reduce latency.244

Table 3 presents the performance results for C3-245

h16 on the held out evaluation dataset. As we can246

see, the configuration discovered by NAS is not247

only better in terms of prediction quality from the248

baseline (it has higher ASC and lower AEC rate),249

but also has 25% lower latency. This model has250

now been deployed in real-world scenario, where251

Metric baseline C3-h16

ASC (to maximize) 11.18 11.44
AEC (to minimize) 2.18 1.94
P95 latency_char 1.62 1.24↓ 23.46%

Table 3: Final Evaluation Results. Latency in ms.

we are observing similar performance and latency 252

profiles as predicted by the offline evaluation. 253

6 Conclusion and Future Work 254

Evaluating the performance of large architectures 255

during NAS is computationally expensive, which 256

has been a major bottleneck in applying NAS for 257

LLMs. LTS provides a reliable one-shot proxy for 258

estimating performance. In this paper, we demon- 259

strated that LTS can indeed help us find configu- 260

rations that can have much lower latency and con- 261

sequently, lower computational cost, while main- 262

taining the same level of end-task accuracy. In 263

particular, we were able to reduce the P95 latency 264

per character by 23.46% for a large GPT-2 style 265

model with 204 million parameters. 266

We would also like to highlight two important 267

practical discoveries of our work which is not men- 268

tioned in the original LTS algorithm. First, having a 269

d_inner/d_model ratio larger than 2 significantly 270

helps with model’s quality. Second, increasing 271

the number of attention heads, nhead, in an already 272

discovered configuration also helps with quality im- 273

provements with only a slight increase in latency. 274

There are several open questions that this study 275

prompts, which and can be explored in the future: 276

Does the decoder parameter-end task accuracy link 277

hold for models with 100+ billion parameters? Is 278

there an equivalent for optimizing encoder-only 279

models like BERT and RoBERTa? Can this tech- 280

nique be applied to LLMs trained with instruction 281

fine-tuning and RLHF? 282
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7 Limitations283

Our Text Prediction model, based on GPT-2 and284

using Lite Transformer Search to optimize, has285

shown promising improvements in our experiments.286

However, some limitations to its use should be287

considered.288

One limitation is that Lite Transformer Search’s289

training-free proxy for model performance only290

applies to decoder-only models. This means it can-291

not be used to optimize encoder-based models like292

BERT, used widely in the industry at scale.293

Another essential point is that this method does294

not help modify an existing model. Instead, a new295

model must be trained from scratch. This can be296

a resource and time-consuming process for large297

models and may only be feasible for some applica-298

tions.299

Another limitation is that there are very few300

changeable parameters within the Lite Transformer301

Search algorithm. This limits the ability to experi-302

ment with different activation functions and other303

hyperparameters, which could improve the model’s304

performance. Currently, it offers no way to com-305

pare two models with different activation functions306

if they were to have the same number of decoder307

parameters. Further research is needed to deter-308

mine if there are ways to increase the algorithm’s309

flexibility to incorporate more dimensions into the310

search space.311

Finally, it still needs to be clarified if Lite Trans-312

former Search also works with flash attention.313

Flash Attention (Dao et al., 2022) is a relatively314

new technique that has shown promise in improv-315

ing the performance of transformer models. Further316

experiments are needed to determine if Lite Trans-317

former Search can be effectively combined with318

flash attention to improve the performance of our319

Text Prediction model.320

Overall, while our Text Prediction model has321

shown promising results, some limitations to its use322

should be considered when evaluating its potential323

for other real-world applications.324
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